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Abstract 
 

  Background: Many multi-valent vaccines target only a subset of all pathogenic types. If 

vaccine and non-vaccine types compete, vaccination may lead to type replacement. The 

plausibility of type replacement has been assessed using the odds ratio (OR) of co-infections in 

cross-sectional prevalence data, with OR > 1 being interpreted as low risk of type replacement. The 

usefulness of the OR as a predictor for type replacement is debated, as it lacks a theoretical 

justification, and there is no framework explaining under which assumptions the OR predicts type 

replacement. 

 Methods: We investigate the values that the OR can take based on deterministic 

Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered-Susceptible multi-type 

transmission models. We consider different mechanisms of type interactions, and explore 

parameter values ranging from synergistic to competitive interactions. 

 Results: We find that OR > 1 might mask competition because of confounding due to 

unobserved common risk factors and cross-immunity, as indicated by earlier studies. We prove 

mathematically that unobserved common risk factors lead to an elevation of the OR, and present an 

intuitive explanation why cross-immunity increases the OR. We find that OR < 1 is predictive for 

type replacement in the absence of immunity. With immunity, OR < 1 remains predictive under 

biologically reasonable assumptions of unidirectional interactions during infection, and an 

absence of immunity-induced synergism. 

 Conclusions: Using the OR in cross-sectional data to predict type replacement is justified, 

but is only unambiguous under strict assumptions. An accurate prediction of type replacement 

requires pathogen-specific knowledge on common risk factors and cross-immunity. 

 

Keywords: pathogen types; interactions; multivalent vaccines; type replacement; cross-sectional 

prevalence; odds ratio; confounding 

  



Introduction 

 Studying and predicting the effects of vaccination against pathogens with many types can 

be challenging if the types interact with each other.
1
 With a vaccine that immunizes against only a 

subset of pathogen types, vaccination may indirectly affect the types that are not targeted. 

Vaccination against the vaccine types may increase or decrease the prevalence of the non-vaccine 

types, depending on whether the interactions between the vaccine and non-vaccine types are 

competitive or synergistic. If the interactions are synergistic, vaccination may decrease the 

prevalence of the non-vaccine types since it also takes away the synergistic effects that the 

non-vaccine types receive from the vaccine types. If the interactions are competitive, vaccination 

may increase the prevalence of the non-vaccine types so that the non-vaccine types replace the 

vaccine types.
2-4

 Such replacements have been observed after the introduction of vaccination 

against pathogens like Haemophilus influenzae and Streptococcus pneumoniae.
5-7

 For human 

papillomavirus (HPV), it is still unclear if different genotypes interact and whether vaccination 

will lead to type replacement.
8,9

 

To assess the risk of type replacement before the introduction of vaccination, investigators 

have searched for evidence of competition between the vaccine and non-vaccine types in 

epidemiologic studies. We focus on cross-sectional prevalence studies that provide information on 

patterns of co-occurrence of pathogen types. Co-occurrence can be defined as co-infection by 

different virus types (e.g. for HPV) or as co-carriage of different bacterial types (e.g. for S. 

pneumoniae), depending on the application. Once the meaning of co-occurrence is defined, type 

interactions can be quantified by the observed number of co-occurrences. Deviations of this 

quantity from the expected number of co-occurrences under independence can be interpreted as 

evidence for interactions. A common measure of association that expresses the extent of such 

deviation is the odds ratio (OR ) of co-occurrence, with positive (negative) associations being 

considered indicative of synergistic (competitive) interactions. 

Although this qualitative interpretation of associations has an intuitive appeal, it may not 

be consistent with the underlying mechanisms of interactions, leading to incorrect assessment of 

the risk of type replacement. While some competitive mechanisms induce negative associations, 

others, such as cross-immunity, have been shown to induce positive associations.
10,11

 Even if the 

underlying mechanism of interactions agrees with this intuitive interpretation, type interactions 

may be confounded by unobserved risk factors or routes of transmission that are shared by 



multiple types, leading to a bias toward positive associations.
8,11,12

 

For HPV, various cross-sectional prevalence studies from the pre-vaccination era found 

co-infections to occur more often than expected, expressing positive associations, but few 

noteworthy differences between type-specific associations are reported.
13-15

 Such co-infection 

patterns are usually explained in terms of unobserved common risk factors, with low risk of type 

replacement according to the intuitive interpretation. However, it is not clear to what extent 

competitive interactions may be masked by common risk factors, and therefore whether type 

replacement following HPV vaccination is plausible. Moreover, it remains to be demonstrated 

whether unobserved common risk factors have the same effect on each type-specific association, 

and can be corrected for. 

Although the validity of using the OR  of co-occurrence for inferring type interactions has 

been studied before,
10,11,16

 its methodologic basis is not yet well established. In this paper, we 1) 

derive the OR  as an estimator of interactions in acquisition and clearance; 2) present a proof for 

positive bias due to unobserved common risk factors; and 3) provide a novel explanation how 

cross-immunity induces positive associations. Ultimately, our goal is to assess the usefulness of 

co-occurrence patterns of pathogen types in cross-sectional prevalence data for predicting type 

replacement.  

  

The OR as an estimator of the interaction parameters  
  

A Susceptible-I nfected-Susceptible model with two pathogen types 

 We first consider a Susceptible-I nfected-Susceptible (SIS) model with two pathogen types 

in a closed population (fig:SIS_structureA).
3,17

 In this population, individuals are susceptible or 

infected with respect to each of the two types so that there are 22 =4 different infection states. We 

encode each of the infection states by a notation in which the i-th letter indicates the status with 

respect to the i-th type: S  for susceptible and I  for infected. In formulae, each of { , , , }SS IS SI II  

denotes the proportion of individuals in the corresponding state in the population. Together, they 

give the joint distribution of the two types. 

In this model, individuals without any infections, the susceptibles, become infected by type 

1 at rate 
1 1= ( )c IS II    and by type 2 at rate 

2 2= ( )c SI II   , where c is the contact rate and 
i  the 

probability of acquiring type i  given established contact with an infected individual. 

  



Types interact through two mechanisms: acquisition and clearance. Due to interactions in 

acquisition, individuals already infected by one type acquire an infection of the other type at an 

adjusted rate that is k  times 
1  or 

2 . The interaction parameter k  is essentially the rate ratio of 

acquiring infections of one type among individuals that are already infected by the other type 

(exposed) compared to the acquisition among susceptibles (unexposed). Similarly, due to 

interactions in clearance, individuals that are infected by both types clear infections at an adjusted 

rate that is h  times the clearance rate of individuals that are infected by only one type, 
1  or 

2 . 

The interaction parameter h  is therefore the rate ratio of clearing infections of one type among 

individuals infected by the other type (exposed) compared to the clearance among individuals not 

infected by the other type (unexposed). Interactions in acquisition (clearance) can be either 

independent, synergistic, or competitive by choosing k  to be =,>, or < 1 (
1

h
 to be =, >, or < 1) as 

given by Table 1.  

The following system of differential equations describes how { , , , }SS IS SI II  changes over 

time:  
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The stationary distribution 

 { , , , }SS IS SI II , as governed by (1), always stabilizes at an equilibrium as time progresses. 

This occurs for any given set of model parameters. We assume that the model parameters are 

chosen such that both types are present (coexisting) at the equilibrium. 

Equilibria in the deterministic setting are closely related to stationary distributions in 

Markov processes, since both are stable in time. In this paper, we consider the setting in which a 

cross-sectional dataset consists of individuals sampled from a stationary distribution that coincides 

with the equilibrium of the system described by (1). 

As we are interested in the cross-sectional setting, we focus on the equilibrium and neglect 

transient dynamics of { , , , }SS IS SI II . By solving the linear system that governs the equilibrium (see 

eAppendix A), we obtain the following simple expression in terms of 
1 2 1 2{ , , , , , }k h    :  



 

1 2

2 1

1 2

1 2

=( )/

= ( ) /

= ( ) /

= ( ) / ,

SS h C

IS h C

SI h C

II k C

 

 

 

 









 (2) 

 where 
1 2 2 1 1 2 1 2=C h h h k         is the normalizing constant. Note that the derivation of (2) 

does not depend on how 
i  is defined in terms of the contact rate and transmission probabilities so 

that (2) holds as long as the model has the structure depicted in Figure 1A. 

 

Result I: The OR is an exact estimator of the composite of the interaction 

parameters, 
k

h
. 

 The OR  is defined as the ratio of the odds of one type in presence of the other type, 

relative to the odds of this type in absence of the other type:  

 =( ) / ( )
II IS

OR
SI SS

 (3) 

 To compute the OR , (2) is substituted in (3). This substitution yields =
k

OR
h

, a function of the 

composite of the interaction parameters. If only one mechanism of interactions is operating, i.e. 

=1h  or =1k , the OR  reduces to k  or the reciprocal of h  as shown in Figure 2A and Figure 2B, 

respectively. An alternative proof of =
k

OR
h

 based on reversibility can be found in eAppendix A. 

The OR as a predictor for type replacement 
  

The outcome of vaccination 

 We investigate whether the OR  correctly predicts the outcome of vaccination. We 

introduce the following indicator function to denote the outcome of vaccinating against type 2 

(vaccine type) for the prevalence of type 1 (non-vaccine type):  

 

 


 


o

,if the prevalence of type1 decreases,

= ,if the prevalence of type1 stays unchanged,

,if the prevalence of type1 increases;type replacement.

 

 Hence, =  denotes a beneficial (and =  an unfavorable) impact on the non-vaccine type due 

to vaccination against the vaccine type. We simulate vaccination by reducing the probability of 

acquiring type 2 throughout the entire population and investigate whether >,=,<1OR  correctly 

predicts = , ,  o , respectively. 

  



In the simulations, different parameter values of k  and h , ranging from competitive to 

synergistic interactions, lead to different outcomes of vaccination Table 2. If one mechanism of 

interactions is independent ( =1k  or 
1

=1
h

),   is determined by the parameter value of the other 

mechanism of interactions with respect to 1. If both mechanisms of interactions are operating, we 

found the outcome of vaccination to be determined by the value of 
k

h
 with respect to 1. As such, 

with both mechanisms operating in opposite directions, one being competitive and the other 

synergistic, the outcome of vaccination is determined by the strongest of the two (i.e. the 

parameter that deviates the most from 1). 

Result II: The OR is a predictor for type replacement. 

 As =
k

OR
h

 and the value of 
k

h
 with respect to 1 determines the value of  , the OR  is a 

predictor for the outcome of vaccination; >,=,<1OR  predicts = , ,  o , respectively. This 

correspondence justifies the intuitive interpretation of the OR . 

If the assumptions of the model are violated, the OR  may no longer be a predictor for the 

outcome of vaccination. In case the interactions are not symmetric among types, the OR  becomes 

a weighted average of the type-specific interaction parameters. If the vaccine type is competitive 

towards the non-vaccine type, but the non-vaccine type is synergistic towards the vaccine type, 

>1OR  may hold even though type replacement does occur. Nevertheless, in less extreme cases of 

asymmetry, e.g. if the vaccine and non-vaccine type are both competitive or both synergistic 

towards each other but with different strength, the OR  still correctly predicts the outcome of 

vaccination. 

 

Positive bias due to unobserved common risk factors 

 Individuals may differ in risk of infections because of differences in genetic disposition or 

behavior. Some risk factors are common for all pathogen types. If a common risk factor is not 

observed nor adjusted for, it may confound the previous result of the OR  being an estimator of 
k

h
 

and a predictor for type replacement. Using an example with unobserved heterogeneity in 

susceptibility, we illustrate the confounding effect due to unobserved common risk factors and 

explain why the bias is towards positive associations. 

 



Heterogeneity in susceptibility 

 We consider a heterogeneous S usceptible- I nected-S usceptible model in which each 

individual is assigned an unobserved susceptibility level z , which influences his/her susceptibility 

for both types. The variation of z  in the population is captured by the density function ( )f z . 

As this model comprises an extra dimension, z , the proportions of different infection states 

at the equilibrium become functions of z : { ( ), ( ), ( ), ( )}SS z IS z SI z II z . To be consistent with the 

notations of the previous model, we let { , , , }SS IS SI II  be the proportions of all individuals in the 

corresponding infection states regardless of the value of z , i.e. for = , , ,A SS IS SI II:  

 
0

= ( )A A z dz


  (4) 

 

We assume homogeneous mixing between individuals with different susceptibility levels. 

To model transmission, we define the global force of infection as 
1 1= ( )c IS II    and 

2 2= ( )c SI II   . We then define the individual-specific force of infection to be the product of the 

individual-specific multiplier, z , and the global force of infection: 
1z  and 

2z . In 

fig:SIS_structureB, the infection dynamics of the population with susceptibility level z  is shown. 

The corresponding system of differential equations can be found in eAppendix B. 

 

The crude and the adjusted OR 

 If the susceptibility level is not observed, the crude OR  is computed without 

distinguishing between individuals with different susceptibility levels:  

 =( ) / ( )
II IS

OR
SI SS

 (5) 

 

For the hypothetical situation in which we could observe the susceptibility level, we define 

the adjusted OR  to be the OR  evaluated at each z :  

 
( ) ( )

( ) =( ) / ( )
( ) ( )

II z IS z
OR z

SI z SS z
 (6) 

 

For each fixed susceptible level, z , the corresponding system of differential equations 

follows the same structure as the one of the homogeneous Susceptible-I nected-Susceptible model, 

where 
i  in (1) is replaced by 

iz . Hence, for each z , the adjusted OR  remains an estimator of 
k

h
. 

  



Result III: The crude OR over-estimates the composite of interaction 

parameters, 
k

h
, and is not a sensitive predictor for type replacement. 

 The crude OR  has a bias towards positive associations: >
k

OR
h
 (see Figure 2A and Figure 

2B). The proof of >
k

OR
h

 in the case of independent interactions 
1

( = =1)k
h

 can be found in 

eAppendix B. The proof invokes Chebyshev’s integral inequality,
18

 which formalizes a sufficient 

condition for a positive bias. In this example of heterogeneity in susceptibility, this condition 

requires the marginal probability of being infected to be either increasing or decreasing with z  for 

both types. This condition is satisfied since the higher the susceptibility level, the higher the 

probability of being infected. 

Since the crude OR  over-estimates 
k

h
, >1OR  does not necessarily correspond to =  . 

However, <1OR  still corresponds to = . In other words, >1OR  cannot rule out the possibility of 

type replacement, but <1OR  can predict it. 

Using =1OR  as a threshold to distinguish between the presence and absence of type 

replacement leads to an incorrect prediction. However, there is no other threshold value for the OR  

that can produce a correct prediction, since the value of the OR  at = o also depends on the 

chosen model parameters such as 
i  and 

i . Figure 3 shows the varying value of the OR  under 

independence for different combinations of 
1 2,   (on the left) and 

1 2,   (on the right). This 

dependency on type-specific parameters suggests that different type-to-type combinations may 

require different adjustments for the same unobserved common risk factors. 

Unobserved heterogeneity in other variables, that are either negatively or positively 

correlated with being infected with respect to both types, also leads to a positive bias of the OR  for 

k

h
. For instance, heterogeneity in contact rate or clearance rate also lead to an over-estimation of 

k

h

, since the sufficient condition for positive bias we propose is satisfied. With assortative mixing 

according to such a common risk factor, we expect an even stronger positive bias.
19

 

Different forms of bias due to type-specific or cross-immunity 

 The results obtained under the Susceptible-I nected-Susceptible model may not hold if 

natural infections trigger immune responses that protect the host against future infections. In 

general, immunity can be type-specific or cross-protective. For HPV, the strength of naturally 



acquired immunity is still a topic of discussion as is the possibility of cross-protection to related 

genotypes.
20

 For S. pneumoniae, naturally acquired immunity is thought to build up with age and 

likely plays a minor role in transmission dynamics among toddlers, but might mask competition 

among adults.
21

 

In this section, we analyze how type-specific immunity and cross-immunity affect the 

estimation of interaction parameters and the prediction of type replacement. We study the two S

-usceptible-I nfected-R-ecovered-Susceptible (SIRS) models depicted by Figure 4A and Figure 4B. 

The corresponding systems of differential equations can be found in eAppendix C. In both models, 

we incorporate type-specific immunity by expanding the infection dynamics to SIRS with regard 

to each type, where state R (for Recovered) represents the immune state. The number of infection 

states now becomes 23 =9. Individuals enter state R after clearance of infection and exit due to 

waning of immunity at rate 
i  for type i . After losing immunity, individuals return to state S . In 

the SIRS model given by fig:SIRS_structureA, we keep the “SI ”-part of the infection dynamics the 

same as in the previous SIS model, including how types interact in acquisition and clearance. 

Hence, current infections of one type affect susceptibility for and clearance of the other type. In the 

SIRS model given by fig:SIRS_structureB, we let past infections of one type affect susceptibility 

for and clearance of the other type. Such a mechanism of interactions is called indirect, since 

current infections of one type indirectly, through recovery, affect the other type. Indirect 

interactions, if competitive, correspond to cross-immunity, in which case being immune for one 

type offers protection to the other type. We consider direct and indirect interactions in separate 

models, since they lead to qualitatively different kinds of bias. 

After incorporating the immune state, the definition of the OR  as given under result I 

becomes:  

 =( )/ ( )
II IS IR

OR
SI RI SS SR RS RR



   
 (7) 

 This definition matches the empirical setting where one cannot distinguish between 

susceptible and immune individuals. 

 

Result IV: With type-specific immunity, the OR is a biased estimator of 

the composite of the interaction parameters, 
k

h
. 

 In the SIRS  model with direct interactions (Figure 4A), the OR  remains an unbiased 



estimator of 
1

h
, but not of k  unless =1k  (see Figure 2A and Figure 2B). =1OR  still constitutes a 

valid boundary between synergy and competition, however, the OR  over-estimates k  if <1k  and 

under-estimates k  if >1k . Jointly, the OR  becomes biased for 
k

h
 (see eAppendix C for the proof). 

 

Result V: With cross-immunity, the correspondence between the OR and 

the composite of the interaction parameters, 
k

h
, is reversed. 

 In the SIRS model with indirect interactions (Figure 4B), we consider cross-immunity as a 

composite of competition in both acquisition and clearance: past infections of one type hinder the 

acquisition and accelerate the clearance of the other type. We found that parameter values 

corresponding to cross-immunity ( <1k  and 
1

<1
h

) induce positive associations ( >1)OR . Conversely, 

the opposite outcome of negative associations ( <1)OR  holds if interactions are synergistic ( >1k  

and 
1

>1
h

). Hence, the correspondence between the OR  and 
k

h
 is reversed (Figure 2A and Figure 

2B). 

We can understand this reversion by juxtaposing the two SIRS models. In both models, the 

OR  is computed using the same definition, with in the numerator (N): { , , , }SS SR RS RR  and { }II , and 

in the denominator (D): { , }IS IR  and { , }SI RI . In the direct SIRS model, interactions in acquisition 

affect the transitions from states in (D) to states in (N), which is reversed in the indirect SIRS 

model. Correspondingly, in the direct SIRS model, increasing k  increases the flow from states in 

(D) to states in (N) and leads to an increase in the OR  (Figure 2A dotted line), whereas in the 

indirect SIRS  model, increasing k  leads to a decrease in the OR  (Figure 2A, dashed line). 

Analogously, increasing 
1

h
 leads to an increase in the OR  in the direct SIRS model (Figure 2B, 

dotted line) and a decrease in the OR  in the indirect SIRS model (Figure 2B, dashed line). Given 

that =1OR  at 
1

= =1k
h

, inducing cross-immunity by decreasing k  and 
1

h
 from 1 leads to >1OR . 

Predicting type replacement in presence of immunity 

 In the indirect SIRS  model, the OR  is not predictive for type replacement due to the 

reversed correspondence between the OR  and 
k

h
. In the direct SIRS models, if both mechanisms of 

interactions are operating in the same direction, i.e. either 
1

>1, >1k
h

 or 
1

<1, <1k
h

, the outcome of 



vaccination is also still determined by the value of 
k

h
 with respect to 1. For more complicated 

situations in which the two mechanisms of interactions operate in opposite directions, i.e. either 

1
<1, >1k

h
 or 

1
>1, <1k

h
, the outcome of vaccination also depends on the type-specific parameters. 

For example, if current infections of one type increases the susceptibility for the other type 

(synergy, >1k ) but accelerate clearance of the other type (competition, 
1

<1
h

), the outcome of 

vaccination may be =  while >1OR , masking type replacement. In Figure 5, this discrepancy is 

shown by the differences between the -map and the OR-map in the upper left and the lower right 

quadrants. 

 

Discussion 

 In this paper, we studied the usefulness of co-occurrence patterns of pathogen types in 

cross-sectional prevalence data for predicting type replacement. We confirmed the OR  of 

co-occurrence as an estimator of interactions in acquisition and clearance in models, either SIS or 

SIRS, with direct interactions. This correspondence between the OR  and the interactions is reversed 

in the setting of a SIRS model with indirect interactions, that is, when natural immunity against one 

type modifies the infection dynamics of another type. 

We found that >1OR  can be caused by various mechanisms, namely direct synergistic 

interactions, cross-immunity or confounding due to unobserved common risk factors. As >1OR  

can be caused by cross-immunity, it cannot preclude type replacement. On the other hand, we 

confirm <1OR  being predictive for type replacement in the setting without immunity, even under 

confounding by unobserved common risk factors. With immunity, it is predictive for type 

replacement only if 1) different mechanisms of interactions do not act in different directions; and 

2) natural immunity against the vaccine types does not promote infections of the non-vaccine 

types. Such immunity-induced synergism is rare, but has been reported for different strains of the 

dengue virus in the form of antibody-dependent enhancement.
22

 

The conditions, identified by our models, under which <1OR  is predictive for type 

replacement may not be generalizable if we depart from the model assumptions we considered. For 

instance, the predictive power of <1OR  for type replacement may disappear under asymmetric 

interactions among types. Although mild asymmetry (e.g. if one type experiences stronger 

competition from another type than vice versa), may retain the predictive power, more extreme 



asymmetry (e.g. if one type is synergistic towards another type from which it experiences 

competition) may not. Furthermore, we did not consider within-host competition for transmission, 

which affects the transmission capacity in co-infected relative to singly infected individuals. In 

addition, natural immunity may result in a mix of direct and indirect interactions, different than in 

the SIRS models considered here, further complicating the interpretation of the OR . 

Other model assumptions on contact patterns and transmission may lead to different 

interpretation for the OR . For example, the Susceptible-I nected-Recovered-Susceptible model of 

Malagon et al. allows simultaneous acquisition when susceptibles are partnered with co-infected 

individuals.
11

 Their model yields >1OR  even if the type interactions are independent, in contrast to 

our SIRS  models, which find =1OR . This bias of the OR  under independence arises because 

simultaneous acquisition is itself a mechanism that enhances the co-occurrence of types. 

We assumed cross-sectional prevalence data to be sampled from an epidemiologic 

equilibrium in which a stable prevalence of infections is maintained. This stationary assumption is 

reasonable in the pre-vaccination era for endemic pathogens, like S. pneumoniae and HPV, and is 

commonly assumed in transmission modelling.
23

 After the introduction of vaccination, this 

assumption is violated until the prevalence has re-established at a new equilibrium. When the 

prevalence oscillates through the years but has a seasonal pattern, other statistical methods using 

time series to infer type interactions might be more suitable.
22

. Furthermore, individuals reach the 

stationary distribution only after being at risk for some time in practice. The time required to 

achieve stationary depends on the speed of the transmission process and may differ between 

pathogens. 

For HPV, there have been many studies on pre-vaccination cross-sectional data that used 

the OR  to infer competitive interactions.
13-15

 These studies usually adjust for possible unobserved 

common risk factors by either including person-specific random effects or by comparing each 

type-to-type OR  to the pooled OR . After adjustment, most studies find >1OR  or fail to find 

systematic deviations of the type-to-type OR ’s from the pooled OR . However, conclusions 

concerning type replacement should be drawn cautiously in view of alternative explanations for 

these findings, including cross-immunity between types, which entails a risk of type replacement. 

Furthermore, adjustment for unobserved common risk factors need not be similar among types. 

Essentially, previous models account for unobserved risk factors by assuming a random effect that 

is the same for all pairs of types. Our results show that random effects could be different for each 



type-to-type OR . Whether or not such differences among type-to-type combinations are practically 

negligible depends on the application. If not, one may resolve to random effects models that also 

account for differences between types.
24

 

HPV vaccines have demonstrated to be cross-protective for some non-vaccine HPV types 

that are phylogenetically related to the vaccine types.
25-28

 Such cross-protection may substitute the 

competitive pressure by the vaccine types on the non-vaccine types and counterbalance type 

replacement. Including cross-protection would alter the outcome of vaccination in our analyses. 

For some scenarios with <1OR  calculated from the pre-vaccination prevalence, type replacement 

may be mitigated or even prevented by cross-protection if cross-protective efficacy is strong 

enough. Consequently, while <1OR  predicts the potential for type replacement, type replacement 

need not occur in the presence of vaccine cross-protection. 

For other pathogens, it is less common to use the OR  of co-occurrence in a cross-sectional 

setting to study type replacement. We only know of Bogaert et al., who studied the possibility of 

Staphylococcus aureus replacing S. pneumoniae after the introduction of PCV-7.
29

 For S. 

pneumoniae serotypes, we know of no studies on patterns of co-occurrence in the setting we 

discuss before PCV-7 was introduced. 

We note that our models predict a stable equilibrium frequency distribution of 50% 50%  

when applied to epidemiologically indistinguishable types. Hence, they are not neutral from a 

population-genetic point of view as described by Lipsitch et al., who argued that non-neutral 

models are unsatisfactory in explaining the long-term coexistence of types when the evidence for 

competition is compelling.
30

 Thereupon, various neutral models have been suggested, all 

assuming a form of competition, for example, by limiting the number of types that a host can carry 

or by inducing homologous immunity. Yet, a neutral model that intrinsically assumes competition 

may not be appropriate for developing the framework to test for signs of competition, since it has 

no natural representation for the absence of competition, in contrast to our ecologically 

non-neutral models. Furthermore, a stable coexistence of 50% 50%  frequency is not a problem if 

one assumes types that are independent of each other. Even if types are epidemiologically 

indistinguishable (e.g. if they share the same transmission route and have similar infection cycles), 

it is reasonable that they converge to the same frequency if they are not interfering with each other 

during infection or transmission. 

  



So far, only a few studies have commented on the validity of using the OR  of 

co-occurrence to predict type replacement. This study is the first to provide conditions under 

which the OR  is an estimator of interactions and under which it is predictive for type replacement. 

Furthermore, our contribution provides analytical proofs and intuition for earlier findings, such as 

the manifestation of unobserved confounding and the reversed relationship between the OR  and 

type replacement due to cross-immunity. 

Type replacement following vaccination may have detrimental impact on public health. 

Prediction of type replacement based on the OR  of co-occurrence in cross-sectional studies has an 

intuitive appeal, which is mathematically grounded. However, when knowledge of the underlying 

mechanisms of interactions and the structure of confounding is lacking, observed patterns of 

co-occurrence allow for various explanations. Hence, the settings in which the OR  unambiguously 

indicates the possibility of type replacement is narrowed down to pathogens in endemic 

equilibrium, with a well understood infection cycle and natural immunity. As such, to assess 

vaccination effects on the prevalence of non-vaccine types, post-vaccine surveillance studies 

remain essential because potential pitfalls in predicting type replacement are pervasive. 
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Figure  1: The structure of two SIS models for two pathogen types with interactions in acquisition 

and clearance indicated by dashed arrows. We encode each of the infection states by a notation 

in which the i -th letter indicates the status with respect to the i -th type: S for susceptible and 

I  for infected. The susceptibility is assumed to be homogeneous in A and heterogeneous in B. 

B depicts only the subpopulation with susceptibility level z . 

Figure  2: The crude OR  as an estimator of the interaction parameter for acquisition (k ) in A and 

the reciprocal of the interaction parameter for clearance (
1

h
) in B. Homogeneous SIS model 

(solid): unbiased estimation. Heterogeneous SIS model (dashed-dotted): over-estimation. SIRS 

model with direct interactions (dotted): over-estimation of <1k  and under-estimation of >1k , 

unbiased estimation of h (overlapped by the solid line). SIRS model with indirect interactions 

(dashed): reversion bias. 

Figure  3: The crude OR  under independence in the heterogeneous SIS model depends on 

type-specific parameters. A: it varies as 
1  and 

2  vary, while 
1 2= =1   in A. B: it varies as 

1  

and 
2  vary, while 1 2

4
= =

7
  . For both A and B, = 3c  and ( )f z  is a discrete distribution with 

20%-80% mass at = 0.2z  and =1.8z , respectively. 

 

Figure  4: The structure of two SIRS models for two pathogen types with direct interactions in A 

and indirect interactions in B indicated by the dotted arrows. The transition rates not affected 

by type interactions are omitted. The dark gray areas indicate the terms in the numerator (N) of 

the OR , whereas the light gray areas indicate the terms in the denominator (D) of the OR , where 

( ) ( )
= =

( ) ( ) ( )

II SS SR RS RR N
OR

SI RI IS IR D

   

  
. 

 

Figure  5: The outcome of vaccination and the OR  agree when both mechanisms of interactions 

operate in the same direction (the upper right and lower left quadrants), but may differ when 

the two mechanisms operate in different directions (the upper left and lower right quadrants). 

=  ( )  denotes the (non-)occurrence of type replacement by the non-vaccine type. The line 

=1
k

h
 depicts the boundary between =  and =  in the homogeneous SIS model. 

  



Table 1: Parameter values for interaction parameter k  and h  corresponding synergistic, 

independent, and competitive interactions. 

   

 synergy independence competition 

acquisition >1k  =1k  <1k  
clearance 1

>1
h

 
1

=1
h

 
1

<1
h

 

 

  



Table 2: Parameter values for the interaction parameters k  and h  corresponding = , ,  o . 

   

 =  = o =  
Independent in clearance  >1k  =1k  <1k  
Independent in acquisition  1

>1
h

 
1

=1
h

 
1

<1
h

 

Both operating  >1
k

h
 =1

k

h
 <1

k

h
 

 

  



Figure 1A and 1B 

 

 

 

  



Figure 2A and 2B 
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eAppendix A The homogeneous SIS model

A.1 The linear system at the equilibrium

The equilibrium of the homogeneous SIS model in terms of {λ1, λ2, µ1, µ2, k, h} can be
obtained by solving the following linear system.

0
0
0
0

 =


−(λ1 + λ2) µ1 µ2 0

λ1 −(µ1 + kλ2) 0 hµ2

λ2 0 −(µ2 + kλ1) hµ1

0 kλ2 kλ1 −h(µ1 + µ2)



SS
IS
SI
II

 (1)

A.2 An alternative proof of result I

To better understand how the OR reduces to k
h
, we provide an alternative proof for result I

using the reversibility of the model. A model is reversible if the net �ow between any pair
of states is zero, i.e. for any state A and state B, the �ow from A to B equals the �ow from
B back to A. The �ow from A to B is given by �the prevalence in A� times �the transition
rate from A to B�, so that we have the following detailed balance equation:

A · qA→B = B · qB→A (2)

Checking the detailed balance equation for each pair of states in our model veri�es its
reversibility at the equilibrium. For example, the �ow from SS to IS equals the �ow from
IS back to SS, i.e.

SS · qSS→IS =
hµ1µ2λ1

C
= IS · qIS→SS (3)

This detailed balance property links the prevalence of states, which appear in the de�-
nition of OR, to the interaction parameters, which appear in the de�nition of the transition
rates, so that we have:

OR =
II

SI
/
IS

SS

=
qSI→II
qII→SI

/
qSS→IS
qIS→SS

=
kλ1
hµ1

/
λ1
µ1

=
k

h

(4)

The �rst equality of (4) shows that the OR is a ratio between two ratios, II
SI

and IS
SS

.
The second equality evokes the reversibility, which translates these two ratios to ratios of
transition rates between {II, SI} and between {IS, SS}. These transition rates then reduce
to k

h
according to the de�nitions. The reversibility is key to the correspondence OR = k

h
,

since the rest of the derivation follows according to the de�nitions.

1



eAppendix B The heterogeneous SIS model

B.1 The system of di�erential equations
dSS(z,t)

dt
= −(zλ1 + zλ2)SS(z, t) + µ1IS(z, t) + µ2SI(z, t)

dIS(z,t)
dt

= zλ1SS(z, t)− (µ1 + kzλ2)IS(z, t) + hµ2II(z, t)
dSI(z,t)

dt
= zλ2SS(z, t)− (µ2 + kzλ1)SI(z, t) + hµ1II(z, t)

dII(z,t)
dt

= kzλ2IS(z, t) + kzλ1SI(z, t)− h(µ1 + µ2)II(z, t)

(5)

B.2 The proof of OR > 1 under independence

Here, we prove that the crude OR is greater than 1 if the interactions are independent
(k = h = 1) at the equilibrium. Equivalently, we prove that the observed-to-expected ratio
is greater the 1, i.e. II > (IS + II)(SI + II). Let f(z) be the density function of the
susceptibility level so that

∫∞
0
f(z)dz = 1. For notational convenience, we also de�ne the

following normalized quantities for each z:

πII(z) = II(z)/f(z)

πI∗(z) =
(
IS(z) + II(z)

)
/f(z)

π∗I(z) =
(
SI(z) + II(z)

)
/f(z)

To verify II > (IS + II)(SI + II), we expand the two sides of the inequality. The left
hand side can be written as

II =

∫ ∞
0

II(z)dz

=

∫ ∞
0

πII(z)f(z)dz

=

∫ ∞
0

πI∗(z)π∗I(z)f(z)dz

=
(∫ ∞

0

f(z)dz
)(∫ ∞

0

πI∗(z)π∗I(z)f(z)dz
)

(6)

The third equality is true, since for each value of z the corresponding system of di�erential
equations follows the same structure as one of the homogeneous SIS, but with λi being
substituted by zλi (compare the system of ODE of the homogeneous SIS model and (5)).
In the homogeneous SIS model, OR = 1 at k = h = 1. Hence, for each z, OR(z) = 1
at k = h = 1. Equivalently, πII(z) = πI∗(z)π∗I . Lastly, the fourth equality holds, as∫∞
0
f(z)dz = 1.
The right hand side can be written as

(IS + II)(SI + II) =
(∫ ∞

0

IS(z) + II(z)dz
)(∫ ∞

0

SI(z) + II(z)dz
)

=
(∫ ∞

0

π1(z)f(z)dz
)(∫ ∞

0

π2(z)f(z)dz
)

(7)
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A

IS(z)

SS(z)

II(z)

SI(z)

λ1

zµ1

λ2

zµ2

kλ2

hzµ2

kλ1

hzµ1

Heterogeneous clearance rate

B

IS(z)

SS(z)

II(z)

SI(z)

zβ1I1

µ1

zβ2I2

µ2

kzβ2I2

hµ2

kzβ1I1

hµ1

Heterogeneous contact rate

eFigure 1: The structure of two heterogeneous SIS models for two pathogen types with
interactions in acquisition and clearance indicated by dashed arrows. The clearance rate
and contact rate are assumed to be heterogeneous in A and B, respectively. Ii denotes the
proportion of individuals infected by type i throughout the whole population.

We have now arrived at the setting in which we can apply the weighted version of Cheby-
shev's integral inequality. This inequality says that for any continuous function f(z) > 0
on [b, c], and continuous functions π1(z) and π2(z) on [b, c] that are both increasing or both
decreasing, the following holds:( c∫

b

f(z)dz

)( c∫
b

π1(z)π2(z)f(z)dz

)
>

( c∫
b

π1(z)f(z)dz

)( c∫
b

π2(z)f(z)dz

)
(8)

The last step is to prove that π1(z) and π2(z) are both increasing in z. For each z, πi(z) at
the equilibrium satis�es zλi(1− πi(z)) = µiπi(z), which can be rewritten as πi(z) =

zλi
(zλi+µi)

.

As πi(z) has a strictly positive derivative, i.e. dπi(z)
dz

= λiµi
(zλi+µi)2

> 0, πi(z) is increasing.
Again, in the same manner, heterogeneity in contact rate as given in eFigure 1A also

yields π1(z) and π2(z) that are increasing in z. Since at the equilibrium πi(z) satis�es
zβiIi(1− πi(z)) = µiπi(z), where z is now the varying contact rate and Ii is the proportion
of individuals infected by type i. This equation can be rewritten as πi(z) =

zβiIi
(zβiIi+µi)

. Ii has

the same value for all z at the equilibrium. As πi(z) has a strictly negative derivative, i.e.
dπi(z)
dz

= βiIiµi
(zβiIi+µi)2

> 0, πi(z) is increasing.

At last, heterogeneity in clearance as given in eFigure 1B rate yields π1(z) and π2(z)
that are decreasing in z. Since at the equilibrium πi(z) satis�es λi(1 − πi(z)) = zµiπi(z),
which can be rewritten as πi(z) =

λi
(λi+zµi)

. As πi(z) has a strictly negative derivative, i.e.
dπi(z)
dz

= −λiµi
(λi+zµi)2

< 0, πi(z) is decreasing.
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eAppendix C The SIRS models

C.1 Force of infection{
λ1 = cβ1(IS + II + IR)

λ2 = cβ2(SI + II +RI)
(9)

C.2 Direct interactions

dSS
dt

= −(λ1 + λ2)SS + γ1RS + γ2SR
dIS
dt

= λ1SS − (µ1 + kλ2)IS + γ2IR
dSI
dt

= λ2SS − (µ2 + kλ1)SI + γ1RI
dII
dt

= λ2IS + kλ1SI − h(µ1 + µ2)II
dRS
dt

= µ1IS − (λ2 + γ1)RS + γ2RR
dSR
dt

= µ2SI − (λ1 + γ2)SR + γ1RR
dRI
dt

= hµ1II + λ2RS − (µ2 + γ1)RI
dIR
dt

= hµ2II + λ1SR− (µ1 + γ2)IR
dRR
dt

= µ2RI + µ1IR− (γ1 + γ2)RR

(10)

C.3 Indirect interactions

dSS
dt

= −(λ1 + λ2)SS + γ1RS + γ2SR
dIS
dt

= λ1SS − (µ1 + λ2)IS + γ2IR
dSI
dt

= λ2SS − (µ2 + λ1)SI + γ1RI
dII
dt

= λ2IS + λ1SI − (µ1 + µ2)II
dRS
dt

= µ1IS − (kλ2 + γ1)RS + γ2RR
dSR
dt

= µ2SI − (kλ1 + γ2)SR + γ1RR
dRI
dt

= µ1II + kλ2RS − (hµ2 + γ1)RI
dIR
dt

= µ2II + kλ1SR− (hµ1 + γ2)IR
dRR
dt

= hµ2RI + hµ1IR− (γ1 + γ2)RR

(11)

C.4 The proof of result IV

We show that the OR is an unbiased estimator of 1
h
when there are only interactions in

clearance, but is biased for interactions in acquisition. Together, the OR becomes a biased
estimator of k

h
.

If types interact only through direct interactions in clearance, OR = 1
h
still holds due

to a form of reversibility between {SS, SR,RS,RR}, {II},{SI,RI} and {IS, IR}. These
four groups of states (as indicated by the four grey areas in Figure 4) coincide with the four
factors appearing in the de�nition of the OR.

4



The result OR = 1
h
can be derived in a similar way as (4). The corresponding detailed

balanced equations are

(SS + SR) · qSS→IS = (IS + IR) · qIS→RS
SI · qSI→II = II · qII→RI

(12)

Each equation of (9) corresponds to a pair of groups and describes the �ow between them.
For instance, the �rst equation corresponds to the pair {SS, SR,RS,RR} and {IS, IR}.
Note that state RS and state RR do not appear in the equation, since they do not have
direct transitions to {IS, IR}. Note also that SS · qSS→IS + SR · qSR→IR is written as
(SS + SR) · qSS→IS, since qSS→IS and qSR→IR are both equal to λ1.

Furthermore, the following proportionality holds:

SI · p = SI +RI

(SS + SR) · p = SS + SR +RS +RR
(13)

(10) links SI and SS + SR, which appear in the detailed balanced equations in (9), to
SI +RI and SS +RS + SR+RR, which appear in the de�nition of the OR. Hence, using
(9) and (10), the derivation of OR = 1

h
goes as follows:

OR =
II

SI · p
/

IS + IR

(SS + SR) · p

=
II

SI
/
IS + IR

SS + SR

=
qSI→II
qII→RI

/
qSS→IS
qIS→RS

=
λ1
hµ1

/
λ1
µ1

=
1

h

(14)

If types only interact through direct interactions in acquisition, the OR becomes a biased
estimator of k unless k = 1. OR = 1 still constitutes a valid boundary between synergy and
competition, however, the OR over-estimates k if k < 1, and under-estimates k if k > 1.
The bias arises as the reversibility breaks down for k 6= 1. The reversibility is violated, since
qSS→IS = λ1 and qSR→IR = kλ1, disrupting the proportionality in (10) so that the derivation
of (11) no longer holds.

Since the OR is biased for k, it is also biased for the composite of the interaction param-
eters, k

h
.
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eAppendix D Computing codes

In Python 3.

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from matplotlib.patches import Rectangle

# Define the systems of differential equations SIS (homogeneous), SIRSdirect, SIRSindirect, SIS_inhomogeneous

def SIS(state, t, c, beta1, beta2, mu1, mu2, gamma1, gamma2, k1, k2, h1, h2):

SS = state[0]

IS = state[1]

SI = state[2]

II = state[3]

lambda1 = c*beta1*(IS + II)

lambda2 = c*beta2*(SI + II)

dSS = -(lambda1 + lambda2)*SS + mu1*IS + mu2*SI

dIS = lambda1*SS - mu1*IS - k1*lambda2*IS + h1*mu2*II

dSI = lambda2*SS - mu2*SI - k2*lambda1*SI + h2*mu1*II

dII = k1*lambda2*IS + k2*lambda1*SI - (h2*mu1 + h1*mu2)*II

return [dSS, dIS, dSI, dII]

def SIRSdirect(state, t, c, beta1, beta2, mu1, mu2, gamma1, gamma2, k, h, m):

k1, k2, h1, h2 = k, k, h, h

# direct interactions

SS = state[0]

IS = state[1]

SI = state[2]

II = state[3]

RS = state[4]

SR = state[5]

RI = state[6]

IR = state[7]

RR = state[8]

lambda1 = c*beta1*(IS + II + IR)

lambda2 = c*beta2*(SI + II + RI)

dSS = - (lambda1 + lambda2)*SS + gamma2*SR + gamma1*RS

dIS = - (k1*lambda2 + mu1)*IS + lambda1*SS + gamma2*IR

dSI = - (k2*lambda1 + mu2)*SI + lambda2*SS + gamma1*RI

dII = - (h2*mu1 + h1*mu2)*II + k1*lambda2*IS + k2*lambda1*SI

dRS = - lambda2*RS + mu1*IS + gamma2*RR - gamma1*RS

dSR = - lambda1*SR + mu2*SI + gamma1*RR - gamma2*SR

dRI = - mu2*RI + h2*mu1*II + lambda2*RS - gamma1*RI

dIR = - mu1*IR + h1*mu2*II + lambda1*SR - gamma2*IR

dRR = mu1*IR + mu2*RI - (gamma1+gamma2)*RR

return[dSS, dIS, dSI, dII, dRS, dSR, dRI, dIR, dRR]

def SIRSindirect(state, t, c, beta1, beta2, mu1, mu2, gamma1, gamma2, k, h, m):

k1, k2, h1, h2 = k, k, h, h

# indirect interactions (competition -> cross-immunity)

SS = state[0]

IS = state[1]

SI = state[2]

II = state[3]

RS = state[4]

SR = state[5]

RI = state[6]

IR = state[7]

RR = state[8]
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lambda1 = c*beta1*(IS + II + IR)

lambda2 = c*beta2*(SI + II + RI)

dSS = - (lambda1 + lambda2)*SS + gamma2*SR + gamma1*RS

dIS = - (lambda2 + mu1)*IS + lambda1*SS + gamma2*IR

dSI = - (lambda1 + mu2)*SI + lambda2*SS + gamma1*RI

dII = - (mu1 + mu2)*II + lambda2*IS + lambda1*SI

dRS = - (k1*lambda2)*RS + mu1*IS + gamma2*RR - gamma1*RS

dSR = - (k2*lambda1)*SR + mu2*SI + gamma1*RR - gamma2*SR

dRI = - (h1*mu2)*RI + mu1*II + k1*lambda2*RS - gamma1*RI

dIR = - (h2*mu1)*IR + mu2*II + k2*lambda1*SR - gamma2*IR

dRR = h2*mu1*IR + h1*mu2*RI - (gamma1+gamma2)*RR

return[dSS, dIS, dSI, dII, dRS, dSR, dRI, dIR, dRR]

def SIS_heterogeneous(state, t, beta1, beta2, mu1, mu2, k1, k2, z_cup, z_tilde, N_cup, N_tilde):

S_cup = state[0]

S_tilde = state[1]

I1_cup = state[2]

I1_tilde = state[3]

I2_cup = state[4]

I2_tilde = state[5]

I12_cup = state[6]

I12_tilde = state[7]

E1_cup = I1_cup + I12_cup

E2_cup = I2_cup + I12_cup

E1_tilde = I1_tilde + I12_tilde

E2_tilde = I2_tilde + I12_tilde

l1 = beta1 * (E1_cup + E1_tilde)

l2 = beta2 * (E2_cup + E2_tilde)

dS_cup = - z_cup * (l1 + l2) * S_cup + mu1 * (N_cup - S_cup - E2_cup) + mu2 * (N_cup - S_cup - E1_cup)

dE1_cup = - mu1 * E1_cup + z_cup * l1 * S_cup + k2 * z_cup * l1 * (N_cup - S_cup - E1_cup)

dE2_cup = - mu2 * E2_cup + z_cup * l2 * S_cup + k1 * z_cup * l2 * (N_cup - S_cup - E2_cup)

dI12_cup = dE1_cup + dE2_cup + dS_cup

dI1_cup = dE1_cup - dI12_cup

dI2_cup = dE2_cup - dI12_cup

dS_tilde = - z_tilde * (l1 + l2) * S_tilde + mu1 * (N_tilde - S_tilde - E2_tilde) + mu2 * (N_tilde - S_tilde - E1_tilde)

dE1_tilde = - mu1 * E1_tilde + z_tilde * l1 * S_tilde + k2 * z_tilde * l1 * (N_tilde - S_tilde - E1_tilde)

dE2_tilde = - mu2 * E2_tilde + z_tilde * l2 * S_tilde + k1 * z_tilde * l2 * (N_tilde - S_tilde - E2_tilde)

dI12_tilde = dE1_tilde + dE2_tilde + dS_tilde

dI1_tilde = dE1_tilde - dI12_tilde

dI2_tilde = dE2_tilde - dI12_tilde

return [dS_cup, dS_tilde, dI1_cup, dI1_tilde, dI2_cup, dI2_tilde, dI12_cup, dI12_tilde]

# Get the equilibrium of a model with parameters: c, beta1, beta2, mu1, mu2, gamma1, gamma2, k1, k2, h1, h2

def equilibrium(plot, model, num_states, c, beta1, beta2, mu1, mu2, gamma1, gamma2, k1, k2, h1, h2):

# Initialize joint distribution

state0 = [1 / num_states] * num_states

parameters = (c, beta1, beta2, mu1, mu2, gamma1, gamma2, k1, k2, h1, h2)

# Set simulation length and step size

t_0, t_e, t_step = 0, 1000, 0.10

t = np.arange(t_0, t_e, t_step)

# Simulate

state = odeint(model, state0, t, args=parameters)

# Plot the population dynamics in time

if plot:

E1 = []

E2 = []

if num_states == 4:

[S, I1, I2, I12] = state

E1 = I1 + I12

E2 = I2 + I12
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else:

[SS, IS, SI, II, RS, SR, RI, IR, RR] = state

E1 = IS + II + IR

E2 = SI + II + RI

plt.figure()

plt.ylim((0, 1))

title = r'$k = {}, h = {}$'.format(k1, h1)

plt.title(title, fontsize=15)

plt.xlabel('t')

plt.plot(t, E1, '-', color='red', label=r'$E_1$')

plt.plot(t, E2, '-', color='blue', label=r'$E_2$')

plt.legend()

return state[-1,:]

# Plot the outcome of vaccination (Phi)

def plot_k_h_Phi_map(plot, model, num_states, c, beta1, beta2, mu1, mu2, gamma1, gamma2):

num_step, start, end = 30, 0.1, 2.5

parameters = np.linspace(start, end, num_step) # candidate values for the interaction parameter k and 1/h

x = np.repeat(parameters, num_step) # argument x for the Phi-map

y = np.tile(parameters, num_step) # argument y for the Phi-map

z1 = ["yellow"] * (num_step ** 2) # argument c for the Phi-map

z2 = ["yellow"] * (num_step ** 2) # argument c for the or-map

for i in range(num_step**2):

k1, k2 = x[i], x[i]

h1, h2 = 1 / y[i], 1 / y[i]

# k1, k2 = x[i], y[i]

# h1, h2 = 1, 1

eps = 0.000001

print(i, k1, h1)

# print(i, k1, k2)

prevalenceNVT = [0, 0] # prevalenceNVT[0] = post, prevalenceNVT[1] = pre

for l in range(len(beta2)):

betaNVT = beta1

betaVT = beta2[l] # beta of the VT, l=0 pre-vaccination, l=1 post-vaccination

# Simulate the equilibrium

eq = equilibrium(plot, model, num_states, c, betaNVT, betaVT, mu1, mu2, gamma1, gamma2, k1, k2, h1, h2)

odds_ratio = 0

if num_states == 4:

[s, i1, i2, i12] = eq

prevalenceNVT[l] = i1 + i12 # state is + state ii

if prevalenceNVT[l] > eps:

odds_ratio = (s * i12) / (i1 * i2)

else:

[ss, is_, si, ii, rs, sr, ri, ir, rr] = eq

prevalenceNVT[l] = is_ + ii + ir # state is + state ii + state ir

if prevalenceNVT[l] > eps:

odds_ratio = ((ss + rs + sr + rr) * ii) / ((is_ + ir) * (si + ri))

# Compute the odds ratio in the pre-vaccination era

if odds_ratio != 0 and odds_ratio < 1:

z2[i] = "red"

elif odds_ratio != 0 and odds_ratio > 1:

z2[i] = "green"

# Compute the outcome of vaccination Phi

if prevalenceNVT[0] < eps and prevalenceNVT[1] < eps :

z1[i] = "yellow"

elif prevalenceNVT[0] + eps > prevalenceNVT[1]:

z1[i] = "red"

elif prevalenceNVT[0] - eps < prevalenceNVT[1]:

z1[i] = "green"
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else:

z1[i] = "blue"

# Plot Phi-map

# red: Phi = -

# green: Phi = +

# yellow: Phi = na, NVT goes extinct in both the pre- and post-vaccination era

# blue: Phi = o

plt.figure()

plt.scatter(x, y, s=40, c=z1, alpha=1)

plt.xlim(0, x[-1] + (end - start)/num_step)

plt.ylim(0, y[-1] + (end - start)/num_step)

plt.xlabel(r"$k$", size=28, position=(0.9, 0.1))

plt.ylabel(r"$1/h$", size=28, position=(0.1, 0.7))

class_colours = ['red', 'green', 'blue', 'yellow']

class_names = [r'$-$', r'$+$', r'$o$', 'na']

recs = []

for i in range(0, len(class_colours)):

recs.append(Rectangle((0, 0), 1, 1, fc=class_colours[i], alpha=1))

plt.legend(recs, class_names)

# Plot h=1/k, h=1 and k=1

plt.plot(np.linspace(0, end, 100), 1/np.linspace(0, end, 100), '--', color='black', linewidth=5)

plt.axhline(y=1, linestyle='--', color='black', linewidth=5)

plt.axvline(x=1, linestyle='--', color='black', linewidth=5)

# Save the plot

filename = 'Plot_phi'

plt.savefig('Figure/' + filename + '.png')

# Plot or-map

# red: OR < 1

# green: OR > 1

plt.figure()

plt.scatter(x, y, s=40, c=z2, alpha=1)

plt.xlim(0, x[-1] + (end - start) / num_step)

plt.ylim(0, y[-1] + (end - start) / num_step)

plt.xlabel(r"$k$", size=28, position=(0.9, 0.1))

plt.ylabel(r"$1/h$", size=28, position=(0.1, 0.7))

class_colours = ['red', 'green', 'yellow']

class_names = [r'$OR<1$', r'$OR>1$', 'na']

recs = []

for i in range(0, len(class_colours)):

recs.append(Rectangle((0, 0), 1, 1, fc=class_colours[i], alpha=1))

plt.legend(recs, class_names)

# Plot h=1/k, h=1 and k=1

plt.plot(np.linspace(0, end, 100), 1/np.linspace(0, end, 100), '--', color='black', linewidth=5)

plt.axhline(y=1, linestyle='--', color='black', linewidth=5)

plt.axvline(x=1, linestyle='--', color='black', linewidth=5)

# Initialize parameters

c = 1 # Contact rate

beta1 = 1.2 # Acquisition probability, non-vaccine type

beta2 = 2, 2.5 # Acquisition probability, vaccine type, [0]post- and [1]pre-vaccination era

mu1, mu2 = 1, 1 # Clearance rates

gamma1, gamma2 = 1, 1 # Rate of waning immunity

num_states = 9 # Number of infection states (= 4, 9)

model = SIRSdirect # Model (= SIS, SIRSdirect, SIRSindirect)

plot = False # If True, plot the population dynamics in time,

# where E_i(t) is the prevalence of type i at time i.

# Plot the map for the outcome of vaccination (Phi)

# Type 1 is the non-vaccine type (NVT)

# Type 2 is the vaccine type (VT)

plot_k_h_Phi_map(plot, model, num_states, c, beta1, beta2, mu1, mu2, gamma1, gamma2)
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