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Abstract

Intravascular polarimetry with polarization sensitive optical frequency domain imaging (PS-OFDI) 

measures polarization properties of the vessel wall and offers characterization of coronary 

atherosclerotic lesions beyond the cross-sectional image of arterial microstructure available to 

conventional OFDI.

A previous study of intravascular polarimetry in cadaveric human coronary arteries found that 

tissue birefringence and depolarization provide valuable insight into key features of atherosclerotic 

plaques. In addition to various tissue components, catheter and sample motion can also influence 

the polarization of near infrared light as used by PS-OFDI. This study aimed to evaluate the 

robustness and repeatability of imaging tissue birefringence and depolarization in a clinical 

setting.

30 patients scheduled for percutaneous coronary intervention at the Erasmus Medical Center 

underwent repeated PS-OFDI pullback imaging, using commercial imaging catheters in 

combination with a custom-built PS-OFDI console. We identified 274 matching cross-sections 

among the repeat pullbacks to evaluate the reproducibility of the conventional backscatter 

intensity, the birefringence, and the depolarization signals at each spatial location across the vessel 

wall. Bland-Altman analysis revealed best agreement for the birefringence measurements, 

followed by backscatter intensity, and depolarization, when limiting the analysis to areas of 

meaningful birefringence. Pearson correlation analysis confirmed highest correlation for 

birefringence (0.86), preceding backscatter intensity (0.83), and depolarization (0.78).

Our results demonstrate that intravascular polarimetry generates robust maps of tissue 

birefringence and depolarization in a clinical setting. This outcome motivates the use of 

intravascular polarimetry for future clinical studies that investigate polarization properties of 

arterial atherosclerosis.
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I. INTRODUCTION

Intravascular optical coherence tomography (OCT) and optical frequency domain imaging 

(OFDI), a second-generation implementation of OCT, currently offer the highest spatial 

resolution for invasive coronary imaging. Visualizing the detailed plaque microstructure has 

helped to advance our understanding of the pathogenesis of coronary artery disease [1], [2] 

and has offered new strategies to guiding percutaneous coronary interventions in clinical 

practice [3], [4]. The high spatial resolution has enabled investigation of fibrous cap 

morphology in plaque disruption [5]–[7] and erosions [8], the two major pathways to acute 

coronary events. It also offered insight into macrophage accumulation [9], [10], considered 

an important contributor to plaque instability. Despite the merits of contemporary 

intravascular imaging, there remains a need for improved imaging methods to furnish novel 

insights into the mechanisms of thrombotic complications, and to evaluate the effects of 

therapeutic interventions. Combining OCT with the superior imaging depth of intravascular 

ultra-sound (IVUS) would enable evaluation of plaque burden together with microstructural 

details [11]. Fluorescence, from endogenous origin or injectable imaging probes offers an 

interesting avenue to complement OCT and enhance plaque characterization [12]-[16], but 

requires custom multimodal imaging catheters. We have previously reported on intravascular 

polarimetry with polarization sensitive (PS) OFDI as a promising strategy to dissect 

individual aspects of plaque morphology that is compatible with commercial intravascular 

imaging catheters [17]. The microscopic structure and organization of the arterial wall 

influence the polarization of near infrared light [18]. Collagen and arterial smooth muscle 

cells exhibit birefringence, an optical property that results in a differential delay, or 

retardation, between light polarized parallel to the tissue fibrillar components versus light 

having a perpendicular polarization. Intravascular PSOFDI of cadaveric human coronary 

arteries showed elevated birefringence in regions of fibrous, collagen-rich tissue, and in the 

tunica media due to a high number of smooth muscle cells [17]. Plaque regions rich in lipid, 

cholesterol crystals, and macrophages displayed depolarization, corresponding to the 

randomization of the scattered polarization states. Together with maps of tissue 

birefringence and depolarization, PS-OFDI generates conventional cross-sectional images of 

backscatter intensity, revealing the subsurface microstructure, and offers detailed 

characterization of atherosclerotic tissue morphology.

Intravascular polarimetry was enabled by advances in reconstructing tissue birefringence and 

depolarization and by mitigating artifacts that are induced by the imaging system and the 

rotating catheter [19]-[22]. The polarization of the near infrared light used for PS-OFDI is 

impacted when propagating through the catheter and is influenced by catheter and sample 

motion that are unavoidable in a clinical setting. To evaluate the robustness of imaging 

polarization features under such conditions and validate the ability to perform meaningful 

polarimetry in humans, we performed a pilot study in 30 patients [23]. Here we assessed the 
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repeatability of quantifying tissue birefringence and depolarization by inspecting matching 

cross-sections of repeat pullbacks, and used the repeatability of structural imaging with 

conventional backscatter intensity for comparison.

II. METHODS

A. Study population

This first in man pilot study of intravascular polarimetry enrolled 30 non-consecutive 

patients undergoing percutaneous coronary intervention between December 2014 and July 

2015 at the Erasmus Medical Center in Rotterdam. All procedures were performed as 

previously reported [24], and in accordance with local and federal regulations and the 

Declaration of Helsinki. The study protocol was approved by the Ethics Committee of 

Erasmus Medical Center and all patients gave written informed consent.

B. Polarization sensitive optical frequency domain imaging

Commercial intravascular catheters (FastView, Terumo) were used in conjunction with a 

custom-built state-of-the-art OFDI system. Similar to commercial instruments, the imaging 

system operated at a center wavelength of 1300 nm with a wavelength scanning range of 110 

nm, corresponding to a radial resolution of 9.4 μm in tissue, assuming a refractive index of 

1.34. The catheter was pulled back at a speed of 20 mm/s, and images were acquired at a 

rate of 100 frames/s, each consisting of 1024 radial scans, during injection of nonionic 

contrast solution at a rate of 1–3 mL/s. In each patient, at least two PS-OFDI pullbacks were 

performed, either in the native coronary artery (N = 9) or after the procedure (N = 15). In a 

subset of patients (N = 6) both pre- and post-procedural pullbacks were acquired.

Intravascular polarimetry was previously described [17]. In short, the imaging system was 

equipped with a polarization diverse receiver to determine the polarization state of the light 

scattered by the tissue, and an electro-optic polarization modulator to vary the polarization 

state of the light illuminating the vessel wall between consecutive radial scans. Polarimetric 

analysis was performed offline with spectral binning [19] to reconstruct maps of tissue 

birefringence and depolarization. Birefringence is the unitless ratio of retardation and the 

distance over which it was accrued. It corresponds to the difference, Δn, of the refractive 

index experienced by two orthogonal polarization states, aligned with the fast and slow optic 

axis of the birefringent tissue. As a measure of tissue depolarization, we computed the 

complement to 1 of the degree of polarization. Depolarization indicates increasing 

randomization of the detected polarization states in the range 0–1. Figure 1 illustrates the 

reconstructed birefringence (Δ n1,2) and depolarization (Dep1,2) of a plaque with mostly 

fibrous intimal tissue and some dispersed lipid together with the conventional log-scaled 

backscatter intensity (Int1,2), imaged during two consecutive pullbacks.

C. Data analysis

Repeat pullbacks were reviewed to identify matching segments with acceptable contrast and 

a smooth lumen, excluding regions of stents, plaque rupture, detached thrombus, or poor 

image quality. We excluded the data sets of 3 patients due to a lack of suitable segments. 

One patient had two coronaries imaged, and in total we further analyzed 9 pairs of repeat 
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pullbacks in native coronary arteries, 13 pairs in treated vessels, and 6 pairs from patients 

that underwent both pre and post procedural PS-OFDI. Using visual hallmarks in the 

conventional backscatter images, such as side-branches, plaque morphology, and 

calcifications, we identified closely matching cross-sections, blinded to the polarization 

signals, and visually adjusted their relative angular orientation using custom viewing 

software written in Matlab (Mathworks, Natick, MA, USA). Consecutive matching sections 

were spaced by at least 10 frames (2 mm). We identified a total of 274 matching sections, 

241 resulting from immediate repeat pullbacks in native (115) or treated vessels (126), and 

33 matching sections that were acquired pre and post procedure. At least two cross-sections 

were identified in each artery. Lumen contour segmentation was performed in the matching 

sections with QCU-CMS viewing software (Leiden University Medical Center, Leiden, The 

Netherlands), as visualized in Figure 1.

Imported into Matlab, the contours enabled unwrapping of the lumen about its apparent 

center with an elastic transformation method to recover the cross-sections in cylindrical 

coordinates, ρ, the depth within the vessel wall, and σ, the angular position along the lumen, 

as illustrated in Figures 1 and 2A. For spatially detailed comparison, the relative angular 

position between matching sections was refined by translating the second unfolded cross-

section by Δσ along σ to reduce the normalized mismatch between the backscatter intensity 

signals:

min
Δσ

Σρ, σ Int1 ρ, σ − Int2 ρ, σ + Δσ

Σρ, σInt1 ρ, σ 2 Σρ, σInt2 ρ, σ 2

2
, (1)

where the sums were taken only over points with a signal at least 15 dB above the noise 

floor in both sections. This masked signal from peri-adventitial tissue and the regions 

shadowed by the guide-wire. The correction step is visualized in Figure 2C, D with the 

color-coded overlay of the originally unwrapped and the corrected backscatter intensity 

images. The resulting effect on the birefringence maps is visualized in Figure 2E, F. After 

refining the angular alignment, all sections were remapped to Cartesian coordinates, onto the 

lumen contour of the first cross-section, offering close spatial matching (Figure 2G, H). To 

assess the repeatability of the conventional backscatter and the polarimetric signals, we 

compared the cross-sections by averaging the signal within circular regions of interest (ROI) 
of diameter D, translated across the entire images in steps of D/2 in an automated, rigid 

pattern. ROI-positions that had more than half of the pixels with a depolarization below a 

threshold, Dep ≤ DepTh, were excluded from correlation analysis, shown in Figures 2I-K. 

The depolarization threshold limits the analysis depth within the vessel wall by masking 

peri-adventitial tissue and the guide-wire shadow, as well as lipid-rich tissue regions, as 

visualized in Figures 2G, H.

D. Statistical methods

We computed Pearson correlation coefficients between the ROI-values of individual 

matching sections, or the compound ROI-values of all (or a subset of the) sections. We also 

performed Deming regression, which finds the best linear fit by reducing the total least 
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square error, assuming equal errors in both correlated variables. A paired Student’s t-test 

was used to compare the correlation coefficients of the three signal types. Two one-sided t-

tests were used to evaluate equivalence of the Deming regression with a slope of one. 

Significance was set at 5%.

Bland-Altman plots of theROI-values were created as an alternative assessment of the 

agreement between the repeat measurements. The 95 % limits of agreement (LoA) were 

estimated using the 2.5th and 97.5th percentile of the difference signals. All statistical 

analysis was performed with Matlab.

III. RESULTS

A. Bland-Altman analysis

To assess the overall agreement between repeat pullbacks for the conventional backscatter 

image and the polarimetric signals, we matched 274 cross-sections of varying lesion type, 

but excluding regions of stents, plaque rupture, or detached thrombus, and generated Bland-

Altman plots, analyzed with an ROI diameter of 300 μm. The depolarization threshold was 

set to DepTh = 0.2, which has the effect of restricting the analysis mostly to the vessel wall 

and excluded signal from deeper tissue regions and peri-adventitial layers that typically 

feature higher depolarization. Applying a depolarization threshold is critical for the analysis 

of birefringence, because the randomization of the polarization states underlying increased 

depolarization precludes the reconstruction of meaningful birefringence in these areas.

To account for the large number of data points, we generated 2D histograms, binning the 

difference between the mean signals of correspondingROIs against their average, as 

displayed in Figure 3. Table 1 summarizes the computed parameters. Because the difference 

signal was not strictly normally distributed, we used the 2.5th and 97.5th percentile of the 

difference signal to compute the LoAs. The polarimetric signals resulted in median 

differences smaller than 2 % of the mean LoA. For the intensity signal, the mean difference 

corresponds to 2 % of the LoA. To interpret the LoAs, we compared them with the range 

(2.5th to 97.5th percentile) of the average signal, corresponding to the aspect ratio of the 

Bland-Altman plot, and offering a measure of the practically available contrast in the 

images. The larger the variation of the average signal, the higher is the dynamic range of the 

signal encountered in the measured vessels. And the smaller the LoAs, the more signal 

levels can be reliably differentiated within this dynamic range. Birefringence presented the 

highest ratio, suggesting a relatively higher dynamic range or smaller LoA than for the 

backscatter intensity or depolarization signals in the analyzed tissue regions.

B. Pearson correlation analysis

We also performed Pearson correlation analysis on the compounded data points of all 

matching cross-sections. Figure 4A displays the resulting correlation coefficients for all 

three signals. Birefringence had the highest correlation (r = 0.856, 95% confidence interval 

(CI) 0.854–0.858), followed by intensity (r = 0.833, 95% CI 0.831–0.835), and 

depolarization resulted in the poorest correlation (r = 0.780, 95% CI 0.777–0.783). The same 

analysis was applied to the cross-sections acquired by immediate repeat pullbacks, and 
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compared to the few cases where the first pullback was acquired in the native coronary 

artery before angioplasty, followed by imaging after the procedure. The necessary repeated 

deployment of the imaging catheter resulted in lower correlations.

In addition to compounding all cross-sections, we also retrieved the correlation coefficients 

for the individual sections, and displayed their means and standard deviations in Figure 4B. 

In this analysis the intensity achieved slightly higher mean correlation than the 

birefringence, but without statistical significance (p = 0.108), when compounding all cross-

sections. The correlation of the intensity and the depolarization signal differed significantly 

(p < 0.001). For the immediate repeat measurements, intensity differed with statistical 

significance from both birefringence and depolarization (p = 0.0079 and p < 0.001, 

respectively). The differences between immediate repeat measurements and imaging pre and 

post procedure were also significant (p < 0.001).Table 2 summarizes the correlation results.

Figure 5A illustrates the distribution of the correlation coefficient of the three signals. 

Although high correlation coefficients were most frequent for the intensity signal, it also 

resulted in a few very poor correlations. In comparison, the polarimetric signals distributed 

more narrowly around high correlation values. In Figure 5B the distribution of the slope of 

the Deming regression is visualized. All signals centered around a unitary slope. Using two 

one sided t-tests we minimized the equivalence interval at a significance level of 95 % and 

obtained intervals of 0.09, 0.06, and 0.03 for the correlation slope of the intensity, 

birefringence, and depolarization, respectively. These intervals confirm the more narrow 

distribution of the polarimetric signals compared to the intensity.

C. Dependence on ROI diameter and depolarization threshold

In the previous analysis, the ROI diameter was kept at 300 μm and the depolarization 

threshold at DepTh = 0.20. Figure 6 displays the correlation coefficients of the compounded 

274 cross-sections for varying ROI diameters and depolarization thresholds. For the 

birefringence signal, the correlation improved substantially with increasing ROI diameter, 

whereas the intensity signal proved less sensitive to this parameter. Below a diameter of 200 

μm, the intensity resulted in a better correlation than the birefringence. The depolarization 

exhibits a more modest increase with growing ROI size and plateaus at around 300 μm.

Higher depolarization corresponds to increased randomness in the measured polarization 

states, which limits the reconstruction of meaningful birefringence. Accordingly, in response 

to an increased depolarization threshold, the correlation of the birefringence rapidly 

degrades, and improves for a smaller depolarization threshold. In contrast, both the intensity 

and the depolarization signal benefit of the inclusion of the deeper lying tissue regions and 

achieve higher correlations. Figure 6 also shows the mean maximum depth analyzed on all 

the sections as a function of the depolarization threshold.

To demonstrate the significance of the reported correlations, we introduced an artificial 

angular offset of 30° to the unfolded second cross-sections. This drastically reduced the 

correlations of the polarimetric signals, and to a lesser extent as well of the backscatter 

intensity signal.
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IV. DISCUSSION

Polarization sensitive OFDI measures the polarization state of the light scattered by the 

tissue, with the polarization of the illumination alternating between radial scans. Observation 

of how the measured polarization states vary along depth and between neighboring pixel 

locations permits reconstruction of maps of tissue birefringence and depolarization. This 

approach offers additional contrast that complements the structural information available 

from the backscatter intensity, and may offer a more detailed characterization of 

atherosclerotic plaques. Figure 7 shows an example of a mixed plaque in the right coronary 

artery of a 64-year-old woman who presented with unstable angina. The increased 

birefringence facilitates the identification of the tunica media. Compared to the fibrous area 

of the plaque discussed in Figures 1 and 2, the majority of the plaque area in this cross-

section exhibits very low birefringence, which could imply that it corresponds to a healing 

thrombus rather than a collagen-rich fibrous lesion. The increased depolarization from 11 to 

3 o’clock suggests the presence of lipid, macrophages, and cholesterol crystals.

To enable the further investigation and interpretation of these polarization signatures in 

clinical studies, we first strove to confirm and validate the reliability and robustness of these 

polarization metrics when evaluated in a clinical setting. Overall, we found an excellent 

agreement between the birefringence maps of spatially matched cross-sections acquired 

during repeat pullbacks. Repeat birefringence measurements agreed even better than 

conventional backscatter images, when analyzed with a low depolarization threshold and 

sufficiently large ROI. This result may arise from the quantitative nature of birefringence 

that reduces its LoAs, as well as from the rich birefringence contrast in the vessel wall, 

which results in a wider signal range compared to the backscatter signal and enhances the 

correlation.

The intensity signal varies in proportion to the power of the light illuminating the vessel 

wall. It depends on variations in the transmission through the catheter, and upon the 

reference signal in the interferometer. Even though two images acquired with a different 

overall intensity may visualize the same spatial features, their direct correlation would be 

skewed. We are unaware of any previous study assessing the repeatability of backscatter 

intensity for intravascular imaging, and our results may provide helpful parameters for the 

development of robust intensity-based segmentation algorithms and image processing 

routines.

Because the polarization of light transmitted through optical fibers is very sensitive to fiber 

motion, this raised additional concerns for the robustness of intravascular polarimetry [20]. 

The present results demonstrate that the reconstructed quantitative polarization metrics are 

insensitive to fiber motion and are more resilient to variations in the amplitude of the 

detected signal than the intensity images. Inspecting the individual cross-sections with 

poorest intensity correlations revealed that many exhibit slight shadowing artifacts due to 

suboptimal flushing, without, however, significantly altering the recovered polarization 

signatures.
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The limited dynamic range of the backscatter signal from within the vessel wall further 

inhibits the correlation of the intensity signal. Backscatter appears quite uniform in the 

intimal layer and fibrous plaques, and is just slightly reduced in the tunica media. Only the 

hypoechoic signal of calcifications and lipid-rich regions result in a larger modulation of the 

scattering amplitude. In consequence, the intensity signal mostly visualizes large-scale 

features and is less sensitive to detailed spatial co-registration of matching cross-sections, as 

confirmed by its independence of theROI diameter.

In comparison, birefringence varies substantially within the vessel wall. It is pronounced in 

the tunica media and elevated within areas of fibrous tissue, defining clearly demarcated 

zones of distinct birefringence levels on a scale smaller than most intensity features. 

Accordingly, the birefringence signal offers a wider dynamic range and is the most sensitive 

to precise spatial co-registration. Despite careful matching and the automated angular 

orientation correction, cardiac movement impeded exact co-registration of cross-sections 

acquired in live patients, and intrinsically limited its accuracy. The discrepancies identified 

in between repeat measurements may not arise solely from measurement inconsistencies, but 

may result from the limited spatial matching. We attribute the reduced correlation of cross-

sections imaged before and after angioplasty to less accurate co-registration due to the 

altered position of the catheter within the vessel. Poor birefringence correlation of individual 

sections imaged during immediate repeat pullbacks associated with imperfect spatial co-

registration in an angular region of those cross-sections.

Depolarization highlights areas of lipid, macrophages, and cholesterol crystals, but generally 

offers the fewest spatial features, and resulted in the poorest correlation. Applying the 

depolarization threshold artificially limited its dynamic range, and our depolarization metric 

did not take into account its dependence on the effective polarization state of the light 

incident on the tissue [25].

Using a higher depolarization threshold improves the dynamic ranges of the intensity and 

the depolarization signal by adding ROIs with lower intensity and higher depolarization, 

respectively, and enhances the observed correlations of these signals. The resulting LoA in 

the Bland-Altman analysis would increase more modestly than the dynamic range and 

improve their contrast ratio. Because the birefringence in regions of increased depolarization 

is meaningless and random, raising the depolarization threshold compromises the correlation 

of the birefringence signal between repeat measurements. It would increase the LoAs in the 

Bland-Altman analysis and reduce the contrast ratio.

As visualized in Fig. 2, even the lowest evaluated depo larization threshold (0.14) includes 

the entire vessel wall in areas with minimal disease, where the tri-layered structure of the 

artery is apparent in the intensity image. However, the OFDI signal does not penetrate the 

full thickness of lipid-rich plaques. The depolarization remains low within the fibrous cap 

and then rapidly increases within the underlying lipid-pool, from where no meaningful 

birefringence can be extracted. Increasing the depolarization threshold thus primarily adds 

peri-adventitial tissue areas and deeper located lipid-rich areas to the analysis, without, 

however, adding diagnostically relevant information. In our previous study of intravascular 

polarimetry [26], we employed the same depolarization threshold of 0.2 as in the current 
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study. The mean maximum depth for this threshold (0.88 mm) corresponds closely to 

previous reports of mean wall thickness of normal coronary arteries (0.8 mm and 0.71 mm, 

respectively) [27], [28]. The mean median depth (0.53mm), because influenced by the 

shallower analysis depth in lipid-rich lesions areas, is smaller than this value, although the 

effective vessel wall is thicker in diseased arteries.

The strong dependence of the birefringence correlation on the ROI size agrees with the 

presence of more spatial features with a scale comparable to the ROI size than in the 

intensity or depolarization images. A larger ROI reduces the error due to inaccurate spatial 

matching and improves the resulting correlation. Because the intensity and depolarization 

signals vary more gradually, their correlation depends less on the ROI size.

Of note, the size of all employed ROIs sufficed to effectively average the speckle that is 

typically present in the intensity signal.

Limitations of this work include the manual identification of matching cross-sections, and 

residual matching errors due to imprecise lumen segmentation and cardiac motion. Normal 

looking vessel wall and atherosclerotic lesions were not differentiated and both used 

identically for analysis of repeatability.

V. CONCLUSION

This study demonstrates that intravascular polarimetry with PS-OFDI generates reliable and 

robust maps of tissue polar ization properties. Tissue birefringence showed better correlation 

between repeat measurements than the conventional backscatter intensity signal, when 

restricting the analysis to areas of modest depolarization. This result underlines the 

quantitative nature of the birefringence metric and the wide range of birefringence levels 

encountered in atherosclerotic arterial vessels. Depolarization showed weaker but satisfying 

correlation. Combined, these results support the future use of intravascular polarimetry for 

clinical studies investigating birefringence and depolarization signatures across a spectrum 

of clinical presentations.
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Fig. 1. 
PS-OFDI of an atherosclerotic plaque measured in repeat pullbacks. (A, D) Intensity of the 

backscatter signal showing subsurface plaque morphology in conventional logarithmic gray 

scale. The yellow and green lines indicate the lumen segmentations. Panel A indicates the 

angular position σ and depth in the tissue ρ with respect to the center of the lumen. (B, E) 

Display of birefringence in color hue and reflection signal in brightness. Birefringence is 

only shown in regions of low depolarization, converting to gray-scale backscatter signal in 

areas of high depolarization. The color range encodes birefringence from 0 to 2.2×10−3. (C, 

F) Display of depolarization in color hue and backscatter signal in brightness. The color 

range encodes depolarization from 0 to 0.5. Scale bar: 1 mm.
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Fig. 2. 
Refinement of spatial co-registration and correlation analysis. (A, B) Unwrapped sections of 

Figure 1. (C) Color-coded overlay of the two backscatter intensity images visualizing 

original relative error. Areas with a signal <15 dB above the noise floor are masked. (D) 

Adjusting the relative angular offset of the second section by −11.38° reduces the error. (E, 

F) Corresponding overlay of the birefringence images. Areas with a depolarization <0.2 are 

masked. (G, H) Co-registered sections mapped back into Cartesian coordinates onto the 

lumen of the first section. White and light and dark gray lines indicate transition of 

depolarization signal below 0.2, 0.14, and 0.36, respectively. Scale bar: 1 mm. (I-K) 

Correlation plots for backscatter intensity (I), birefringence (J), and depolarization (K) for 

the original (blue dots) and corrected (orange circles) sections, with a depolarization 
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threshold of 0.2. r indicates the Pearson correlation coefficient, and a the slope of the 

Deming regression. Black lines show Deming regression.
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Fig. 3. 
Bland-Altman Analysis for (A) backscatter intensity (Int), (B) birefringence n, and (C) 

depolarization (Dep), in areas with a depolarization ≤0.2. All panels show mean offsets and 

the limits of agreement (LoA), as well as the 95% confidence interval on the mean average 

signal.
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Fig. 4. 
Pearson correlation analysis. (A) Correlation of all compounded cross-sections (All), cross-

sections imaged with immediate repeat pullbacks (Repeat), and cross sections that were 

measured pre and post therapy (Pre/Post). Error-bars indicate 95% confidence intervals on 

the upper and lower bounds. (B) Correlation of individual cross-sections for the same 

categories as in (A). Error bars indicate ± standard deviation (SD). ∗ p < 0.001.
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Fig. 5. 
Pearson correlation analysis and Deming regression. A) Histogram of the Pearson 

correlation coefficients for all 274 cross-sections. B) Histogram of the Deming regression 

slope.
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Fig. 6. 
Pearson correlation analysis for different ROI diameters and depolarization thresholds. (A) 

Influence of ROI diameter at a depolarization threshold DepTh = 0.20. (B) Influence of the 

depolarization threshold at an ROI diameter of 300 μm. The black line indicates the mean of 

the maximum depth analyzed in each section as a function of the depolarization threshold. 

Full lines correspond to correctly matched sections, and dashed lines to sections that were 

purposely offset by 30° in the angular direction. Full circles indicate points corresponding to 

previous analysis.
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Fig. 7. 
PS-OFDI in the right coronary artery of a 64-year-old woman. A) Backscatter intensity, B) 

birefringence and intensity overlay, C) depolarization and intensity overlay. Birefringence is 

increased in the tunica media (white arrow heads), but otherwise the majority of this lesion 

appears lowly birefringent (yellow arrow). Depolarization highlights lipid and possible 

macrophages and cholesterol crystals (black arrows). Scale bar: 1 mm.
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TABLE I

Parameters extracted from Bland-Altman analysis

Intensity Δn Depo

Median difference −0.181 dB 1.37×lO−6 −1.40×10−4

LoA(−) 6.14 dB 0.25×10−3 0.057

LoA(+) 6.35 dB 0.24×10−3 0.054

Median/LoA(±)[%] 2.007 0.176 0.015

Median of average 90.32 dB 0.60×10−3 0.081

Range: 2.5th to 97.5th percentile 18.66 dB 0.83×l0−3 0.128

Contrast: 2×LoA(±) / Range 1.49 1.68 1.16

Depo: Depolarization. LoA(−) is the 2.5th to 50th percentile and LoA(+) the 50th to 97.5th percentile of the difference signal. LoA(±) is their 
mean.
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TABLE II

Pearson correlation analysis

ALL(N=274) REPEAT (N=241) PRE/POST (N=33)

Compound Int Δn Dep Int Δn Dep Int Δn Dep

Corr. Coeff. 0.833 0.856 0.780 0.849 0.870 0.792 0.701 0.760 0.694

95% CI 0.831–0.835 0.854–0.858 0.777–0.783 0.847–0.851 0.868–0.871 0.789–0.795 0.690–0.712 0.751–0.769 0.683–0.705

Individual

Corr. Coeff. 0.822 0.806 0.794 0.845 0.819 0.809 0.656 0.713 0.690

Standard Deviation 0.137 0.137 0.107 0.104 0.130 0.095 0.218 0.150 0.132
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