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Abstract 

Diffusion-weighted Magnetic Resonance Spectroscopy (DW-MRS) allows uniquely 

characterize tissue such as brain and muscle in vivo by quantifying the diffusion of 

metabolites. In contrast with water, many brain metabolites are predominantly intracellular, 

and some metabolites are preferentially found in specific brain cell types, e.g., neurons and 

glia. Given the microstructural sensitivity of diffusion-encoding filters, investigation of 

metabolite diffusion properties using DW-MRS can provide exclusive cell and compartment-

specific information. Since many developmental processes, such as plasticity and aging, or 

pathological processes such as neurological diseases are characterized by modulations of 

specific cellular types and their microstructures, and since water signal is not representative 

of any specific compartment, metabolite signals can serve as biomarkers with enhanced 

specificity. Furthermore, since many models and assumptions are used for quantification of 

water diffusion, metabolite diffusion may serve to generate a-priori information for model 

selection. 

DW-MRS measurements are extremely challenging, from the acquisition perspective as well 

as from the analysis and quantification standpoint. In this review, we survey the state-of-

the-art methods that have been developed for the robust acquisition, quantification and 

analysis of DW-MRS data and discuss the potential relevance of DW-MRS for elucidating 

brain microstructure in vivo. Some examples are reported and discussed, showing that when 

accurate data on the diffusion of multiple metabolites is combined with accurate 

computational and geometrical modelling, DW-MRS can provide unique and accurate cell-

specific information on the intracellular structure of brain tissue. 

 

Keywords: diffusion, metabolites, intracellular space, cell structure, tissue microstructure, 

brain, 1H magnetic resonance spectroscopy. 

 

Highlights:  

• diffusion-weighted MRS (DW-MRS) allows to investigate brain metabolite diffusion 

• most brain metabolites are predominantly intracellular and cell specific 
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•  diffusion properties of brain metabolites provide exclusive cell-specific information 

• the most recent methods for DW-MRS data acquisition and analysis are reviewed 

• the potential relevance of DW-MRS for elucidating brain microstructure is discussed. 

 

MAIN 

Introduction  

Nuclear Magnetic Resonance (NMR) signals are incredibly rich sources for information 

because they are sensitive to numerous physical mechanisms. The chemical shift – the slight, 

ppm-scale variations in NMR frequency due to electronic interactions in a given molecule – 

was perhaps one of the earliest NMR interactions to be discovered, and its utilization has 

transformed chemistry due to its ability to characterize molecular structure. It is therefore 

not a surprise that its spatially localized version – rebranded Magnetic Resonance 

Spectroscopy (MRS) – has had a strong impact on biomedicine and neuroscience. The 

spectral dimension revealed by MRS in general, and by 1H MRS in particular, allows a unique 

way to characterize tissue in vivo by quantifying the levels of metabolites at relatively high 

concentrations (typically > 1mM). In high-quality spectra, about 20 metabolites can be 

readily quantified, including neurotransmitters, energy-related metabolites, osmolytes and 

others. Accurate information on metabolite concentrations in tissue leads to vast amount of 

applications. To name but a few, MRS has been used for: characterization of energy-cycle 

metabolism in vivo (1-3), identifying and differentiating between tumor types (4) and gaining 

insights into neurotransmitter turnover upon activation (5). These have been instrumental 

for both clinical applications as well as for basic science.  

Diffusion is yet another mechanism that has made a huge impact in biomedicine, 

neuroscience and other fields. The spins giving rise to NMR signals are never stationary, and 

in the presence of magnetic field gradients – be they internal, i.e. caused by tissue 

susceptibility variations (6), or externally applied (7) – the NMR signal will also reflect 

information on the diffusion process that the ensemble had undergone. In solution, the 

signal attenuation in the presence of magnetic field gradients reflects the diffusion 

coefficient, which can be used for example, as a second dimension for resolving the 

constituents in chemical mixtures (8). When diffusion is restricted by physical barriers, the 
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diffusion process becomes imprinted with signatures of the confining geometry, and hence 

the measurement may report on microstructure. The sensitivity of water diffusion to 

structures on a spatial scale much smaller than the voxel scale, has found massive 

application, for example, in early detection of stroke (9-11) as well as in fiber tracking (12, 

13) and other applications in biomedicine (14).   

It is appropriate to consider here the motivation for going beyond the water signals in 

quantifying microstructure. Water is present in almost every microscopic as well as 

macroscopic tissue subcomponent, and is thus inherently non-specific. Water in blood 

vessels, CSF and cysts diffuses with a very high diffusion coefficient, and in blood and CSF 

flow is also present. In neural tissue, all cells: astrocytes, neurons, oligodendrocytes or other 

glia, contain water; furthermore, their subcellular units (cell body, neurites/astrocytic 

processes, cell mitochondria or cytoplasm, etc.) are also very similar in water content. 

Different cell types e.g., excitatory/inhibitory neurons, contain very similar water content. In 

addition to water in cells, it is important to note also the extracellular space, which also 

contains water protons at similar concentration (110M) as the intracellular environment. 

Since the diffusion coefficients in all cellular, subcellular, and extracellular compartments are 

still widely unknown, it is extremely difficult to gain compartment-specific information from 

water-based measurements.  

By contrast with water, most metabolites are predominantly intracellular, and some 

metabolites may be even specific to a certain cell type. Perhaps the most obvious example is 

N-Acetylaspartate (NAA): numerous studies (15-17) have found that in the nervous system, 

the osmolyte NAA is produced solely by neurons, and furthermore, it is not secreted by 

neurons. Hence, NAA is considered specific to the neuronal intracellular compartment. NAA 

is also one of the most quantifiable metabolites, having both very high concentration 

(20mM) relative to all other metabolites other than glutamate (Glu), and a very convenient 

singlet at the 2.02ppm resonance, which is not modulated over different TEs. In some cases, 

there are some modulated metabolite signals that can “hide” under NAA’s resonance, 

especially at lower fields and/or when lines are somewhat broad (e.g. a 1.95ppm GABA 

methine quintet).  

Another metabolite with high compartmental specificity is myo-inositol (Ins). In the CNS, Ins 

has been shown to be predominantly localized in astrocytes (15, 18, 19). This provides, in 
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principle, a very elegant counterpart to NAA’s neuronal specificity, as Ins represents the 

complementary major intracellular compartment in the CNS. However, it should be noted 

that Ins is present in rather low concentrations (~4-8 mM), and, maybe even more critically, 

all of its covalently-bound proton signals are double-doublets or triplets, i.e., J-modulation 

causes very strong signal interferences. This attribute makes Ins generally more difficult to 

accurately quantify compared with NAA.  

Other metabolites, such as the co-measured pair creatine and phosphocreatine (tCr) (20, 21) 

and the co-measured choline compounds (tCho), have been shown to originate 

predominantly from Glia (up to ~75% specificity for tCho) (19). Le Belle et al. (22) reported 

tCho concentration of 1.5-2.2 µmol/g in brain tissue using two different extraction 

techniques, and 27-41 µmol/g in astrocytes. When normalized to tCr, this corresponds to 

[tCho]/[tCr]=0.15-0.25 in brain tissue (close to what is indeed typically measured in the brain 

in vivo (3)), and [tCho]/[tCr]=1.9-2.4 in astrocytes. This represents at least a 10 times higher 

concentration in astrocytes than in neurons. Though slightly less-specific than the Ins 

counterpart, the signal of tCr and tCho is readily quantifiable as both represent uncoupled N-

bound methyl singlets.  

The motivation for quantifying diffusion properties of these metabolites is now perhaps 

clearer: their diffusion properties may reflect specific cell-type geometry. Since many 

diseases or disease phases are characterized by injury to specific cellular types (e.g., 

glioblastoma affecting glial cells) or compartments, and since water signals are not 

necessarily representative of any specific compartment, metabolite signals can serve as 

biomarkers with enhanced specificity. Additionally, information on how metabolites such as 

neurotransmitters change compartments (e.g., upon neurotransmission) could complement 

fMRI with a more direct observation of neural activation in vivo (23, 24). Furthermore, since 

many models and assumptions are used for quantification of water diffusion, metabolite 

diffusion may serve to generate a-priori information for model selection.  

The purpose of this review is to introduce the potential relevance of diffusion-weighted MRS 

for elucidating brain microstructure in vivo. For a more exhaustive survey of MRS or diffusion 

at large, the reader is referred to the following exhaustive reviews of diffusion-weighted 

MRS (25-27) and diffusion in general (28-32).  
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For this review, the reader is assumed to be familiar with general definitions and notations 

of molecular diffusion and NMR diffusion measurements, and in particular with DW-MRI. 

The review is structured as follows: in Section 1, DW-MRS methodological aspects of data 

acquisition and quantification are introduced and compared to DW-MRI; in Section 2, the 

most recent models proposed to describe diffusion of brain metabolites in the intra-cellular 

space are reviewed, together with some examples of recent successful applications to 

experimental data; In Section 3, we briefly discuss co-analysis of DW-MRI and DW-MRS data: 

what has been done so far and what are some of the possible directions in which  this 

approach can evolve to provide a more comprehensive picture of tissue microstructure.  

 

1. DW-MRS methodology 

 

In this section, we present methodological aspects of data acquisition and quantification 

specific to DW-MRS, as compared to DW-MRI or non-diffusion weighted MRS. For more 

exhaustive reviews of DW-MRS basic methods and applications, the reader is referred to (25-

27). 

 

1.1. DW-MRS pulse sequences: specific constraints, traditional approaches, recent 

developments 

 

From the most practical of perspectives, in vivo DW-MRS sequences must achieve several 

goals simultaneously: (1) adequate diffusion-weighting (2) signal localization to the volume 

of interest and (3) robust acquisition of a free induction decay (FID) to obtain the chemical 

shift spectral dimension. This is usually implemented by inserting diffusion-sensitizing 

gradients within a conventional localized MRS sequence, such as STEAM (STimulated Echo 

Acquisition Mode) (33), PRESS (Point RESolved Spectroscopy) (34) or LASER (Localization by 

Adiabatic SlicE Refocusing) (35). 

Brain metabolites diffuse more slowly than water, and their typical apparent diffusion 

coefficient (ADC) in solution is about 0.5-0.7 µm²/ms (36) versus 1.5-2.5 µm²/ms typical for 
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water at body temperature. Since the diffusion attenuation factor ∝ 𝑏 𝐴𝐷𝐶, where b is the 

b-value, sufficiently high diffusion-weighting – typically 5-10 times stronger than that used 

for water – must be applied to create a significant diffusion-based attenuation. For example, 

b=1 ms/µm² will only induce a 10-20% signal attenuation, which must be compared with 

typical signal-to-noise ratio (SNR) achieved in MRS, which sometimes not much larger than 

10 for some metabolites. More precisely, taking SNR=20 at b=0, a reasonable estimate for a 

typical clinical MRS spectrum, and ADC=0.1 µm²/ms, the expected standard deviation on 

measured ADC will be 0.1 µm²/ms when using b=1 ms/µm², and drops to a more 

acceptable 0.025 µm2/ms when using b=5 ms/µm² (taking Eq. [12] in (37) based on error 

propagation analysis). Whatever the SNR, the optimal b-value to maximize precision on ADC 

is ideally 1/ADC, i.e. b=5-10 ms/µm². In the early days of DW-MRS, reaching sufficiently b-

values in vivo could barely be achieved using spin echo sequences without setting TE to 

more than 100 ms, resulting in dramatic signal loss. This was not so much due to T2 

relaxation, as metabolite T2 is typically longer than 100 ms even at very high field, but rather 

due to J-modulation, which evolves under spin-echo sequences and results in destructive 

interference of neighbouing peaks. It was instead generally achieved using DW-STEAM (38, 

39) at relatively long mixing time TM, which is much more favorable despite the loss of 50% 

in signal, as magnetization during TM relaxes according to T1 and the effect of J-modulation 

is more limited. In this case, diffusion-sensitizing gradient lobes are inserted within the echo 

time, between the first and second slice-selective 90° RF pulses, and after the third slice-

selective 90° RF pulse, see Figure 1A. Although new generations of gradient coils capable of 

delivering increased gradient amplitudes have partially alleviated the need for stimulated 

echo, STEAM remains the preferred approach to reach very high b-values or to measure 

diffusion at long diffusion times, td, in particular on clinical systems. Beyond the advantages 

of the STEAM sequence in terms of high b and long td, one noteworthy feature of STEAM is 

its generally superior performance in terms of water suppression, as an additional water 

suppression RF pulse can be inserted during the mixing time. It allows quantifying the signal 

of heavily J-modulated metabolites such as Glu or Ins, which proves to be much more 

difficult, if not impossible, using spin echo DW sequences on clinical systems. Stimulated 

echo results, however, in the loss of half the magnetization, so a spin echo sequence should 

be preferred whenever experimentally possible, as sensitivity is one of the major issues of 

MRS in general, and of DW-MRS in particular. Another issue with STEAM is that the cross-
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terms with other gradients (∝ 𝐺𝐷𝐺𝐼𝑇3, where GD is the diffusion-sensitizing gradient, GI is 

the gradient relevant to spatial localization, and T is a sequence-dependent timing factor 

broadly indicating the separation between gradient pairs) tend to be very large, because 

they build up during the mixing time, which can be long, as this is generally the reason for 

using STEAM, as shown in Figure 1B. Another source of error is a similar T3 interaction of 

diffusion gradients with internal, susceptibility-driven gradients which will similarly affect the 

extracted coefficients in STEAM. It is therefore critical to pay extra attention to cross-terms, 

either by calculating them, or minimizing their effect by performing two successive 

acquisitions with opposite diffusion gradient polarities and calculating the geometric average 

of signal attenuations measured with both polarities (40-43). 

The first spin-echo DW-MRS sequences were based on PRESS, and performed on preclinical 

systems (44, 45). Identical pairs of gradient pulses G were inserted around the two slice-

selective 180° RF pulses (90°; G; 180°; G; G; 180°; G), which allowed compensating for phase 

variation due to bulk translational motion, provided that motion remains constant during 

the sequence. The sequence was subsequently modified for clinical systems by applying a 

bipolar gradient scheme (90°; G; 180°; -G; G; 180°; -G), thus taking advantage of the twice-

refocused spin echo to increase maximal achievable diffusion-weighting, while minimizing 

eddy currents and mitigating, to a certain extent, cross-terms with time-constant 

background gradients (46). A DW-PRESS sequence with specific gradient scheme has also 

been proposed to provide single-shot isotropic diffusion-weighting (i.e. weighting by the 

diffusion tensor) (47), which may be of interest for measurements performed in highly 

anisotropic voxels such as in white matter bundles. 

LASER (35), another type of double spin-echo sequence implementing fully adiabatic 

refocusing pulses  has been gaining attention (Figure 1C). LASER offers superior localization 

performance due to the more ideal frequency profile of hyperbolic secant pulses, with sharp 

transition bands, flat, plateau-like bands, and absence of outer ripples in the stop-band. This, 

in addition to the insensitivity of the adiabatic pulses to B1 inhomogeneity in a broad range 

of B1, makes LASER a particularly attractive localization scheme, also for diffusion weighted 

MRS. In one variant, oscillating gradients were inserted around the first 180° refocusing 

pulse to measure metabolite diffusion at very short time scales (48, 49). In another variant, 

three pairs of gradient pulses of opposite polarities were inserted around the three pairs of 
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refocusing pulses to achieve single-shot isotropic diffusion-weighting while minimizing cross-

terms with other gradients (37). In addition to previously mentioned advantages, the six 

successive refocusing pulses in LASER make it a CPMG sequence, resulting in slightly longer 

T2 and reduced J-modulation compared to PRESS, which is beneficial for the detection of Glu 

and Ins. Unfortunately, LASER may be difficult to perform in humans at high fields because of 

specific absorption rate (SAR) issues, but more practical variants such as semi-LASER, in 

which the excitation pulse is a non-adiabatic selective pulse, may be employed. 

A recent development in MRS sequence design consists in temporally isolating diffusion-

weighting from localization. So far, this strategy has been implemented on preclinical 

systems by successively playing out three blocks: non-spatially-selective excitation, diffusion-

weighting, and LASER localization (50, 51), as shown in Figure 1C and Figure 2. The main 

advantages are the absence of cross-terms between diffusion and localization gradients, a 

very clean, self-refocused LASER localization, and greater flexibility of the sequence. Using 

such a block-based scheme, the diffusion block can be readily designed according to specific 

experimental questions, independently of the localization block. For example, a Double 

Diffusion Encoding (DDE) scheme could be implemented using this approach (50), giving rise 

to excellent SNR that enabled measurements of metabolite microscopic anisotropy (Figure 

2); a stimulated-echo scheme was implemented in (51) to reach very high b values and study 

how metabolite signal attenuation depended on TE and TM without any bias due to cross-

terms (Figure 1C). Shemesh et al. exploited spectrally-selective excitation and refocusing to 

precisely control the spectral profile, manipulating only metabolites/chemical shifts of 

interest independently of the localization itself (which was achieved by large bandwidth 

refocusing pulses). Spectra acquired using this approach were termed Relaxation Enhanced 

MRS (RE MRS), as they benefit from the absence of water signal and the potential gain in 

signal enhancements due to relaxation enhancement arising from potential cross relaxation 

effects between metabolites and water. The absence of water signal offered a significant 

advantage in the form of a very clean baseline, which might not be trivial to achieve if water 

suppression is suboptimal. Such a clean baseline is imperative for quantifying DDE’s signal 

modulation, which is the basis for the information it provides. Adapting this approach to 

clinical system remains to be done and might be difficult with a LASER localization block 

(because of the SAR and of the relatively long TE that the block design would impose), but an 
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ISIS (Image-Selected In vivo Spectroscopy) localization block may be use instead to overcome 

these limitations. 

 

1.2. Post-processing: from raw data to unbiased signal attenuation 

 

Compared to DW-MRI, additional sources of bias can lead to incorrect quantification of DW-

MRS signal attenuation. Fortunately, most of these sources of bias can be accounted for, or 

at least partially controlled. Key post-processing steps to obtain "unbiased" signal 

attenuation have already been detailed in a recent review (27), but will nonetheless be 

briefly reviewed here, as unbiased measurement is critical in the perspective of 

microstructure modelling. 

Bulk translational motion in the presence of diffusion gradients will result in signal phase 

variation. This may be problematic in MRS, because many scans are generally averaged to 

get sufficient SNR, and averaging of spectra with different phases will result in overall signal 

attenuation and/or distortion. If enough metabolite signal can be detected in a single 

transient, it is possible to perform phase correction directly on each transient prior to 

averaging (39). Alternatively, if metabolite signal is too low, residual water signals may be 

used, or the full water signal if metabolite cycling is used (52). However, care should be 

taken when using the water signal as a phase correction reference, as it does not necessarily 

originate from the same compartment, in particular if the voxel contains CSF. In such cases, 

phase correction based on water may not fully restore metabolite phase. To circumvent this 

problem, it has been proposed to use the water signal after adding an inversion-recovery 

CSF-nulling block (53). Other kinds of bulk motion, such as rotational motion, result in overall 

signal attenuation on individual scans, and are therefore less trivial to correct. If sufficient 

signal is available on single scans, it is possible to select and discard scans exhibiting 

abnormal signal attenuation e.g., below a certain threshold determined from the highest 

signal outcome of the series and taking SNR into account. Macromolecule signal at 0.9 ppm, 

which does not overlap with metabolite signal, can also be used as a reference of 

approximately null diffusivity, at least at low b-values, so that scans with decreased MM 
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signal compared with b=0 can be discarded as presumably resulting from bulk motion 

artefact. This approach proved useful in a recent study using oscillating gradients (49). 

The effect of eddy currents on spectral distortion is relatively easy to correct for, provided a 

water reference signal was acquired using the same sequence, i.e. data are acquired with 

the same volume selection, same sequence timing and the same diffusion-weighting, with 

water-suppression RF pulses turned off. Assuming only the water resonance contributes to 

this reference signal (which is generally the case when no water suppression is applied and 

diffusion-weighting is not too high), the temporal phase distortion induced by eddy current 

can be directly assessed by measuring the phase φEC(t) of the free induction decay. Then, 

eddy currents correction on the water-suppressed free induction decay FIDmetab(t) is 

achieved by simply removing the eddy current induced phase, i.e. by computing 

FIDmetab,ECC(t)=FIDmetab(t)/exp(iφEC(t)). This simple approach may be compromised in 

situations where metabolite signal significantly contributes to the reference signal acquired 

without water suppression, for example at very high b values. In that case, a linear-

prediction singular value decomposition (LPSVD) algorithm may be used to isolate the water 

signal before calculating φEC(t) (54). This approach may also be useful in poor SNR 

conditions. 

Once MRS spectra have been properly reconstructed, metabolite signal needs to be 

quantified. This was historically done by measuring peak height, area, or ratios, which can be 

accurate when the baseline is flat and when the different metabolites do not overlap. 

However, to measure diffusion properties for as many metabolites as possible, including J-

modulated metabolite such as Glu and Ins, short TE sequences are required, resulting in 

many overlapping multiplets as well as strong macromolecule contribution (see below). In 

such cases, it is much more reliable to analyze spectra in terms of linear combination of 

individual metabolite signals (Figure 3), as performed, e.g., by LCModel (55). Other analysis 

software exist, such as AMARES (56), TARQUIN (57), FID-A (www.github.com/CIC-

methods/FID-A), and these also quantify spectra in similar ways. This allows making full use 

of spectral information, in particular by simultaneously fitting peaks at different chemical 

shifts but belonging to the same metabolite. In the end, it is critical to obtain very robust 

signal quantification, with more stringent quality criteria than for standard MRS. For 

example, when using LCModel or TARQUIN, quantification precision may be evaluated based 

http://www.github.com/CIC-methods/FID-A)
http://www.github.com/CIC-methods/FID-A)
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on the Cramér-Rao lower bounds (CRLB) calculated by the software. CRLB is an estimation of 

the standard deviation of the measurement. If measuring the ADC with a two-point 

experiment (e.g. b=0 and b=2 ms/µm²), we can recast error propagation analysis in terms of 

CRLB provided by LCModel, resulting in the following expression for the standard deviation 

on ADC: 

𝜎𝐴𝐷𝐶~
1

𝑏
× √𝐶𝑅𝐿𝐵𝑏=2² + 𝐶𝑅𝐿𝐵𝑏=0²   [1] 

Assuming CRLBb=2CRLBb=020%, often considered as a reliability threshold in the MRS 

literature, we get s.d.(ADC)0.14 µm²/ms, which is comparable to a typical ADC. In contrast, 

a more demanding quality threshold, i.e. CRLB5%, will result in s.d.(ADC)0.035 µm²/ms, 

which is well below typical ADC. 

A very important and often overlooked issue related to metabolite quantification is the 

macromolecule (MM) signal. MM consists of large molecules, e.g. proteins, with relatively 

short T2 (a few tens of ms) resulting in broad resonances overlapping with metabolites (58). 

Not surprisingly, MM diffusion has been reported to be very slow, with ADC in the brain 

found to be 0.005 to 0.01 µm²/ms and a close to mono-exponential attenuation even at 

very large b-values (51, 59). Because MM signal is not negligible compared to metabolites, 

especially when relatively short TE sequences are used (typically less than 50 ms), it can 

significantly affect estimated metabolite ADC if not properly accounted for (Figure 3). This 

becomes evident when considering a MM contribution of 10% of metabolite peaks, as it is 

typically the case for NAA, tCr and tCho at TE30 ms, and comparing this quantification bias 

with the 20% signal attenuation at b=2 ms/µm² for metabolites with ADC0.1 µm²/ms. If 

MM signal is not properly accounted for and is mistakenly included in metabolite signal, this 

is enough to induce a 10% underestimation of the metabolite ADC. The problem is even 

more acute when very high b-values are used, because then the MM signal becomes even 

more prominent in the spectrum. For example, metabolite signal is attenuated by 80% at 

b=50 ms/µm², while MM signal is attenuated only by 20% (51). In this context, it is 

absolutely critical to carefully disentangle metabolite from MM signal. The spectral 

quantification software LCModel (55) offers the possibility to include a group of independent 

broad contributions to model MM signal, but this will generally introduce too much bias and 

variability, as overlapping MM and metabolite signal can still be confounded. The method of 

choice is instead to acquire an experimental MM spectrum using metabolite-nulling 
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acquisition (60) and to incorporate this spectrum in LCModel basis-set. This will ensure that 

the actual MM contribution is considered and will limit the variability in the estimation of 

the MM signal at different b values, in particular because the isolated MM peak at 0.9 ppm 

will result in reliable MM estimation. 

 

1.3 Early measurements of metabolite DW MRS signal decays and ADC  

 

Somewhat similarly to the history of water-based DWI, the initial focus in DW-MRS was in 

characterizing the signal attenuation, and measuring metabolite ADCs at a given set of 

diffusion time and gradient amplitude combination using Single Diffusion Encoding (SDE) 

approaches (61). In perfused cells, van Zijl et al already identified non-exponential decays 

against b-value (62), while Moonen et al measured metabolite ADCs in muscle tissue (38). 

Several metabolite ADCs were subsequently measured in the healthy human brain (39) as 

well as in the in-vivo rat brain (63). Wick et al (64) monitored changes in metabolite ADCs 

upon ischemia in the rat, and suggested that specific neuronal and astrocytic swellings could 

be identified from the NAA and Ins signals, respectively. Van der Toor et al (44) measured a 

significant decrease in NAA and tCr ADCs of 29% and 19%, respectively, compared to the the 

contralateral region, after 3 hours of ischemia in rat brain. Pfeuffer et al (59) were able to 

use DW-MRS derived ADCs of glucose, lactate and compare them to purely intracellular 

metabolites to demonstratethe equal partitioning of glucose and lactate across the 

extra/intra-cellular compartments. Others studied the ADCs in stroke (52, 65, 66) as well as 

in tumors (67). These early studies all showed that there is value in measuring metabolite 

diffusion, yet, most of them did not address tissue microstructure directly, but rather 

indirectly interpreted ADC variations in terms of possible alterations of microstructure.  

 

2. What does DW-MRS data tell about brain cells microstructure? 

  

Metabolite ADC, while very useful in some cases, is only an indirect reporter of 

microstructure as it only reflects the overall reduction in diffusion imposed by geometry in 

the Gaussian diffusion limit. Earlier strategies for quantifying microstructure from metabolite 
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DW-MRS have involved q-space MRS (68, 69), which clearly showed restricted diffusion for 

NAA, and even quantified some of its time-dependent properties by observing the average 

propagator at different diffusion times. Others proposed a first attempt to model NAA 

diffusion taking into account the cellular structure (31, 70), while more recently, the ADC 

time dependence at (ultra)-short td was linked to local cellular geometry such as fiber 

diameter (48, 49), while the ADC at (ultra-)long td was linked to the long-range cell 

morphology (71).  

In this section, the most recent frameworks proposed to relate brain metabolites diffusion in 

the intra-cellular space to microstructure are reviewed, together with some examples of 

recent successful applications to experimental data, which support their validity. We focus 

our interest on geometrical models which link the measured diffusion-sensitized echo signal 

attenuation and/or derived diffusion metrics, such as ADC, to cellular microstructural 

determinants, such as fibers diameter and length, number of embranchments and others).  

 

2.1 Molecular diffusion and DW-MR signal  

 

Conventional spin-echo and stimulated-echo MRI and MRS can be sensitized to diffusion by 

symmetrically applying magnetic field gradient pulses that attenuate the echo signal S. In the 

case of non-restricted or Gaussian diffusion, the effect of molecular diffusion is an 

exponential attenuation of S. However, in the general case of diffusion in biological tissue, 

the presence of restrictive or hindering frontiers (membranes, cytoskeleton, 

macromolecules, organelles etc…) drastically influence the motion of probe molecules 

(water or metabolites) and the consequent signal attenuation and the derived ADC. In 

particular, the echo signal attenuation S is no longer a simple exponential decay and the 

measured ADC is in this case dependent on td (30, 72-74).  

In the case of water diffusion, the description and interpretation of the measured signal and 

derived metrics such as the ADC in terms of the underlying tissue microstructure is generally 

very difficult, due to the non-specificity of the water signal and the complexity of the tissue 

as a whole. Non-negligible water volume fraction in the extracellular space, whose 

geometric properties can be very difficult to assess, as well as cell membrane permeability 

have to be taken into account. Phenomena related to the extracellular space, such as intra-
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/extra-cellular water exchange, potential flow of the cerebrospinal fluid (CSF), extracellular 

volume fraction, diffusivity and tortuosity in the extracellular space, cannot be neglected for 

water signals, but can be neglected when interpreting and modelling intracellular metabolite 

diffusion. For some metabolites, diffusion properties are expected to depend mostly on 

intracellular parameters such as cytosol viscosity, molecular crowding and binding, as well as 

the size and shape of the cellular compartment, and metabolite diffusion modelling is thus 

much simpler, allowing for a more direct and precise estimate of the specific cellular 

compartment features. 

 

2.2 Modelling metabolite intra-cellular diffusion 

 

It is important to distinguish the case of restricted diffusion from hindered diffusion, because 

the echo signal attenuation and the ADC diffusion time dependence for these two scenarios 

are different. 

 

Hindering effects: tortuosity and obstruction  

 

Numerous immobile obstacles (i.e. considering the typical time window of DW-MRS 

experiments) exist within the intracellular space, such as the cytoskeleton and various 

organelles, potentially making the cytosol a tortuous space. The tortuosity  refers to the 

effect of hindrances imposed by various immobile obstacles in the medium on the path that 

diffusing molecules can take. Such hindrances affect the minimal pathway between two 

points so that the pathway becomes tortuous, rather than a straight line. In this case, the 

shortest pathway between two points is increased, on average, by a factor  (≥1), compared 

to a straight line connecting these points. At very short td, during which the mean square 

displacement (MSD) is very small compared to the square of the typical distance between 

obstacles, tortuosity will not affect molecular displacement, and the diffusion process will 

appear free. At longer td, in d dimensions, one has (75):  

 

𝑀𝑆𝐷 ~ 2𝑑 
𝐷𝑓𝑟𝑒𝑒

𝜏2  𝑡𝑑   [2] 

 



 16 

Equivalently, the ADC measured at long td converges to: 

 

lim
𝑡𝑑→∞

𝐴𝐷𝐶 = 𝐴𝐷𝐶∞ ~ 
𝐷𝑓𝑟𝑒𝑒

𝜏2   [3] 

 

The way in which the ADC approaches its tortuosity limit and the value of the tortuosity itself 

in Eq. [3] may be affected by secondary structures of cell morphology such as dendritic 

spines, astrocytic leaflets or axonal beads (76). These secondary structures can be seen as 

randomly distributed hindering sources to metabolites diffusion along cell fibers. In this case, 

a well-behaved and specific ADC power law time dependence is expected for mono-

dimensional short-range disordered (hindering) structures: ADC  ADC + C td
-0.5 (74). Recent 

numerical simulations and experimental results (76) suggest that structures such as these 

can also affect metabolite diffusion and the measured echo signal attenuation at high q/b 

values. Consequently, they have a non-negligible effect on the derived diffusion metrics, 

such as ADC power law time dependence, and on the estimated cell geometrical parameters 

such as fiber radius (76).   

A related but nevertheless distinct phenomenon compared with tortuosity that can also lead 

to a decrease in the measured ADC is that of obstruction. In cell cytoplasm, macromolecules 

cannot be neglected compared to the solvent concentration, thus smaller molecules (e.g., 

metabolites) have to skirt around the larger and generally irregularly shaped obstructing 

molecules, increasing their diffusion path length. Obstruction is a complicated many-body 

problem which is in essence hindrance by a time-dependent geometry - the obstructing 

molecules are also moving - in which the interactions between the particles need to be 

considered. Obstruction results in the measured ADC being reduced by a factor that depends 

on the concentration of the particles, as well as perhaps by other factors, such as electrolyte 

friction and solvation (75, 77). 

The effects leading to obstruction generally operate on very short td and length scales and 

are consequently typically well averaged on experimentally available timescales. Thus, from 

the perspective of diffusion, obstruction and viscosity are similar in their effects and closely 

related, and this helps to explain why the measured viscosity, which includes obstruction by 

macromolecules, can depend on the size of the probe molecule (78). 
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Restriction effects 

 

The confinement of metabolites within a given compartment, such as organelles or even the 

entire intracellular space, will also impose an upper limit to the displacement variance. 

While this restriction effect is negligible at very short td, as the displacement variance is very 

small compared to the square of the typical distance between diffusion barriers, at long td, 

restriction will strongly influence the diffusion process. For example, in a situation of perfect 

restriction, i.e., without a possible escape for diffusing molecules, the ADC will converge to 0 

with increasing td, thus, the convergence of the ADC to zero with increasing td is a specific 

signature of restricted diffusion. Similarly, the echo signal attenuation as a function of b 

deviates from the simple exponential decay. For example, for diffusion within a reflective 

cylinder of radius a and when the diffusion sensitizing gradient is applied along the direction 

orthogonal to the restricting frontiers, in the short gradient pulses (SGP) approximation (79) 

the signal attenuation is given by: 

 

𝑆𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟(𝑞,𝑡𝑑)

𝑆(𝑞=0,𝑡𝑑)
=

[ 2𝐽12𝜋𝑞𝑎]2

(2𝜋𝑞𝑎)2 +

8(2𝜋𝑞𝑎)2 ∑ {
1

1+𝛿𝑛0
[𝐽𝑛

′ 2𝜋𝑞𝑎]2 ∑
𝛼𝑛𝑚

2

(𝛼𝑛𝑚
2 −𝑛2)[𝛼𝑛𝑚

2 −(2𝜋𝑞𝑎)2]
2 𝑒

−
𝐷𝑓𝑟𝑒𝑒𝛼𝑛𝑚

2 𝑡𝑑

𝑎2∞
𝑚=1 }∞

𝑛=1   [4] 

 

where Jn is the Bessel function of integer order n; nm is the m-th positive root of the Bessel 

equation J’n = 0; n0 is the Kronecker delta symbol. Note that for other simple restricting 

geometries like parallel infinite reflective planes or reflective sphere, similar exact analytical 

solutions have been derived in SGP approximation (80). 

As can be inferred from the attenuation behaviour in Eq. [4], as td is such that the diffusing 

spins interact with the enclosing geometry (i.e., td  a2/Dfree) the attenuation profile differs 

significantly from that of the free diffusion model.  When the interactions with the boundary 

become significant (td ≳ a2/Dfree) an interesting effect is noted if the attenuation is plotted as 

a function of q: diffusive diffraction-like effects arise and structural information about the 

enclosing geometry can be obtained from the characteristics of the diffraction pattern. For 

example, the diffractive minima occur at q = n/(2a) (n=1, 2, 3, …). In the early 1990s, 

Callaghan and Coy proposed for the first time the analogy between NMR measurements in a 
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field gradient and diffraction, formulating its link to the underpinning confining geometry 

(81, 82). Many subsequent DW-MRI and DW-MRS studies of water and metabolite diffusion 

in biological tissues showed the potential of this approach to characterize tissue 

microstructure (83-85). For a comprehensive review on this topic, we refer the reader to 

(86).  

For the case of cylindrical restrictions, it is not always easy or even possible to apply the 

diffusion sensitizing gradient exactly along the direction orthogonal to the restricting 

frontiers. In this case, an expression for the echo signal attenuation in the generic case 

where the diffusion gradient is applied along a direction separated by an angle  relative to 

the cylinder axis is provided by (87): 

 

𝑆𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
𝜃 (𝑞,𝑡𝑑)

𝑆(𝑞=0,𝑡𝑑)
=

𝑆𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟(𝑞⊥,𝑡𝑑)

𝑆(𝑞=0,𝑡𝑑)
𝑒−𝐷𝑓𝑟𝑒𝑒𝑞||

2𝑡𝑑   [5] 

 

where 𝑞⊥ = 𝑞𝑠𝑖𝑛(𝜃); 𝑞∥ = 𝑞𝑐𝑜𝑠(𝜃). 

Note that analytical equations also exist to calculate the dispersive diffusivity D(𝜔) (i.e. the 

Fourier Transform of the velocity autocorrelation function) in cylinders and spheres when 

using oscillating gradients in the low b-value regime (88). However, one of the great 

advantage of using oscillating gradients is that, at sufficiently high frequencies (i.e. in the 

Mitra regime, (89)), a model-free linear fit of D(𝜔) as a function of 𝜔 can be done to 

estimate Dfree and the surface-to-volume ratio S/V (90). Such a model-free approach might 

be preferred over geometrical models, provided sufficiently high 𝜔 can be reached. 

 

2.3 Models for cellular compartments 

 

Generally speaking, the diffusion of brain metabolites in the intra-cellular space can be 

modelled as molecular diffusion in the cytosol with restriction mostly due to the cell 

morphology and internal structure. While the cytosol viscosity, including macromolecular 

crowding and other effects, can ideally be investigated by performing (ultra-)short td 

experiments where the ADC time dependence at (ultra-)short td can be studied without the 

necessity of any specific modeling (as seen in the previous session and (49)), the estimation 

of cell morphology is more complex, and requires more sophisticated modelling.   
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Recently obtained experimental results, assist the complex modelling of cellular structure. 

These results suggest that in order to define a proper model for brain cellular compartment, 

different diffusion regimes and different corresponding models have to be considered, 

according to the different td investigated.   

 

Cytosol viscosity and macromolecular obstruction  

 

Measurements performed in conditions where tortuosity and restriction effects are assumed 

to become small or negligible, i.e., at (ultra-)short td (lower than 10 ms) using oscillating 

gradients (48, 49) yielded values of metabolite Dfree in the range of ∼50% to ∼80% of the free 

diffusivity for those metabolites in aqueous solution. This suggests a cytosolic viscosity 

(including molecular crowding) that is, at most, twice the value of water. 

 

Metabolite diffusion primarily occurs in long fibers: a first argument based on ADC time-

dependency 

 

The observed strong decrease in metabolite ADC as td is increased from ∼1 ms to ∼10 ms 

reported in (48, 49) suggests that metabolite diffusion in brain cells is hindered by obstacles 

that are typically separated by distances of ≤2 μm. A priori, these obstacles could be either 

organelles or structures of the cytoskeleton, or simply the membranes of fibers extending 

from the cell bodies of neurons and glial cells , i.e. axons, dendrites and astrocytic processes. 

On the other hand, metabolite ADCs have been shown to be remarkably stable in the mouse 

and macaque brain in the range of (ultra-)long td values between 100 ms and 2 s (42, 71), 

despite a slight trend to decrease with increasing td. This suggests that metabolites are for 

the most part not confined inside small subcellular structures, such as organelles or cell 

bodies, but diffuse along the long fibers characteristic of neurons and astrocytes. Had the 

metabolites been confined to subcellular structures or to ageometrically closed structure 

such as a cell body, their ADC(td) would have rapidly approached zero. Metabolite ADC 

stability has also been confirmed separately in human gray and white matter for td between 

100 and 720 ms (91).  

Thus, brain intracellular metabolites diffusion can be thought primarily as molecular 

diffusion in cellular processes, described in first approximation as a collection of long 
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cylinders with radius a ≤2 μm, and intracellular metabolites diffusivity Dfree lower than the 

diffusivity of free metabolites in aqueous solution. The idea of metabolite diffusion being 

characteristic of diffusion in fibers is consistent with the known cellular morphology of 

neurons and astrocytes, where long cellular processes of more than tens, and sometimes up 

to hundreds of µm) represent most of the cellular volume fraction, about 80% or more (92, 

93). Although long axonal fibers may be reasonably considered of infinite length, this 

assumption may not be valid at all experimentally accessible td values for dendrites and 

astrocytic processes which exhibit a more complex branching structure, as will be discussed 

later in this review.  

 

Metabolite diffusion primarily occurs in long fibers: a second argument based on DDE 

 

In contrast to SDE, multiple diffusion encoding approaches – and in particular, Mitra’s DDE 

approach – can provide insights into microscopic anisotropy – a parameter that disentangles 

orientation distribution from the “local” anisotropy in a heterogeneous system. For more 

thorough reviews the reader is referred to (94, 95), however the main notions will be briefly 

mentioned here. As its name suggests, the DDE sequence (Figure 2), first suggested by Cory 

et al. (96) contains two diffusion sensitizing epochs separated by a mixing time. Mitra 

suggested the angular DDE experiment, which could disentangle microscopic from 

macroscopic anisotropy from the shape of the curve spanned by varying the relative angle 

between DDE’s gradient pairs (97). Mitra thus suggested an ingenious way to characterize 

the size and shape of completely disordered systems, which would otherwise appear 

spherical in SDE experiments: spheres would incur no modulation at long mixing times, 

whereas randomly oriented but locally anisotropic compartments would give rise to a 

modulation from which the microscopic anisotropy, a measure of the local pore eccentricity, 

can be extracted. This idea was later theoretically refined (98) and generalized to 3D 

rotationally invariant schemes (99, 100) and experimentally demonstrated in numerous 

systems (43, 100-105). The main advantage of such DDE approaches is that they can deliver 

the information on the microscopic anisotropy directly from only a few points along the 

angular curve, thereby providing an efficient way of inferring the underlying geometry. As 

well, they can differentiate between multicomponent Gaussian diffusion and non-Gaussian, 

restricted diffusion directly from the shape of the angular modulation. 
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The first spectroscopic DDE implementation utilizing the chemical shift to separate 

compartments and DDE filters to gain sensitivity towards microstructure was given in 

Shemesh et al (103) on an emulsion system mimicking a “cellular” and “extracellular” 

environment. The spectral dimension here was greatly simplified compared to in vivo 

spectra, and contained only two signals: the toluene (intra) and water (extra) signals in 

roughly equal amounts. SDE q-space experiments could not clearly differentiate the two 

signals, and in fact it was unclear whether they exhibit compartmentation at all. By contrast, 

the DDE MRS experiments (non-localized) showed clearly that there are two different 

diffusion behaviors: the first, representing diffusion within big spheres (toluene) and the 

second exhibiting restricted diffusion in a randomly oriented environment with a high 

eccentricity (water). These chemical-shift driven specificity enhancements, coupled with 

DDE’s ability to resolve microscopic anisotropy unambiguously defined the total 

microstructure of a complex system, and thus provided strong incentives for in vivo DDE 

MRS experiments. 

The first in vivo DDE MRS experiments were performed using the RE MRS approach 

specifically tailored for NAA, tCr, tCho, and Lactic acid (Lac) signals in a rat stroke model, 

where voxels were localized in ipsi- and contra-lateral sides (50). Raw data and results are 

then shown in Figure 4B and C. DDE’s characteristic modulation curves are easily evident in 

the raw signal stacked plots, and can be further appreciated from the plots. Several features 

were noted: (1) the metabolites unequivocally exhibit restricted, non-Gaussian diffusion, and 

the shape of the curve suggested their localization in highly eccentric compartments; (2) the 

stroke altered the geometry of the intraneuronal compartment within the voxel, as evident 

from the statistically significant difference in NAA’s modulation between the hemispheres; 

(3) Lactic acid moves from a rather spherical compartment to a much more eccentric 

compartment upon ischemia.   

A later DDE RE MRS study (106), this time performed in the normal rat brain, used a slightly 

different excitation/refocusing pulses, such that their bands encompassed only NAA and Ins 

signals, in an effort to discern between the neuronal and astrocytic compartments more 

clearly. As mentioned earlier, NAA is a specific intra-neuronal marker, while Ins is present 

nearly exclusively in the intra-astrocytic compartment. Figure 5A shows how the multiband 

pulse indeed excited only Ins and NAA signals, greatly simplifying the spectrum (n.b., it is 
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displayed in magnitude mode to avoid the deleterious effects of J-coupling and since the 

spectral resolution is not that important due to the band-limited excitation), and facilitating 

the DDE acquisition. The clear DDE modulation observed (Figure 5B) extends the previous 

findings, and supports the notion that NAA and Ins are restricted in elongated 

compartments. 

To summarize, the measured characteristic oscillations for NAA, tCr, tCho and later for the 

Ins signals, can only be attributed to restricted diffusion (Figure 4 and 5). Multi-Gaussian 

diffusion would not give rise to such modulated curves (97). Thus, intracellular diffusion 

within neurons and astrocytes could be confirmed as non-gaussian from two independent 

techniques: time dependent SDE, and DDE. Another feature that can be compared between 

SDE and DDE experiments is the degree of anisotropy in each compartment. DDE’s signal 

modulations revealed clear signatures for microscopic anisotropy, i.e., non-spherical 

components, with similar yet not identical microstructures (e.g., length/radius) for both 

neurons and astrocytes. A reasonable hypothesis for this observation is that these 

experiments represent diffusion in randomly oriented neurites in neurons, whereas in 

astrocytes, the compartments probed are the randomly oriented astrocytic processes. This is 

largely consistent with the conclusions drawn for observing ADC time-dependency over a 

very large range of diffusion times (71). 

 

Estimating fiber diameter from the high b/q-value signal attenuation 

 

At intermediate td, i.e., between 10 and 100 ms, the fraction of metabolites experiencing 

branching during their diffusion along a cell fiber process may be neglected and the cell fiber 

can be in good approximation modeled as a long infinite cylinder. Considering an average 

metabolite Dfree∼0.4 μm2/ms and an average fiber length between successive 

embranchments Lsegment∼30 μm (71, 107), for td100 ms the mean metabolite displacement 

along the cell process is 10 μm << Lsegment. In this regime, cellular fibers can be modeled as 

long hollow cylinders. Because the spectroscopy voxel from which the DW-MRS signal is 

measured contains a large number of cellular processes randomly oriented in space, a model 

of randomly oriented cylinders in space has been proposed (Figure 6A) to describe the 

observed non mono-exponential echo signal attenuation at high q/b values (31, 70, 108). 



 23 

Assuming that the cylinder has a radius a, and the intracellular metabolites diffusivity is Dfree, 

the measured echo signal represents the sum of signals from a large number of differently 

oriented cylinders. For any given cylinder whose axis makes a variable angle  with the 

diffusion gradient, the echo signal attenuation is described by Eq. [5]. The total echo signal 

attenuation, S, as measured from a large spectroscopy voxel is then given by: 

 

𝑆(𝑞,𝑡𝑑)

𝑆(𝑞=0,𝑡𝑑)
=

∫ 𝑝(𝜃)
𝑆𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

𝜃 (𝑞,𝑡𝑑)

𝑆(𝑞=0,𝑡𝑑)
𝑑𝜃

𝜋/2
0

∫ 𝑝(𝜃)
𝜋/2

0 𝑑𝜃
 [6] 

 

where 𝑝(𝜃) = sin(𝜃) is the distribution of fibers making an angle 𝜃 relative to a fixed 

gradient direction in the case of an isotropic fiber distribution. If the fibers are expected to 

follow a specific dispersion pattern, as for example in the DW-MRI NODDI model (109), Eq. 

[6] can be opportunely modified in order to take into account fiber dispersion. While fiber 

dispersion is important and has to be taken into account, for example, in DW-MRS 

experiments in human brain white matter (see (110) and following Section 3), within the 

large spectroscopy voxel in preclinical experiments on mouse brain, fibers can be assumed 

isotropically distributed with good approximation (see Supplementary Information in (108)).  

A thorough investigation of NAA diffusion in brain cells at high q/b values was done by Assaf 

and Cohen in the late 1990s (68, 69, 83). In these pioneering works (for a comprehensive 

review of early diffusion MRS studies we direct the reader to (25)), Assaf and Cohen 

characterized the restricted diffusion behaviour of NAA by showing its bi- and tri-exponential 

diffusion decays within a large range of b-values (up to 35000 s/mm2) and diffusion times 

(up to 300 ms). Later on, Kroenke et al. and Yablonskiy and Sukstanskii (31, 70) proposed a 

first attempt to model NAA diffusion taking into account cellular structure by proposing a 

model of randomly oriented cylinders, in which the radial diffusivity was set to 0 (i.e., 

randomly oriented sticks). In this case, the total echo signal decay differs from the one in Eq. 

[6], and is described by: 

 

𝑆(𝑞,𝑡𝑑)

𝑆(𝑞=0,𝑡𝑑)
= (

𝜋

4𝐴𝐷𝐶𝑎𝑥𝑖𝑎𝑙𝑞2𝑡𝑑
)

1/2
𝑒𝑟𝑓[(𝐴𝐷𝐶𝑎𝑥𝑖𝑎𝑙𝑞2𝑡𝑑)1/2] [7] 

 



 24 

where ADCaxial is the metabolite axial diffusivity, the ADCradial is set to 0, and erf[…] is the 

error function.  

The choice to set the NAA radial diffusivity to 0 was based on the observation that the 

estimated radial diffusivity was an order of magnitude lower than the estimated axial one. 

More recent DW-MRS studies of other metabolites like Glu, tCr, tCho and Ins, showed that 

the assumption of zero-radius is not generally valid. Palombo et al. recently used the model 

in Eq. [9] to characterize healthy in vivo mouse brain at 11.7 T (108), showing that randomly 

oriented cylinders assumption accounts well for measured echo attenuation for Glu, tCr, 

Tau, tCho and Ins (Figure 6B), yielding fiber radii and Dfree in the expected ranges (0.5–1.5 

m and 0.30–0.45 m2/ms, respectively, Figure 6C). Interestingly, the only exception was 

NAA, for which the extracted radial diffusivity and radius was 0. A small correction was 

proposed to the model and showed that the echo signal attenuation for NAA is compatible 

with a model where the majority of the NAA volume fraction diffuses in randomly oriented 

cylinders of non-zero radius, and a small fraction of the NAA (10%) is instead confined in 

highly restricted compartments where the NAA does not diffuse and has a short T2 

compared to the cytosolic NAA (108). The authors suggested that this small fraction may be 

representative of the NAA confined in mitochondria, where NAA is synthesized, and within 

the myelin sheath of neuronal axons. The introduction of this immobile NAA pool allowed 

the estimation of reasonable values for Dfree and fiber radius (0.34 m2/ms and 0.6 m, 

respectively), supporting the effectiveness of the model in Eq. [6]. This fiber radius estimated 

from NAA diffusion was close to that estimated from Glu diffusion (~0.8 µm), while radii 

estimated from other metabolites appeared larger (the largest, ~1.6 µm, being found for 

Ins), suggesting that these non-neuronal metabolites are experiencing less radial diffusion in 

glial cells.  

It may be surprising that DW-MRS allows the estimation of so small fiber diameters (<3 m). 

Indeed, it is now well known that for water based DW-MRI, there is a lower limit to the 

sensitivity to fiber diameter which sets the minimum accessible diameter by using a single 

diffusion encoding sequence, dmin
(SDE), at (111): 

 

𝑑𝑚𝑖𝑛
(𝑆𝐷𝐸)

= (
768

7

𝜎𝐷𝑓𝑟𝑒𝑒

𝛾2𝛿𝑔2 )
1/4

 [8] 
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where  is the normalized standard deviation of the signal due to noise. For example, for the 

typical clinical high-SNR case (SNR = 50), where =1%, water Dfree=2 m2/ms, g=80 mT/m 

and =40 ms, dmin
(SDE)=3.3 m. In similar experimental conditions, for metabolites with an 

average Dfree=0.4 m2/ms, it is possible to reach dmin
(SDE)=2.2 m. This significant 

improvement in diameter sensitivity is due to the much lower metabolites diffusivity 

compared to that of water molecules.  Considering the specific preclinical experimental 

setup used in the high q/b values experiments reported in (112), for NAA with Dfree=0.34 

m2/ms, =1%, gmax=750 mT/m and =3 ms, the resulting dmin
(SDE) is 1.3 m.  

 

Estimating fiber diameter from DDE RE MRS experiments 

 

Interestingly, the fiber diameter question for NAA and for Ins, representing the neuronal and 

astrocytic compartments of the CNS tissue, was tackled also from the DDE angle. The data in 

(106), other than providing evidence for fitting a randomly oriented anisotropic 

compartment model, can also be used for fitting the compartment’s diameter. To do so, a 

large multidimensional dictionary of signals was simulated in the MISST toolbox (113, 114), 

with all sequence parameters (diffusion times, mixing times, gradient durations, gradient 

amplitudes, and number of measurements) input directly to the simulation. Based on the 

shape of the curve, a randomly oriented infinite cylinder model was chosen, with finely 

sampled diameters, and, importantly, the “free” diffusivity of the metabolite was also varied 

on a very fine grid for each diameter value. This provided a “fitting plane” (Dfree, d), where 

Dfree is free diffusivity and d the diameter, to which the data was regressed. When the DDE 

modulation curves shown in Figure 5 are carefully quantified for NAA and Ins resonances, 

using this approach, the fiber diameter was found to be less than 1.3 µm for NAA, and 

between 2-4 µm for Ins, with the local minima approaching 0.1 µm for NAA and 3.1 µm for 

Ins. These results represent the average diameter of randomly oriented cylinders. These 

results are very much in line with those reported for the high b/q values experiments 

described above.    

To summarize, the two independent measurements – SDE high b/q values and angular DDE – 

provided similar results and reinforce each other. The NAA diffuses in fibers somewhat 

smaller than the astrocytes, and in both cases, for the experimental designs chosen, the 
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sequences seem to be much more sensitive to the randomly oriented neurites or astrocyctic 

processes, respectively.  

  

Cellular long-range microstructure: cell fiber segment length and number of embranchments  

 

At long diffusion times (>100 ms), while it is possible to discard the effect of cell fiber 

diameter, which can be assumed to be zero, as well as finer secondary structures and 

consequent ADC time-dependency, the branching of cell fibers comprising the neuronal 

dendritic trees or astrocytes processes cannot be neglected. The only study investigating this 

so far showed that cell fiber finite length and embranchments induce a specific ADC time 

dependence at (ultra-)long td (71). In a modeling framework that treats fibers as mono-

dimensional branching objects “embedded” in a three-dimensional space and uses massive 

Monte-Carlo simulations, Palombo et al. predicted the effect of different morphometric 

statistics (i.e. the number of successive embranchments Nbranch along each process, and the 

segment length Lsegment for a given segment comprising a cellular fiber process) on the 

measured ADC time dependence. This general model was used to analyze data acquired up 

to td=2 seconds in the healthy mouse (at 11.7 T) and macaque (at 7 T) brain in vivo (Figure 7). 

The proposed modeling framework consistently classified cellular compartments, strongly 

supporting the generally accepted preferential compartmentalization of Ins and tCho inside 

astrocytes and of Glu and NAA in neurons, whereas some other metabolites such as tCr and 

Tau seem to have no preferential compartmentalization. In addition, extracted cell 

morphologies, such as length of branch segments and number of embranchments, were 

qualitatively and quantitatively consistent with histological data (Figure 8), suggesting that 

the effect of cell fiber length and embranchments must be considered when modeling long 

td data. 

 

3. The use of mutual information from DWI and DW-MRS 

 

The task of extracting unequivocal microstructural information from diffusion weighted MR 

experiments is challenging, both in the case of DW-MRI and that of DW-MRS. In DW-MRI it is 

the lack of compartmental and cellular specificity and inter-compartmental exchange that 

pose the major challenge, as the sensitivity is high enough to allow reasonably low partial 
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volume across white matter tracts, as well as enough “pure” gray and white matter voxels 

for tissue specific analysis. Conversely, in DW-MRS the major challenge stems from the 

intrinsic low sensitivity of the method, while the specificity, at least for some of the most 

prominent metabolites, is high. A natural consequence would thus be combining DW-MRI 

and DW-MRS in an analysis framework that benefits from the complementarity of the two 

methods. Few works so far have attempted to propose such a framework, and here we will 

briefly survey what has been done so far and what are some of the possible directions in 

which co-analysis of DW-MRI and DW-MRS data can evolve to provide a more 

comprehensive picture of tissue microstructure. 

 

3.1 How can DW-MRS inform DW-MRI? 

 

Insights from separate DW-MRS measurements that can have a deep impact on e.g. 

modeling of DW-MRI data have been already previously mentioned, e.g. the results from 

DW-MRS experiments in both animals and in humans that show no evidence for the 

existence of fully restricted compartments in neural tissue, up to diffusion times in the order 

of 1-2 seconds (42, 91). Another DW-MRS result with implications on the way DW-MRI data 

should be interpreted is that the ADC values of all metabolites in gray matter are 

consistently lower than in white matter (115-117) as opposed to the ADC of water, which is 

higher in gray matter. This indicates that either the extracellular space in cortical gray matter 

is more loosely packed than in white matter, or/and that there are intrinsic differences in 

the viscosity of these tissues, or/and that cross-membrane water exchange between the 

intra- and extracellular space is faster. The latter hypothesis obtains some support from 

recent experiments, including a measurement of apparent exchange rate (AXR) using the 

filter exchange imaging (FEXI) technique (118). 

To envision the potential benefits of simultaneous use of mutual information from DW-MRI 

and DW-MRS, it is useful to start from a simplistic example that examines diffusion tensor 

metrics of the intraneuronal metabolite, NAA, and those of water in the same two volumes 

of interest in the human corpus callosum (CC) (119). From the microstructural investigation 

stand point, the CC offers the simplest test-case possible: a single, easily identifiable white 

matter tract with a known orientation, which is mostly left-right in its medial part and then 

curves towards superior cortical regions (Figure 9 A). This structural simplicity led to the first 
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work that modeled the diffusion of NAA in human white matter (70) and to the first reported 

diffusion tensor of metabolites from white matter regions (120). In Upadhyay et al (119), the 

diffusion tensors of both water and NAA are estimated from a DW-MRS experiment in which 

the water was suppressed for the spectroscopic data and left untouched for the water data. 

An estimation of the partial volume effect of CSF was essential for a more accurate 

estimation of the water tensor, but is not necessary for the estimation of the NAA tensor, as 

there is no NAA in the CSF. The fractional anisotropy (FA) values reported for NAA from the 

two callosal volumes were 0.72 and 0.52 for the anterior and more posterior VOI, 

respectively, and those of water were 0.46 and 0.39. The fact that the water FA values are 

lower is not surprising, since in addition to the microscopically and macroscopically highly 

anisotropic intra-axonal space unique to the NAA, water is also present in other cellular 

structures, e.g. glia, as well as in the extracellular space and in the myelin sheath. Assuming 

that the contribution of the latter is negligible at the long TE in which the experiments were 

performed (121), it is theoretically possible to estimate, based on prior estimates of the 

intra-axonal and extra-axonal volume fractions in the VOIs, the FA of the extra-axonal 

compartment. The structural properties of the extra-axonal space in white matter are key in 

any modeling framework for DW-MRI data, and it is thus important to assess the validity of 

assumptions regarding its contribution to anisotropy, as these may greatly differ. This is 

indeed the case for the modeling framework CHARMED (122) and NODDI (109), where in 

CHARMED, as well as in other modeling frameworks (93, 123) the extra-axonal contribution 

to FA is independent of the intra-axonal contribution, whereas in NODDI the two 

contributions to FA are interdependent. 

Another question regarding compartmental contributions to anisotropy is what is the 

volume fraction of the macroscopically isotropic compartment in tissue. It is safe to assume 

that a significant contribution to isotropic diffusion in tissue comes from structures that are 

on average isotropic. In neural tissue these can be glial cells such as astrocytes and microglia, 

although oligodendrocytes and fibrous astrocytes tend to align themselves to the white 

matter scaffold (124) and thus probably preserving some degree of overall anisotropy. DW-

MRS can be key in answering this question. For example, it was shown that 𝐴𝐷𝐶𝑝𝑎𝑟/

𝐴𝐷𝐶𝑝𝑒𝑟𝑝 , the ratio between the diffusivity parallel and perpendicular to the callosal fibers 

within a DW-MRS VOI, is almost twice as high for NAA compared to tCho and tCr (125). 

Assuming that in white matter NAA is exclusively contained in axons, and that these are the 
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sole source of intracellular macroscopic FA in the volume, it is possible to estimate the 

fractional volume of the isotropic compartments that contain the majority of tCho and tCr, 

based on their values of 𝐴𝐷𝐶𝑝𝑎𝑟/𝐴𝐷𝐶𝑝𝑒𝑟𝑝 and their overall tissue concentration. Based on 

the assumptions made above, it was estimated that the glial fraction of tCho is 0.5 and that 

of tCr is 0.4 (see reference above). Although this estimate does not take into account the 

volume fraction of axons and glia in white matter, it supports the notion that tCho is highly 

present in glia, more so than e.g. tCr. 

 

3.2 How can DW-MRI inform DW-MRS? 

 

Keeping in mind that the main limitation of DW-MRS is its limited sensitivity, reflected in a 

significantly lower SNR compared to DW-MRI, it is inevitable that the spatial resolution of 

DW-MRS would be much lower. To compensate for 3-4 orders of magnitude in 

concentration for most of the proton resonances of interest in the MR spectrum, a 

concomitant increase in volume is needed. In standard MRI scanners this necessitates VOI of 

a few milliliters, thus with single dimensions in the order of centimeters. As a consequence, 

volumes of moderate size in white matter will include a broad axonal angular distribution, 

stemming both from the orientation dispersion across fibers and from the macroscopic 

factors such as the curvature of the fibers propagating within the VOI and multiple white 

matter tracts passing through the VOI. In the case of e.g. arbitrary VOI position in parietal 

white matter this results in an almost uniform directional distribution, as confirmed by 

examining the angular distribution of the principal eigenvectors (116). Even when the VOI is 

significantly smaller and positioned on a single tract such as the CC, the contribution of the 

macroscopic curvature to the orientational distribution within the VOI is significant (110, 

125). Since the curvature and shape of the CC within the VOI may significantly vary across 

subjects, this macroscopic angular distribution is a source of unwanted variance to DW-MRS 

measurements that can obfuscate e.g. differences between metabolite diffusion properties 

across subject populations in studies that examine the diffusivity of NAA as a marker for 

axonal degeneration (126, 127).  

As seen in Section 2.3, Eq. [6], for the diffusion of NAA in white matter, a way to account for 

this confound is to model the data assuming diffusion in a set of cylinders with a given 

angular distribution with respect to the gradient direction. The angular distribution 
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generated by the macroscopic curvature of the tract can be obtained from a separately 

performed DTI experiment, from which the set of E1, the principal eigenvectors of the 

diffusion tensors of voxels within the spectroscopic VOI can be extracted (110). This process 

is illustrated in stream A of Figure 10. 

In an additional step, it is possible to include an additional, microscopic distribution in 

convolution with the macroscopic one, to account for axonal orientation dispersion (stream 

B in Figure 10). This results in a two-parameter model that not only accounts for the 

macroscopic confound, but also delivers an estimate for the orientation dispersion, shown to 

realistically fit with estimates from histology.  

Non-biased measurements of e.g. microscopic anisotropy of neuronal and glial processes can 

be also achieved directly from DW-MRS without using DTI data. This can be done by either 

the use of DDE experiments, as discussed in Section 1.4 and 2.3, or by generating the so-

called “powder average” of multidirectional DW-MRS data at multiple diffusion weighting 

values, assuming that the sole source of deviation from monoexponential decay is the 

orientation dispersion (128). These methods are not mutually exclusive to each other, and at 

this stage cross validation of methods and their assessment with respect to stability, 

reproducibility and time consumption is essential. 

 

3.3 Clinical implications and future directions in DW-MRS methodology  

 

Multivoxel DW-MRS and DW-MRSI 

 

Although valuable microstructural information can be obtained from combining simple DTI 

data and DW-MRS data acquired from a single volume, a significant effort should be invested 

in generating robust multivoxel DW-MRS data, as this will be essential for a spatially-

resolved combination of data from the two modalities with significant gains for tissue 

microstructural characterization in healthy and more importantly for diseased conditions. As 

was previously mentioned, the cytosolic diffusion coefficient of NAA is a good candidate for 

a putative marker for intracellular damage such as axonopathy in MS, but this role can be 

extended to other neurodegenerative disorders, such as tauopathy in AD, where 

intraneuronal pathological changes are caused by hyperphosphorilation of the tau protein, 

which is responsible for keeping the integrity of microtubules (129-131). In a combined DTI – 
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DW-MRS study of patients with neuropsychiatric systemic lupus erythematosus (NPSLE), an 

increase in the diffusion coefficient of tCho was observed in correlation with 

neuropsychiatric symptoms and with the SLE disease activity index (SLEDAI), which scales 

with inflammatory state (132). This points to the possibility that tCho’s ADC is modulated by 

inflammation and reflects glial reactivity in response to inflammation. Reactive glia are 

known to undergo cytomorphological changes during activation, in line with increase in the 

ADC of intraglial metabolites (133). In this study, as well as in the DW-MRS study in multiple 

sclerosis., the DW-MRS findings correlated with DTI changes, and thus can mutually 

contribute to a better explanation of the disease process. The ability to do so in a spatially 

encoded manner over a large field of view is thus particularly attractive, as it offers the 

possibility to study water and metabolite diffusion in normal and abnormal appearing tissue, 

and map deficits across regions that may or may not correlate with disease outcome, 

together with e.g. PET tracers specific to cellular pathology.  

A few efforts in developing sequences for DW-MRS in spectroscopic imaging mode have 

been published, both using conventional sequential k-space coverage, as well as using echo-

planar spectroscopic imaging (EPSI) (117, 134-136). Conventional acquisition of magnetic 

resonance spectroscopic imaging (MRSI) data is long and prone to errors that stem from 

phase and amplitude fluctuations. While phase variations can be accounted for in the post-

processing stage, amplitude fluctuations and signal drop-outs should be dealt with 

prospectively. Approaches that use navigators, i.e. short time-domain signal acquired after 

the diffusion encoding but prior to the spatial encoding, have been proposed and 

implemented on clinical scanners (136, 137), but robustness and sensitivity to disease effects 

has yet to be demonstrated. Efforts to shorten acquisition time would thus benefit from the 

use of parallel imaging (138), and if SNR is high enough, perhaps a degree of compressed 

sensing (139, 140). 

DTI can also inform DW-MRS experiments in the planning phase, in cases where the diffusion 

properties of metabolites are to be studied e.g. along a particular white matter tract. In that 

case, DTI can be used to identify the tract of interest, and the DW-MRS can be subsequently 

performed on the desired tract, as was performed on the straight segment of the arcuate 

fasciculus, a tract involved in language processing (141). The selected volume can also be 

spatially encoded with the application of phase encoding gradient in one dimension (1D-

MRSI). This method has been shown to yield the diffusion tensor of NAA in several voxels 
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along the straight portion of the corpus callosum (142) in good geometric agreement with 

the diffusion tensors of water data from the same volumes. 

Additional strategies have been proposed for multivoxel DW-MRS that may offer simple and 

robust solutions with faster acquisitions, at the expense of less than full coverage of the 

brain. One approach is based on simultaneous acquisition of e.g. two separate volumes, 

which can be separated in the post-processing stage using information about coil 

sensitivities (143, 144). This approach is similar to the multiband approach in imaging, e.g. 

(145). A dual volume acquisition approach can be useful in simultaneously acquiring data 

from two regions where one is visibly more affected by disease than the other, as in e.g. 

stroke or tumor that differentially affects one hemisphere.  

 

Conclusion 

 

In this review article, we surveyed the state-of-the-art methods that have been developed 

for robust acquisition, quantification and analysis of DW-MRS data, and discussed the 

potential relevance of DW-MRS for elucidating brain microstructure in vivo. There is still 

much to be done to further develop DW-MRS and bring it to a broader audience, both in 

terms of acquisition methodology as well as data analysis and modelling. The ever-improving 

hardware – better and stronger gradient systems, more sensitive RF coils, and higher static 

magnetic fields – feeds the hope that DW-MRS will become increasingly more useful to the 

scientific community. Some encouraging examples were reported and discussed, showing 

that with accurate data on diffusion of increasing number of metabolites, and with accurate 

computational and geometrical modelling, metabolite DW-MRS can provide unique cell-

specific information on the intracellular structure of brain tissue. Since the implementation 

of an imaging version of DW-MRS is still in its infancy, the integration of mutually compatible 

information derived from a combined DW-MRI and DW-MRS approach seems to be, at the 

moment, a more practicable route towards a better cell-specific characterization of brain 

microstructure.  
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Figures legends 

 

Figure 1: A) A DW-STEAM sequence built in such a way that cross-terms are minimized (X- 

and Z-slice refocusing is performed immediately after the first and third 90° pulses, and 

diffusion gradients are used as spoilers during the echo time). However, cross-terms cannot be 

totally suppressed, as Y-slice refocusing corresponding to the second 90° pulse must be 

performed during the second part of the echo, after the third 90° pulse, i.e. diffusion and Y-

slice selection gradients are not refocused during the whole mixing time, which might result 

in large cross-term at long TM / low b value. B) Example of the manifestation of cross-terms 

on DW-spectra acquired in the monkey brain at 7 T (taken from (42)). Signal attenuation is 

different when diffusion gradient polarity is positive and negative, which is due to cross-

terms, whose sign is changed with gradient polarity. C) The STE-LASER sequence (51) 

where the stimulated echo diffusion block precedes the LASER localization block, avoiding 

any cross-term due to overlap between dephasings induced by diffusion and localization 

gradients. 

 

Figure 2: General scheme for RE MRS. The sequence begins with a spectrally-selective 

excitation, followed by a filter, and then localization using LASER; the signal is finally 

acquired either in spectroscopy or spectroscopic imaging mode. In this case, the filter 

proposed was a DDE embedded within a CPMG block (spectrally selective refocusing 

pulses), to mitigate cross-terms with susceptibility-driven, internal gradients. In general, note 

that RE MRS aims to avoid manipulation of the water signal such that it remains at its original 

equilibrium position (Mz), thereby obviating the need for water suppression.  
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Figure 3: Examples of linear combination analysis of DW-spectra acquired in the mouse 

brain at 11.7 T using the STE-LASER sequence (TE/TM=33.4/50 ms), for three different b-

values. A subset of five important metabolites, as fitted by LCModel, is shown on the first 

row immediately below the raw data. On the row below, the MM contribution (experimental 

spectrum acquired with metabolite-nulling and incorporated into LCModel's basis-set) is 

shown. It is obvious that MM contribution cannot be ignored, in particular at high b-values. 

The row just above the ppm scale is the fit residual, which ideally should be a flat line with 

Gaussian noise if the modeled spectrum can perfectly explain the data. 

 

Figure 4: A) RE MRS spectra (no diffusion weighting) acquired in only 6 seconds from a 

5x5x5 (mm)3 volume in the in vivo rat brain at 21.1T. Pulses were designed such that only the 

NAA, Lac, tCr (Cre) and tCho (Cho) peaks were excited/refocused; no water suppression was 

used. High fidelity spectra were observed, with SNR of the NAA peak exceeding 50, and only 

minor residual water appearing in the spectrum, suggesting <0.1% excitation around the water 

resonance.  B) Raw data (stacked plots) of angular DDE RE MRS experiments performed on 

a similar voxel placed in the contra- (left panel) or ipsi-lateral (right panel) of a representative 

stroked rat 24 h post ischemia. The following parameters were used: gradient amplitudes of 

48 G/cm, equal diffusion times of 53.5 ms, diffusion gradient durations of 2.5 ms and a 

mixing time of 24 ms, at TR/TE = 1500/187 ms, with 160 averages per trace, total scan time 

for the entire curve = 36 minutes. The spectra show excellent quality, and the DDE 

modulation can be observed with the naked eye for both hemispheres; noticed the pronounced 

Lac signal emerging in the affected area. C) DDE modulation curves extracted for the 

different metabolites, evidencing both the restricted diffusion in randomly oriented 

compartments and microstructural differences between ipsi/contra-lateral hemispheres after 

ischemia. For details, see (50). 

 

Figure 5: A) RE MRS voxel (inset shows the localization) and spectra for a non-diffusion-

weighted sequence seeking to isolate the NAA and Ins resonances. This clean spectrum shows 

RE MRS’s ability to quantify even typically challenging Ins signals; importantly, the 

spectrum bears a signature for neurons and astrocytes from the NAA and Ins signals, 

respectively. B) The raw DDE RE MRS data (left panel in (B)) and ensuing DDE modulation 

curves (right panel in (B), thin lines represent individual animals and the thick lines are the 

mean). Experimental parameters were similar to those given in the caption of Figure 4 
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(though not exactly identical), n.b., the experiments were performed on healthy animals. The 

DDE modulation is again observed with the naked eye even in raw data, and shows rather low 

variability. The NAA and Ins clearly diffuse in randomly oriented compartments 

characterized by restricted diffusion. Quantification of the modulation shows that NAA 

diffuses in extremely small cylinders with diameters <0.1 µm, while Ins diffuses in cylinders 

with diameter ~3 µm (106).    

 

Figure 6: A) Schematic description of the randomly oriented cylinders model used to fit the 

experimental data. B) DW signal attenuation (points) and corresponding fitted curves (lines) 

as a function of q for all of the investigated metabolites. Error bars denote the SD. C) 

Estimated model parameters from the fit of the randomly oriented cylinders model (Eq. [6]) to 

experimental data of each metabolite. Note: Dintra = intracellular diffusivity; a = cylinder's 

radius (mean ± SD, 2500 Monte Carlo draws). From (108). 

 

Figure 7: DW-MRS results and modeling in the mouse and macaque brain. The investigated 

volume of interest within the brain (green box) and a typical DW-MRS spectrum at td = 2 s 

(and b=0 s/mm2), as used to measure ADC time dependence for each metabolite (Inset plots), 

are shown for each species. Points and error bars stand for ADC means and standard deviation 

of the means, respectively, estimated among the cohorts. Best fit of ADC (averaged over the 

cohorts) is also displayed as a continuous curve. A subset of the extracted synthetic cells for 

each metabolite is also reported. (Scale bar, 100 μm.). From (71).  

 

Figure 8: A) Examples of the Sholl analysis on a single astrocytic cell from a real GFAP-

stained hippocampal slice of mouse brain and a virtually reproduced one. Starting from left to 

rigth, each cell is isolated within the investigated real and synthetic histological slice; its 

center is identified; and the Sholl analysis, based on statistics from concentric circles (drawn 

in different colors), is performed. Sholl analysis results from 135 different cells were taken 

into account to estimate the mean and s.d. of Sholl-based metrics and here reported as 

histograms. No statistically significant differences were found between the Sholl-based 

metrics measured from real and virtual histological slices. B) Morphometric parameters 

estimated for the metabolite compartments by fitting the ADC time dependency in the mouse 

and macaque brain (see Figure 6). Metabolites thought to be preferentially 
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compartmentalized in astrocytes are indicated by the letter A, those thought to be 

preferentially compartmentalized in neurons are indicated by the letter N, and those thought to 

be evenly mixed are indicated by A+N. From (71).  

 

Figure 9: Reconstructed callosal fibers in a small region of the anterior part of the corpus 

callosum (a). In panel (b) the eigenvectors of the diffusion tensor of the NAA are 

schematically represented. The average direction of e1 is parallel only to the medial portion of 

the callosal fibers. The secondary eigenvector points slightly towards the superior direction, 

due to the curvature of the CC as the fibers extend laterally. The tertiary eigenvector e3 is 

approximately in the anterior-posterior direction. In (c) the ticks represent the direction of the 

main eigenvectors of the diffusion tensor obtained from a DTI data set, and the broad range of 

directions within the spectroscopic volume (yellow rectangle) can be appreciated. From (119), 

and from (125).  

 

Figure 10: Schematic diagram of two possible modeled analyses of tNAA DWS data that use 

DTI information within the spectroscopic volume. In (A) experimental distributions p(θ[0,1,1]) 

and p(θ[1,0,0]) are estimated to account for macroscopic curvature of the CC within the VOI. 

These distributions are derived from information about E1, the main eigenvector of a DTI 

data set estimated for all DTI voxels that lie within the spectroscopic VOI. The only fitted 

parameter is D(tNAA). (B) An additional residual angular distribution, p(φ), is introduced 

based on microstructural factors such as fiber orientation dispersion. In this analysis path, 

the standard deviation of this distribution, σφ, is estimated from the data fitting procedure in 

addition to D(tNAA). From (110). 
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