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Abstract

To define potentially causal variants for autoimmune disease, we fine-mapped1,2 76 rheumatoid 

arthritis (11,475 cases, 15,870 controls)3 and type 1 diabetes loci (9,334 cases, 11,111 controls)4. 

After sequencing 799 1-kilobase regulatory (H3K4me3) regions within these loci in 568 

individuals, we observed accurate imputation for 89% of common variants. We defined credible 

sets of ≤5 causal variants at 5 rheumatoid arthritis and 10 type 1 diabetes loci. We identified 

potentially causal missense variants at DNASE1L3, PTPN22, SH2B3, and TYK2, and noncoding 

variants at MEG3, CD28-CTLA4, and IL2RA. We also identified potential candidate causal 

variants at SIRPG and TNFAIP3. Using functional assays, we confirmed allele-specific protein 

binding and differential enhancer activity for three variants: the CD28-CTLA4 rs117701653 SNP, 

MEG3 rs34552516 indel, and TNFAIP3 rs35926684 indel.

Rheumatoid arthritis is an autoimmune disease with citrullinated peptide reactivity where 

chronic inflammation leads to joint destruction5. Type 1 diabetes (T1D) arises through 

autoimmune reactivity to proinsulin6 and glutamic acid decarboxylase7, leading to 

destruction of pancreatic β cells and loss of insulin production. Genome-wide association 

studies have identified 101 rheumatoid arthritis loci3,8 and 53 T1D loci4; these alleles 

implicate CD4+ T-cell function in autoimmunity9–11. However, causal variants for most loci 

have yet to be defined. Pinpointing them will enable mechanistic investigation to identify the 

specific genes, regulatory structures, and genetic mechanisms central to autoimmunity.

Bayesian fine-mapping has been successfully applied to prioritize associated variants in 

complex diseases1,12–14. We fine-mapped 76 autosomal non-major-histocompatibility-

complex loci in rheumatoid arthritis (11,475 cases, 15,870 controls)3 and T1D (9,334 cases, 

11,111 controls) (Supplementary Table 1)4, covering 46 and 49 loci with known rheumatoid 

arthritis and T1D associations, respectively (Supplementary Table 2). To enable accurate 

comprehensive imputation, we used individuals genotyped on ImmunoChip, with dense SNP 

coverage in selected autoimmune disease loci. Our sample size is smaller than the largest of 

previously published association analyses4,8. However, Okada et al.8 used imputed 

genotypes but did not define credible sets, and while Onengut-Gumuscu et al.4 determined 

credible sets, they did not use imputation so their study included fewer than half of the 

variants assessed here. We fine-mapped rheumatoid arthritis and T1D together since 

potential causal variants for both diseases overlap functional elements in CD4+ T cells11.

Since fine-mapping methods are highly sensitive to missing data, we benchmarked different 

imputation strategies. After sequencing 799 1-kilobase regulatory (H3K4me3) regions in 

568 individuals within these loci, we observed that the 1000 Genomes cosmopolitan 

reference panel yielded the best results (Fig. 1), while indels and multi-allelic variants 
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remain challenging to impute (Supplementary Note, Supplementary Tables 3–7, and 

Supplementary Figs. 1–4).

After imputation, we calculated association statistics for 66,923 variants for rheumatoid 

arthritis and 66,942 variants for T1D (minor allele frequency (MAF) > 1%, imputation 

quality score (INFO) > 0.3; Hardy–Weinberg P > 10−5) at 76 loci. In rheumatoid arthritis 

and T1D, respectively, we identified 20 and 34 significant loci (P < 7.5 × 10−7), mostly 

consistent with previous studies (Supplementary Note and Supplementary Table 8). Using 

approximate Bayesian fine-mapping, we assigned posterior probabilities and defined a 95% 

credible set for each locus1,2.

Seven loci were significantly associated with both diseases (PTPN22, AFF3, CD28-CTLA4, 

BACH2, RASGRP1, PTPN2, and TYK2). Rheumatoid arthritis and T1D variant effect sizes 

were positively correlated in 64% of the tested loci (Methods, Supplementary Table 9, and 

Supplementary Fig. 5), suggesting shared signals. To prioritize possible shared causal 

variants, we analyzed a combined dataset (20,787 rheumatoid arthritis or T1D cases, and 

18,616 controls; Methods) and observed significant associations at 28 loci. Most (62%) 

associated variants in these loci were in linkage disequilibrium with the strongest associated 

variant in either rheumatoid arthritis or T1D (coefficient of determination (R2) > 0.8; 

Supplementary Table 10). The combined analysis indicated a potential shared signal at the 

PRKCQ locus (Supplementary Note) that was not significant in rheumatoid arthritis or T1D 

alone. We did not identify additional significant loci. We did not observe residual population 

stratification by combining both datasets (Supplementary Note, Supplementary Table 11, 

and Supplementary Fig. 6). Multinomial Bayesian fine-mapping accounting for opposing 

effects15 did not identify additional loci (Supplementary Note and Supplementary Table 12). 

Because six out of seven shared loci had smaller credible sets in the combined analysis than 

for the individual disease analyses (Supplementary Note), we decided to use the combined 

analysis for those six loci.

We narrowed down the list of probable causal variants to ≥5 in 5 out of 20 significant 

rheumatoid arthritis loci and 10 out of 34 significant T1D loci. We subsequently limited the 

analysis to 9 (rheumatoid arthritis), 14 (T1D), and 11 (combined) loci with ≤10 variants in 

the credible sets (Fig. 2a,b and Supplementary Table 13). Credible sets for these loci were 

not markedly altered when considering variants unique to the Haplotype Reference 

Consortium (HRC) reference panel (Supplementary Fig. 7 and Supplementary Table 14). To 

systematically investigate candidate causal variants for both diseases, we selected those with 

a posterior probability of >0.2 (Table 1). We considered variants to be potentially causal if 

they: (1) were a missense coding variant; or (2) were in a region with evidence of enhancer 

activity, and demonstrated allele-specific binding in electrophoretic mobility shift assays 

(EMSAs) and allele-specific enhancer function in luciferase assays (Supplementary Table 

15). Approximate Bayesian fine-mapping assumes a single causal variant per locus, although 

multiple independent causal variants may be present. Therefore, we applied conditional 

analysis, exhaustive testing of all variant pairs, FINEMAP16 (which assumes multiple 

variants), and haplotype analysis for regions where there was evidence of a secondary effect 

(P < 1.9 × 10−5).
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We identified 42 variants at 20 loci with a posterior probability of >0.2 (Table 1), including 5 

missense variants (PTPN22, DNASE1L3, SH2B3, TYK2, and SIRPG), 3 indels 

(ANKRD55, TNFAIP3, and MEG3), and 34 noncoding SNP variants (PTPN22, IL10, 

IFIH1, CD28-CTLA4, ANKRD55, BACH2, CCL21, IL2RA, INS, SH2B3, Chr13, MEG3, 

CTSH, TYK2, SIRPG, UBASH3A, and C1QTNF6). We observed a 16-fold posterior 

probability enrichment for missense variants. Potentially causal missense variants at 

PTPN22, SH2B3, and TYK2 are well described in the literature4,17–19 (Supplementary Note 

and Supplementary Figs. 8–10). We also noted potentially causal missense variants in 

DNASE1L3 and SIRPG.

DNASE1L3 encodes a nuclease that cleaves double-stranded DNA during apoptosis20. The 

3p14 DNASE1L3 locus confers rheumatoid arthritis susceptibility without evidence of a 

T1D effect (P > 0.02; Supplementary Fig. 11). The reported3 lead SNP rs35677470, 

encoding an p.Arg206Cys change in DNASE1L3, has a high posterior probability (P = 1.8 × 

10−8; posterior probability = 0.82; Supplementary Table 13) and is in linkage disequilibrium 

with another reported8 lead variant, rs73081554 (R2 = 0.79). Conditioning on p.Arg206Cys 

obviates any evidence of independent risk variants (P > 5 × 10−4; Supplementary Table 16). 

p.Arg206Cys has been implicated in systemic sclerosis21; other loss-of-function DNASE1L3 

mutations have been reported in familial forms of systemic lupus erythematosus22. 

p.Arg206Cys is a loss-of-function variant that abolishes the protein’s nuclease activity23.

Within 20p13, we identified a p.Val263Ala signal-regulatory protein gamma (SIRPG) 

missense variant with modest posterior probability (rs6043409; P = 3.9 × 10−10; posterior 

probability = 0.24) for T1D (Supplementary Fig. 12 and Supplementary Table 13). 

Conditional analysis using rs6043409 obviated any association signal in the locus (P > 2 × 

10−3). p.Val263Ala is in the D3 domain24. While D3 has unknown function, homologous D1 

and D2 immunoglobulin-like domains mediate interaction with CD47 ligands and SIRPG 

dimerization25–27. We observed linkage disequilibrium (R2 > 0.8) with protein quantitative 

trait loci (QTL) and expression QTL (eQTL) SNPs (Supplementary Table 17), suggesting 

that p.Val263Ala might cause a SIRPG conformational change that alters stability, structure, 

or function. Since p.Val263Ala has unknown function, the two noncoding variants in the 

SIRPG credible set with comparable posterior probabilities and regulatory effects may 

potentially be causal. However, given the enrichment of missense variants in our data and 

elsewhere28,29, we consider p.Val263Ala as the strongest candidate causal variant at this 

locus.

We identified noncoding alleles with allele-specific function at CTLA4–CD28, TNFAIP3, 

and MEG3 in regions with evidence of CD4+ T-cell enhancer function (Table 1). We 

identified the rs61839660 variant at IL2RA with a high posterior probability (0.85), which 

was recently demonstrated to have allele-specific regulatory and cellular functions 

confirmed by CRISPR assays30. Detailed analyses of all other loci with ≥10 variants in the 

95% credible set are presented in the Supplementary Note and Supplementary Figs. 13–24.

CD28 and CTLA4 are central to the regulation and differentiation of T cells20. The 2q33.2 

CD28–CTLA4 locus is shared by rheumatoid arthritis and T1D31. In the combined analysis, 

a single variant had a high posterior probability (rs3087243; P = 1.4 × 10−16; posterior 
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probability = 0.91) near CTLA4, which also has the largest posterior probability in T1D (P = 

1.6 × 10−15; posterior probability = 0.48; Fig. 3a, Supplementary Fig. 25a, and 

Supplementary Table 13), but not in rheumatoid arthritis (P = 1.6 ×10−8; posterior 

probability = 0.02). Incontrast,rs117701653nearCD28 (R2 = 0.03 with rs3087243) carried 

the highest posterior probability in rheumatoid arthritis (P = 3.5 ×10−10; posterior 

probability = 0.67). In conditional analysis on rs3087243, rs117701653 demonstrated an 

independent effect (P = 4.0 × 10−8; Fig. 3a and Supplementary Table 16). The FINEMAP16 

program identified the rs117701653 + rs3087243 pair as having the highest posterior 

probability (0.05; Supplementary Table 18), consistent with an analysis where we tested all 

SNP pairs exhaustively in rheumatoid arthritis (Fig. 3b and Supplementary Fig. 25b). 

Haplotype analysis demonstrated independent protective effects of rs3087243-A and 

rs117701653-C alleles in rheumatoid arthritis and T1D (Fig. 3c), suggesting that 

rs117701653 might similarly influence T1D risk (P = 0.03 in the conditional haplotype 

analysis). A previous association study identified rs1980422 as the variant with the strongest 

association in the CD28 region8 (R2 = 0.02 with rs117701653 and R2 = 0.04 with 

rs3087243). Haplotype analysis indicated that rs1980422 imperfectly tags high-frequency 

haplotypes defined by rs3087243 and rs117701653 (Supplementary Fig. 25c). Both 

rs117701653 and rs3087243 overlap H3K4me3 peaks in immune cells and disrupt protein-

binding motifs (Supplementary Tables 19–25 and Supplementary Note). Only rs3087243 

was in linkage disequilibrium with an eQTL (CTLA4 in CD4+ and CD8+ cells and testis; R2 

> 0.8; Supplementary Table 17).

We observed allele-specific protein binding and enhancer activity for rs117701653, but not 

rs3087243 (Fig. 3d). The rs117701653-C allele showed higher specific binding than the A 

allele in Jurkat T-cell nuclear extracts by EMSA (Supplementary Fig. 25d) and conferred 

higher luciferase expression (P = 0.0017; Fig. 3e). The binding is lineage specific: it was 

absent in THP-1 monocytic cells (Supplementary Fig. 25d). We observed peak overlap in an 

assay for transposase-accessible chromatin sequencing (ATAC-Seq) for rs117701653 in 

CD4+ T cells (Supplementary Table 25) and a subtle increase in luciferase expression with 

the C allele after anti-CD3/CD28 cell stimulation (P = 0.02; Supplementary Fig. 25e), 

suggesting that binding may be stimulation dependent. While the rheumatoid arthritis 

credible set variant rs55686954 (R2 = 0.91 with rs117701653, posterior probability = 0.27) 

showed allele-specific protein binding, it had no evidence of allele-specific enhancer 

function (Supplementary Fig. 25d,e). Promoter-capture Hi-C assays32 demonstrated 

genomic contacts between the rs117701653 region and the CTLA4 promoter and a region 

downstream of RAPH1 (Supplementary Fig. 26), suggesting that, despite its proximity to 

CD28, the allele may influence CTLA4 or RAPH1 gene regulation.

MEG3 is a noncoding RNA tumor suppressor gene whose transcript binds p53 (ref. 33). 

Paternal alleles carry greater risk34 in this 14q32.2 T1D locus. It shows no association to 

rheumatoid arthritis (P > 0.04). Two variants with >0.2 probabilities in the credible set were 

the rs34552516 indel (P = 1.1 × 10−9; posterior probability = 0.42) and rs56994090 intronic 

variant (P = 1.1 × 10−9; posterior probability = 0.44; linkage disequilibrium with 

rs34552516, R2 = 0.99; Fig. 4a, Supplementary Fig. 27a, and Supplementary Table 12). 

While we observed no evidence of independent variants conditioning on rs34552516 (P > 

0.04; Supplementary Table 13), FINEMAP analysis could not exclude the possibility of a 
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secondary association (Supplementary Table 18 and Supplementary Note). Both MEG3 
variants overlap DNAse-I hypersensitive sites (DHS) and H3K4me3 regions in multiple cell 

types (Supplementary Tables 20 and 21), but do not overlap ATAC-Seq peaks after 

stimulation (Supplementary Table 25) and are not in high linkage disequilibrium (R2 > 0.8) 

with QTL SNPs.

We observed that the rs34552516-TC allele demonstrated specific Jurkat cell nuclear extract 

binding (Fig. 4b) and increased luciferase activity compared with empty vector (P = 0.01) 

and the T allele (P < 0.05; Fig. 5c). We observed no specific binding in THP-1 cells 

(Supplementary Fig. 27b), indicating cell-type specificity. In contrast, we observed no allele-

specific binding for rs56994090 (Fig. 4b). The region harboring rs34552516 in promoter-

capture Hi-C data32 showed contacts to DIO3 and RP11–1029J19 promoters 

(Supplementary Fig. 26), suggesting multiple downstream genes. We favor rs34552516 as 

potentially causal based on our functional evidence, but acknowledge that these assays are 

limited and cannot exclude rs56994090 function that may occur in other unexamined 

cellular contexts.

The 6q23.3 TNFAIP3 gene encodes A20, which inhibits nuclear factor-κB signaling and 

prevents apoptosis20. It is associated with multiple autoimmune diseases35–41, including 

rheumatoid arthritis, but not T1D (P > 2.3 × 10—4). The indel rs35926684 carries the highest 

posterior probability (P = 6.5 × 10—12; posterior probability = 0.24; Fig. 5a, Supplementary 

Table 13, and Supplementary Fig. 28a) of 9 variants in the credible set and is in linkage 

disequilibrium with the previously identified SNPs rs17264332 (R2 = 0.86)8 and rs6920220 

(R2 = 0.88)3. Conditional analysis identified independent association at rs58721818 (P = 3.6 

×10−5; R2 = 0.05 with rs35926684; Fig. 5a and Supplementary Table 16). A previous study3 

identified secondary signals at rs5029937 (linked to rs58721818; R2 = 0.84) and 

rs13207033. Exhaustive pairwise analysis demonstrated comparable association for the 

rs35926684 + rs58721818 pair (−log10[P] = 13.95) and the most strongly associated 

rs6920220 + rs58721818 pair (−log10[P] = 14.21; Fig. 5b and Supplementary Fig. 28b). 

Haplotypes with the rs35926684-G allele increased rheumatoid arthritis risk, even in 

absence of the highly linked rs6920220-A risk allele (that is, GGGC versus GAGC; Fig. 5c), 

although this effect was not significant in conditional haplotype analysis (P = 0.14). 

Consistent with our exhaustive pairwise search, FINEMAP identified the rs35926684 + 

rs58721818 combination as having the thirteenth highest posterior probability 

(Supplementary Table 18).

The rs35926684 indel alters binding motifs, overlaps enhancer marks and Encyclopedia of 

DNA Elements transcription factor binding site (TFBS) chromatin immunoprecipitation 

sequencing peaks in immune cell types (Supplementary Note and Supplementary Tables 20, 

21, and 23–25), and is in linkage disequilibrium (R2 > 0.8) with a methylation QTL in 

neutrophils (Supplementary Table 17). EMSA identified stronger specific binding of Jurkat-

cell nuclear extract for the rs35926684-GA allele than the G allele (Fig. 5d and 

Supplementary Fig. 28c). Luciferase assays demonstrated increased enhancer activity with 

the GA allele compared with the empty vector (P = 7 × 10−4) and G allele (P = 0.053; Fig. 

5e). We observed no specific binding in THP-1 cells, indicating cell-type specificity 

(Supplementary Fig. 28c). We observed no allele-specific binding for rs6920220 
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(Supplementary Fig. 28c) or the other four alleles in partial linkage disequilibrium with 

rs35926684 (Posterior probability > 0.1), except for rs62432712. We did not observe allele-

specific enhancer activity for rs62432712 (Supplementary Fig. 28d). Hence, for this locus, 

we favor rs35926684 as the potentially causal variant since it has the best evidence of allele-

specific activity. Nevertheless, the presence of multiple alleles in linkage disequilibrium (R2 

> 0.86) provides ambiguity at this locus. Interestingly, in promoter-capture Hi-C data, the 

rs35926684 region contacts the TNFAIP3 promoter42 and the IL22RA and IFNGR1 
promoters (Supplementary Fig. 26)32, suggesting that multiple genes may be influenced by 

this rheumatoid arthritis risk allele.

Our study illustrates some challenges of fine-mapping. First, only a few loci had ≤10 

plausible causal variants, and in even fewer was it possible to identify promising candidates. 

Nonetheless, identifying plausible candidates in even a few instances is valuable. Second, 

we identified multiple potentially causal variants that were indels. Indels are the most likely 

to be missed or poorly imputed by current imputation reference panels (Supplementary 

Note), although coverage could improve with more complete reference panels based on 

high-depth whole-genome sequencing data. Third, since most loci have many plausible 

variants with low posterior probabilities, strategies to accurately predict causal variation 

from functional annotations are critical. This will require more precise noncoding maps that 

define regulatory elements central to the functions of pathogenic cell types.

We used a posterior probability of >0.2 to prioritize variants for functional follow-up, which 

allowed us to include variants that might have been excluded by fluctuations in calculated 

probabilities caused by quality control, genotyping error, imputation quality, and parameter 

choices. This threshold is relatively stringent (only 42 variants passed it in our entire study), 

and variants with a posterior probability of <0.2 may also be worthy of further investigation. 

We focused on loci with ≤10 variants in the 95% credible set; 12 loci had >10 variants in the 

95% credible set and at least 1 variant with a posterior probability of >0.2 (Supplementary 

Table 26). In the RASGRP1 and PRKQC credible sets, we observed a single variant with 

tenfold higher posterior probability than the remaining variants, but we did not investigate 

these loci in detail since they had weaker association and their credible set size suggests 

extensive linkage disequilibrium, making determination of the functional impact more 

difficult.

We used Jurkat T-cell lines for EMSA and luciferase assays since T cells are critical to the 

genetic etiology of rheumatoid arthritis and T1D. We acknowledge that, in vivo, many 

contexts may be relevant, some of which may not be captured by these assays. 

Consequently, many of the remaining variants with a posterior probability of >0.2 are 

plausible candidates that cannot be ruled out. Furthermore, our study is limited in identifying 

causal molecular mechanisms and genes. First, variants may be linked to multiple genes. For 

example, the region harboring the rs117701653 variant shows chromatin contacts with the 

CTLA4 promoter and the RAPH1 gene. Second, only a limited number of prioritized 

variants were in linkage disequilibrium with different molecular QTLs. As such, the specific 

gene(s) accounting for disease susceptibility remain(s) to be determined. Despite these 

limitations, we believe that the combination of statistical evidence with functional follow-up 

is a powerful way to prioritize potentially causal variants. Defining cellular models that best 
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represent the pathogenic cellular contexts is an essential component for this functional 

follow-up.

Methods

Ethics.

This study complies with all relevant ethical regulations. The study protocol was approved 

as an exempt study by Brigham and Women’s Hospital. Institutional Review Board approval 

for the original genotyping studies is described separately3,4.

Patient collections.

We used genotyping data from samples collected on the ImmunoChip platform 

(Supplementary Table 1)3,4. For rheumatoid arthritis, we used data for 11,475 cases and 

15,870 controls from 6 different cohorts (from the UK, the Swedish Epidemiological 

Investigation of Reumatoid Arthritis, the USA, the Netherlands, Umeå (Sweden), and 

Spain)3. For T1D, we used data for 12,241 cases and 14,636 controls from 2 different 

cohorts4: the Type 1 Diabetes Genetics Consortium (T1DGC) family collection, and the UK 

Genetic Resource Investigating Diabetes (GRID), British 1958 Birth Cohort, and UK Blood 

Service collection. To include trios from the Type 1 Diabetes Genetics Consortium cohort in 

the case-control analysis, we generated pseudocontrol pairs for each affected individual 

using the untransmitted alleles from the parents of that individual. As a consequence, the 

final numbers of individuals for T1D were 9,334 cases and 11,111 controls (including 1,661 

pseudocontrols). Genotype quality control was performed as described in the previously 

published studies. Additionally, we merged the genotype data for the different cohorts within 

T1D and rheumatoid arthritis using PLINK43, and converted genomic coordinates using the 

University of California, Santa Cruz liftOver tool44 and the hg18ToHg19 chain file. Variants 

unable to liftOver were removed. We then replaced the variant identifiers using National 

Center for Biotechnology Information Database of Single Nucleotide Polymorphisms 

(dbSNP) build 13845. Finally, we removed variants with a MAF of <0.5%.

Imputation.

To assess the imputation strategy best suited for fine-mapping, we tested three reference 

panels: (1) the European subpopulation of 1000 Genomes (n = 503); (2) the cosmopolitan 

panel of 1000 Genomes (n = 2,504); and (3) the HRC version 1.1 reference panel (n = 

32,611). We matched variants to each reference panel, removed variants absent in the 

reference panel, and aligned the strands of the remaining ImmunoChip genotypes. We 

extended the disease loci upstream and downstream by 1 Mb. We excluded variants when 

alleles could not be matched. For C/G and A/T variants, we removed the variant when the 

minor allele was unequal and the MAF was <45%. For multi-allelic variants, we ensured 

that the allele encoding was identical to the reference panel variant. This resulted in a 

different number of input variants for each imputation strategy (Supplementary Table 6). We 

imputed genotypes into rheumatoid arthritis and T1D separately. We phased and imputed the 

1000 Genomes reference panels using Beagle version 4.1 (22Apr16.1cf)46. To accommodate 

computational constraints of Beagle, we split the rheumatoid arthritis and T1D datasets into 

30 batches, randomizing cases and controls between batches, while maintaining trio 
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structure in the T1D dataset. Since the HRC version 1.1 reference panel genotype data are 

not publicly available, we evaluated different imputation servers and settings for the T1D 

dataset, to determine their effects on imputation output. On the Sanger Institute imputation 

server (date of access: 11 May 2016), we used prephasing with either EAGLE (version 

2.3.4)47 or SHAPEIT (version 2.r837)48, followed by imputation with PBWT (version 

3.0)49. On the Michigan University server (date of access: 5 July 2016), we split the dataset 

into three batches and used prephasing with EAGLE47 and imputation by MiniMac50. For 

rheumatoid arthritis, we performed HRC imputation on the Sanger imputation server using 

EAGLE prephasing followed by PBWT imputation. Finally, we locally performed 1000 

Genomes imputation by first phasing with EAGLE, and subsequently imputing using 

PBWT. We then merged the imputed dosages and probabilities from each batch (if any) for 

each imputation reference panel and replaced the variant identifiers in the imputed output 

using National Center for Biotechnology Information dbSNP build 138. We replaced 

genotypes for variants genotyped on ImmunoChip with the original genotypes. Genotyped 

variants correlated with genotypes after imputation (R2 > 0.99). Finally, we recalculated the 

imputation quality scores for each imputed variant in each dataset: we used the INFO score 

for biallelic variants and Beagle version 4.1 allelic-R2 for multi-allelic variants.

Targeted sequencing.

To test the accuracy of imputation, we sequenced 900 regions of 1,000 base pairs (bp) 

around H3K4me3 peak centers overlapping loci associated with either disease in 864 

individuals: 384 unrelated rheumatoid arthritis and 480 T1D individuals (160 trios), of 

which 149 and 480 were on ImmunoChip, respectively. We generated 100-bp paired-end 

reads with the Illumina MiSeq platform. Sequencing was performed at The Feinstein 

Institute for Medical Research at Northwell Health, and at The Center for Public Health 

Genomics, at the University of Virginia. We used BWA-mem51 (version 0.7.12) to align 

reads to the hg19 reference genome. We tagged and removed duplicate reads using Picard 

MarkDuplicates. We removed 101 regions where >50% of the samples had <20× coverage at 

>80% of sequenced bases, and removed 86 samples having <20× coverage at 90% of 

sequenced bases. We called genotypes using GATK version 3.4, following the recommended 

guidelines for using HaplotypeCaller52 in a joint genotype-calling approach. To determine 

the impact of local alignment on indel calls, we also called variants using the 

UnifiedGenotyper present in GATK. We then set genotypes with <10× coverage and 

genotype quality (QUAL) <30 to missing, and excluded variants with >5% missingness. We 

correlated called genotypes with ImmunoChip genotypes to identify and remove (when the 

coefficient of correlation (r) < 0.95) possible sample swaps and mismatched samples, 

resulting in 568 final samples (439 for T1D and 129 for rheumatoid arthritis). Finally, we 

selected variants with MAF > 1%, resulting in 1,862 variants within the 76 rheumatoid 

arthritis- and T1D-associated regions.

Combined dataset.

Before the association analysis, we merged the data for the rheumatoid arthritis and T1D 

dataset, imputed with the cosmopolitan reference panel of 1000 genomes. We identified 

shared controls between datasets by generating a list of linkage disequilibrium pruned 

variants from the ImmunoChip genotypes using PLINK43 (using --indep-pairwise 1000 100 
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0.2) and then used this list to determine the genetic similarity (unified additive 

relationship)53 between each pair of samples across both datasets. We considered sample 

pairs with a unified additive relationship of >0.2 genetically related, and randomly selected 

one sample of the pair to be included. We considered the remaining sample pairs unrelated. 

We finally merged genotypes and imputation probabilities from the selected samples and 

recalculated the imputation INFO scores for the merged genotypes as described earlier.

Fine-mapping and statistical analysis.

We limited our association analysis to variants with an overall MAF of >1%, a Hardy-

Weinberg P value of > 10−5 in controls, and an overall INFO score >0.3. The Hardy–

Weinberg P value was calculated using an exact test for biallelic variants and a Pearson’s 

chi-squared test for multi-allelic variants. We then split multi-allelic variants, creating a 

single variant for each alternative allele. To test each variant for association with disease, we 

used logistic regression, assuming a log-linear relation between the number of alternative 

alleles and case-control status. In the rheumatoid arthritis dataset, the null model included 

the first ten principal components calculated over the genotype covariance matrix, as 

described previously3, and five additional covariates indicating the cohort. For T1D, we 

included 12 regional indicator variables in the null model, as described previously4, and an 

additional variable indicating the cohort. For the joint analysis, the null model included all 

covariates for the T1D and rheumatoid arthritis datasets and an additional covariate 

indicating the sample originating dataset. We recoded the imputation probabilities to a 

dosage value ranging between 0 and 2 (that is P(AB) + 2 × P(BB)). Finally, we calculated 

the P value for the association as the difference in deviance between the null model and 

alternative model containing the imputation probabilities, which follows a chi-squared 

distribution with one degree of freedom. We corrected for multiple testing using a study-

wide Bonferroni threshold using the maximum number of tests across datasets (P < 7.5 × 

10−5 ∼ 0.05/67,156). To test whether our model was properly adjusting for population 

stratification when performing the combined analysis, we also evaluated using the first 20 

principal components as covariates. We obtained principal components with the PLINK43 –

pca command using the non-imputed and pruned combined ImmunoChip genotypes. By also 

including a covariate indicating the source dataset of each individual, we accounted for any 

residual technical differences caused by rheumatoid arthritis and T1D samples being 

genotyped and imputed independently.

Definition of credible sets.

To define potentially causal variants for each locus, we calculated posterior probabilities 

using the approximate Bayesian factor (ABF)1,2 under the assumption of a single causal 

variant per locus. This framework assumes that the association effect sizes follow a 

distribution of N(0, V) under H0, with V being the squared standard error. Under H1, the 

framework assumes a distribution following N(0,V + W), where W is (ln[1.5]/1.96)2, 

reflecting the prior of observing an odds ratio of 1.5. The ABF for an observed effect size β 
is then calculated as the ratio of P(β∣H0)/P(β∣HA). Using the sum of the ABF for all variants 

in the locus, we calculate the posterior probability (PP) for variant i as:
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PPi =
ABFi

∑k = 0
n ABFk

Following calculation of the posterior probability, we created credible sets by sorting 

associations descending on the basis of their posterior probability and including associations 

such that the sum of posterior probability was >0.95.

Detecting secondary associations.

To determine the presence of multiple independent effects, we performed conditional 

analyses using logistic regression. For each locus with a significant association, we included 

the top-associated variant as a covariate in the null and alternative models and repeated the 

association analysis for that locus. We considered secondary associations significant when P 
< 1.9 × 10−5 (Bonferroni correction for maximum number of variants in significant loci: 

0.05/2,704). We then performed exhaustive pairwise association analyses to test whether the 

primary and secondary associations together provided the strongest pairwise association 

signal given all possible pairs of variants in the locus. We calculated a P value using the 

difference in deviance between the null and alternative models, following a chi-squared 

distribution with two degrees of freedom.

Finally, for loci with two or more independent associations, we assessed whether the risk 

alleles for the associated variants were located on the same haplotypes. We derived 

haplotypes from the phased imputation output (for example, four haplotypes for two 

independent variants). We removed all haplotypes with a frequency of <1% and individuals 

having those haplotypes, and used the haplotype with the highest frequency as a reference. 

We then used logistic regression to test remaining haplotypes for association, assuming a 

log-linear relationship between the number of haplotype copies and disease status. To 

correct for population differences, our null model included covariates as described above.

We also performed fine-mapping using FINEMAP version 1.116, which allows multiple 

independent associations per locus. As input, we used the summary statistics for the 

individual disease association analyses and genotype correlation matrices as linkage 

disequilibrium estimates. Finally, we assessed whether opposite effects between rheumatoid 

arthritis and T1D may cause lower power in the combined analysis by applying Trinculo 

version 0.9615—a method that implements multinomial logistic regression. As covariates for 

this analysis, we used the 20 principal components and indicator variable described above, to 

prevent multicollinearity.

Overlap with eQTLs, H3K4me3 peaks, DNAse-I hypersensitive sites, enhancers, and 
motifs.

To provide functional annotation for the identified variants, we assessed overlap with 

eQTLs, H3K4me3 peaks, DNAse-I hypersensitive sites, promoters, and enhancers. We used 

eQTLs from an RNA sequencing-based eQTL meta-analysis of 2,116 whole blood 

samples54, a study assessing eQTLs in CD4+ T cells from 461 individuals55, a study 

assessing eQTLs in CD4+ and CD8+ cells from 313 individuals56, and tissue-specific eQTLs 
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from the Genotype–Tissue Expression (GTEx) project57. We also included molecular QTLs, 

such as histone QTLs, methylation QTLs, and protein QTLs56,58. For each variant in a 

credible set, we considered a QTL to be overlapping when it was in high linkage 

disequilibrium (R2 > 0.8) with the top QTL for a given gene, methylation probe, histone 

mark, or protein. For calculation of linkage disequilibrium, we used the European 

subpopulation of 1000 Genomes.

For further annotation, we determined the overlap of variants with a posterior probability of 

>0.2 with H3K4me3 peaks, DNAse-I peaks, and ChromHMM59 genome segmentations 

from 12 imputed epigenetic marks from the Roadmap Epigenomics Consortium60, 

consisting of 127 consolidated epigenomes from different cell types. Furthermore, we 

determined whether candidate causal variants affected protein-binding motifs or 

transcription factor binding sites using HaploReg61. Finally, we determined overlap with 

TFBSs using Encyclopedia of DNA Elements project transcription factor chromatin 

immunoprecipitation sequencing62 and determined whether these variants overlapped 

conserved TFBS motifs by defining a 40-bp region around each variant, and using the 

Homer63 software to test all known motifs in vertebrates.

ATAC-Seq time series.

We applied ATAC-Seq64 to measure chromatin accessibility in a time series after 

stimulation. We used a leukopak (30 ml whole blood) from a healthy anonymous donor to 

isolate peripheral blood mononuclear cells using Ficoll tubes, which were stored in 500 μl 

aliquots of 100 × 106 cells in liquid nitrogen. Cells were subsequently thawed and stained 

with anti-biotin microbeads to magnetically select CD4+ Tmem cells. Cells were 

resuspended and transferred to 24-well plates in 3 ml aliquots of 6 × 106 cells and stimulated 

using Dynabeads (Human T-Activator CD3/CD28 for T Cell Expansion and Activation; Life 

Technologies) in a ratio of two cells per bead. Samples of 100,000 cells were taken at 0, 1, 2, 

4, 8, 12, 24, and 48 h after stimulation. Nucleosome isolation and ATAC-Seq open 

chromatin sequencing were performed as described earlier64. Sequenced reads were mapped 

to the hg19 reference genome using BWA-mem. Reads mapping to the mitochondrial 

genome or to multiple genomic locations, and duplicate reads (labeled by Picard 

MarkDuplicates (version 1.128)) were removed, and reads were shifted +4 and −5 bp for the 

reverse and forward strands, respectively. Enrichment for open chromatin was determined by 

calling peaks using MACS version 2.1.0 (ref. 65) (default settings).

Cell lines.

Jurkat and THP-1 cell lines were obtained from the American Type Culture Collection 

(TIB-152 and TIB-202). Jurkat cells were grown in complete Roswell Park Memorial 

Institute (RPMI) (RPMI-1640; Gibco, with 10% decomplemented fetal bovine serum, 

penicillin and streptomycin) and THP-1 cells in complete RPMI supplemented with 2-

mercaptoethanol to a final concentration of 0.05 mM. Both cell lines were grown in a 37°C 

incubator with 5% CO2.
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EMSAs.

EMSAs were performed using the LightShift Chemiluminiscent EMSA Kit (Thermo 

Scientific). Single-stranded oligonucleotides corresponding to 30–32 nucleotide fragments 

of the human genome with the SNP of interest in the middle were purchased from Integrated 

DNA Technologies (Supplementary Table 27) and biotinylated using the Biotin 3′ End 

DNA Labeling Kit (Thermo Scientific). Double-stranded oligonucleotides were generated 

by mixing equal amounts of biotin-labeled (for the probe) or unlabeled (for the competitor) 

complementary oligonucleotides and incubated for 5 min at 95°C and then 1 h at room 

temperature.

Nuclear extract from Jurkat and THP-1 cells was obtained using the NE-PER Nuclear and 

Cytoplasmic Extraction Reagents (Thermo Scientific). Protein extracts were dialyzed using 

a dialysis membrane with a molecular weight cutoff of 12–14 kDa (Spectrum Spectra) 

against 1 l of dialysis buffer (10 mM Tris pH 7.5, 50 mM KCl, 200 mM NaCl, 1 mM 

dithiothreitol, 1 mM phenylmethane sulfonyl fluoride, and 10% glycerol) for 16 h at 4°C 

with slow stirring. Protein inhibitor cocktail (Sigma) was added to a final concentration of 

2.5×. The protein concentration was measured using the Pierce BCA Protein Assay Kit 

(Thermo Scientific).

The standard binding reaction contained 2 μl of 10× Binding Buffer (100 mM Tris pH 7.5, 

500 mM KCl and 10 mM dithiothreitol), 2.5% glycerol, 5 mM MgCl2, 0.05% NP40, 50 ng 

Poly(dI:dC), 20 fmol biotin-labeled probe, and 16 μg nuclear extract in a final volume of 20 

μl. For competition experiments, a 200-fold molar excess (4 pmol) of unlabeled probe was 

added. Variations to these conditions are indicated in the corresponding figure 

(Supplementary Figures 25D, 27B, and 28C).

Binding reactions were incubated at room temperature for 30 min and loaded onto a 6% 

polyacrylamide 0.5× TBE Gel. After sample electrophoresis and transfer to a nylon 

membrane, transferred DNA was crosslinked for 10 min, and the biotinylated probes were 

detected by chemiluminescence followed by film exposure. Original films are presented in 

Supplementary Fig. 29.

Luciferase reporter assay.

The double-stranded oligonucleotide containing the SNP of interest (obtained as described 

above) was cloned downstream from the luciferase gene in the luciferase reporter vector 

pGL3 promoter (Promega). Unlabeled double-stranded oligonucleotides containing the 

corresponding SNPs were amplified with specific primers containing the BamHI restriction 

site obtained from Integrated DNA Technologies (Supplementary Table 28). The PCR was 

carried out in 50 μl reaction volume under the following program: 94 °C for 3 min; 10 cycles 

at 94 °C for 30 s, 60 °C for 40 s, and 68 °C for 30 s; 15 cycles at 94 °C for 30 s, 60 °C for 40 

s, and 68 °C for 30 s; and 72 °C for 10 min (AccuPrime Taq; Invitrogen). Both the PCR 

products and pGL3 promoter vector were digested with BamHI (New England Biolabs) for 

1h at 37 °C, and linearized vector was then dephosphorylated for 30 min at 37 °C with the 

Quick Dephosphorylation kit (New England Biolabs). Digestion products were purified with 

the QIAquick Gel Extraction Kit (Qiagen) from 1.2% agarose gels. Ligation of SNP-
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containing fragments into the pGL3 promoter plasmid was performed in a ratio of 1:50 

(vector:insert) with T4 DNA ligase (New England Biolabs) at 16 °C overnight and 

transformed into JM109 competent cells (Promega). Plasmids from independent colonies 

were isolated using a Wizard Plus SV Minipreps DNA purification system and sequenced 

using RV primer 4 (Promega), selecting those harboring the SNP-construct cloned ‘in sense’ 

in the pGL3 promoter vector for further HighPure plasmid isolation (Invitrogen).

At least three independent transfection experiments for each construct were performed, each 

in duplicate. 2 × 104 Jurkat cells in 0.1 ml of complete RPMI were transfected with 0.8 μg of 

pGL3-Promoter vector along with 0.2 μg of pRL-TK Renilla luciferase vector (Promega) 

using 1.5 μl of Lipofectamine LTX Reagent and 1 μl of PLUS Reagent (both from 

Invitrogen) diluted in Opti-MEM (Gibco). After 16 h of transfection, luciferase activity was 

measured using the Dual-Glo Luciferase Assay System (Promega). Firefly luciferase activity 

was expressed as relative luciferase units (RLU) after correction for Renilla luciferase 

activity to adjust for transfection efficiency. Data were normalized to those cells transfected 

with empty pGL3-Promoter vector.

For the rs117701653 variant at the CD28-CTLA4 locus, we also investigated the luciferase 

signal under stimulatory conditions. We transfected Jurkat cells as described above, and 18 h 

after transfection, cells were left untreated or stimulated with αCD3/αCD28 (0.5 μg αCD3 

coated to the plate and 5 μg ml−1 of soluble α CD28) or phytohemagglutinin (2 μg ml−1). 

Luciferase activity was measured 6 h after stimulation. Four independent experiments were 

performed in duplicate. The results of individual assays are presented in Supplementary 

Table 29.

Statistical analysis of functional studies.

Luciferase activity levels were compared by unpaired two-sided t-test. Error bars represent 

s.d.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Code availability.

Associated computer code for this manuscript can be found at the following GitHub 

repositories: https://github.com/immunogenomics/harmjan/tree/master/FinemappingPaper 

and https://github.com/immunogenomics/harmjan/tree/master/FinemappingTools.

Data availability

Summary statistics for all variants are available through the following GitHub repository: 

https://github.com/immunogenomics/harmjan/tree/master/RA-T1D-Finemap-SummaryStats. 

Genotype data have been previously published3,4 and are available from Rheumatoid 

Arthritis Consortium International and the Type 1 Diabetes Genetics Consortium upon 
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request. The ATAC-Seq data discussed in this publication have been deposited in the Gene 

Expression Omnibus under accession number GSE116497.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Imputation accuracy and quality of datasets.
Datasets were imputed with different reference panels: the European subpopulation of 1000 

Genomes (EUR), full 1000 Genomes (COSMO), full 1000 Genomes imputed with PBWT 

(COSMO(PBWT)), and HRC. a, We sequenced 799 1-kilobase regions in 568 individuals 

with ImmunoChip genotypes and called 1,854 common (MAF>1%) variants. We calculated 

the imputation accuracy (genomic R2) by correlating imputed genotypes using each 

reference panel with genotypes called from the sequencing experiment. b, INFO scores for 

each reference panel in the rheumatoid arthritis dataset.
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Fig. 2 ∣. Variants in the 95% credible sets of significant loci determined by the Bayesian factor.
a, The inner ring of dots indicates whether the locus has ≤10 variants in the credible set and 

a significant association signal (filled circles). Comb., combined; RA, rheumatoid arthritis. 

The middle ring shows variants in each credible set. Highlighted segments indicate loci with 

a candidate causal variant. The color intensity indicates the posterior probability (PP), gray 

representing a lack of significance. The outer ring shows indel, promoter, and missense 

coding annotation for each variant in the credible set. b, Number of variants in the 95% 

credible sets within significant loci. We narrowed down the list of probable causal variants to 

≤5 in 5 out of 20 significant RA loci, and 10 out of 34 significant T1D loci.
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Fig. 3 ∣. Analysis of the CD28-CTLA4 locus.
a, A regional association plot for the combined analysis (20,787 rheumatoid arthritis or T1D 

cases, and 18,616 unique controls; Methods) shows a single variant (rs3087243) near 

CTLA4 in the credible set. Conditioning on rs30872043 identifies rs117701653 as an 

independent association. Logistic regression −log10[P] values are from a two-sided χ2 test 

(n = 39,403). b, An exhaustive pairwise analysis for rheumatoid arthritis shows that the 

rs3087243 + rs117701653 pair has the strongest association. Logistic regression −log10[P] 

values are from a two-sided χ2 test (n = 27,345). c, Haplotype analysis using rs30872043 

and rs117701653, with the AG haplotype as a reference. The C allele of rs117701653 shows 

the largest decrease in risk for rheumatoid arthritis (RA), and the A allele of rs30872043 

shows the largest decrease in risk for T1D. Logistic regression odds ratios (dots) and 95% 

confidence intervals (bars) are from a two-sided χ2 test (combined n = 39,403; T1D n = 

20,445; RA n = 27,345). d, EMSA with Jurkat nuclear extract using probes containing 

rs117701653 and rs3087243. A representative blot of three independent experiments is 

shown. e, Luciferase assay in Jurkat T cells transfected with pGL3 plasmids containing 

rs117701653. RLUs are normalized to cells transfected with the empty plasmid (pGL3). 

Dots represent independent experiments, each of which was performed in duplicate. Means

±s.d. and two-tailed P values of the grouped comparisons (unpaired t-test) are shown.
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Fig. 4 ∣. Analysis of the MEG3 locus.
a, Regional plot for the MEG3 locus in T1D (9,334 cases, 11,111 controls). We observe two 

variants in the credible set (rs56994090 and the rs34552516 indel). We did not observe 

secondary signals when conditioning on rs56994090. Logistic regression −log10[P] values 

are from a two-sided χ2 test (n = 20,445). b, EMSA with Jurkat nuclear extract using probes 

containing rs354552516 and rs56994090. A representative blot of three independent 

experiments is shown. c, Luciferase assay in Jurkat T cells transfected with pGL3 plasmids 

containing rs34552516. RLUs are normalized to cells transfected with the empty plasmid 

(pGL3). Dots represent independent experiments, each of which was performed in duplicate. 

Means±s.d. and two-tailed P values of the grouped comparisons (unpaired t-test) are shown.
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Fig. 5 ∣. Analysis of the TNFAIP3 locus.
a, Regional plot for the TNFAIP3 locus in rheumatoid arthritis (11,475 cases, 15,870 

controls). The variant with the strongest posterior probability in this locus is rs35926684, a 

G/GA indel. Conditional on rs35926684, we observe a significant secondary association 

with rs58721818. Logistic regression −log10[P] values are from a two-sided χ2 test (n = 

27,345). b, Exhaustive pairwise association analysis in rheumatoid arthritis indicates that 

there are 11 pairs with a lower P value than rs35926684 + rs58721818, although the top-

associated pair (rs69220220 + rs58721818) has an equivalent Pvalue −log10[P] =13.95 

versus 14.21. Logistic regression −log10[P] values are from a two-sided χ2 test (n = 27,345). 

c, Haplotype analysis with rs35926684 + rs58721818 and previously reported variants 

rs6920220 and rs5029937 shows that rs35926684 and the previously reported top variant 

rs6920220 are often located on the same haplotype (GAGC), although a rare haplotype 

exists with only the alternative allele of rs35926684, which causes a similar increase in risk, 

but with a larger confidence interval. Logistic regression odds ratios (dots) and 95% 

confidence intervals (bars) are from a two-sided χ2 test (n = 27,345). RA, rheumatoid 

arthritis d, EMSA with Jurkat nuclear extract using probes containing the G or GA allele of 

rs35926684. A representative blot of three independent experiments is shown. e, Luciferase 

assay in Jurkat T cells transfected with pGL3 plasmids containing rs35926684. RLUs are 

normalized to cells transfected with the empty plasmid (pGL3). Dots represent independent 

experiments, each of which was performed in duplicate. Means±s.d. and two-tailed P values 

of comparisons (unpaired t-test) are shown.
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