Elsevier Editorial System(tm) for Food

Research International

Manuscript Draft

Manuscript Number: FOODRES-D-18-00337R1

Title: Distribution and tracking of Clostridium difficile and Clostridium perfringens in a free-range pig abattoir and processing plant

Article Type: Research Articles

Keywords: Abattoir; Clostridium difficile; Clostridium perfringens; freerange pig; lairage; slaughter line

Corresponding Author: Professor Jose L. Blanco, PhD, DVM

Corresponding Author's Institution: Facultad de Veterinaria. UCM.

First Author: Sergio Alvarez-Perez, PhD

Order of Authors: Sergio Alvarez-Perez, PhD; Jose L. Blanco, PhD, DVM; Rafael J Astorga, PhD, DVM; Jaime Gomez-Laguna, PhD, DVM; Belen Barrero-Dominguez; Angela Galan-Reaño; Celine Harmanus; Ed J Kuijper; Marta E Garcia, PhD, DVM

Abstract: The presence and genetic diversity of Clostridium difficile and C. perfringens along the slaughtering process of pigs reared in a freerange system was assessed. A total of 270 samples from trucks, lairage, slaughter line and quartering were analyzed, and recovered isolates were toxinotyped and genotyped. C. difficile and C. perfringens were retrieved from 14.4% and 12.6% of samples, respectively. The highest percentage of positive samples for C. difficile was detected in trucks (80%) whereas C. perfringens was more prevalent in cecal and colonic samples obtained in the slaughter line (85% and 45%, respectively). C. difficile isolates (n = 105) were classified into 17 PCR ribotypes (including 010, 078, and 126) and 95 AFLP genotypes. C. perfringens isolates (n = 85) belonged to toxinotypes A (94.1%) and C (5.9%) and were classified into 80 AFLP genotypes. The same genotypes of C. difficile and C. perfringens were isolated from different pigs and occasionally from environmental samples, suggesting a risk of contaminated meat products. Dear Editor of Food Research International,

We resubmit our manuscript entitled 'Distribution and tracking of *Clostridium difficile* and *Clostridium perfringens* in a free-range pig abattoir and processing plant' to be considered for publication in your journal. In this new version of the manuscript, we have addressed all the comments from the reviewers. In particular, we have modified Figures 1 and 2 and their corresponding legends to clarify the meaning of the different codes shown on the tips of the dendrograms. This and other changes are explained in detail in the point-by-point response to the reviewers and can also be identified in the 'tracked changes' version of the manuscript.

We hope that you can consider now our manuscript adequate to be published in your prestigious journal.

Yours faithfully,

Prof. José L. Blanco, DVM, PhD

Department of Animal Health Veterinary Faculty Universidad Complutense E-28040 Madrid, Spain Phone: +34 91 394 3717 Fax: +34 91 394 3908 E-mail: jlblanco@ucm.es

ANSWER TO THE REVIEWERS

Response to the comments of Reviewer #1

The objective of the work was to investigate the presence and genetic diversity of Clostridium difficile and C. perfringens along the slaughtering process of pigs reared in a free range system. Generally, this is a novel study with well-writing, but there are some issues the authors should address.

We thank the Reviewer for these nice comments on our manuscript.

The authors should give more details on the environmental condition when sampling, e.g. temperature... And the hygiene condition should also be provided since it can affect the presence of bacteria.

Air temperature in the different rooms of the pig abattoir and processing plant sampled in this study ranged between 20 °C and 25 °C, except the quartering room with a temperature below 12°C. This has been indicated in Material and Methods (lines 79-81).

On the other hand, as now indicated in the manuscript (see lines 78-79), all the facilities sampled in the study comply with the European Union, national and regional regulations on hygiene, food safety and animal welfare. We do not consider necessary to include further details about this aspect in the manuscript, but if the Editor and/or the Reviewer does we would be glad to provide them with such information.

Why to choose March as the sampling time? Please clarify.

Because most free-range pigs in Southern Spain are slaughtered between February and April, so we considered that the sampling date was just at the middle of the local peak season. This aspect has been indicated in lines 76-77.

The samples were stored at -70 °C before bacterial isolation. Is this a standard protocol? Reference? And for how long?

This is the procedure that we and many other researcher groups follow for storage of samples to be analyzed for clostridial presence, especially when a high number of samples need to be handled. Please note that previous studies have demonstrated that storage temperature (4°C and < 20°C) and even multiple cycles of freezing (refrigeration)/thawing have minimal effects upon the viability of *C. difficile* spores (e.g. Freeman & Wilcox [J Clin Pathol. 2003, 56(2):126-8]).

Although the authors detected the presence of Clostridium difficile and C. perfringens by culturing methods, the numbers of these bacteria were unknown in difference samples, this could affect the risk assess of Clostridium difficile and C. perfringens. Direct culturing of *C. difficile* and *C. perfringens* is unreliable for many different reasons: for example, low numbers of spores/vegetative cells may be present within a sample and these may be unevenly distributed (see a discussion on this topic in our previous paper Blanco et al. [Vet J. 2013, 197:694-8] and references listed therein). Accordingly, most researchers prefer to use enrichment protocols to retrieve *C. difficile* and *C. perfringens* from clinical and/or environmental samples. For that same reason, we used an enrichment protocol before plate culturing and did not try to enumerate the CFUs present in our samples. A brief mention to this aspect has been included in Materials and Methods (section 2.2, lines 106-109).

Response to the comments of Reviewer #2

Abstract

Line 24: abbreviation TLSQ necessary here?

Indeed, that abbreviation may not be needed in the abstract and, therefore, we have removed it (see line 24).

Line 28: please make clear that "cecal and colonic content" belong to slaughter line samples

Following the Reviewer's suggestion, we have rephrased that sentence as follows (lines 26-29): "The highest percentage of positive samples for *C. difficile* was detected in trucks (80%) whereas *C. perfringens* was more prevalent in cecal and colonic samples obtained in the slaughter line (85% and 45%, respectively)."

Material and methods.

It should be mentioned that spore selection in isolation procedures for C. perfringens will markedly reduce the number of isolates because most strains do not sporulate in the usually employed culture media.

We agree that vegetative forms of *C. difficile* and *C. perfringens* are eliminated by spore selection in absolute ethanol. However, most authors also perform ethanol shock after enrichment in broth culture so as to eliminate potential contaminations (see, e.g., Weese et al., 2010 [Anaerobe, 16:501-4]; Schneeberg et al., 2012 [Anaerobe, 18:484-8]; and Hussain et al., 2015 [Anaerobe, 36:9-13]). Furthermore, some studies have indicated that *C. difficile* strains of different PCR ribotypes can produce abundant spores within 24 h (see, e.g., Vohra and Poxton, 2011 [Microbiology 157:1343-53]). Therefore, we believe that our culturing procedures are adequate for the purposes of the present study.

Results.

Line 195-203 and Figure 1: C. difficile AFLP genotypes In Figure 1: To me it is not clear what the number after the ribotype (in red) is indicating.

I cannot follow how the AFLP genotypes (i.e. cd74, cd89) are named; they are also not depicted in Fig.1.

The codes in black shown next to ribotype designations correspond to isolate names. This has been clarified in the legend of Figure 1 and also in the dendrogram itself. Furthermore, we have included a brief mention in lines 202-203: "AFLP-based fingerprinting grouped C. difficile isolates into 104 peak profiles and 95 distinct genotypes (designated as cd1 to cd95; Fig. 1)."

Line 216-221 and Fig. 2: C. perfringens AFLP genotypes In Fig. 2: Again it is not clear what the number at the tip of the branches is indicating.

Correspondingly I cannot follow how the AFLP genotypes (i.e. cp55) are named; they are also not depicted in Fig. 2.

Again, the codes in black at the tip of branches refer to isolate names. This has been now clarified in the legend of Figure 2 and also in the dendrogram. Finally, a brief mention has been included in lines 224-225: "*AFLP-based fingerprinting of C. perfringens isolates yielded 85 different peak profiles and 80 distinct genotypes* (<u>**cp1**</u> to **cp80**; Fig. 2)."

Discussion

Line 302: I suggest to replace "major threat" by "possible threat" given that C. perfringens type A is in general wide spread in the environment and is also part of the intestinal microbiota in animals and humans. Also to my knowledge complete absence of C. perfringens is not a general requirement for foods.

As suggested, we have changed "*major threat*" to "*possible threat*" in that line (now 310). Nevertheless, we should mention that, although toxinotypes C and D have been traditionally considered the main responsibles of human and animal disease, we have noticed in recent years at our institution an increase in the number of cases of animal diarrhea from which *C. perfringens* toxinotype A is isolated. Similarly, other authors have suggested that alfa toxin, which is more abundantly produced by toxinotype A, may be implicated in the enteric pathologies caused by this clostridial species.

Highlights

- Analysis of *C. difficile* (CD) and *C. perfringens* (CP) presence in a free-range pig abattoir.
- CD was mainly found in trucks, whereas CP was more prevalent in the slaughtering line.
- High diversity of AFLP genotypes was found among CD and CP isolates.
- The same CD and CP genotypes were found in slaughtered pigs and the environment.
- Some CD isolates belonged to epidemic ribotypes (e.g. 078 and 126).

1	1	Distribution and tracking of Clostridium difficile and Clostridium perfringens in a
⊥ 2 3	2	free-range pig abattoir and processing plant
4 5	3	
6 7 8	4	Sergio Álvarez-Pérez ^a , José L. Blanco ^{a,*} , Rafael J. Astorga ^b , Jaime Gómez-Laguna ^c ,
9 10	5	Belén Barrero-Domínguez ^b , Angela Galán-Relaño ^b , Celine Harmanus ^d , Ed Kuijper ^d ,
11 12 13	6	Marta E. García ^a
14 15	7	
16 17 10	8	^a Department of Animal Health, Faculty of Veterinary Medicine, Complutense
19 20	9	University of Madrid, Madrid, Spain
21 22	10	^b Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba,
23 24 25	11	Cordoba, Spain
26 27	12	^c Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine,
28 29 30	13	University of Cordoba, Cordoba, Spain
31 32	14	^d Department of Medical Microbiology, Center of Infectious Diseases, Leiden
33 34 35	15	University Medical Center, Leiden, The Netherlands
36 37	16	
38 39	17	* Corresponding author:
40 41 42	18	Prof. José L. Blanco, PhD, DVM. Departamento de Sanidad Animal, Facultad de
43 44	19	Veterinaria, Universidad Complutense de Madrid. Avda. Puerta de Hierro s/n, 28040
45 46 47	20	Madrid (Spain). Tel.: +34 91 394 3717. E-mail address: jlblanco@ucm.es
48 49		
50 51		
52 53		
54 55		
56 57		
58		
59		
6U 61		
62		1
ьз 64		

21 Abstract

The presence and genetic diversity of *Clostridium difficile* and *C. perfringens* along the slaughtering process of pigs reared in a free-range system was assessed. A total of 270 samples from trucks, lairage, slaughter line and quartering were analyzed, and recovered isolates were toxinotyped and genotyped. C. difficile and C. perfringens were retrieved from 14.4% and 12.6% of samples, respectively. The highest percentage of positive samples for C. difficile was detected in trucks (80%) whereas C. perfringens was more prevalent in cecal and colonic samples obtained in the slaughter line (85% and 45%, respectively). C. difficile isolates (n = 105) were classified into 17 PCR ribotypes (including 010, 078, and 126) and 95 AFLP genotypes. C. perfringens isolates (n = 85) belonged to toxinotypes A (94.1%) and C (5.9%) and were classified into 80 AFLP genotypes. The same genotypes of *C. difficile* and *C. perfringens* were isolated from different pigs and occasionally from environmental samples, suggesting a risk of contaminated meat products.

Keywords: Abattoir, *Clostridium difficile*, *Clostridium perfringens*, free-range pig,
lairage, slaughter line

- Detection and tracking of microorganisms along the the food chain is of key importance to establish both pathogens' survival throughout a particular production chain and how these microorganisms may eventually reach the consumer (Duffy et al., 2008). Although virtually any food product can act as a reservoir of pathogenic microorganisms, meat and derivatives are frequently highlighted as important sources of human food-borne infection (Fosse et al., 2008; Nørrung and Buncic, 2008). Accordingly, farm-to-fork surveillance systems have been implemented for the most prevalent pathogens found in meat (Nørrung and Buncic, 2008). The Gram-positive, spore-forming anaerobes *Clostridium difficile* and *C. perfringens* are frequent colonizers of the intestinal tract of diverse food animals, and particularly of pigs (Songer and Uzal, 2005). Both bacterial species have been found in the environment of pig abattoirs and in pork meat (Hall and Angelotti, 1965; Metcalf et al., 2010; Curry et al., 2012; Mooyottu et al., 2015; Wu et al., 2017). Nevertheless, while C. perfringens ranks among the most important agents of food-borne disease (Fosse et al., 2008; Butler et al., 2015), the classification of C. difficile as a pathogen causing food-borne outbreaks is still controversial (Warriner et al., 2017). Although organic and eco-friendly pig rearing systems are gaining increased importance and popularity, most surveillance studies of C. difficile and C. perfringens prevalence in swine herds, abattoirs and pig carcasses published so far have focused on intensively-raised animals. However, Keessen et al. (2011) and Susick et al. (2012) found similar prevalence and strain types of C. difficile among conventional and outdoor,
- 62 antimicrobial-free production systems. In a previous study, a high prevalence of the

1. Introduction

epidemic *C. difficile* PCR ribotype 078 was detected in Iberian pigs reared in free-range
systems in 'La Dehesa', a type of human-managed Mediterranean ecosystem where they
feed on acorns and fresh grass, and only periparturient sows and pre-weaned (≤45-dayold) piglets are kept in closed facilities (Álvarez-Pérez et al., 2013).

In this study we determined the presence of *C. difficile* and *C. perfringens* in an abattoir
and processing plant of free-range pigs, which have been previously identified as a
common source of both clostridia (Álvarez-Perez et al., 2013; and unpublished
observations). Additionally, bacterial isolates were toxinotyped and further
characterized genetically to track possible sources of carcass contamination.

2. Material and methods

75 2.1. Sampling

Sampling was performed in March 2016 (middle of the local peak season for the slaughtering of free-range pigs) in an abattoir and processing plant located in southern Spain. All the facilities complied with the European Union, national and regional regulations on hygiene, food safety and animal welfare. Air temperature in the different rooms of the pig abattoir and processing plant sampled in this study ranged between 20 °C and 25 °C, except the quartering room with a temperature below 12°C. Systematic cleaning and disinfection of the facilities is carried out following each slaughtering. In addition, in periods where no slaughtering is performed, more exhaustive and meticulous cleaning and disinfection protocols which include the dismantling of equipments are carried out.

Two different batches of animals, corresponding with batches at the beginning and at the end of the same working day (TLSQ1 and TLSQ2, respectively), were sampled to determine the prevalence of both clostridia species in Trucks, Lairage, Slaughter line and Quartering (TLSQ) (Hernández et al., 2013). The traceability of each pig was strictly followed along the abattoir, and samples were obtained in the following six stages of the production chain: i) trucks at their arrival (T1) and after cleaning and disinfection (T2) (floor, walls, ceiling, entrance ramps and cabin's mat); ii) lairage, prior entry of the pigs (cleaned and disinfected, L1) and just after departure to slaughter (dirty, L2); iii) ten pig carcasses per batch at six different stages (pre-scalding, S1; post-scalding, S2; post-flaming, S3; post-evisceration, S4; post-washing, S5; and, chilling, S6); iv) tonsils (To), cecal (Ce) and colonic (Co) contents; v) environmental samples from the slaughter line (ES) (scalding water, knives and saws) and from the quartering environment (EQ) (sterilization water, tables and knives); and vi) quartering samples (Q) (ham, shoulder and loin) (see details in Table 1). All samples were collected into sterile containers (for feces, tonsils, meat or water samples) or with sterile sponges into plastic bags (for samples from carcasses and surfaces), and transported to the laboratory, where they were stored at -70 °C until analyzed.

105 2.2. Bacterial isolation and identification

As direct culturing of *C. difficile* and *C. perfringens* is unreliable (e.g. because of the
low numbers of spores/vegetative cells that may be present within a sample and the
uneven distribution of these; Blanco et al., 2013), isolation of these microorganisms
from all sample types was performed by enrichment culturing. Briefly, sampling
sponges were defrosted and cut into half, and the pieces were then introduced into 50mL plastic tubes containing 15 mL of the enrichment broth used by Blanco et al. (2013)

or brain-heart infusion broth (BHI; TecLaim, Madrid, Spain), for enrichment of C. difficile and C. perfringens, respectively. After 7 days of incubation at 37 °C (for C. *difficile*) or 72 h at 46 °C (for *C. perfringens*) under anaerobic conditions, 2 mL of the liquid cultures were mixed with 2 mL of absolute ethanol (Panreac) and incubated for 1 h under agitation (200 rpm) at room temperature. Finally, the tubes were centrifuged at 1,520 g for 10 min, the supernatants were discarded and the precipitates collected using sterile cotton-tipped swabs and plated onto CLO agar (bioMérieux, Marcy l'Étoile, France) for selective culturing of C. difficile, and Brucella blood agar (bioMérieux) and tryptone sulfite neomycin agar (TSN; Laboratorios Conda, Madrid, Spain) for isolation of C. perfringens. Inoculated plates were incubated under anaerobic conditions for 48 h to 7 days at 37 °C (for *C. difficile*) or 46 °C (for *C. perfringens*). Tonsils (5 g) and meat samples (ham, shoulder and loin, 5 g in total), obtained at quartering, were diluted in 15 mL of the aforementioned enrichment broths, mechanically homogenized for 2 min using a Seward 80 stomacher (Seward Medical, London, England) and further handled as described above. Swabs were introduced in the fecal samples, and then cultured into a 10 mL tube containing 5 ml of the enrichment broth for C. difficile or BHI for C. perfringens, and further handled as decribed above. Water samples (25 mL) were filtered through a 0.45-µm-pore-size membrane filter (Millipore Corporation, Billerica, MA, USA) using Microfil filtration funnels (Millipore) connected to a vacuum system. Filters were then washed with 20 mL of ethanol 70 % (v/v) and 20 mL of sterile distilled water, introduced in the sterile 50-mL polypropylene tubes containing 15 mL of BHI or C. difficile enrichment broth, and further handled as sponge and meat samples.

microorganism and a positive PCR reaction for the species-specific internal fragment of
the gene encoding for triose phosphate isomerase (*tpi*) (Lemee et al., 2004).
Identification of isolates as *C. perfringens* was achieved by observing the typical
double-zone hemolysis of this species when cultured on blood agar, formation of black
colonies on TSN, Gram staining reaction and microscopic morphology.

C. difficile isolates were identified by colony morphology, the typical odor of this

144 2.3. Toxinotyping of isolates

For *C. difficile* isolates, expression of the genes which encode for toxin A and toxin B (*tcdA* and *tcdB*, respectively), and the two components of binary toxin (CDT) (*cdtA* and *cdtB*), was detected by PCR as previously reported (Álvarez-Pérez et al., 2009, 2015). The genes encoding for *C. pefringens* major toxins, enterotoxin and the consensus and atypical forms of $\beta 2$ toxin (*cpb2*) were detected as described by Álvarez-Pérez et al. (2016, 2017a).

152 2.4. Ribotyping of C. difficile isolates

PCR ribotyping of *C. difficile* isolates was performed according to the high-resolution
capillary gel-based electrophoresis method of Fawley et al. (2015). Ribotypes were
designated according to the PHLS Anaerobic Reference Unit (Cardiff, UK) standard
nomenclature and the Leiden-Leeds database (The Netherlands). Non-typeable isolates
were also compared with the strain database at Leeds University (Dr. W. Falwey and
Prof. M. Wilcox) that encompasses more than 600 different types.

160 2.5. Amplified Fragment Length Polymorphism (AFLP) typing

Genotyping of all *C. difficile* and *C. perfringens* isolates was performed by an AFLP
method previously described (Álvarez-Pérez et al., 2017a,b). The products resulting
from the selective amplification step were diluted 1/10 in nuclease-free water (Biotools,
Madrid, Spain) and analyzed by capillary electrophoresis using the GeneScan 1200 LIZ
size standard (Applied Biosystems, Madrid, Spain). All AFLP reactions were performed
twice on different days for each strain.

168 2.6. Data analysis

Dendrograms of AFLP profiles obtained for *C. difficile* and *C. perfringens* isolates were
created using Pearson's correlation coefficients and the unweighted-pair group method
with arithmetic averages (UPGMA) clustering algorithm, as implemented in PAST
v.3.11 (Hammer et al., 2001). Isolates clustering with ≥86% similarity were considered
to belong to the same AFLP genotype (Killgore et al., 2008; Álvarez-Pérez et al.,
2017a,b).

3. Results

3.1. Prevalence of C. difficile and C. perfringens

Clostridium difficile and *C. perfringens* were retrieved from 39 (14.4%) and 34 (12.6%) out of the 270 analyzed samples in total, respectively. Most culture-positive samples yielded only one *Clostridium* species, but eight samples (3% of total) yielded colonies of both C. difficile and C. perfringens. The distribution of positive samples per TLSQ assay and production stage is shown in Table 1. Overall, the highest percentage of positive samples for C. difficile was detected in the trucks (80%, considering T1 and T2) followed by the lairage stage (37.5%, L1 + L2), whereas C. perfringens was more prevalent in the slaughter line (16.7% of positive samples, considering all sample types

obtained at this stage) and, in particular, in the cecal and colonic content of sampled
pigs (85% and 45%, respectively). The overall proportion of positive samples was
higher in the TLSQ2 assay than in TLSQ1 (1.6 times, for both *C. difficile* and *C. perfringens*) and there was some variation in the distribution of both clostridia (Table
1).

3.2. Diversity of C. difficile isolates

A total of 105 *C. difficile* isolates ($x \pm S.D. = 2.7 \pm 0.5$ isolates per positive TLSQ sample) were selected from the original plate cultures for ribotyping and further characterization. About 72.4% of those isolates (76/105) could be classified into one of the already known PCR ribotypes: 078 (34 isolates), 572 (15), 110 (9), 126 (6), 202 (6), 010 (2), 013 (2) and 181 (2). The toxin profiles and other characteristics of these ribotypes are detailed in Table 2. The remaining 29 isolates (27.6% of total) belonged to nine unknown ribotypes, which will be hereafter referred to as U01 to U09 ('U' stands for 'unknown'; Table 2).

AFLP-based fingerprinting grouped C. difficile isolates into 104 peak profiles and 95 distinct genotypes (designated as cd1 to cd95; Fig. 1). All isolates belonging to ribotypes 078 and 126 (n = 40, in total) and to the toxigenic type U09 (n = 4) were included into two well-defined groups that clustered apart from the isolates of the other 14 PCR ribotypes (Fig. 1). Although eight AFLP genotypes included multiple isolates, only two out of these eight AFLP genotypes clustered isolates belonging to different PCR ribotypes (genotypes cd74 and cd89, both of which included two type 078 isolates and one U09 isolate). All samples from which multiple C. difficile isolates could be

210 recovered (38 in total) yielded two or more different AFLP types, and 23.7 % of these211 also yielded different PCR ribotypes.

3.3. Diversity of C. perfringens isolates

Eighty-five C. perfringens isolates $(2.5 \pm 0.8 \text{ isolates per positive culture of TLSQ})$ samples) were selected for detailed characterization. Toxinotyping of these isolates revealed that 80 of them (94.1%) belonged to toxinotype A and only five isolates (5.9%) were of toxinotype C (Table 1). None of the isolates had the enterotoxin-encoding gene (cpe) but 20 type A isolates from diverse sample sources were positive for presence of an atypical form of the β 2-encoding gene (*cpb2*), and other five type A isolates (three obtained from the tonsils of the same pig, one from the colonic content of another pig and the remaining from a truck's floor) were found to carry the consensus form of *cpb2* (Table 1).

AFLP-based fingerprinting of *C. perfringens* isolates yielded 85 different peak profiles
and 80 distinct genotypes (cp1 to cp80; Fig. 2). Only four AFLP types grouped together
two or more isolates (see details below) and all samples from which multiple isolates of *C. perfringens* could be obtained (29 in total) yielded two or more different AFLP
types. Notably, one AFLP type (cp55) clustered together two toxinotype A and one
toxinotype C isolates.

3.4. Distribution of C. difficile and C. perfringens genotypes along the production chain
Five out of the 17 PCR ribotypes of *C. difficile* (29.4%) were found in samples obtained
at different steps of the pork production chain (Table 2): 078 (T, L, S and environmental
samples), 110 (T and S), 572 and U01 (T, L and S) and U09 (L and S).

236	The tracking of individual AFLP genotypes of C. difficile and C. perfringens along the
237	different sample sources investigated is shown in Fig. 3. Two C. difficile genotypes
238	were found in multiple samples from the same TLSQ assay (cd38 from TLSQ1, and
239	cd70 and cd79 from TLSQ2), and two additional genotypes were found in samples from
240	both TLSQ1 and TLSQ2 (cd74 and cd89) and included isolates of PCR ribotypes 078
241	and U09 (Fig. 3). In addition, a same C. perfringens genotype (cp23) was retrieved from
242	TLSQ2 samples obtained from the floor of a truck and the quartering of a carcass.
243	However, while the truck isolate yielded a positive PCR result for presence of a
244	consensus form of the cpb2 gene, the isolate from the quartering sample was cpb2-
245	negative (Fig. 3). No other AFLP genotype grouped together C. perfringens isolates
246	from different sample sources but three AFLP types included isolates obtained from the
247	cecal or colonic content of different pigs (cp12 and cp55, and cp33, respectively).
248	

4. Discussion

Previous studies have demonstrated that *C. difficile* and *C. perfringens* are common
environmental contaminants of abattoirs slaughtering intensively-raised pigs (Rho et al.,
2001; Chan et al., 2012; Hawken et al., 2013; Rodriguez et al., 2013; Wu et al., 2017).
However, much less is known about the prevalence and diversity of these two anaerobes
in abattoirs dealing with pigs raised under free-range conditions (but see Susick et al.,
2012).

In this study, we found that *C. difficile* and *C. perfringens* are widespread

environmental contaminants in a free-range pig abattoir and processing plant. Both

species were isolated from trucks (including cabin's mats which never came into direct

contact with animals) and lairage samples obtained after cleaning and disinfection,
indicating that these procedures were not efficient to eliminate clostridial spores. A
similar conclusion was reached by Hernández et al. (2013) in a survey for *Salmonella*spp. Despite these data may be biased due to the fact that a single abattoir was sampled,
they highlight the potential risk of contamination by *C. difficile* and *C. perfringens*when exhaustive cleaning and disinfection protocols are not applied at every step from
the transport of the animals to the lairage.

Detailed genetic characterization of the isolates obtained in this study showed a high genetic diversity for C. difficile and C. perfringens and revealed the presence of some particular strain types in both environmental samples and pig carcasses, which agrees with the observations of other authors (Hawken et al., 2013; Wu et al., 2017). Furthermore, high diversity of PCR ribotypes and AFLP was found even among isolates retrieved from a same sample, thus confirming the recommendation of examining multiple isolates from culture-positive clinical and environmental samples (Tanner et al., 2010; Álvarez-Pérez et al., 2016). Overall, these results agree with those obtained by Hernández et al. (2013) for Salmonella spp. but contrasts with the low genetic diversity detected for *Listeria monocytogenes* by López et al. (2008) in a different abattoir. Differences in the pig populations analyzed, sampling methods, target bacterial species and/or techniques used for molecular typing of isolates might account for these discrepancies.

Notably, we identified *C. difficile* PCR ribotypes which rank among the most prevalent
in outbreaks of human disease, such as ribotypes 010, 078 and 126 (Davies et al., 2016).
Interestingly, the PCR ribotypes 078 and 126 are close phylogenetic relatives (Stabler et

al., 2012; Schneeberg et al., 2013) that are frequently recovered from slaughtered animals and meat products (Metcalf et al., 2010; Curry et al., 2012; Hawken et al., 2013; Cho et al., 2015; Mooyottu et al., 2015; Wu et al., 2017). Moreover, high genetic relatedness between human and animal isolates of the 078/126 ribotype complex has been repeatedly reported (Bakker et al., 2010, Koene et al., 2012, Schneeberg et al., 2013; Knetsch et al., 2014; Álvarez-Pérez et al., 2017b). All of this has encouraged an ongoing discussion about the zoonotic and food-borne potential of the 078/126 lineage (Squire and Riley, 2013; Warriner et al., 2017). However, direct transmission of C. difficile (from animals to humans or vice versa) has not been yet demonstrated and the possibility of acquisition from a common environmental source cannot be excluded (Squire and Riley, 2013; Knetsch et al., 2014). Regarding the toxigenic diversity of the isolates characterized in this study, most C. difficile isolates yielded a positive PCR result for the genes encoding toxins A, B and/or binary toxin, all of which are regarded as the main virulence factors of the species

(Smits et al., 2016). Moreover, C. perfringens isolates were classified into toxinotypes

A and C, both of which are common enteric pathogens of swine (Songer and Uzal,

2005). In addition, some C. perfringens isolates of diverse origins had the genes

encoding for consensus or atypical forms of the β^2 toxin, a plasmid-borne pore-forming

toxin which may play a role in pathogenesis (Songer and Uzal, 2005; Uzal et al., 2014).

However, regardless of their origin and AFLP-type, all C. perfringens isolates yielded a negative PCR result for the gene encoding enterotoxin CPE, which is the main toxin involved in food poisoning in humans (Songer and Uzal, 2005; Uzal et al., 2014). In any

case, given the huge arsenal of additional toxins that C. perfringens strains can produce

309 (Uzal et al., 2014), the mere presence of this species in abattoirs and food-processing
310 plants should be regarded as a possible threat to public health.

Finally, a 27.6% of the *C. difficile* isolates analyzed in this study belonged to previously unknown PCR ribotypes. Interestingly, one of these ribotypes, named U09, clustered with ribotype 078 and 126 isolates in the UPGMA dendrogram built from AFLP patterns and, as these two, included isolates with the genes encoding for toxins A, B and binary toxin. Thus, U09 could be regarded as a new 078/126-like ribotype and future studies should try to assess the prevalence and genetic and phenotypic characteristics of this novel strain type.

5. Conclusions

In conclusion, as previously observed for abattoirs slaughtering intensively-raised pigs, C. difficile and C. perfringens can be found in free-range pig abattoirs and processing plants. In addition, molecular tracking of individual genotypes revealed that, for both clostridia, the same strain types could be recovered from animal and environmental samples, highlighting the potential for cross contamination of free-range pig carcasses. **Declaration of interest** None.

330 Acknowledgments

This work was supported by grant AGL2013-46116-R from the Spanish Ministry of
Economy and Competitiveness. Jaime Gomez-Laguna is supported by a "Ramón y
Cajal" contract of the Spanish Ministry of Economy and Competitiveness (RYC-2014-

16735). The funder had no role in study design, data collection and interpretation, or the
decision to submit the work for publication. The staff of the Genomics Service at
Universidad Complutense de Madrid is gratefully acknowledged for providing excellent
technical assistance.

References

- Álvarez-Pérez, S., Blanco, J.L., Bouza, E., Alba, P., Gibert, X., Maldonado, J. &
 García, M.E. (2009). Prevalence of *Clostridium difficile* in diarrhoeic and nondiarrhoeic piglets. *Veterinary Microbiology*, *137*, 302–305.
- Álvarez-Pérez, S., Blanco, J.L., Peláez, T., Astorga, R.J., Harmanus, C., Kuijper, E. &
 García, M.E. (2013). High prevalence of the epidemic *Clostridium difficile* PCR
 ribotype 078 in Iberian free-range pigs. *Research in Veterinary Science*, 95, 358–
 361.
- Álvarez-Pérez, S., Blanco, J.L., Peláez, T., Lanzarot, M.P., Harmanus, C., Kuijper, E. &
 García, M.E. (2015). Faecal shedding of antimicrobial-resistant *Clostridium difficile* strains by dogs. *Journal of Small Animal Practice*, *56*, 190–195.
- 350 Álvarez-Pérez, S., Blanco, J.L., Peláez, T., Martínez-Nevado, E. & García, M.E. (2016).
 - 351 Water sources in a zoological park harbor genetically diverse strains of
 - *Clostridium perfringens* type A with decreased susceptibility to metronidazole.
 - *Microbial Ecology*, 72, 783–790.
 - Álvarez-Pérez, S., Blanco, J.L. & García, M.E. (2017a). *Clostridium perfringens* type A
 isolates of animal origin with decreased susceptibility to metronidazole show
 extensive genetic diversity. *Microbial Drug Resistance*, 23, 1053-1058.
 - 357 Álvarez-Pérez, S., Blanco, J.L., Harmanus, C., Kuijper, E. & García, M.E. (2017b).
 - 358 Subtyping and antimicrobial susceptibility of *Clostridium difficile* PCR ribotype

078/126 isolates of human and animal origin. Veterinary Microbiolgy, 199, 15– 22. Bakker, D., Corver, J., Harmanus, C., Goorhuis, A., Keessen, E.C., Fawley, W.N., Wilcox, M.H. & Kuijper, E.J. (2010). Relatedness of human and animal *Clostridium difficile* PCR ribotype 078 isolates determined on the basis of multilocus variable-number tandem-repeat analysis and tetracycline resistance. Journal of Clinical Microbiology, 48, 3744–3749. Blanco, J.L., Álvarez-Pérez, S. & García, M.E. (2013). Is the prevalence of *Clostridium* difficile in animals underestimated? The Veterinary Journal, 197, 694-698. Butler, A.J., Thomas, M.K. & Pintar, K.D. (2015). Expert elicitation as a means to attribute 28 enteric pathogens to foodborne, waterborne, animal contact, and person-to-person transmission routes in Canada. Foodborne Pathogens and Disease, 12, 335–344. Chan, G., Farzan, A., Soltes, G., Nicholson, V.M., Pei, Y., Friendship, R. & Prescott, J.F. (2012). The epidemiology of *Clostridium perfringens* type A on Ontario swine farms, with special reference to cpb2-positive isolates. BMC Veterinary Research, 8, 156. Curry, S.R., Marsh, J.W., Schlackman, J.L. & Harrison, L.H. (2012). Prevalence of *Clostridium difficile* in uncooked ground meat products from Pittsburgh, Pennsylvania. Applied Environmental Microbiology, 78, 4183–4186. Davies, K.A., Ashwin, H., Longshaw, C.M., Burns, D.A., Davis, G.L. & Wilcox, M.H.; EUCLID study group (2016). Diversity of *Clostridium difficile* PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of *Clostridium difficile* infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveillance, 21, pii=30294.

- Duffy, G., Lynch, O.A. & Cagney, C. (2008). Tracking emerging zoonotic pathogens from farm to fork. Meat Science, 78, 34-42. 5 Fosse, J., Seegers, H. & Magras, C. (2008). Foodborne zoonoses due to meat: a 7 8 9 10 quantitative approach for a comparative risk assessment applied to pig slaughtering in Europe. Veterinary Research, 39, 1. Fawley, W.N., Knetsch, C.W., MacCannell, D.R., Harmanus, C., Du, T., Mulvey, M.R., Paulick, A., Anderson, L., Kuijper, E.J. & Wilcox, M.H. (2015). Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One, 10, e0118150. Hall, H. & Angelotti, R. (1965). *Clostridium perfringens* in meat and meat products. Applied Microbiology, 13, 352–357. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 9pp. Hawken, P., Weese, J.S., Friendship, R. & Warriner, K. (2013). Carriage and dissemination of *Clostridium difficile* and methicillin resistant *Staphylococcus* aureus in pork processing. Food Control, 31, 433-437. Hernández, M., Gómez-Laguna, J., Luque, I., Herrera-León, S., Maldonado, A., Reguillo, L. & Astorga, R.J. (2013). Salmonella prevalence and characterization in a free-range pig processing plant: Tracking in trucks, lairage, slaughter line and quartering. International Journal of Food Microbiology, 162, 48-54. Keessen, E.C., van den Berkt, A.J., Haasjes, N.H., Hermanus, C., Kuijper, E.J. & Lipman, L.J. (2011). The relation between farm specific factors and prevalence of Clostridium difficile in slaughter pigs. Veterinary Microbiology, 154, 130–134.

	409	Knetsch, C.W., Connor, T.R., Mutreja, A., van Dorp, S.M., Sanders, I.M., Browne,
1 2 3	410	H.P., Harris, D., Lipman, L., Keessen, E.C., Corver, J., Kuijper, E.J. & Lawley,
4 5	411	T.D. (2014). Whole genome sequencing reveals potential spread of <i>Clostridium</i>
6 7 8	412	difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro
9 10	413	Surveillance, 19, 20954.
11 12 13	414	Koene, M.G., Mevius, D., Wagenaar, J.A., Harmanus, C., Hensgens, M.P., Meetsma,
14 15	415	A.M., Putirulan, F.F., van Bergen, M.A. & Kuijper, E.J. (2012). Clostridium
16 17 18	416	difficile in Dutch animals: their presence, characteristics and similarities with
19 20	417	human isolates. Clinical Microbiology and Infection, 18, 778–784.
21 22 22	418	Lemee, L., Dhalluin, A., Testelin, S., Mattrat, M.A., Maillard, K., Lemeland, J.F. &
23 24 25	419	Pons, J.L. (2004). Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA
26 27	420	(toxin A), and <i>tcdB</i> (toxin B) genes for toxigenic culture of <i>Clostridium difficile</i> .
28 29 30	421	Journal of Clinical Microbiology, 42, 5710–5714.
31 32	422	López, V., Villatoro, D., Ortiz, S., López, P., Navas, J., Dávila, J.C. & Martínez-Suárez,
33 34 35	423	J.V. (2008). Molecular tracking of Listeria monocytogenes in an Iberian pig
36 37	424	abattoir and processing plant. Meat Science, 78, 130-134.
38 39 40	425	Metcalf, D., Reid-Smith, R.J., Avery, B.P. & Weese, J.S. (2010). Prevalence of
40 41 42	426	Clostridium difficile in retail pork. Canadian Veterinary Journal, 51, 873-876.
43 44	427	Nørrung, B. & Buncic, S. (2008). Microbial safety of meat in the European Union. Meat
45 46 47	428	Science, 78, 14–24.
48 49	429	Mooyottu, S., Flock, G., Kollanoor-Johny, A., Upadhyaya, I., Jayarao, B. &
50 51 52	430	Venkitanarayanan, K. (2015). Characterization of a multidrug resistant C. difficile
52 53 54	431	meat isolate. International Journal of Food Microbiology, 192, 111-116.
55 56		
57 58 59		
60 61		
62 63		18
ь4 65		

1	432	Rho, M.J., Chung, M.S., Lee, J.H. & Park, J. (2001). Monitoring of microbial hazards at
2 3	433	farms, slaughterhouses, and processing lines of swine in Korea. Journal of Food
1 5	434	Protection, 64, 1388–1391.
5 7 3	435	Rodriguez, C., Avesani, V., Van Broeck, J., Taminiau, B., Delmée, M. & Daube, G.
)	436	(2013). Presence of <i>Clostridium difficile</i> in pigs and cattle intestinal contents and
L 2 3	437	carcass contamination at the slaughterhouse in Belgium. International Journal of
1 5	438	Food Microbiology, 166, 256–262.
5 7	439	Schneeberg, A., Neubauer, H., Schmoock, G., Baier, S., Harlizius, J., Nienhoff, H.,
))	440	Brase, K., Zimmermann, S. & Seyboldt, C. (2013). Clostridium difficile genotypes
L 2	441	in piglet populations in Germany. Journal of Clinical Microbiology, 51, 3796-
3 1 5	442	3803.
5 7	443	Smits, W.K., Lyras, D., Lacy, D.B., Wilcox, M.H. & Kuijper, E.J. (2016). Clostridium
3 9)	444	difficile infection. Nature Review. Disease Primers, 2, 16020.
L 2	445	Songer, J.G. & Uzal, F.A. (2005). Clostridial enteric infections in pigs. Journal of
3 1 5	446	Veterinary Diagnostic Investigation, 17, 528–536.
5 7	447	Squire, M.M. & Riley, T.V. (2013). Clostridium difficile infection in humans and
3	448	piglets: a 'One Health' opportunity. Current Topics in Microbiology and
) L 2	449	Immunology, 365, 299–314.
3 1	450	Stabler, R.A., Dawson, L.F., Valiente, E., Cairns, M.D., Martin, M.J., Donahue, E.H.,
5 7	451	Riley, T.V., Songer, J.G., Kuijper, E.J., Dingle, K.E. & Wren, B.W. (2012).
3	452	Macro and micro diversity of <i>Clostridium difficile</i> isolates from diverse sources
) L 2	453	and geographical locations. PLoS One, 7, e31559.
3 1	454	Susick, E.K., Putnam, M., Bermudez, D.M. & Thakur, S. (2012). Longitudinal study
5	455	comparing the dynamics of <i>Clostridium difficile</i> in conventional and antimicrobial
, 3)	456	free pigs at farm and slaughter. Veterinary Microbiology, 157, 172–178.
) L		
2 3 1		19

457	Uzal, F.A., Freedman, J.C., Shrestha, A., Theoret, J.R., Garcia, J., Awad, M.M., Adams,
458	V., Moore, R.J., Rood, J.I. & McClane, B.A. (2014). Towards an understanding of
459	the role of <i>Clostridium perfringens</i> toxins in human and animal disease. <i>Future</i>
460	Microbiology, 9, 361–377.
461	Warriner, K., Xu, C., Habash, M., Sultan, S. & Weese, S.J. (2017). Dissemination of
462	<i>Clostridium difficile</i> in food and the environment: significant sources of <i>C</i> .
463	difficile community-acquired infection? Journal of Applied Microbiology, 122,
464	542–553.
465	Wu, Y.C., Chen, C.M., Kuo, C.J., Lee, J.J., Chen, P.C., Chang, Y.C. & Chen, T.H.
466	(2017). Prevalence and molecular characterization of <i>Clostridium difficile</i> isolates
467	from a pig slaughterhouse, pork, and humans in Taiwan. International Journal of
468	Food Microbiology, 242, 37–44.

Figure 1. Dendrogram of AFLP profiles obtained for the *Clostridium difficile* isolates characterized in this study (n = 105). The dendrogram was created by unweighted pair 8 group method with arithmetic mean (UPGMA) clustering using Pearson's correlation coefficients. Individual AFLP genotypes are distinguished at \geq 86% similarity (red dotted vertical line). The origin of isolates is indicated at the tip of branches (see legend on the lower left corner), followed by PCR ribotype, isolate and AFLP type designations (shown in red, black and blue, respectively). The two clusters comprising all ribotype 078/126 and U09 isolates are indicated by a green background. Abbreviations in legend: T, trucks; L, lairage; S, slaughter line; Q, quartering; E, environment of the slaughter line and processing plant; 1, TLSQ1; 2, TLSQ2. Figure 2. Dendrogram of AFLP profiles obtained for the *Clostridium perfringens* isolates characterized in this study (n = 85). The dendrogram was created by unweighted pair group method with arithmetic mean (UPGMA) clustering using Pearson's correlation coefficients. Individual AFLP genotypes are distinguished at \geq 86% similarity (red dotted vertical line). The first column of colored squares at the tip of branches indicates the origin of isolates (see color legend on the lower left corner). Additionally, green- and violet-filled squares indicate toxinotype A and toxinotype C isolates, respectively, and the presence of the consensus or atypical form of the $\beta 2$ toxin-encoding gene (cpb2) is indicated by filled and open circles, respectively. Alphanumeric codes refer to isolate and AFLP type designations (shown in black and blue, respectively). Abbreviations in legend: T, trucks; S, slaughter line; Q, quartering; 1, TLSQ1; 2, TLSQ2.

Figure legends

Figure 3. Tracking of individual AFLP genotypes of *Clostridium difficile* and *Clostridium perfringens* along the pork production chain. Detection of each genotype from the different sample sources is indicated by shaded boxes, which also include the PCR ribotype (for *C. difficile*) or toxin profile (for *C. perfringens*). Only genotypes detected in two or more sample sources are included. Abbreviations for sample sources: T1, trucks prior cleaning and disinfection; T2, trucks after cleaning and disinfection; L1, lairage prior entry of the pigs; L2, lairage after exit of the pigs; S1, pre-scalding; S2, post-scalding; S3, post-flaming; S4, post-evisceration; S5, post-washing; S6, chilling; To, tonsils; Ce, cecal contents; Co, colonic contents; Q, quartering samples (ham, shoulder and loin); ES, environment slaughter line (scalding water, knives and saws); EQ, environment quartering (sterilization water, tables and knives).

Tables

Table 1: Distribution of *Clostridium difficile* and *Clostridium perfringens* along the pig slaughtering process in the examined free-range pig

TLSQ assay ^a	Production stage	Sample ^b (n)	C. difficile			C. perfringer	ıs		Both clostridial species
			No. (%) of positive samples	No. isolates	Ribotypes (no. AFLP types)	No. (%) of positive samples	No. isolates	Toxinotypes ^c (no. AFLP types)	No. (%) of positive samples
TLSQ1	Trucks	T1 (5)	4 (80%)	11	010 (1), 078 (2), 126 (1), 572 (7)	0			0
		T2 (5)	2 (40%)	5	078 (2), 126 (3)	0			0
	Lairage	L1 (4)	0			0			0
		L2 (4)	2 (50%)	6	078 (3), U01 (1), U09 (2)	0			0
	Slaughter line	S1 (10)	2 (20%)	5	U02 (3), U07 (2)	0			0
		S2 (10)	0			0			0
		S3-S6 (40)	0			0			0
		To (10)	0			2 (20%)	4	A (1), A/cpb2+[c] (3)	0
		Ce (10)	2 (20%)	4	572 (2), U06 (2)	8 (80%)	22	A (9), A/cpb2+[a] (12), C (1)	2 (20%)
		Co (10)	2 (20%)	6	572 (3), U02 (3)	3 (30%)	8	A (5), A/ $cpb2+[a]$ (2)	0
	Quartering	Q (10)	0			0			0
	Environment	ES (7)	1 (14.3%)	3	078 (2)	0			0
		EQ (10)	0			0			0

9 abattoir and processing plant.

	TOTAL	(135)	15 (11.1%)	40	010 (1), 078 (9), 126 (4), 572 (11), U01 (1), U02 (6), U06 (2), U07 (2), U09 (2)	13 (9.6%)	34	A (15), A/cpb2+[c] (3), A/cpb2+[a] (14), C (1)	2 (1.5%
TLSQ2	Trucks	T1 (5)	5 (100%)	15	010 (1), 078 (6), 110 (2), 126 (2) U01 (2) U03 (1)	2 (40%)	2	A (2)	2 (40%)
		T2 (5)	5 (100%)	13	078(8) U03(3) U04(1)	1 (20%)	2	A (2)	1 (20%)
	Lairage	L1 (4)	2 (50%)	4	078 (4)	0	-	(-)	0
	Lunuge	$L_{1}(1)$ L_{2}(4)	2 (50%)	5	013(2), 572(3)	0			0
	Slaughter line	S1 (10)	7 (70%)	20	078 (5), 181 (2), 202 (6), U01 (2), U08 (3), U09 (2)	2 (20%)	2	A (2)	1 (10%)
		S2 (10)	1 (10%)	2	U05 (2)	0			0
		S3-S6 (40)	0			0			0
		To (10)	0			0			0
		Ce (10)	1 (10%)	3	110 (2)	9 (90%)	27	A (16), A/ <i>cpb</i> 2+[a] (5), C (4)	1 (10%)
		Co (10)	1 (10%)	3	110 (3)	6 (60%)	15	A (14), A/cpb2+[a] (1)	1 (10%)
	Quartering	Q (10)	0			1 (10%)	3	A (3)	0
	Environment	ES (7)	0			0			0
		EQ (10)	0			0			0
	TOTAL	(135)	24 (17.8%)	65	010 (1), 013 (2), 078 (20), 110 (7), 126 (2), 181 (2), 202 (6), 572 (3), U01 (4), U03 (4), U04 (1), U05 (2), U08 (3), U09 (2)	21 (15.6%)	51	A (39), A/ <i>cpb</i> 2+[a] (6), C (4)	6 (4.4%
TLSQ1	Trucks	T1 (10)	9 (90%)	26	010 (2), 078 (8), 110 (2),	2 (20%)	2	A (2)	2 (20%)
					24				

+ TLSQ2					126 (3), 572 (7), U01 (2), U03 (1)				
		T2 (10)	7 (70%)	18	078 (10), 126 (3), U03 (3), U04 (1)	1 (10%)	2	A (2)	1 (10%)
	Lairage	L1 (8)	2 (25%)	4	078 (4)	0			0
		L2 (8)	4 (50%)	11	013 (2), 078 (3), 572 (3), U01 (1), U09 (2)	0			0
	Slaughter line	S1 (20)	9 (45%)	25	078 (5), 181 (2), 202 (6), U01 (2), U02 (3), U07 (2), U08 (3), U09 (2)	2 (10%)	2	A (2)	1 (5%)
		S2 (20)	1 (5%)	2	U05 (2)	0			0
		S3-S6 (80)	0			0			0
		To (20)	0			2 (10%)	4	A (1), A/cpb2+[c] (3)	0
		Ce (20)	3 (15%)	7	110 (2), 572 (2), U06 (2)	17 (85%)	49	A (25), A/cpb2+[a] (17), C (5)	3 (15%)
		Co (20)	3 (15%)	9	110 (3), 572 (3), U02 (3)	9 (45%)	23	A (19), A/ <i>cpb</i> 2+[a] (3)	1 (5%)
	Quartering	Q (20)	0			1 (5%)	3	A (3)	0
	Environment	ES (14)	1 (7.1%)	3	078 (2)	0			0
		EQ (20)	0			0			0
	TOTAL	(270)	39 (14.4%)	105	010 (2), 013 (2), 078 (29), 110 (7), 126 (6), 181 (2), 202 (6), 572 (14), U01 (5), U02 (6), U03 (4), U04 (1), U05 (2), U06 (2), U07 (2), U08 (3), U09 (4)	34 (12.6%)	85	A (54), A/cpb2+[c] (3), A/cpb2+[a] (20), C (5)	8 (3%)

1		
2		
3		
4		
5		
6 7	513	^b T1, trucks prior cleaning and disinfection; T2, trucks after cleaning and disinfection; L1, lairage prior entry of the pigs; L2, lairage after exit of
8 9 10	514	the pigs; S1, pre-scalding; S2, post-scalding; S3, post-flaming; S4, post-evisceration; S5, post-washing; S6, airing; To, tonsils; Ce, cecal contents;
11 12	515	Co, colonic contents; Q, quartering samples (ham, shoulder and loin); ES, environment slaughter line (scalding water, knives and saws); EQ,
13 14	516	environment quartering (sterilization water tables and knives)
15 16	510	environment quartering (stermization water, tubles and knives).
17 18	517	^c A, toxinotype A; C, toxinotype C; $cpb2+$, positive PCR result for the consensus [c] or atypical [a] form of the $\beta 2$ toxin-encoding gene.
19 20	518	
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43 11		
44 45		
ч:) 46		
47		26
48		
49		

	1
	- -
	2
	3
	4
	5
	5
	6
	7
	8
	0
	9
1	0
1	1
1	÷
Τ	2
1	3
1	4
1	5
1	5
Τ	6
1	7
1	8
- 1	0
1	7
2	0
2	1
ົ	2
4	4
2	3
2	4
2	5
2	c
2	О
2	7
2	8
2	0
2	9
3	0
3	1
2	2
2	2
3	3
3	4
2	5
2	2
3	6
3	7
3	8
2	0
3	9
4	0
4	1
⊿	2
4	2
4	3
4	4
4	5
1	5
4	0
4	7
4	8
Δ	a
-1	2
5	U
5	1
5	2
F	2
5	ر م
5	4
5	5
5	6
-	7
5	1
5	8
5	9
ç	0
0	1
6	Т
6	2
6	z
• • •	5

520	this	study.
520	uns	study.

PCR	Toxin profile	No.	No. AFLP	No. samples ^a						
ribotype		isolates	types	Total	Т	L	S	Q	Е	
010	A-B-CDT-	2	2	2 (5.1%)	2					
013	A+B+CDT-	2	2	1 (2.6%)		1				
078	A+B+CDT+	34	29	14 (35.9%)	8	3	2		1	
110	A+B+CDT-	9	7	3 (7.7%)	1		2			
126	A+B+CDT+	6	6	3 (7.7%)	3					
181	A-B-CDT-	2	2	1 (2.6%)			1			
202	A+B+CDT-	6	6	2 (5.1%)			2			
572	A+B+CDT-	15	14	6 (15.4%)	3	1	2			
U01	A+B+CDT-	5	5	5 (12.8%)	2	1	2			
U02	A-B-CDT-	6	6	2 (5.1%)			2			
U03	A+B+CDT-	4	4	2 (5.1%)	2					
U04	A+B+CDT-	1	1	1 (2.6%)	1					
U05	A-B-CDT-	2	2	1 (2.6%)			1			
U06	A-B-CDT-	2	2	1 (2.6%)			1			
U07	A-B-CDT-	2	2	1 (2.6%)			1			
U08	A-B-CDT-	3	3	1 (2.6%)			1			
U09	A+B+CDT+	4	4	2 (5.1%)		1	1			

^a T, trucks; L, lairage; S, slaughter line; Q, quartering; E, environment of the slaughter

523 line and processing plant.

1 2	1	Distribution and tracking of Clostridium difficile and Clostridium perfringens in a	
3 4	2	free-range pig abattoir and processing plant	
5 6	3		
7 8	4	Sergio Álvarez-Pérez ^a , José L. Blanco ^{a,*} , Rafael J. Astorga ^b , Jaime Gómez-Laguna ^c ,	
9 10	5	Belén Barrero-Domínguez ^b , Angela Galán-Relaño ^b , Celine Harmanus ^d , Ed Kuijper ^d ,	
11 12	6	Marta E. García ^a	
13 14 15	7		
15 16 17	8	^a Department of Animal Health, Faculty of Veterinary Medicine, Complutense	
18 19	9	University of Madrid, Madrid, Spain	
20 21	10	^b Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba,	
22 23	11	Cordoba, Spain	
24 25	12	^c Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine,	
26 27	13	University of Cordoba, Cordoba, Spain	
28 29	14	^d Department of Medical Microbiology, Center of Infectious Diseases, Leiden	
30 31	15	University Medical Center, Leiden, The Netherlands	
32 33	16		
34 35 26	17	* Corresponding author:	
30 37 38	18	Prof. José L. Blanco, PhD, DVM. Departamento de Sanidad Animal, Facultad de	
39 40	19	Veterinaria, Universidad Complutense de Madrid. Avda. Puerta de Hierro s/n, 28040	
41 42	20	Madrid (Spain). Tel.: +34 91 394 3717. E-mail address: jlblanco@ucm.es	
$\begin{array}{r} 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 55\\ 57\\ 58\\ 59\\ 60\\ \end{array}$		1	

Formatted: English (United States)

Formatted: English (United States)

Formatted: English (United States)

Field Code Changed

21	Abstract		
22	The presence and genetic diversity of <i>Clostridium difficile</i> and <i>C. perfringens</i> along the		Formatted: Font: Italic
23	slaughtering process of pigs reared in a free-range system was assessed. A total of 270		Formatted: Font: Italic
24	samples from trucks, lairage, slaughter line and quartering (TLSQ)-were analyzed, and		
25	recovered isolates were toxinotyped and genotyped. C. difficile and C. perfringens were		Formatted: Font: Italic
26	retrieved from 14.4% and 12.6% of samples, respectively. The highest percentage of		Formatted: Font: Italic
27	positive samples for C. difficile was detected in trucks (80%) whereas C. perfringens		Formatted: Font: Italic
28	was more prevalent in the cecal and colonic content of animalssamples obtained in the		Formatted: Font: Italic
29	slaughter line (85% and 45%, respectively). <i>C. difficile</i> isolates (n = 105) were		Formatted: Font: Italic
30	classified into 17 PCR ribotypes (including 010, 078, and 126) and 95 AFLP genotypes.		
31	<i>C. perfringens</i> isolates ($n = 85$) belonged to toxinotypes A (94.1%) and C (5.9%) and		Formatted: Font: Italic
32	were classified into 80 AFLP genotypes. The same genotypes of <i>C. difficile</i> and <i>C.</i>	_	Formatted: Font: Italic
33	perfringens were isolated from different pigs and occasionally from environmental		Formatted: Font: Italic
34	samples, suggesting a risk of contaminated meat products.		
35			

36 Keywords: Abattoir, *Clostridium difficile*, *Clostridium perfringens*, free-range pig,

37 lairage, slaughter line

38	1. Introduction
39	Detection and tracking of microorganisms along the the food chain is of key importance
40	to establish both pathogens' survival throughout a particular production chain and how
41	these microorganisms may eventually reach the consumer (Duffy et al., 2008).
42	Although virtually any food product can act as a reservoir of pathogenic
43	microorganisms, meat and derivatives are frequently highlighted as important sources of
44	human food-borne infection (Fosse et al., 2008; Nørrung and Buncic, 2008).
45	Accordingly, farm-to-fork surveillance systems have been implemented for the most
46	prevalent pathogens found in meat (Nørrung and Buncic, 2008).
47	
48	The Gram-positive, spore-forming anaerobes Clostridium difficile and C. perfringens
49	are frequent colonizers of the intestinal tract of diverse food animals, and particularly of
50	pigs (Songer and Uzal, 2005). Both bacterial species have been found in the
51	environment of pig abattoirs and in pork meat (Hall and Angelotti, 1965; Metcalf et al.,
52	2010; Curry et al., 2012; Mooyottu et al., 2015; Wu et al., 2017). Nevertheless, while <i>C</i> .
53	perfringens ranks among the most important agents of food-borne disease (Fosse et al.,
54	2008; Butler et al., 2015), the classification of C. difficile as a pathogen causing food-
55	borne outbreaks is still controversial (Warriner et al., 2017).
56	
57	Although organic and eco-friendly pig rearing systems are gaining increased importance
58	and popularity, most surveillance studies of C. difficile and C. perfringens prevalence in
59	swine herds, abattoirs and pig carcasses published so far have focused on intensively-
60	raised animals. However, Keessen et al. (2011) and Susick et al. (2012) found similar
61	prevalence and strain types of C. difficile among conventional and outdoor,
62	antimicrobial-free production systems. In a previous study, a high prevalence of the
	3

epidemic C. difficile PCR ribotype 078 was detected in Iberian pigs reared in free-range systems in 'La Dehesa', a type of human-managed Mediterranean ecosystem where they feed on acorns and fresh grass, and only periparturient sows and pre-weaned (≤45-dayold) piglets are kept in closed facilities (Álvarez-Pérez et al., 2013). In this study we determined the presence of C. difficile and C. perfringens in an abattoir and processing plant of free-range pigs, which have been previously identified as a common source of both clostridia (Álvarez-Perez et al., 2013; and unpublished observations). Additionally, bacterial isolates were toxinotyped and further characterized genetically to track possible sources of carcass contamination. 2. Material and methods 2.1. Sampling Sampling was performed in March 2016 (middle of the local peak season for the slaughtering of free-range pigs) in a pigan abattoir and processing plant located in southern Spain. All the facilities complied with the European Union, national and regional regulations on hygiene, food safety and animal welfare. Air temperature in the different rooms of the pig abattoir and processing plant sampled in this study ranged between 20 °C and 25 °C, except the quartering room with a temperature below 12°C. Air temperature in the different rooms that were sampled ranged between XX °C and XX °C. Systematic cleaning and disinfection of the facilities is carried out following each slaughtering. In addition, in periods where no slaughtering is performed, more exhaustive and meticulous cleaning and disinfection protocols which include the dismantling of equipments are carried out.

Two different batches of animals, corresponding with batches at the beginning and at the end of the same working day (TLSQ1 and TLSQ2, respectively), were sampled to determine the prevalence of both clostridia species in Trucks, Lairage, Slaughter line and Quartering (TLSQ) (Hernández et al., 2013). The traceability of each pig was strictly followed along the abattoir, and samples were obtained in the following six stages of the production chain: i) trucks at their arrival (T1) and after cleaning and disinfection (T2) (floor, walls, ceiling, entrance ramps and cabin's mat); ii) lairage, prior entry of the pigs (cleaned and disinfected, L1) and just after departure to slaughter (dirty, L2); iii) ten pig carcasses per batch at six different stages (pre-scalding, S1; post-scalding, S2; post-flaming, S3; post-evisceration, S4; post-washing, S5; and, chilling, S6); iv) tonsils (To), cecal (Ce) and colonic (Co) contents; v) environmental samples from the slaughter line (ES) (scalding water, knives and saws) and from the quartering environment (EQ) (sterilization water, tables and knives); and vi) quartering samples (Q) (ham, shoulder and loin) (see details in Table 1). All samples were collected into sterile containers (for feces, tonsils, meat or water samples) or with sterile sponges into plastic bags (for samples from carcasses and surfaces), and transported to the laboratory, where they were stored at -70 °C until analyzed.

106 2.2. Bacterial isolation and identification

As direct culturing of *C. difficile* and *C. perfringens* is unreliable (e.g. because of the
low numbers of spores/vegetative cells that may be present within a sample and the
uneven distribution of these; Blanco et al., 2013), Isolation-isolation of *C. difficile* and *C. perfringens*these microorganisms from all sample types was performed by
enrichment culturing. Briefly, sampling sponges were defrosted and cut into half, and
the pieces were then introduced into 50-mL plastic tubes containing 15 mL of the

113	enrichment broth used by Blanco et al. (2013) or brain-heart infusion broth (BHI;
114	TecLaim, Madrid, Spain), for enrichment of C. difficile and C. perfringens,
115	respectively. After 7 days of incubation at 37 °C (for <i>C. difficile</i>) or 72 h at 46 °C (for <i>C.</i>
116	perfringens) under anaerobic conditions, 2 mL of the liquid cultures were mixed with 2
117	mL of absolute ethanol (Panreac) and incubated for 1 h under agitation (200 rpm) at
118	room temperature. Finally, the tubes were centrifuged at $1,520 g$ for 10 min, the
119	supernatants were discarded and the precipitates collected using sterile cotton-tipped
120	swabs and plated onto CLO agar (bioMérieux, Marcy l'Étoile, France) for selective
121	culturing of C. difficile, and Brucella blood agar (bioMérieux) and tryptone sulfite
122	neomycin agar (TSN; Laboratorios Conda, Madrid, Spain) for isolation of C.
123	perfringens. Inoculated plates were incubated under anaerobic conditions for 48 h to 7
124	days at 37 °C (for <i>C. difficile</i>) or 46 °C (for <i>C. perfringens</i>).
125	
126	Tonsils (5 g) and meat samples (ham, shoulder and loin, 5 g in total), obtained at
127	quartering, were diluted in 15 mL of the aforementioned enrichment broths,
128	mechanically homogenized for 2 min using a Seward 80 stomacher (Seward Medical,
129	London, England) and further handled as described above. Swabs were introduced in
130	the fecal samples, and then cultured into a 10 mL tube containing 5 ml of- the
131	enrichment broth for C. difficile or BHI for C. perfringens, and further handled as
132	decribed above. Water samples (25 mL) were filtered through a 0.45 -µm-pore-size
133	membrane filter (Millipore Corporation, Billerica, MA, USA) using Microfil filtration
134	funnels (Millipore) connected to a vacuum system. Filters were then washed with 20
135	mL of ethanol 70 % (v/v) and 20 mL of sterile distilled water, introduced in the sterile
136	50-mL polypropylene tubes containing 15 mL of BHI or C. difficile enrichment broth,
137	and further handled as sponge and meat samples.

138	
139	C. difficile isolates were identified by colony morphology, the typical odor of this
140	microorganism and a positive PCR reaction for the species-specific internal fragment of
141	the gene encoding for triose phosphate isomerase (tpi) (Lemee et al., 2004).
142	Identification of isolates as C. perfringens was achieved by observing the typical
143	double-zone hemolysis of this species when cultured on blood agar, formation of black
144	colonies on TSN, Gram staining reaction and microscopic morphology.
145	
146	2.3. Toxinotyping of isolates
147	For C. difficile isolates, expression of the genes which encode for toxin A and toxin B
148	(tcdA and tcdB, respectively), and the two components of binary toxin (CDT) (cdtA and
149	cdtB), was detected by PCR as previously reported (Álvarez-Pérez et al., 2009, 2015).
150	The genes encoding for C. pefringens major toxins, enterotoxin and the consensus and
151	atypical forms of $\beta 2 \operatorname{toxin} (cpb2)$ were detected as described by Álvarez-Pérez et al.
152	(2016, 2017a).
153	
154	2.4. Ribotyping of C. difficile isolates
155	PCR ribotyping of C. difficile isolates was performed according to the high-resolution
156	capillary gel-based electrophoresis method of Fawley et al. (2015). Ribotypes were
157	designated according to the PHLS Anaerobic Reference Unit (Cardiff, UK) standard
158	nomenclature and the Leiden-Leeds database (The Netherlands). Non-typeable isolates
159	were also compared with the strain database at Leeds University (Dr. W. Falwey and
160	Prof. M. Wilcox) that encompasses more than 600 different types.
161	
162	2.5. Amplified Fragment Length Polymorphism (AFLP) typing
	7

Genotyping of all C. difficile and C. perfringens isolates was performed by an AFLP method previously described (Álvarez-Pérez et al., 2017a,b). The products resulting from the selective amplification step were diluted 1/10 in nuclease-free water (Biotools, Madrid, Spain) and analyzed by capillary electrophoresis using the GeneScan 1200 LIZ size standard (Applied Biosystems, Madrid, Spain). All AFLP reactions were performed twice on different days for each strain. 2.6. Data analysis Dendrograms of AFLP profiles obtained for C. difficile and C. perfringens isolates were created using Pearson's correlation coefficients and the unweighted-pair group method with arithmetic averages (UPGMA) clustering algorithm, as implemented in PAST v.3.11 (Hammer et al., 2001). Isolates clustering with ≥86% similarity were considered to belong to the same AFLP genotype (Killgore et al., 2008; Álvarez-Pérez et al., 2017a,b). 3. Results

3.1. Prevalence of C. difficile and C. perfringens *Clostridium difficile* and *C. perfringens* were retrieved from 39 (14.4%) and 34 (12.6%) out of the 270 analyzed samples in total, respectively. Most culture-positive samples yielded only one *Clostridium* species, but eight samples (3% of total) yielded colonies of both C. difficile and C. perfringens. The distribution of positive samples per TLSQ assay and production stage is shown in Table 1. Overall, the highest percentage of positive samples for C. difficile was detected in the trucks (80%, considering T1 and T2) followed by the lairage stage (37.5%, L1 + L2), whereas C. perfringens was more prevalent in the slaughter line (16.7% of positive samples, considering all sample types

obtained at this stage) and, in particular, in the cecal and colonic content of sampled pigs (85% and 45%, respectively). The overall proportion of positive samples was higher in the TLSQ2 assay than in TLSQ1 (1.6 times, for both *C. difficile* and *C.* perfringens) and there was some variation in the distribution of both clostridia (Table 1). 3.2. Diversity of C. difficile isolates A total of 105 *C. difficile* isolates ($x \pm S.D. = 2.7 \pm 0.5$ isolates per positive TLSQ sample) were selected from the original plate cultures for ribotyping and further characterization. About 72.4% of those isolates (76/105) could be classified into one of the already known PCR ribotypes: 078 (34 isolates), 572 (15), 110 (9), 126 (6), 202 (6), 010(2), 013(2) and 181(2). The toxin profiles and other characteristics of these ribotypes are detailed in Table 2. The remaining 29 isolates (27.6% of total) belonged to nine unknown ribotypes, which will be hereafter referred to as U01 to U09 ('U' stands for 'unknown'; Table 2). AFLP-based fingerprinting grouped C. difficile isolates into 104 peak profiles and 95 distinct genotypes (-designated as cd1 to cd95; (Fig. 1). All isolates belonging to ribotypes 078 and 126 (n = 40, in total) and to the toxigenic type U09 (n = 4) were included into two well-defined groups that clustered apart from the isolates of the other 14 PCR ribotypes (Fig. 1). Although eight AFLP genotypes included multiple isolates, only two out of these eight AFLP genotypes clustered isolates belonging to different PCR ribotypes (genotypes cd74 and cd89, both of which included two type 078 isolates and one U09 isolate). All samples from which multiple C. difficile isolates could be

recovered (38 in total) yielded two or more different AFLP types, and 23.7 % of thesealso yielded different PCR ribotypes.

215 3.3. Diversity of C. perfringens isolates

Eighty-five C. perfringens isolates $(2.5 \pm 0.8 \text{ isolates per positive culture of TLSQ})$ samples) were selected for detailed characterization. Toxinotyping of these isolates revealed that 80 of them (94.1%) belonged to toxinotype A and only five isolates (5.9%) were of toxinotype C (Table 1). None of the isolates had the enterotoxin-encoding gene (cpe) but 20 type A isolates from diverse sample sources were positive for presence of an atypical form of the β^2 -encoding gene (*cpb2*), and other five type A isolates (three obtained from the tonsils of the same pig, one from the colonic content of another pig and the remaining from a truck's floor) were found to carry the consensus form of *cpb2* (Table 1).

AFLP-based fingerprinting of *C. perfringens* isolates yielded 85 different peak profiles
and 80 distinct genotypes (cp1 to cp80; Fig. 2). Only four AFLP types grouped together
two or more isolates (see details below) and all samples from which multiple isolates of *C. perfringens* could be obtained (29 in total) yielded two or more different AFLP
types. Notably, one AFLP type (cp55) clustered together two toxinotype A and one
toxinotype C isolates.

3.4. Distribution of C. difficile and C. perfringens genotypes along the production chain
Five out of the 17 PCR ribotypes of *C. difficile* (29.4%) were found in samples obtained
at different steps of the pork production chain (Table 2): 078 (T, L, S and environmental
samples), 110 (T and S), 572 and U01 (T, L and S) and U09 (L and S).

1 2	237	
3 4	238	The tracking of individual AFLP genotypes of C. difficile and C. perfringens along the
5 6	239	different sample sources investigated is shown in Fig. 3. Two C. difficile genotypes
7 8	240	were found in multiple samples from the same TLSQ assay (cd38 from TLSQ1, and
9 0	241	cd70 and cd79 from TLSQ2), and two additional genotypes were found in samples from
1 2 2	242	both TLSQ1 and TLSQ2 (cd74 and cd89) and included isolates of PCR ribotypes 078
3 4 ⊏	243	and U09 (Fig. 3). In addition, a same C. perfringens genotype (cp23) was retrieved from
6 7	244	TLSQ2 samples obtained from the floor of a truck and the quartering of a carcass.
, 8 9	245	However, while the truck isolate yielded a positive PCR result for presence of a
0 1	246	consensus form of the cpb2 gene, the isolate from the quartering sample was cpb2-
2 3	247	negative (Fig. 3). No other AFLP genotype grouped together C. perfringens isolates
4 5	248	from different sample sources but three AFLP types included isolates obtained from the
6 7	249	cecal or colonic content of different pigs (cp12 and cp55, and cp33, respectively).
8 9	250	
0	251	4. Discussion
∠ 3 ⊿	252	Previous studies have demonstrated that C. difficile and C. perfringens are common
5 6	253	environmental contaminants of abattoirs slaughtering intensively-raised pigs (Rho et al.,
7 8	254	2001; Chan et al., 2012; Hawken et al., 2013; Rodriguez et al., 2013; Wu et al., 2017).
9 0	255	However, much less is known about the prevalence and diversity of these two anaerobes
1 2	256	in abattoirs dealing with pigs raised under free-range conditions (but see Susick et al.,
3 4	257	2012).
5 6	258	
8	259	In this study, we found that C. difficile and C. perfringens are widespread
9 0 1	260	environmental contaminants in a free-range pig abattoir and processing plant. Both
⊥ 2 3	261	species were isolated from trucks (including cabin's mats which never came into direct
4 5		
- 6 7		11
8 9		
0 1		
2		

contact with animals) and lairage samples obtained after cleaning and disinfection, indicating that these procedures were not efficient to eliminate clostridial spores. A similar conclusion was reached by Hernández et al. (2013) in a survey for Salmonella spp. Despite these data may be biased due to the fact that a single abattoir was sampled, they highlight the potential risk of contamination by C. difficile and C. perfringens when exhaustive cleaning and disinfection protocols are not applied at every step from the transport of the animals to the lairage. Detailed genetic characterization of the isolates obtained in this study showed a high genetic diversity for C. difficile and C. perfringens and revealed the presence of some particular strain types in both environmental samples and pig carcasses, which agrees

with the observations of other authors (Hawken et al., 2013; Wu et al., 2017).

Furthermore, high diversity of PCR ribotypes and AFLP was found even among isolates retrieved from a same sample, thus confirming the recommendation of examining multiple isolates from culture-positive clinical and environmental samples (Tanner et al., 2010; Álvarez-Pérez et al., 2016). Overall, these results agree with those obtained by Hernández et al. (2013) for Salmonella spp. but contrasts with the low genetic diversity detected for Listeria monocytogenes by López et al. (2008) in a different abattoir. Differences in the pig populations analyzed, sampling methods, target bacterial species and/or techniques used for molecular typing of isolates might account for these

282 discrepancies.

Notably, we identified *C. difficile* PCR ribotypes which rank among the most prevalent
in outbreaks of human disease, such as ribotypes 010, 078 and 126 (Davies et al., 2016).
Interestingly, the PCR ribotypes 078 and 126 are close phylogenetic relatives (Stabler et

al., 2012; Schneeberg et al., 2013) that are frequently recovered from slaughtered animals and meat products (Metcalf et al., 2010; Curry et al., 2012; Hawken et al., 2013; Cho et al., 2015; Mooyottu et al., 2015; Wu et al., 2017). Moreover, high genetic relatedness between human and animal isolates of the 078/126 ribotype complex has been repeatedly reported (Bakker et al., 2010, Koene et al., 2012, Schneeberg et al., 2013; Knetsch et al., 2014; Álvarez-Pérez et al., 2017b). All of this has encouraged an ongoing discussion about the zoonotic and food-borne potential of the 078/126 lineage (Squire and Riley, 2013; Warriner et al., 2017). However, direct transmission of C. difficile (from animals to humans or vice versa) has not been yet demonstrated and the possibility of acquisition from a common environmental source cannot be excluded (Squire and Riley, 2013; Knetsch et al., 2014). Regarding the toxigenic diversity of the isolates characterized in this study, most C. difficile isolates yielded a positive PCR result for the genes encoding toxins A, B and/or binary toxin, all of which are regarded as the main virulence factors of the species (Smits et al., 2016). Moreover, C. perfringens isolates were classified into toxinotypes A and C, both of which are common enteric pathogens of swine (Songer and Uzal, 2005). In addition, some C. perfringens isolates of diverse origins had the genes encoding for consensus or atypical forms of the $\beta 2$ toxin, a plasmid-borne pore-forming toxin which may play a role in pathogenesis (Songer and Uzal, 2005; Uzal et al., 2014). However, regardless of their origin and AFLP-type, all C. perfringens isolates yielded a negative PCR result for the gene encoding enterotoxin CPE, which is the main toxin involved in food poisoning in humans (Songer and Uzal, 2005; Uzal et al., 2014). In any case, given the huge arsenal of additional toxins that C. perfringens strains can produce

plants should be regarded as a major possible threat to public health. Finally, a 27.6% of the *C. difficile* isolates analyzed in this study belonged to previously unknown PCR ribotypes. Interestingly, one of these ribotypes, named U09, clustered with ribotype 078 and 126 isolates in the UPGMA dendrogram built from AFLP patterns and, as these two, included isolates with the genes encoding for toxins A, B and binary toxin. Thus, U09 could be regarded as a new 078/126-like ribotype and future studies should try to assess the prevalence and genetic and phenotypic characteristics of this novel strain type. 5. Conclusions Formatted: English (United States) In conclusion, as previously observed for abattoirs slaughtering intensively-raised pigs, C. difficile and C. perfringens can be found in free-range pig abattoirs and processing plants. In addition, molecular tracking of individual genotypes revealed that, for both clostridia, the same strain types could be recovered from animal and environmental samples, highlighting the potential for cross contamination of free-range pig carcasses. **Declaration of interest** None. Acknowledgments This work was supported by grant AGL2013-46116-R from the Spanish Ministry of Economy and Competitiveness. Jaime Gomez-Laguna is supported by a "Ramón y Cajal" contract of the Spanish Ministry of Economy and Competitiveness (RYC-2014-

(Uzal et al., 2014), the mere presence of this species in abattoirs and food-processing

16735). The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The staff of the Genomics Service at Universidad Complutense de Madrid is gratefully acknowledged for providing excellent technical assistance. References Álvarez-Pérez, S., Blanco, J.L., Bouza, E., Alba, P., Gibert, X., Maldonado, J. & García, M.E. (2009). Prevalence of Clostridium difficile in diarrhoeic and non-diarrhoeic piglets. Veterinary Microbiology, 137, 302-305. Álvarez-Pérez, S., Blanco, J.L., Peláez, T., Astorga, R.J., Harmanus, C., Kuijper, E. & García, M.E. (2013). High prevalence of the epidemic Clostridium difficile PCR ribotype 078 in Iberian free-range pigs. Research in Veterinary Science, 95, 358-361. Álvarez-Pérez, S., Blanco, J.L., Peláez, T., Lanzarot, M.P., Harmanus, C., Kuijper, E. & Formatted: English (United States) García, M.E. (2015). Faecal shedding of antimicrobial-resistant Clostridium difficile strains by dogs. Journal of Small Animal Practice, 56, 190-195. Álvarez-Pérez, S., Blanco, J.L., Peláez, T., Martínez-Nevado, E. & García, M.E. (2016). Formatted: English (United States) Water sources in a zoological park harbor genetically diverse strains of Clostridium perfringens type A with decreased susceptibility to metronidazole. Microbial Ecology, 72, 783–790. Álvarez-Pérez, S., Blanco, J.L. & García, M.E. (2017a). Clostridium perfringens type A isolates of animal origin with decreased susceptibility to metronidazole show extensive genetic diversity. Microbial Drug Resistance, 23, 1053-1058. Álvarez-Pérez, S., Blanco, J.L., Harmanus, C., Kuijper, E. & García, M.E. (2017b). Subtyping and antimicrobial susceptibility of *Clostridium difficile* PCR ribotype

361	078/126 isolates of human and animal origin. Veterinary Microbiolgy, 199, 15-	
362	22.	
363	Bakker, D., Corver, J., Harmanus, C., Goorhuis, A., Keessen, E.C., Fawley, W.N.,	
364	Wilcox, M.H. & Kuijper, E.J. (2010). Relatedness of human and animal	
365	Clostridium difficile PCR ribotype 078 isolates determined on the basis of	
366	multilocus variable-number tandem-repeat analysis and tetracycline resistance.	
367	Journal of Clinical Microbiology, 48, 3744–3749.	
368	Blanco, J.L., Álvarez-Pérez, S. & García, M.E. (2013). Is the prevalence of <i>Clostridium</i>	Formatted: English (United States)
369	difficile in animals underestimated? The Veterinary Journal, 197, 694–698.	
370	Butler, A.J., Thomas, M.K. & Pintar, K.D. (2015). Expert elicitation as a means to	
371	attribute 28 enteric pathogens to foodborne, waterborne, animal contact, and	
372	person-to-person transmission routes in Canada. Foodborne Pathogens and	
373	Disease, 12, 335–344.	
374	Chan, G., Farzan, A., Soltes, G., Nicholson, V.M., Pei, Y., Friendship, R. & Prescott,	
375	J.F. (2012). The epidemiology of <i>Clostridium perfringens</i> type A on Ontario	
376	swine farms, with special reference to cpb2-positive isolates. BMC Veterinary	
377	Research, 8, 156.	
378	Curry, S.R., Marsh, J.W., Schlackman, J.L. & Harrison, L.H. (2012). Prevalence of	
379	Clostridium difficile in uncooked ground meat products from Pittsburgh,	
380	Pennsylvania. Applied Environmental Microbiology, 78, 4183-4186.	
381	Davies, K.A., Ashwin, H., Longshaw, C.M., Burns, D.A., Davis, G.L. & Wilcox, M.H.;	
382	EUCLID study group (2016). Diversity of <i>Clostridium difficile</i> PCR ribotypes in	
383	Europe: results from the European, multicentre, prospective, biannual, point-	
384	prevalence study of <i>Clostridium difficile</i> infection in hospitalised patients with	
385	diarrhoea (EUCLID), 2012 and 2013. Euro Surveillance, 21, pii=30294.	
	16	

1 2	386	Duffy, G., Lynch, O.A. & Cagney, C. (2008). Tracking emerging zoonotic pathogens
3 4	387	from farm to fork. Meat Science, 78, 34-42.
5 6	388	Fosse, J., Seegers, H. & Magras, C. (2008). Foodborne zoonoses due to meat: a
7 8	389	quantitative approach for a comparative risk assessment applied to pig
9 10	390	slaughtering in Europe. Veterinary Research, 39, 1.
11 12 12	391	Fawley, W.N., Knetsch, C.W., MacCannell, D.R., Harmanus, C., Du, T., Mulvey, M.R.,
13 14 15	392	Paulick, A., Anderson, L., Kuijper, E.J. & Wilcox, M.H. (2015). Development
15 16 17	393	and validation of an internationally-standardized, high-resolution capillary gel-
18 19	394	based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS
20 21	395	One, 10, e0118150.
22 23	396	Hall, H. & Angelotti, R. (1965). Clostridium perfringens in meat and meat products.
24 25	397	Applied Microbiology, 13, 352–357.
26 27	398	Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological Statistics
28 29	399	Software Package for Education and Data Analysis. Palaeontologia Electronica,
30 31	400	4, 9pp.
32 33 24	401	Hawken, P., Weese, J.S., Friendship, R. & Warriner, K. (2013). Carriage and
34 35 36	402	dissemination of Clostridium difficile and methicillin resistant Staphylococcus
37 38	403	aureus in pork processing. Food Control, 31, 433-437.
39 40	404	Hernández, M., Gómez-Laguna, J., Luque, I., Herrera-León, S., Maldonado, A.,
41 42	405	Reguillo, L. & Astorga, R.J. (2013). Salmonella prevalence and characterization
43 44	406	in a free-range pig processing plant: Tracking in trucks, lairage, slaughter line and
45 46	407	quartering. International Journal of Food Microbiology, 162, 48-54.
47 48	408	Keessen, E.C., van den Berkt, A.J., Haasjes, N.H., Hermanus, C., Kuijper, E.J. &
49 50	409	Lipman, L.J. (2011). The relation between farm specific factors and prevalence of
51 52 52	410	Clostridium difficile in slaughter pigs. Veterinary Microbiology, 154, 130–134.
55 54 55		
56 57		17
58 59		
60 61		
62 63		
64 65		

1 2	411	Knetsch, C.W., Connor, T.R., Mutreja, A., van Dorp, S.M., Sanders, I.M., Browne,
3 4	412	H.P., Harris, D., Lipman, L., Keessen, E.C., Corver, J., Kuijper, E.J. & Lawley,
5 6	413	T.D. (2014). Whole genome sequencing reveals potential spread of <i>Clostridium</i>
8	414	difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro
9 10 11	415	Surveillance, 19, 20954.
11 12 13	416	Koene, M.G., Mevius, D., Wagenaar, J.A., Harmanus, C., Hensgens, M.P., Meetsma,
14 15	417	A.M., Putirulan, F.F., van Bergen, M.A. & Kuijper, E.J. (2012). Clostridium
16 17	418	difficile in Dutch animals: their presence, characteristics and similarities with
18 19	419	human isolates. Clinical Microbiology and Infection, 18, 778–784.
20 21	420	Lemee, L., Dhalluin, A., Testelin, S., Mattrat, M.A., Maillard, K., Lemeland, J.F. &
22 23	421	Pons, J.L. (2004). Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA
24 25	422	(toxin A), and <i>tcdB</i> (toxin B) genes for toxigenic culture of <i>Clostridium difficile</i> .
26 27 28	423	Journal of Clinical Microbiology, 42, 5710–5714.
20 29 30	424	López, V., Villatoro, D., Ortiz, S., López, P., Navas, J., Dávila, J.C. & Martínez-Suárez,
31 32	425	J.V. (2008). Molecular tracking of Listeria monocytogenes in an Iberian pig
33 34	426	abattoir and processing plant. Meat Science, 78, 130-134.
35 36	427	Metcalf, D., Reid-Smith, R.J., Avery, B.P. & Weese, J.S. (2010). Prevalence of
37 38	428	Clostridium difficile in retail pork. Canadian Veterinary Journal, 51, 873-876.
39 40	429	Nørrung, B. & Buncic, S. (2008). Microbial safety of meat in the European Union. Meat
41 42	430	Science, 78, 14–24.
43 44	431	Mooyottu, S., Flock, G., Kollanoor-Johny, A., Upadhyaya, I., Jayarao, B. &
45 46 47	432	Venkitanarayanan, K. (2015). Characterization of a multidrug resistant C. difficile
48 49	433	meat isolate. International Journal of Food Microbiology, 192, 111-116.
50 51		
52 53		
54 55		
56 57		18
58 59		
60 61		

	1
	2
	3
	Δ
	-
	5
	6
	7
	g
	0
_	9
1	0
1	1
1	2
1	2
1	2
Τ	4
1	5
1	6
1	7
1	, 0
T	8
1	9
2	0
2	1
2	2
4	⊿ ົ
2	3
2	4
2	5
2	6
2	7
2	/
2	8
2	9
3	0
2	1
2	T
3	2
3	3
3	4
3 3	4 5
3 3 2	4 5 6
333	4 5 6
3 3 3 3	4 5 6 7
3 3 3 3 3	4 5 6 7 8
3 3 3 3 3 3 3 3 3	4 5 6 7 8 9
3 3 3 3 3 4	4 5 7 8 9 0
3 3 3 3 3 4 4	4 5 6 7 8 9 0
3333344	4 5 6 7 8 9 0 1 0
3 3 3 3 3 3 4 4 4	4 5 7 8 9 1 2
333334444	4 5 6 7 8 9 0 1 2 3
3333344444	4 5 6 7 8 9 0 1 2 3 4
333333444444	4 5 6 7 8 9 0 1 2 3 4 5
3333344444444	4567890123456
3333344444444	4 5 6 7 8 9 0 1 2 3 4 5 6 7
333334444444444	4 5 6 7 8 9 0 1 2 3 4 5 6 7
33333444444444444	4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
3333344444444444444	4567890123456789
33333444444444444	45678901234567890
33333444444444445	456789012345678901
33333444444444455	456789012345678901
333334444444444555	4567890123456789012
3333344444444445555	45678901234567890123
333334444444444555555555555555555555555	456789012345678901234
333334444444444555555555555555555555555	4567890123456789012345
333334444444444555555555555555555555555	45678901234567890123456
333334444444444555555555555555555555555	45678901234567890123456
333334444444444555555555555555555555555	456789012345678901234567
333334444444444455555555555555555555555	4567890123456789012345678
333334444444444555555555555555555555555	45678901234567890123456789
333334444444444555555555555555555555555	456789012345678901234567890
33333444444444455555555555566	4567890123456789012345678901
3333344444444445555555555555555666	4567890123456789012345678901
33333444444444455555555555556666	45678901234567890123456789012
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	456789012345678901234567890123
33333444444444455555555555555666666	4567890123456789012345678901234
333334444444444555555555556666666	45678901234567890123456789012345

435

436

444

3803.

Rho, M.J., Chung, M.S., Lee, J.H. & Park, J. (2001). Monitoring of microbial hazards at farms, slaughterhouses, and processing lines of swine in Korea. *Journal of Food Protection*, 64, 1388–1391.

437 Rodriguez, C., Avesani, V., Van Broeck, J., Taminiau, B., Delmée, M. & Daube, G.
438 (2013). Presence of *Clostridium difficile* in pigs and cattle intestinal contents and
439 carcass contamination at the slaughterhouse in Belgium. *International Journal of*440 *Food Microbiology*, 166, 256–262.

Schneeberg, A., Neubauer, H., Schmoock, G., Baier, S., Harlizius, J., Nienhoff, H.,
Brase, K., Zimmermann, S. & Seyboldt, C. (2013). *Clostridium difficile* genotypes
in piglet populations in Germany. *Journal of Clinical Microbiology*, *51*, 3796–

Smits, W.K., Lyras, D., Lacy, D.B., Wilcox, M.H. & Kuijper, E.J. (2016). *Clostridium difficile* infection. *Nature Review. Disease Primers*, *2*, 16020.

447 Songer, J.G. & Uzal, F.A. (2005). Clostridial enteric infections in pigs. *Journal of*448 *Veterinary Diagnostic Investigation*, 17, 528–536.

Squire, M.M. & Riley, T.V. (2013). *Clostridium difficile* infection in humans and
piglets: a 'One Health' opportunity. *Current Topics in Microbiology and Immunology*, *365*, 299–314.

452 Stabler, R.A., Dawson, L.F., Valiente, E., Cairns, M.D., Martin, M.J., Donahue, E.H.,

453 Riley, T.V., Songer, J.G., Kuijper, E.J., Dingle, K.E. & Wren, B.W. (2012).

454 Macro and micro diversity of *Clostridium difficile* isolates from diverse sources455 and geographical locations. *PLoS One*, *7*, e31559.

456 Susick, E.K., Putnam, M., Bermudez, D.M. & Thakur, S. (2012). Longitudinal study

457 comparing the dynamics of *Clostridium difficile* in conventional and antimicrobial

458 free pigs at farm and slaughter. *Veterinary Microbiology*, *157*, 172–178.

19

Formatted: English (United States)

-	459	Uzal, F.A., Freedman, J.C., Shrestha, A., Theoret, J.R., Garcia, J., Awad, M.M., Adams,
5	460	V., Moore, R.J., Rood, J.I. & McClane, B.A. (2014). Towards an understanding of
	461	the role of Clostridium perfringens toxins in human and animal disease. Future
8	462	Microbiology, 9, 361–377.
,)	463	Warriner, K., Xu, C., Habash, M., Sultan, S. & Weese, S.J. (2017). Dissemination of
-	464	<i>Clostridium difficile</i> in food and the environment: significant sources of <i>C</i> .
, ;	465	difficile community-acquired infection? Journal of Applied Microbiology, 122,
, ,	466	542–553.
3	467	Wu, Y.C., Chen, C.M., Kuo, C.J., Lee, J.J., Chen, P.C., Chang, Y.C. & Chen, T.H.
)	468	(2017). Prevalence and molecular characterization of <i>Clostridium difficile</i> isolates
2	469	from a pig slaughterhouse, pork, and humans in Taiwan. International Journal of
	470	Food Microbiology, 242, 37–44.

471 Figure legends

Figure 1. Dendrogram of AFLP profiles obtained for the *Clostridium difficile* isolates characterized in this study (n = 105). The dendrogram was created by unweighted pair group method with arithmetic mean (UPGMA) clustering using Pearson's correlation coefficients. Individual AFLP genotypes are distinguished at \geq 86% similarity (red dotted vertical line). The PCR ribotype and origin of isolates is indicated at the tip of branches (see legend on the lower left corner), followed by PCR ribotype, isolate and AFLP type designations (shown in red, black and blue, respectively). The two clusters comprising all ribotype 078/126 and U09 isolates are indicated by a green background. Abbreviations in legend: T, trucks; L, lairage; S, slaughter line; Q, quartering; E, environment of the slaughter line and processing plant; 1, TLSQ1; 2, TLSQ2. Figure 2. Dendrogram of AFLP profiles obtained for the *Clostridium perfringens* isolates characterized in this study (n = 85). The dendrogram was created by unweighted pair group method with arithmetic mean (UPGMA) clustering using Pearson's correlation coefficients. Individual AFLP genotypes are distinguished at \geq 86% similarity (red dotted vertical line). The first column of colored squares at the tip of branches indicates the origin of isolates (see color legend on the lower left corner). Additionally, green- and violet-filled squares indicate toxinotype A and toxinotype C isolates, respectively, and the presence of the consensus or atypical form of the $\beta 2$ toxin-encoding gene (cpb2) is indicated by filled and open circles, respectively. Alphanumeric codes refer to isolate and AFLP type designations (shown in black and blue, respectively). Abbreviations in legend: T, trucks; S, slaughter line; Q, quartering; 1, TLSQ1; 2, TLSQ2.

Figure 3. Tracking of individual AFLP genotypes of *Clostridium difficile* and *Clostridium perfringens* along the pork production chain. Detection of each genotype from the different sample sources is indicated by shaded boxes, which also include the PCR ribotype (for *C. difficile*) or toxin profile (for *C. perfringens*). Only genotypes detected in two or more sample sources are included. Abbreviations for sample sources: T1, trucks prior cleaning and disinfection; T2, trucks after cleaning and disinfection; L1, lairage prior entry of the pigs; L2, lairage after exit of the pigs; S1, pre-scalding; S2, post-scalding; S3, post-flaming; S4, post-evisceration; S5, post-washing; S6, chilling; To, tonsils; Ce, cecal contents; Co, colonic contents; Q, quartering samples (ham, shoulder and loin); ES, environment slaughter line (scalding water, knives and saws); EQ, environment quartering (sterilization water, tables and knives).

Tables

Table 1: Distribution of *Clostridium difficile* and *Clostridium perfringens* along the pig slaughtering process in the examined free-range pig

abattoir and processing plant.

TLSO	Production	Sample ^b	C difficile			C nerfringer	15		Both clostr
assay ^a	stage	(<i>n</i>)	c. ujjicuc			e. perji niger			species
			No. (%) of positive samples	No. isolates	Ribotypes (no. AFLP types)	No. (%) of positive samples	No. isolates	Toxinotypes ^c (no. AFLP types)	No. (%) of positive sar
TLSQ1	Trucks	T1 (5)	4 (80%)	11	010 (1), 078 (2), 126 (1), 572 (7)	0			0
		T2 (5)	2 (40%)	5	078 (2), 126 (3)	0			0
	Lairage	L1 (4)	0			0			0
		L2 (4)	2 (50%)	6	078 (3), U01 (1), U09 (2)	0			0
	Slaughter line	S1 (10)	2 (20%)	5	U02 (3), U07 (2)	0			0
		S2 (10)	0			0			0
		S3-S6 (40)	0			0			0
		To (10)	0			2 (20%)	4	A (1), A/cpb2+[c] (3)	0
		Ce (10)	2 (20%)	4	572 (2), U06 (2)	8 (80%)	22	A (9), A/cpb2+[a] (12), C (1)	2 (20%)
		Co (10)	2 (20%)	6	572 (3), U02 (3)	3 (30%)	8	A (5), A/ $cpb2+[a]$ (2)	0
	Quartering	Q (10)	0			0			0
	Environment	ES (7)	1 (14.3%)	3	078 (2)	0			0
		EQ (10)	0			0			0

	TOTAL	(135)	15 (11.1%)	40	010 (1), 078 (9), 126 (4), 572 (11), U01 (1), U02 (6), U06 (2), U07 (2), U09 (2)	13 (9.6%)	34	A (15), A/cpb2+[c] (3), A/cpb2+[a] (14), C (1)	2 (1.5%)
TLSQ2	Trucks	T1 (5)	5 (100%)	15	010 (1), 078 (6), 110 (2), 126 (2), U01 (2), U03 (1)	2 (40%)	2	A (2)	2 (40%)
		T2 (5)	5 (100%)	13	078 (8), U03 (3), U04 (1)	1 (20%)	2	A (2)	1 (20%)
	Lairage	L1 (4)	2 (50%)	4	078 (4)	0			0
		L2 (4)	2 (50%)	5	013 (2), 572 (3)	0			0
	Slaughter line	S1 (10)	7 (70%)	20	078 (5), 181 (2), 202 (6), U01 (2), U08 (3), U09 (2)	2 (20%)	2	A (2)	1 (10%)
		S2 (10)	1 (10%)	2	U05 (2)	0			0
		S3-S6 (40)	0			0			0
		To (10)	0			0			0
		Ce (10)	1 (10%)	3	110 (2)	9 (90%)	27	A (16), A/ <i>cpb</i> 2+[a] (5), C (4)	1 (10%)
		Co (10)	1 (10%)	3	110 (3)	6 (60%)	15	A (14), A/ <i>cpb</i> 2+[a] (1)	1 (10%)
	Quartering	Q (10)	0			1 (10%)	3	A (3)	0
	Environment	ES (7)	0			0			0
		EQ (10)	0			0			0
	TOTAL	(135)	24 (17.8%)	65	010 (1), 013 (2), 078 (20), 110 (7), 126 (2), 181 (2), 202 (6), 572 (3), U01 (4), U03 (4), U04 (1), U05 (2), U08 (3), U09 (2)	21 (15.6%)	51	A (39), A/cpb2+[a] (6), C (4)	6 (4.4%)
TLSQ1	Trucks	T1 (10)	9 (90%)	26	010 (2), 078 (8), 110 (2),	2 (20%)	2	A (2)	2 (20%)
					24				

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 22 23 24 25 26 27 $\begin{array}{c} 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\end{array}$

9 10	
11 12	+ TLSQ2
13	
14 15	I
16	
17	
18	S
19 20	
21	
22	
23	
24 25	
26	
27	
28	(
30	Ľ
31	Т
32	
33 34	
35	
36 512	
37	
39 ⁵¹³	^a Two diffe
$\substack{40\\41}{514}$	respectivel
42	
43	
45	
46	
47	
48 49	
ユノ	

+ TLSQ2					126 (3), 572 (7), U01 (2), U03 (1)				
		T2 (10)	7 (70%)	18	078 (10), 126 (3), U03 (3), U04 (1)	1 (10%)	2	A (2)	1 (10%)
	Lairage	L1 (8)	2 (25%)	4	078 (4)	0			0
		L2 (8)	4 (50%)	11	013 (2), 078 (3), 572 (3), U01 (1), U09 (2)	0			0
	Slaughter line	S1 (20)	9 (45%)	25	078 (5), 181 (2), 202 (6), U01 (2), U02 (3), U07 (2), U08 (3), U09 (2)	2 (10%)	2	A (2)	1 (5%)
		S2 (20)	1 (5%)	2	U05 (2)	0			0
		S3-S6 (80)	0			0			0
		To (20)	0			2 (10%)	4	A (1), A/cpb2+[c] (3)	0
		Ce (20)	3 (15%)	7	110 (2), 572 (2), U06 (2)	17 (85%)	49	A (25), A/cpb2+[a] (17), C (5)	3 (15%)
		Co (20)	3 (15%)	9	110 (3), 572 (3), U02 (3)	9 (45%)	23	A (19), A/ <i>cpb</i> 2+[a] (3)	1 (5%)
	Quartering	Q (20)	0			1 (5%)	3	A (3)	0
	Environment	ES (14)	1 (7.1%)	3	078 (2)	0			0
		EQ (20)	0			0			0
	TOTAL	(270)	39 (14.4%)	105	010 (2), 013 (2), 078 (29), 110 (7), 126 (6), 181 (2), 202 (6), 572 (14), U01 (5), U02 (6), U03 (4), U04 (1), U05 (2), U06 (2), U07 (2), U08 (3), U09 (4)	34 (12.6%)	85	A (54), A/ <i>cpb</i> 2+[c] (3), A/ <i>cpb</i> 2+[a] (20), C (5)	8 (3%)

^a Two different batches of Iberian pigs, corresponding with the first and last batches allocated to the day of sampling (TLSQ1 and TLSQ2,

respectively), were analyzed.

1		
2		
3		
4		
5		
6		
7		
7		
8		
9		
10		
11515	^b T1, trucks prior cleaning and disinfection; T2, trucks after cleaning and disinfection; L1, lairage prior entry of the pigs; L2, lairage after exit of	
12		
13516	the pigs; S1, pre-scalding; S2, post-scalding; S3, post-flaming; S4, post-evisceration; S5, post-washing; S6, airing; To, tonsils; Ce, cecal contents;	
14		
15517	Co, colonic contents; O, quartering samples (ham, shoulder and loin); ES, environment slaughter line (scalding water, knives and saws); EO,	
16		
17518	environment quartering (sterilization water, tables and knives)	
10	environment quartering (stermization water, tables and knives).	
10510	⁶ A toxingture A.C. toxingture C. anh2. mailing DCD result for the concerning [a] or staring [a] form of the 82 toxing encoding conc	
19519	A, toxinotype A; C, toxinotype C; <i>cpo2+</i> , positive PCK result for the consensus [c] of atypical [a] form of the p2 toxin-encoding gene.	
20		
21520		
22		
23		
24		
25		
26		
27		
28		
20		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
10		
40		
41 40		
42		
43	26	
44		
45		
46		
47		
48		
49		

Table 2: Toxin profiles and AFLP types of *Clostridium difficile* ribotypes identified in

PCR	Toxin profile	No.	No. AFLP	No. samples ^a					
ribotype		isolates	types	Total	Т	L	S	Q	E
010	A-B-CDT-	2	2	2 (5.1%)	2				
013	A+B+CDT-	2	2	1 (2.6%)		1			
078	A+B+CDT+	34	29	14 (35.9%)	8	3	2		1
110	A+B+CDT-	9	7	3 (7.7%)	1		2		
126	A+B+CDT+	6	6	3 (7.7%)	3				
181	A-B-CDT-	2	2	1 (2.6%)			1		
202	A+B+CDT-	6	6	2 (5.1%)			2		
572	A+B+CDT-	15	14	6 (15.4%)	3	1	2		
U01	A+B+CDT-	5	5	5 (12.8%)	2	1	2		
U02	A-B-CDT-	6	6	2 (5.1%)			2		
U03	A+B+CDT-	4	4	2 (5.1%)	2				
U04	A+B+CDT-	1	1	1 (2.6%)	1				
U05	A-B-CDT-	2	2	1 (2.6%)			1		
U06	A-B-CDT-	2	2	1 (2.6%)			1		
U07	A-B-CDT-	2	2	1 (2.6%)			1		
U08	A-B-CDT-	3	3	1 (2.6%)			1		
U09	A+B+CDT+	4	4	2 (5.1%)		1	1		

522 this study.

^a T, trucks; L, lairage; S, slaughter line; Q, quartering; E, environment of the slaughter

525 line and processing plant.

Figure 1 Click here to download high resolution image

			(C. difficil	e		C. perfringens
Assay	Sample	cd38	cd70	cd74	cd79	cd89	cp23
TLSQ1	T1	572					
	T2						
	L1						
	L2			U09		U09	
	S1						
	S2-S6						
	To						
	Ce	570					
	00	512					
	ES						
	EQ						
TLSQ2	T1		078	078			
	T2	-		_	078	078	A
	L1						
	L2	5					
	S1		078	078	078		
	S2-S6						
	To						
	Ce						
	Co						
	Q						A
	ES						
	EQ						

*Graphical Abstract Click here to download high resolution image

