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Natural killer T (NKT) cells are a subset of CD1d-restricted T  cells at the interface 
between the innate and adaptive immune system. NKT cells can be subdivided into 
functional subsets that respond rapidly to a wide variety of glycolipids and stress-related 
proteins using T- or natural killer (NK) cell-like effector mechanisms. Because of their 
major modulating effects on immune responses via secretion of cytokines, NKT cells 
are also considered important players in tumor immunosurveillance. During early tumor 
development, T helper (TH)1-like NKT cell subsets have the potential to rapidly stimu-
late tumor-specific T cells and effector NK cells that can eliminate tumor cells. In case 
of tumor progression, NKT  cells may become overstimulated and anergic leading to 
deletion of a part of the NKT cell population in patients via activation-induced cell death. 
In addition, the remaining NKT cells become hyporesponsive, or switch to immunosup-
pressive TH2-/T regulatory-like NKT cell subsets, thereby facilitating tumor progression 
and immune escape. In this review, we discuss this important role of NKT cells in tumor 
development and we conclude that there should be three important focuses of future 
research in cancer patients in relation with NKT  cells: (1) expansion of the NKT  cell 
population, (2) prevention and breaking of NKT cell anergy, and (3) skewing of NKT cells 
toward TH1-like subsets with antitumor activity.
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KEY POINTS

•	 NKT cells comprise a unique subset of CD1d-restricted T cells with characteristics of both NK- 
and T cells that can be subdivided into functional subsets.

•	 NKT cells are able to switch between different functional subsets upon cell–cell interaction or 
interaction with signaling molecules.

•	 Activated NKT cells have a major regulatory effect on other immune cells via cytokine production 
and cell–cell interaction, which results in amplification or dampening of the immune response.

•	 TH1-like NKT cells have the potential to induce an antitumor response while TH2- and Treg-like 
NKT cell subsets facilitate immune escape and tumor progression.

•	 Overstimulation of NKT cells during tumor progression might lead to induction of anergy and 
skewing of NKT cells toward TH2-/Treg-like subsets, thereby facilitating tumor progression and 
immune escape.

•	 In cancer patients, there should be three important focuses of future research: (1) expansion of 
the NKT cell population, (2) prevention and breaking of NKT cell anergy, and (3) skewing of 
NKT cells toward TH1-like subsets with antitumor activity.
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INTRODUCTION

The immune system is a host defense mechanism that plays a 
pivotal role in the protection against pathogens and cancer (1). It 
comprises multiple specialized subsets of cells that differentiate 
from a common pluripotent progenitor, the hematopoietic stem 
cell (2). These subsets include natural killer T (NKT) cells that 
feature characteristics of both conventional T cells and natural 
killer (NK) cells. Upon activation, NKT  cells are able to kill 
target cells either directly (3–5) or indirectly by influencing both 
myeloid- and lymphoid-derived immune cells (6). Moreover, 
NKT  cells are potent immune regulators since they can skew 
immune responses toward both inflammation and tolerance very 
quickly by secreting either T helper (TH)1-, TH2-, TH17-, T regula-
tory (Treg)-, or follicular helper (TFH)-cell-associated cytokines (7). 
Because of their major modulating effects on immune responses, 
NKT  cells have also been considered important mediators of 
tumor immunosurveillance (8). The role of NKT cells in relation 
to cancer has therefore been the focus of recent studies. In this 
review, we discuss the role of NKT cells in cancer in relation to 
their phenotype and function. We focus on non-hematological 
malignancies, i.e., carcinomas, sarcomas, melanomas, and neu-
roblastomas. First, the development and function of NKT cells 
are addressed in healthy individuals. Thereafter, the role of 
NKT  cells is discussed in the development and progression of 
cancer. Finally, available NKT  cell-based immunotherapies are 
presented and possibilities for future research are discussed.

DEVELOPMENT AND LOCALIZATION  
OF NKT CELLS

NKT cells constitute a unique, but highly heterogeneous, subset of 
immune cells that arise in the thymus from CD4+CD8+ cortical 
thymocytes that have undergone T cell receptor (TCR) gene rear-
rangement, as is the case with conventional T cells (9). TCRs are 
composed of an α- and a β-chain, each containing a variable and 
constant domain. The TCR α-chain is generated by recombination 
of the variable (V) and joining (J) segments, whereas the β-chain 
also requires diversity (D)-segment recombination. Based on their 
TCR repertoire, two NKT cell subsets have been described: type I 
and type II NKT cells. Type I NKT cells were first identified in mice 
in 1990 as a unique T cell population expressing the Vα14Jα18 
invariant TCR α-chain. The type I NKT  cell subset recognizes 
the glycosphingolipid α-galactosylceramide (α-GalCer) or its 
synthetic analogs when presented by major histocompatibility 
complex (MHC) class I-like CD1d molecules (10–12). Four years 
after the identification of the invariant Vα14Jα18 TCR α-chain 
in mice, the human counterpart Vα24Jα18 was discovered which 
predominantly pairs with the Vβ11 TCR β-chain (13–16). In 
addition to type I NKT cells, type II NKT cells are described with 
a more diverse and less well-defined TCR repertoire recognizing 
non-α-GalCer molecules (primarily sulfatide) presented by CD1d 
molecules (12, 17–19).

Development of Type I NKT Cells in Mice
The development of type I NKT cells has been thoroughly studied 
in mice. During positive selection in the murine thymus, T cells 

expressing TCRs that are capable of binding to MHC class I or 
II molecules on cortical thymic epithelial cells are selected to 
undergo lineage commitment (9). This process leads to matura-
tion of CD4+ or CD8+ T  cells that recognize MHC-presented 
peptides. Alternatively, type I NKT  cells that express the 
randomly rearranged invariant Vα14Jα18 chain are positively 
selected upon binding to CD1d molecules expressed by cortical 
thymocytes (9, 20–22). As a result of this alternative positive 
selection, they recognize lipid-derived antigens presented by 
CD1d molecules (10). During the maturation process, a part of 
the type I NKT cell population retains expression of the T cell-
associated marker CD4, resulting in two major populations in 
mice: CD4+CD8− and CD4−CD8− (double negative, DN) type 
I NKT  cells (23, 24). In addition, Type I NKT  cells acquire 
expression of the natural killer receptor (NKR) NK1.1 during 
maturation (9).

Development of Type I NKT Cells  
in Humans
Although the thymic development of type I NKT cells is well 
defined in mice, it has not as yet been studied in details in 
humans. It has been reported that NKT precursor cells can be 
identified in thymic tissue derived from human embryos and 
young children (25, 26). Similar to type I NKT  cell develop-
ment in mice, human type I NKT  cells express cell surface 
markers that are usually associated with both T- and NK cells. 
For instance, a part of the human type I NKT cell population 
retains expression of the T  cell-associated markers CD4 or 
CD8 during maturation, resulting in three major populations 
in humans: CD4+CD8−, CD4−CD8+, and DN type I NKT cells 	
(27, 28). In addition, a part of the human type I NKT  cells 
acquires expression of the NK  cell-associated marker CD161 
(the human counterpart of NK1.1 in mice), the classical NK cell 
marker in humans CD56 (27–29), and various other NK cell-
associated receptors (27–31).

Localization of Type I NKT Cells  
in Humans
After development and maturation in the thymus, NKT  cells 
migrate to the periphery. In general, human type I NKT  cells 
are present in small numbers (<0.1% of total T  lymphocytes) 
in peripheral blood (PB), lymph nodes, spleen, thymus, lung, 
and bone marrow (32–34), whereas larger type I NKT  cell 
populations reside in the liver, colon, kidney (~1% of total 
T  lymphocytes) (35–37), and omentum (~10% of total T  lym-
phocytes) (38). Importantly, it has to be taken into account that 
NKT cell numbers vary substantially among healthy individuals. 
For instance, circulating type I NKT cells have been reported to 
comprise more than 5% of the total T lymphocyte population in 
some individuals (39).

Morphology of NKT Cells
Despite the fact that NKT cells are derived from the T cell line-
age, their morphology resembles NK cells more closely. NK and 
NKT  cells are both referred to as large granular lymphocytes, 
whereas T cells are described as small and non-granular (40–42). 
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Figure 1 | Overview of the different functional human NKT cell subsets. CD1d-restricted human NKT cells can be divided into subsets based on their  
TCR repertoire and cytokine profile. Type I NKT cells express the invariant Vα24Jα18 TCR α-chain and can be subdivided into five distinct functional subsets 
(indicated in green). In addition, type II NKT cells express a diverse TCR repertoire and can be subdivided into two functional subsets (indicated in blue). Upon 
activation, NKT cells secrete a unique pattern of cytokines, indicated for each subtype. Type I and type II NKT cells are able to switch between different functional 
subsets upon interactions within the TME. Abbreviations: NKT, natural killer T; TCR, T cell receptor; TH, helper T; Treg, regulatory T; TFH, follicular helper T; TME,  
tumor microenvironment.
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In addition, NKT cells were reported to have a low nuclear-to-
cytoplasmic ratio and their nucleus contained dispersed chroma-
tin, similar to NK cells (41, 43–45).

CHARACTERIZATION AND 
IDENTIFICATION OF HUMAN  
NKT CELL SUBSETS

In addition to classification of NKT cells in type I and type II 
NKT cells based on their TCR repertoire, human NKT cells can 
also be classified into functional subsets based on their cytokine 
secretion pattern upon activation, using a similar approach as for 
TH-cell subsets (7).

Functional Type I NKT Cell Subsets
At the moment, type I NKT cells can be divided into five differ-
ent functional subsets (Figure 1). TH1-like type I NKT cells have 
been identified in healthy individuals producing TH1-associated 
cytokines such as IFN-γ and TNF-α upon stimulation (7, 30, 46). 
The majority of these type I NKT cells are DN and are thought to 
exert limited cytotoxic function (30, 46). They are able to induce 
an effective pro-inflammatory immune cascade through cytokine 
signaling. Furthermore, a second TH2-like type I NKT cell subset 
with regulatory properties has been described secreting IL-4 and 
IL-13 upon activation (7, 30, 46). This type I NKT  cell subset 
mainly consists of CD4+CD8− cells which are able to suppress 
immune responses in various disease models (47–49). Recently, 
three additional minor type I NKT cell subsets were identified. 
TH17-like type I NKT  cells have been described, secreting the 
pro-inflammatory cytokines IL-17, IL-21, and IL-22 when 
activated (50, 51). In addition, FOXP3 expressing Treg-like type I 
NKT cells secreting the immunosuppressive cytokine IL-10 have 
been identified (52), as well as TFH-like type I NKT cells secret-
ing IL-21 upon activation (46, 53). Interestingly, murine studies 
showed that functional type I NKT cell subsets (Figure 1) express 
unique transcription factors and the “choice” to become a certain 

subset appears to be set in the thymus during fetal development 
(54). The fate of type I NKT cells might, however, not be perma-
nently determined at this time since their cytokine production 
upon activation can be influenced by the microenvironment 	
(27, 55), similar to TH-cell subsets (56). For instance, the cytokine 
secretion pattern of type I NKT cells is altered by the presence of 
immunosuppressive cytokines and/or immune cell subsets in the 
tumor microenvironment (TME) (57), as well as costimulation 
via CD28 (58), thereby implying plasticity of type I NKT  cell 
subsets.

Identification of Type I NKT Cell Subsets
NKT  cells can be identified from human peripheral blood 
mononuclear cells (PBMCs) with flow cytometry using mono-
clonal antibodies (mAb) and multimers as thoroughly described 
by Metelitsa (59). For instance, type I NKT  cells have often 
been identified by costaining with anti-Vα24 (clone C15) and 
anti-Vβ11 (clone C21) mAb (27, 29, 60, 61). However, this 
mAb combination leads to overestimation of type I NKT  cell 
numbers since conventional T cells can also express Vα24 and 
Vβ11 TCR subunits (62, 63). Alternatively, type I NKT cells can 
be detected with anti-Vα24Jα18 (Clone 6B11) mAb (28, 31). 
Furthermore, α-GalCer-loaded CD1d dimers (64) and tetramers 
(30, 65–67) can be used to specifically detect CD1d-restricted 
type I NKT cells, for instance, in combination with anti-CD3, 
anti-Vα24, or anti-Vβ11 mAb. Importantly, Sag et al. reported 
on the detection of cytokines in type I NKT cells upon stimula-
tion, which enables accurate identification of different functional 
NKT cell subsets in future studies (68). Since this approach has 
not been used in NKT phenotype studies yet, no information is 
available on the phenotype of the different functional NKT cell 
subsets.

Phenotype of Type I NKT Cell Subsets
Type I NKT cells constitutively express various T  cell markers 
such as the TCR signaling complex CD3, and costimulatory 
receptors such as CD4, CD8, and CD28 (27–31). CD4 is expressed 
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by 15–80% of the type I NKT cell population (27–29, 31) and is 
sometimes used to subdivide type I NKT  cells into CD4− and 
CD4+ populations. Besides, type I NKT  cells constitutively 
express various receptors that are usually observed on NK cells, 
such as the adhesion molecule CD56 and the activating NKR 
CD161 (27–30). 17–70% of the CD4− type I NKT cells express 
CD56, in contrast to only a small fraction of the CD4+ type I 
NKT cell population (3–11%) (29). Interestingly, type I NKT cells 
acquire a memory-activated phenotype before birth (unlike 
NK- and T cells), reflected by high expression of CD45RO and 
low expression of the homing receptor CD62L (28, 29, 31, 69). 
This might indicate that these NKT cells have been sensitized and 
activated during fetal life by encountering a natural ligand (69), 
which contributes to the ability of NKT cells to respond fast upon 
meeting the antigen.

In addition, type I NKT  cells have the ability to induce 
expression of a number of phenotypic markers upon activa-
tion and/or interactions within the microenvironment. For 
instance, type I NKT  cells can upregulate CD62L expression 
upon α-GalCer-mediated activation and expansion which can 
serve as a marker for NKT  cells with superior survival and 
proliferative capacity (70). In addition, CD4+ and DN type 
I NKT  cells express CD69, which is involved in lymphocyte 
proliferation (28, 71). Upon cytokine-mediated activation, type 
I NKT cells upregulate CD69 expression. Furthermore, CD4+, 
CD8+, and DN type I NKT cells express CD27, a costimulatory 
immune-checkpoint molecule involved in the control of T cell 
immunity (28, 29, 31). Remarkably, expression of CD27 seems 
to be downregulated on type I NKT cells upon activation with 
α-GalCer, whereas its expression is upregulated in activated 
T  cells (72, 73). This downregulation could be related to the 
fact that NKT  cells already constitute a memory phenotype 
and, therefore, do not require CD27 to generate NKT  cell 
immunity and maturation upon first antigen encounter. 
α-GalCer-activated type I NKT cells also express the costimula-
tory molecule CD40L, and the activation marker CD38 (28, 30, 	
31, 71). In addition, type I NKT cells express the inhibitory NKR 
NKG2A, the low affinity Fc receptor CD16, and the activating 
NKRs DNAM-1, NKG2D, NKp30, NKp44, NKp46, and 2B4, 
that are usually expressed by NK cells (27–31). The proportion 
of type I NKT cells expressing specific NKRs is highly variable 
among healthy individuals (1–85%) and can be altered upon 
interactions within the TME (31, 56, 74–78). In addition to the 
expression of NK- and T cell-associated cell surface markers, 
type I NKT cells express a wide range of inducible cytokine- 
and chemokine receptors enabling them to respond to various 
signals (28–31, 79–81). For instance, type I NKT cells induce 
expression of the IL-2 receptor chain CD25 (IL-2RA) upon 
α-GalCer-mediated activation (28, 29, 31), primarily in 
the CD4+ type I NKT  cell population (30). A different pat-
tern is observed regarding the chemokine receptors CCR5, 
CCR6, CCR7, and CXCR6, which are all higher expressed on 	
CD4− type I NKT cells compared with CD4+ type I NKT cells 	
(27, 29, 30). Finally, type I NKT  cells express various mark-
ers that are involved in a wide range of functionalities such as 
granzyme B, perforin, and CD95L, which play important roles 
in cytotoxicity (29, 31, 82).

Functional Type II NKT Cell Subsets
So far, two distinct functional type II NKT  cell subsets have 
been identified (Figure 1). TH1-like type II NKT cells secrete the 
pro-inflammatory cytokines IFN-γ and TNF-α upon stimula-
tion, whereas TH2-like type II NKT cells secrete the regulatory 
cytokines IL-4 and IL-13 (19, 83–85). Murine studies showed 
that the cytokine profile of type II NKT cells can be influenced 
in the same way as has been observed for type I NKT cells (83), 
suggesting plasticity of type II NKT cell subsets as well.

Identification of Type II NKT Cell Subsets
In contrast to type I NKT cells, no specific methods exist to 
identify the entire type II NKT cell population due to the lack 
of specific markers. However several mouse models have been 
developed to study the role of type II NKT cells in cancer in vivo. 
These models include Jα18−/− mice, without type I NKT cells, 
and CD1d−/− mice that lack both type I and type II NKT cells 
(86–88). Another approach to study type II NKT cells in both 
mice and humans is by using sulfatide-loaded CD1d multimers 
(19, 84, 89, 90). However, this approach has not been widely 
used due to the unstable nature of sulfatide-loaded CD1d 
complexes. Furthermore, since not all type II NKT  cells are 
sulfatide reactive, this method excludes a significant propor-
tion of type II NKT cells (83, 89). As a result, the phenotype 
and function of type II NKT cells remain largely elusive, and 
new methods are essential to characterize this cell population 
in further detail.

NKT-Like Cells
In many studies, NKT cells are identified with flow cytometry 
using a combination of anti-CD3 and anti-CD56 mAb (31, 81, 
91–94). Although it is likely that the CD3+CD56+ cell popula-
tion includes CD1d-restricted NKT cells, it has to be taken into 
consideration that conventional T  cells have been reported to 
express NK-cell markers as well, including CD56 (17, 31, 79, 80). 
Since it is unclear whether CD3+CD56+ cells are CD1d restricted, 
this population is often referred to as “NKT-like.” An additional 
marker is essential to determine which part of the NKT-like cells 
are true NKT cells and which are not. Besides, only a small part 
of the type I NKT cell population expresses CD56 (29). Hence, 
a significant proportion of type I NKT  cells is excluded from 
analyses when using the combination of anti-CD3 and anti-CD56 
mAb. NKT-like cells express costimulatory-, cytokine-, and 
chemokine receptors, and NKRs that are also expressed by type I 
NKT cells (27–31, 81). Exceptions are killer-cell Ig-like receptors 
(KIRs) that provide either inhibitory or stimulatory signals upon 
interaction with human leukocyte antigen (HLA) molecules 	
(31, 95, 96). KIRs are primarily expressed by NKT-like cells, and 
not by type I NKT cells.

In conclusion, different functional NKT  cell subsets can be 
identified within the type I and type II NKT  cell populations. 
Although type I NKT  cells are characterized in detail, type II 
NKT  cells are not due to lack of specific markers. Studies so 
far suggest that the expression levels of cell surface markers on 
type I NKT cells are highly variable among healthy individuals. 
Interestingly, murine studies showed that expression patterns of 
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Figure 2 | CD1d-presented glycolipids in APC. APC present exogenous and endogenous glycolipids in the context of CD1d. During endosomal trafficking, CD1d 
molecules relocate from the cell membrane toward a late endosome where the bound glycolipid antigens are removed from CD1d and replaced by new glycolipid 
antigens. Exogenous glycolipids (indicated in blue) enter the APC late endosome via endocytosis or phagocytosis (1). Endogenous glycolipids (indicated in purple) 
enter the late endosome as a result of NOD, FPR2, or TLR signaling (2), but the exact mechanism is unknown. The exogenous and endogenous glycolipids are 
loaded into CD1d molecules upon which they relocate back to the cell membrane. Abbreviations: APC, antigen-presenting cells; NOD, nucleotide-binding 
oligomerization domain; FPR2, formyl peptide receptor 2; TLR, toll-like receptor.
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type I NKT  cell surface markers are modulated upon cell–cell 
interaction and/or interaction with signaling molecules (74, 76). 
These phenotypical modulations adapt the functional capabilities 
of the NKT cells, including the production of specific cytokines 
upon activation. These data indicate a high degree of NKT cell 
plasticity and that type I NKT  cells (and probably type II 
NKT cells as well) are able to switch between different phenotypi-
cal/functional subsets. Studies on human NKT cells are needed to 
support this hypothesis.

ACTIVATION OF NKT CELLS

Due to expression of both NK- and T cell-associated functional 
molecules, NKT cells can be activated by mechanisms utilized by 
both NK- and T cells.

Activation via T Cell-Like Mechanisms
First, NKT  cells can be activated via their TCR in a T  cell-
like manner via recognition of glycolipids in the context of 
CD1d molecules (61, 97). CD1d is primarily expressed by 
antigen-presenting cells (APC) but has also been reported to be 
expressed by some epithelial, parenchymal, and vascular smooth 
muscle cells (98, 99). Importantly, APC are able to present both 
exogenous and endogenous glycolipids in the context of CD1d 
(Figure  2). Exogenous microbial- and non-microbial-derived 
glycolipids enter APC via different mechanisms as thoroughly 
reviewed by Bendelac et al. (100) and Barral and Brenner (101). 
For instance, exogenous glycolipids can be captured by the man-
nose receptor, or alternatively, insert themselves directly into the 
cell membrane of APC, upon which they undergo endocytosis. 
Furthermore, exogenous glycolipids may enter APC with very 
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Figure 3 | Activation of NKT cells. Activation of NKT cells is dependent on 
a balance between activating and inhibitory signals. First of all, NKT cells 
receive activating signals via their TCR that recognize glycolipids in context of 
CD1d. Second, NKT cells receive activating signals in a CD1d-independent 
manner via NKRs upon interaction with stress proteins such as MIC-A and 
MIC-B, ULBPs, Nectin-2, or MLL5 proteins. In addition, NKT cells receive 
activating signals in a CD1d-independent manner via KIRs with merely 
unknown ligands. Inhibitory NKRs and KIRs that recognize HLA molecules 
provide inhibitory signals that are able to disrupt both TCR and NKR 
signaling. When the balance is skewed toward activation, NKT cells produce 
and secrete high amounts of cytokines. In addition, NKT cells that are 
activated via this mechanism are able to kill target cells directly via activation 
of their TCRs and NKRs. Finally, NKT cells—like NK cells—can be activated 
by a combination of IL-12 and IL-18 which leads to production of cytokines. 
Abbreviations: NKT, natural killer T; TCR, T cell receptor; NKR, natural killer 
receptor; MIC, major histocompatibility complex I-like molecules; ULBP, 
unique long-binding protein; MLL5, mixed-lineage leukemia-5; KIR,  
killer-cell Ig-like receptor; HLA, human leukocyte antigen; NK, natural killer.
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low-density lipoprotein particles via the low-density lipoprotein 
(LDL) receptor, or via phagocytosis. Finally, scavenger receptors 
can mediate internalization of apoptotic cells and modified LDL, 
which also leads to entering of exogenous glycolipids into APC. 
During endosomal trafficking, CD1d molecules relocate from 
the cell membrane toward a late endosome where the bound 
glycolipids are removed from CD1d and replaced by new gly-
colipids (Figure 2) (102, 103). Thereafter, the CD1d molecules 
relocate back to the cell membrane. In addition, APC also present 
endogenous glycolipids in the context of CD1d (Figure 2). For 
instance, activation of nucleotide-binding oligomerization 
domain-1 and -2 intracellular pattern recognition receptors by 
bacteria, or activation of formyl peptide receptor 2 by serum 
amyloid A-1, results in loading of endogenous glycolipids into 
CD1d molecules during endosomal CD1d trafficking (Figure 2) 	
(104, 105). Furthermore, toll-like receptor signaling upon sti
mulation with lipopolysaccharide was suggested to result in 
the loading of endogenous glycolipids into CD1d molecules 	
(100, 106). The exact mechanism of how these signaling path-
ways lead to the loading of endogenous glycolipids into CD1d is, 
however, unknown.

In contrast to TCRs on conventional T  cells that recog-
nize specific peptides presented by MHC class I or II, the 
Vα24Jα18 TCR present on type I NKT  cells recognizes a 
diversity of glycolipids that are presented by CD1d molecules. 
For instance, type I NKT  cells recognize glycosphingolipids, 
α-galactosyldiacylglycerols, diacylglycerols, and phospholipids 
derived from mycobacteria in addition to α-GalCer (107–111). 
Furthermore, type I NKT cells can be activated upon encoun-
tering the self-glycolipids isoglobotrihexosylceramide and 
β-glucosylceramide (11, 112). In addition, type II NKT  cells 
have been reported to recognize the self-glycolipids sulfatide 
and β-glucopyranosylceramide, as well as lysophospholipids and 
microbial lipids (19, 83, 89, 113, 114). As a consequence of their 
diverse TCR repertoire, different type II NKT cell subsets exist, 
recognizing different lipids (19, 85).

Activated NKT cells are able to kill tumor cells directly in a 
CD1d-dependent manner (115). This antigen-specific cytotox-
icity is CD95/CD95L dependent, unlike NK- and T  cells that 
predominantly use perforin/granzyme-mediated mechanisms 
(115). Upon activation via their TCR in a CD1d-dependent man-
ner, NKT cells rapidly expand and secrete a range of cytokines 
(68, 116–120). Crowe et al. reported ~10-fold expansion of type 
I NKT cell numbers in the murine spleen 2–3 days after injection 
with 2 µg α-GalCer in mice (116). Besides, ~7- and ~3-fold type I 
NKT cell expansion was reported in the liver and bone marrow of 
mice 2–3 days after α-GalCer injection, respectively (116). Due to 
their memory-activated phenotype (69), NKT cells have the ability 
to respond quickly upon encountering an antigen. Within an hour 
after injection with α-GalCer, a burst of cytokines can be detected 
in mice. For instance, studies reported maximal levels of IFN-γ+ 
and IL-4+ murine liver- and splenic-derived type I NKT cells within 
2 h after α-GalCer activation in vivo (116, 117). In addition, high 
IFN-γ (400 pg/ml) and IL-4 (1,500 pg/ml) levels were detected 
in the serum of these mice 90 min after injection with 100 ng/ml 	
α-GalCer (117). Although the percentage of IL-4+ splenic-derived 
type I NKT cells dropped to baseline levels 16 h after injection of 

mice with 2 µg α-GalCer, elevated IFN-γ+ type I NKT cells could 
still be detected after 72 h (116). In conclusion, NKT cells rapidly 
secrete a range of cytokines following activation with α-GalCer.

Activation via NK Cell-Like Mechanisms
NKT cells seem to behave similar to NK cells when it comes to 
their activation. Like in NK cells, activation is dependent on the 
balance between inhibitory and stimulatory signals obtained 
via NKRs and KIRs (121, 122). As discussed earlier, phenotype 
studies showed that NKT cells also express a wide range of these 
receptors (27–31). Activating NKRs are able to recognize a variety 
of MHC-like molecules and cellular targets often referred to as 
“stress proteins.” For instance, the NKG2D receptor recognizes 
MHC class I-like molecules (MIC) A and B and unique long-
binding proteins (123), whereas DNAM-1 recognizes the poliovi-
rus receptor and Nectin-2 (124). Besides, NKT cells express KIRs, 
with less well-defined ligands, that provide activating signals 
(125–128). Furthermore, NKT cells express NKRs and KIRs that 
provide inhibitory signals upon binding with HLA molecules 
(129–134). When the balance of signals is shifted toward activa-
tion, an NKT cell is activated, resulting in cytokine production 
as well as direct killing of tumor cells in a CD1d-independent 
manner (Figure 3). Interestingly, studies showed that inhibitory 
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signals provided by KIRs and/or NKRs were able to interrupt 
TCR signaling in conventional T cells without CD1d restriction 
(31, 130, 131, 133). Since NKT cells express similar functional 
receptors, it is likely that similar interruption of TCR signaling 
also occurs in NKT cells (Figure  3). In addition, a part of the 
NKT cell population expresses the low affinity Fc receptor CD16 
which is known to induce antibody-dependent cytotoxicity 
when present on NK cells (135). This phenomenon has, however, 
not been studied as yet in relation to NKT cells. In conclusion, 
NKT cells can be activated via different NK- and T cell-associated 
mechanisms that lead to immediate killing of tumor cells and 
secretion of large amounts of cytokines that have a major influ-
ence on the immune system.

Finally, studies showed that NKT cells—like NK cells—can also 
be activated by IL-12 in combination with IL-18 via cytokine recep-
tors in a CD1d-independent manner (Figure 3) (136–138). These 
cytokines are secreted by, i.e., active macrophages or dendritic cells 
(DCs) (139–141). Upon interaction with IL-12 and IL-18, NKT cells 
secrete high amounts of IFN-γ, as also observed after CD1d-
dependent and NKR-mediated activation (127, 136, 137, 142).

NKT Cell Anergy
Importantly, murine studies have indicated that overstimula-
tion and chronic activation of type I NKT cells with α-GalCer 
via TCR–CD1d interaction may result in NKT  cell death and 
induction of anergy (116, 143–147). This resembles the response 
of conventional T cells upon activation in the TME in presence 
of coinhibitory stimuli or checkpoint molecules like programmed 
death-ligand 1 (PD-L1) (148, 149). Upon binding with α-GalCer 
in the context of CD1d, type I NKT cells downregulate their TCR 
and NKR expression and upregulate the inhibitory molecules pro-
grammed cell death protein 1 (PD-1) and B- and T-lymphocyte 
attenuator (144, 146, 150), resulting in hyporesponsiveness. 
Furthermore, chronic stimulation of type I NKT  cells with 
α-GalCer in vivo resulted in activation-induced cell death (AICD) 
via upregulation of the death receptor CD95, thereby contribut-
ing to active depletion of type I NKT cells (151, 152). This is most 
likely a feedback mechanism used by NKT cells to prevent tissue 
damage. Anergy induced by α-GalCer also resulted in impaired 
proliferation and production of IFN-γ by type I NKT cells upon 
α-GalCer restimulation. By contrast, anergic type I NKT  cells 
retained their capacity to produce TH2-associated cytokines 
(144). Moreover, pretreatment with α-GalCer skewed type I 
NKT cells toward a TH2 or Treg-like profile (153–156). α-GalCer 
pretreated type I NKT cells acquired characteristics of regulatory 
cells in vivo, including production and secretion of IL-10, which 
is known to induce and maintain an immunosuppressive TME 
(153–155). Chronic stimulation of NKT cells in the TME might 
therefore contribute to immune escape in cancer patients.

THE REGULATORY FUNCTION  
OF NKT CELLS

Depending on which functional NKT cell subsets are involved, 
both type I and type II NKT cell subsets are able to either skew 
the immune response toward inflammation or toward tolerance. 
Activated NKT cells shape the TME via modulation of cells from 

both the innate and adaptive immune system (Figure 4), thereby 
implementing an important regulatory function.

NKT cells are unique in the sense that they can activate and 
induce full maturation of DC (139, 140, 157). This maturation 
requires direct interaction of DC with NKT cells via the TCR–
CD1d complex in combination with CD40/CD40L costimula-
tion. As a result, DC produce IL-12, which further drives IFN-γ 
production by TH1-like NKT cell subsets. By contrast, IL-13 and 
IL-4, produced by TH2-like NKT cell subsets, indirectly suppress 
T  cell function and drive TH2 differentiation, respectively (49, 
158–160). IL-10, produced by Treg-like type I NKT  cells drives 
T  cell differentiation toward Tregs, thereby contributing to the 
establishment of an immunosuppressive TME (161). Finally, the 
IL-21 producing TFH-like type I NKT cell subset interacts directly 
with B cells that present the same glycolipid in context of CD1d as 
used to activate the NKT cells, resulting in fast immunoglobulin 
production and affinity maturation (53, 162–165).

In addition to production of large amounts of cytokines as 
discussed earlier, NKT cells secrete a range of chemokines upon 
activation, including RANTES, Eotaxin, MIP-1α, and MIP-1β, 
that lead to the attraction of NK cells, neutrophils, and mono-
cytes toward the inflammatory microenvironment (166). IFN-γ 
secreted by TH1-like NKT  cell subsets then leads to the local 
activation of NK cells, neutrophils, and macrophages (167–169). 
Furthermore, granulocyte macrophage colony-stimulating fac-
tor (GM-CSF), IFN-γ, and IL-4 secreted by NKT cells may shift 
the functional capacity of monocytes toward a more DC-like 
phenotype which contributes to the activation of T  cells and, 
indirectly, B cells (170, 171). NKT cells are also able to reverse 
the phenotype of immune suppressive neutrophils by reducing 
secretion of IL-10 and enhancing IL-12 production in a CD1d-
dependent manner (105).

In conclusion, NKT cells are able to rapidly respond to a wide 
variety of glycolipids and stress proteins using T- and NK cell-like 
mechanisms, respectively. Although NKT cells comprise a minor 
immune cell subset in most organs, they have a major effect on 
immune regulation since they can skew an immune response 
toward inflammation or tolerance in a very short time by secreting 
pro- or anti-inflammatory cytokines. Besides, NKT cells have the 
ability to kill tumor cells directly upon activation but, probably 
reflected by their relative low numbers, NKT cells primarily have 
a regulatory function. Based on this information, it is clear that 
NKT cells are not just cells with NK- and T cell properties: by 
combining characteristics of both cell types, NKT cells are able to 
add unique functions to the immune response. NKT cells may play 
a uniquely central role during the very first steps in the initiation 
of an antitumor immune response. The main reasons are the abil-
ity of NKT cells to respond fast by influencing other immune cells, 
resulting in amplification or dampening of the immune response.

THE IN VITRO AND IN VIVO ANTITUMOR 
ACTIVITY OF NKT CELLS

Type I NKT Cells in Tumor Immunity
Twenty years ago, it was first reported that the glycolipid α-GalCer, 
discovered in marine sponges, had potent antitumor activity 
in vivo (172–174). Mice that were intravenously inoculated with 
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Figure 4 | The regulatory function of activated NKT cells. Upon activation, NKT cells have a major influence on other immune cells. NKT cells can induce full 
maturation of DC upon which they activate T cells and induce TH1 differentiation. Activated T cells interact with B cells resulting in their activation, as well as 
production of immunoglobulins and affinity maturation. The TFH type I NKT cell subset provides cognate help for B cells which promotes the production of 
immunoglobulins and affinity maturation. In addition, NKT cells can reverse the phenotype of immune suppressive neutrophils. Upon activation, NKT cells are also 
able to activate NK cells and macrophages and induce a functional shift of monocytes toward a DC-like phenotype. Finally, NKT cells can drive T cell differentiation 
to either a TH1-, TH2-, or Treg-profile, dependent on the NKT subsets involved. Abbreviations: NKT, natural killer T; DCs, dendritic cells; TH, helper T; TFH, follicular 
helper T; NK, natural killer; Treg, regulatory T; N, neutrophil; MΦ, macrophage.
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B-16 (melanoma) or intraperitoneally inoculated with EL-4 
(lymphoma) cells showed a significantly prolonged lifespan after 
injection with α-GalCer, with a stronger potency than the typical 
chemotherapeutic agent mitomycin C (172). A role for NKT cells 
in this antitumor activity was suggested a few years later when it 

was discovered that α-GalCer is recognized by type I NKT cells 
via their TCR in the context of CD1d, leading to their activation 
(175). Thereafter, studies showed that type I NKT cells were the 
key effectors of antitumor responses in a murine B-16 melanoma 
metastasis model (176–178). For instance, Toura et al. reported 
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that activation of type I NKT cells via injection with α-GalCer-
pulsed-DC resulted in complete eradication of established B-16 
melanoma liver metastases (178). Administration of α-GalCer to 
activate type I NKT cells even prevented primary tumor forma-
tion in different in vivo models (179). By contrast, mice lacking 
type I NKT cells were more prone to chemical or p53 loss-induced 
tumor development (180–182). Recently, it was reported that 
type I NKT cells also play a role in preventing metastatic disease 
in a 4T1 mammary carcinoma model (183). Upon resection of 
the primary breast tumors, treatment with α-GalCer-pulsed-DC 
limited formation of tumor metastases, prolonged survival, and 
provided curative outcomes in ~45% of the mice. Thereafter, it 
was shown that α-GalCer-pulsed-DC could also be combined 
with the chemotherapeutics cyclophosphamide or gemcitabine 
to enhance survival of mice with metastatic disease (184). 
Importantly, studies showed that the anti-metastatic effect of 
α-GalCer was impaired in NK cell-depleted or IFN-γ-deficient 
mice (185, 186). Smyth et al. showed that IFN-γ production by 
type I NKT cells and subsequent IFN-γ production by NK cells 
was crucial for α-GalCer-mediated tumor protection (177). In 
line with these results, it was observed that the TH2-skewing 
synthetic α-GalCer-analog OCH provided less tumor protection 
in the CT26 mouse model compared with α-GalCer (187). By 
contrast, studies reported that analogs of α-GalCer, which skewed 
the cytokine profile of type I NKT  cells toward TH1, provided 
superior protection against metastases formation compared with 
α-GalCer (188–190). This implicates a crucial role for type I 
NKT cells with a TH1 cytokine profile in antitumor activity.

After the discovery of the important role of activated type I 
NKT cells in antitumor responses in vivo, studies focused on the 
mechanisms used by these NKT cells to eradicate tumor cells. As 
mentioned earlier, CD1d is primarily expressed by APC, although 
malignant hematopoietic cells have also been reported to express 
CD1d on their cell membrane (4, 191–193). In addition, there is 
evidence that solid tumors also express CD1d, including renal 
cell and colorectal carcinomas (194, 195). Upon activation with 
α-GalCer, type I NKT cells were able to kill CD1d+ tumor cells in 
a CD1d-dependent manner (4, 191–193, 195). To kill tumor cells 
directly via CD1d interaction, they need to present glycolipids 
that can be recognized by NKT  cells. There is evidence from 
murine studies that type I NKT cells can be activated by tumor-
derived glycolipids that are cross-presented by APC in the context 
of CD1d (196–199). However, until now, the nature of tumor 
glycolipids that are recognized by NKT  cells remains poorly 
elucidated. Since the cytolysis and eradication of tumor cells via 
type I NKT cells was shown to be dependent on CD1d expression 
on their cell surface, it was suggested that CD1d expression might 
be a predictor of whether α-GalCer-activated type I NKT cells are 
able to eradicate tumor cells or not (3, 4). However, other stud-
ies showed that CD1d− hematopoietic cells could also be killed 
directly by type I NKT cells, for instance, via NKG2D activation 
(5, 200, 201). This illustrates that type I NKT cells, like NK cells, 
are able to kill tumor cells via NKR activation, even in the absence 
of CD1d. Moreover, although type I NKT  cells are capable of 
killing tumor cells directly, they primarily mediate antitumor 
activity via the activation of downstream immune effector cells 
as demonstrated by human and mouse studies (4, 177, 202, 203). 

Especially TH1-like type I NKT cells play an important role in this 
antitumor activity via secretion of large amounts of IFN-γ, which 
leads to generation of tumor-specific CD8+ cytotoxic T cells, and 
rapid activation of NK cells (4, 177, 188, 202–204).

Type II NKT Cells in Tumor Immunity
In contrast to type I NKT cells, only limited information is avail-
able regarding the role of type II NKT cells in cancer. However, 
some in vivo models provided important information. In general, 
type II NKT cells are associated with immunosuppression and 
tumor progression. For instance, murine carcinoma and lym-
phoma models showed that the tumor burden of CD1d−/− mice, 
without type I and type II NKT cells, was lower compared with 
Jα18−/− mice that lack type I NKT cells only (86–88). Injections 
with sulfatide increased the number of tumor nodules in a CT26 
colon carcinoma lung metastasis mouse model via activation of 
type II NKT cells (205). Besides, administration of sulfatide abro-
gated the protective effect of α-GalCer-activated type I NKT cells 
against tumor development. Type II NKT cells were reported to 
produce IL-13 through the IL-4R–STAT6 pathway, which was 
necessary for downregulation of tumor immunosurveillance in 
a 15-12RM fibrosarcoma mouse model (49). Thereafter, it was 
shown that IL-13 induced TGF-β-secreting myeloid-derived 
suppressor cells (MDSCs) in  vivo that inhibited tumor-specific 
T cells (158, 206). A role for MDSC in inhibition of antitumor 
immunosurveillance was supported by the study of Renukaradhya 
et al. that showed large numbers of these cells at the tumor site of 
B cell lymphoma-bearing Jα18−/− mice without type I NKT cells 
(87). This implicates an important role for type II NKT cells in 
suppression of immunosurveillance in cancer. Although Zhao 
et al. showed in an in vivo murine model that activation of type II 
NKT cells with CpG oligodeoxynucleotides resulted in antitumor 
activity of these cells via the production of IFN-γ (83, 207). The 
involvement of IFN-γ implies that type II NKT cells are able to 
contribute to antitumor responses, but only when the TH1-like 
subset is involved.

In conclusion, a crucial role is implicated for type I NKT cells 
with a TH1 cytokine profile in antitumor activity. Although it is 
generally accepted that the type II NKT cell population promotes 
tumor growth, there is evidence that TH1-like type II NKT cells can 
be involved in antitumor responses. Hence, the role of NKT cells 
in malignancies is highly dependent on which functional type I 
or type II NKT cell subsets are involved.

THE FUNCTION AND PHENOTYPE OF 
NKT CELLS IN PATIENTS DIAGNOSED 
WITH CANCER

Several human studies have addressed the presence, function, 
and/or phenotype of NKT cells in cancer patients. Here, we will 
focus on both tumor-infiltrating and -circulating NKT cells.

Tumor-Infiltrating NKT Cells
Studies showed a difference in the presence of NKT cells between 
tumor tissue and non-tumor tissue. The frequency of type I 
NKT cells was reported to be higher in intrahepatic malignant 
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tumors and colorectal carcinomas compared with normal liver 
tissue and normal mucosa, respectively (208, 209). The opposite 
pattern was reported by Kenna et al. who showed a significantly 
lower presence of liver-infiltrating type I NKT cells in colorectal 
liver metastases compared with healthy liver tissue (35). In 
addition, several studies showed a correlation between infiltrat-
ing NKT cell numbers and clinical outcome. High numbers of 
tumor-infiltrating type I NKT  cells correlated with a relatively 
good clinical outcome in patients diagnosed with colorectal can-
cer and neuroblastoma (209, 210). High density of NK/NKT cells 
was also associated with prolonged overall survival in periam-
pullary adenocarcinoma (including pancreatic cancer) patients 
(211). Accordingly, absence of infiltrating type I NKT cells and 
low numbers of infiltrating NKT-like cells correlated with poor 
patient survival and disease progression in neuroblastoma and 
gastric cancer, respectively (91, 212).

The function and phenotype of infiltrating type I NKT cells 
was addressed in studies on hepatocellular carcinoma, colorectal 
cancer, and neuroblastoma (35, 209, 212). Lower expression of 
CD56 and CD161 was reported on infiltrating type I NKT cells 
in tumor-bearing livers compared with normal livers (35). 
In addition, in a study on colorectal cancer, expression of the 
activation markers CD69L and FasL was reported on a larger 
fraction of infiltrating type I NKT cells in tumor tissue compared 
with normal mucosa (209). Tumor-infiltrating type I NKT cells 
expressed IFN-γ and granzyme B, but the authors did not com-
pare the expression of these markers to that of type I NKT cells 
in normal mucosa (209). In addition, it was observed that type 
I NKT  cell infiltration in neuroblastomas was associated with 
CCL2 expression on tumor cells, indicating that expression of 
homing receptors on tumors was essential for infiltration of type 
I NKT cells in neuroblastoma (212). Furthermore, in two studies 
(91, 92) the function and phenotype of infiltrating NKT-like cells 
in tumors were described. Peng et al. reported impaired effector 
function of infiltrating NKT-like cells in gastric cancer-derived 
tumor tissue compared with non-tumor tissue, characterized by 
decreased expression of IFN-γ, TNF-α, granzyme B, and Ki-67 
(91). Furthermore, this study also showed decreased expression 
of the lymphocyte proliferation marker CD69, the homing recep-
tors CXCR3 and CCR5, and the NKRs NKG2D and DNAM-1 on 
NKT-like cells in tumor tissue compared with non-tumor tissue. 
In addition, a study on patients with hepatocellular carcinoma 
showed that NKT-like cells in tumor tissue expressed FOXP3 and 
lost expression of IFN-γ and perforin compared with NKT-like 
cells in non-tumor tissue (92).

In conclusion, tumor-infiltrating type I NKT cells and NKT-
like cells may express less activating receptors, homing receptors 
and proliferation markers and produce lower amounts of TH1-
associated cytokines compared with type I NKT cells and NKT-
like cells in healthy tissue, indicating tolerance and not antitumor 
activity.

Circulating NKT Cells
In addition, studies also showed altered function of circulating 
type I NKT  cells in cancer patients. For instance, the number 
of circulating type I NKT  cells was significantly decreased in 

patients with different cancers compared with healthy controls 
(213–221). In line with the results on infiltrating type I NKT cells, 
low circulating type I NKT  cell numbers correlated with poor 
clinical outcome in patients with head and neck squamous cell 
carcinoma (214, 215). Interestingly, late-stage cancer patients 
presented with lower type I NKT cell numbers than early-stage 
cancer patients with oral squamous cell carcinoma or laryngeal 
cancer (218, 221), suggesting cancer-mediated depletion of 
NKT cells. After resection of the primary tumor, type I NKT cell 
numbers did not increase in patients with different cancer types 
(213, 220). By contrast, circulating NKT-like cell numbers were 
not decreased in patients diagnosed with laryngeal cancer, gastric 
cancer, or hepatocellular carcinoma (91, 92, 220).

Besides being reduced in numbers, circulating type I NKT cells 
are often functionally impaired in patients (216, 218, 219, 
222–224). For instance, circulating type I NKT cells derived from 
patients with prostate cancer or oral squamous cell carcinoma 
had a TH2-biased cytokine profile (218, 219). Furthermore, type 
I NKT cells obtained from patients with advanced cancer stages 
showed impaired cytokine production and proliferative capacity 
upon ex vivo activation with α-GalCer (216, 219, 222). In accord-
ance with this observation, lower numbers of IFN-γ-producing 
type I NKT cells were observed in patients with colon carcinoma, 
head and neck cancer, breast cancer, or renal cell carcinoma 
compared with healthy controls (213). These changes in cytokine 
profile imply that type I NKT cells switched from a TH1- toward 
a TH2-like NKT cell subset.

In conclusion, reduced frequency of circulating NKT  cells 
and altered phenotype, resulting in altered function, of both 
infiltrating and circulating NKT  cells are often observed in 
cancer patients, especially in patients with late-stage disease. 
Since altered function was not observed in infiltrating NKT cells 
in healthy tissue, it can be argued that this altered function of 
NKT  cells is cancer/TME mediated: tumors may suppress the 
immune system, and skew the cytokine profile of NKT cells from 
TH1 toward TH2 to escape from recognition and elimination. 
Although the mechanisms behind the cancer/TME-mediated 
altered function of NKT cells are not fully understood, studies 
suggested a role for metabolic derivative lactic acid (225), the 
production of soluble factors by tumors such as sMIC (226), and 
the expression of CD1d by tumors (194, 227).

SHAPING THE TME BY NKT CELLS

Shaping the TME by TH1-Like NKT Subsets
As discussed earlier, TH1-like NKT  cells are promising candi-
dates to initiate effective antitumor immune responses. TH1-like 
NKT cells might play an important role in antitumor responses by 
shaping the TME (Figure 5). For instance, they have been reported 
to colocalize with tumor-associated macrophages (TAM) with an 
M2-polarized phenotype that promote tumor growth and progres-
sion (155, 228). This colocalization resulted in CD1d-dependent 
killing of TAM that cross-presented tumor-derived glycolipids 
in vivo (197, 229). Furthermore, TH1-like NKT cells and second-
ary activated NK  cells contributed to the inhibition of tumor 
angiogenesis by IFN-γ via suppression of M2-polarized TAM 
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Figure 5 | The dual role of NKT cells in cancer. During early tumor development, TH1-like NKT cells may induce an effective antitumor response via direct killing of 
tumor cells upon interaction with stress proteins and CD1d molecules, respectively. In addition, activated TH1-like NKT cells secrete high amounts of IFN-γ, which 
may lead to generation of tumor-specific CD8+ cytotoxic T cells and rapid activation of NK cells that kill tumor cells. Besides, activated NKT cells can induce 
maturation of DC in a CD1d-dependent manner, resulting in TH1 differentiation and activation of tumor-specific CD8+ T cells. Finally, activated TH1-like NKT cells can 
kill M2-polarized TAM in a CD1d-dependent manner, thereby preventing their tumor growth-promoting effects. During tumor progression, TH1-like NKT cells can 
become anergic and may switch to TH2-/Treg-like NKT cell subsets that facilitate tumor progression and immune escape. For instance, Treg-like NKT cells can 
promote differentiation of M2-polarized TAM and Tregs. Tregs inhibit tumor-specific T cells via cell–cell interactions, and secretion of IL-10 and TGF-β. In addition, 
TH2-like NKT cells can inhibit tumor-specific T cells via production of large amounts of IL-13. TH2- and Treg-like NKT cell subsets might be able to kill tumor cells, 
either via CD1d-dependent or CD1d-independent mechanisms. However, overstimulated NKT cells produce large amounts of immunosuppressive cytokines, 
resulting in a net effect of immunosuppression. Receptors that are known to be involved in NKT cell-mediated antitumor responses are indicated in the figure. The 
functional NKT cell subsets indicated in the figure can be both type I and type II NKT cells as illustrated in Figure 1. Abbreviations: NKT, natural killer T; TH, helper T; 
NK, natural killer; DCs, dendritic cells; TAM, tumor-associated macrophages; Treg, regulatory T; TME, tumor microenvironment; NKR, natural killer receptor; TCR, 
T cell receptor; HLA, human leukocyte antigen.
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(230, 231). Finally, Courtney et al. showed that type I NKT cells 
were able to kill CD1d+ M2 TAM or polarize M2 TAM toward an 
M1-polarized phenotype via GM-CSF production (232). Hence, 

the presence of TH1-like type I NKT cells might minimize the 
presence of tumor growth-promoting M2-polarized TAM in the 
TME. On the other side, an immature tolerogenic DC subset 
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has been described that produces reduced amounts of IL-12 and 
high amounts of IL-10, resulting in an immunosuppressive TME 
(233). As a result, tolerogenic DC skew differentiation of naïve 
T cells into Tregs, which might lead to immune escape of tumor 
cells (234–236). Since TH1-like NKT cells are able to fully mature 
DC, the presence of immature tolerogenic DC might be mini-
mized in tumors where sufficient numbers of these NKT cells are 
present. Importantly, TH1-like NKT  cells are able to stimulate 
both tumor antigen-restricted T cells that recognize tumor cells 
with HLA expression and effector NK cells that eliminate tumor 
cells with low or absent HLA expression (234). In this way, 
immune escape of tumor cells might be prevented. In addition, 
as discussed earlier, tumors have been reported to express CD1d 
on their cell membrane (194, 195) and might therefore be killed 
in a CD1d-dependent manner. Besides, tumors are reported to 
express high cell surface densities of stress-related proteins that 
activate the NKRs NKG2D and DNAM-1 (237, 238), suggesting 
that these cells can also be killed in a CD1d-independent manner. 
HLA class I loss or downregulation has often been reported in 
tumors including carcinomas, sarcomas, neuroblastomas, and 
melanomas (239–242). Since inhibitory NKRs and KIRs prevent 
NKT  cell activation upon interaction with HLA molecules 
(Figure 3), NKT cells might be able to directly kill tumor cells 
with low HLA expression, similar to NK  cells. NKT  cells may 
have, however, primarily a regulatory function, suggesting that 
the antitumor activity mediated by direct killing of tumor cells is 
of lesser importance.

Shaping the TME by TH2-/Treg-Like  
NKT Subsets
As discussed in the previous chapter, the phenotype and func-
tion of TH1-like subsets is frequently altered in patients. The 
NKT cell population in patients is skewed toward a TH2 profile, 
proliferative impaired and, in addition, reduced in size. These 
data indicate many similarities with overstimulated/anergic 
NKT cells. During cancer progression, NKT cells may be exposed 
to chronic stimulation, which is known to induce anergy and skew 
NKT cells toward immunosuppressive subsets. Moreover, chronic 
stimulation of NKT cells activates AICD, which might explain the 
reduced NKT cell population observed in cancer patients. Based 
on this hypothesis, we propose that TH1-like NKT cells induce 
an effective antitumor response during early tumor development 
and perhaps prevent further tumor development in many cases. 
However, in some cases, at some point during tumor progres-
sion, NKT cells become overstimulated. As a result, a part of the 
NKT cell population is deleted in cancer patients via AICD. In 
addition, the remaining NKT  cells become hyporesponsive, or 
switch to TH2-/Treg-like NKT  cell subsets, thereby facilitating 
tumor progression and immune escape (Figure  5). TH2- and 
Treg-like NKT cell subsets do not produce IFN-γ which is respon-
sible for most of the antitumor effects of TH1-like NKT cells as 
discussed earlier. By contrast, TH2-/Treg-like NKT cells produce 
large amounts of IL-13 and IL-10, respectively, that suppress 
the TME (i.e., via fibroblasts and MDSC), thereby indirectly 
stimulating tumor progression. In addition, Treg-like NKT  cells 
promote differentiation of M2-polarized TAM and Tregs that are 
also able to suppress the TME via production of IL-10 (154, 155). 

In contrast to TH1-like NKT  cells, TH2-like NKT  cells are not 
capable of inducing DC maturation and do therefore not induce 
activation of tumor-specific T  cells (157). TH2-like NKT  cell 
subsets further inhibit the activation of tumor-specific T cells via 
secretion of IL-13 (49, 158, 159), while Tregs inhibit tumor-specific 
T cells via cell–cell interactions and secretion of IL-10 and TGF-β 	
(243, 244). TH2- and Treg-like NKT  cell subsets might still be 
able to kill tumor cells, either via CD1d-dependent or CD1d-
independent mechanisms. However, overstimulated NKT  cells 
produce large amounts of immunosuppressive cytokines, resulting 
in a net effect of immunosuppression. TH2- and Treg-like NKT cell 
subsets, therefore, counteract the antitumor effects of TH1-like 
NKT cells and, in addition, actively promote tumor progression.

In conclusion, we discussed evidence supporting our hypo-
thetical model (Figure 5) that TH1-like NKT cells are responsible 
for initiating effective antitumor immune responses during early 
tumor development. When NKT  cells become overstimulated 
and anergic due to tumor progression, a part of the NKT  cell 
population is deleted in cancer patients. In addition, the remain-
ing NKT cells lose their antitumor function and start facilitating 
immune escape and tumor progression. In summary, we illus-
trated three problems regarding NKT  cells in cancer patients. 
First, the numbers are lower compared with healthy individuals. 
Second, NKT  cells are often anergic in cancer patients. Third, 
NKT cells are often skewed toward immunosuppressive TH2-like 
subsets.

CURRENT NKT CELL-BASED 
IMMUNOTHERAPY FOR THE  
TREATMENT OF CANCER

Because of their potential to induce effective antitumor responses 
in vivo, several NKT cell-based immunotherapies in humans have 
been developed over the past years as thoroughly reviewed by Nair 
and Dhodapkar (245). These immunotherapies primarily focused 
on activation and expansion of the type I NKT cell population.

For instance, a phase I clinical trial was executed in which 
intravenous (i.v.) injections of 50–4,800  µg/m2 α-GalCer were 
administered to 24 patients with different solid tumors (217). 
The majority of patients presented with reduced numbers of type 
I NKT cells at baseline (median 333 cells/ml PB) compared with 
healthy donors (median 1,013 cells/ml PB). Following α-GalCer 
administration, NKT  cells disappeared from the circulation 
within 24 h. Although not investigated in details in this study, 
recovery of NKT cell numbers was not observed within a week. 
Furthermore, increased serum levels of TNF-α and GM-CSF 
were detected in five patients and increased serum IFN-γ levels 
were detected in one patient after α-GalCer administration. 	
A phase II trial using administration of α-GalCer was not executed. 
In addition, clinical trials were conducted in which patients were 
injected with α-GalCer-pulsed autologous DC (246–252). These 
injections resulted in expansion of the type I NKT cell population 
in some patients (246–252). For instance, Chang et al. reported 
>100-fold expansion of type I NKT  cells in 5  patients upon 
i.v. injections with 5 × 106 α-GalCer-pulsed DC (247). Besides 
NKT  cell expansion, treatment with α-GalCer-pulsed DC also 
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increased the systemic levels of IFN-γ in patients (246–252). 
Treatment did, however, not result in a clinical tumor response 
in the majority of patients (246–252). In addition, a phase II study 
reported stable disease in 5 of 17 patients with non-small cell lung 
cancer (NSCL) upon i.v. administration of α-GalCer-pulsed IL-2/
GM-CSF-cultured PBMC (1 × 109 cells/m2) (251). Patients with 
increased IFN-γ producing TH1-like type I NKT cells after treat-
ment showed a prolonged median survival time compared with 
non-responsive patients. These data indeed indicate a crucial role 
for TH1-like type I NKT  cells in antitumor immune responses 
and emphasize the essential need for expansion of this NKT cell 
population in cancer patients. Hence, immunotherapeutic 
approaches focused on skewing NKT cells toward a TH1 profile 
should be developed.

In later clinical trials, ex vivo-activated type I NKT  cells 
were adoptively transferred to patients diagnosed with NSCL, 
advanced melanoma, or head and neck squamous cell carci-
noma, in some cases in combination with α-GalCer-pulsed APC 
(253–256). In this therapy, PBMC obtained from the patient, 
i.e., by leukapheresis, were cultured in the presence of IL-2 and 
α-GalCer to facilitate proliferation and activation of the type 
I NKT cell population. Thereafter, the ex vivo-activated type I 
NKT cells were administered to the patients. Phase I and II clini-
cal trials were conducted in which patients with head and neck 
carcinomas received nasal submucosal injections of 1  ×  108 
α-GalCer-pulsed APC, in combination with intra-arterial infu-
sion of 5 × 107 ex vivo-activated autologous type I NKT cells via 
tumor-feeding arteries (255, 256). Tumor regression and stable 
disease were reported in 10 of 10 of these patients (255). These 
clinical responses did, however, not correlate with the induc-
tion of immunological responses in blood (i.e., increase in type 
I NKT cell numbers and/or IFN-γ-producing type I NKT cells 
and NK cells). In addition, ex vivo-activated type I NKT cells 
were adoptively transferred to patients diagnosed with advanced 
or recurrent NSCL (1 × 107 or 5 × 107/m2 NKT cells per infu-
sion) or advanced melanoma (~4 × 106–~2 × 108 NKT cells per 
infusion) in phase I clinical trials (253, 254). Treatment was well 
tolerated and resulted in stable disease in 2 of 9 NSCL patients 
and 3 of 9 patients with advanced melanoma, respectively. 
However, the majority of patients developed progressive disease. 
This might be due to the fact that the numbers of administered 
ex vivo-activated autologous type I NKT cells were too low in 
comparison to the tumor load. Obtaining sufficient numbers 
of type I NKT  cells might be a major challenge since type I 
NKT cell numbers are low in general, and especially in patients 
with cancer.

Recently, studies focused on increasing the specificity of 
NKT cells by transducing them with chimeric antigen receptors 
that are not HLA or CD1d restricted (58, 70, 257). In addition, 
α-GalCer/CD1d-antitumor fusion proteins were suggested as 
a treatment for cancer patients. For instance, α-GalCer-loaded 
CD1d molecules fused with an antibody fragment specific 
for HER2 or CEA antigens induced potent antitumor activity 
in vitro and in vivo (258, 259). Recently, Horn et al. showed that 
CD3 × PD-L1 Bi-specific T cell engagers activated both T cells 
and NKT cells to kill PD-L1+ tumor cells in vitro (260). Another 
strategy that was suggested for the treatment of patients with solid 

tumors is vaccination with NKT-activating agents in combina-
tion with tumor antigens. For instance, a phase I study showed 
detectable NKT cell activity in patients with high-risk melanoma 
upon treatment with cancer/testis antigen-loaded DC in combi-
nation with α-GalCer (261). However, in our opinion, increasing 
the specificity of NKT cells is not the most promising method of 
increasing the effectiveness of NKT-based immunotherapies. The 
strength of NKT cells does not rest in their cytotoxic capacities, 
but in their regulatory function. When the appropriate subsets 
are activated (i.e., TH1-like NKT  cells), NKT  cells might shift 
the tolerogenic and immunosuppressive state of both innate and 
adaptive cells toward antitumor activity. Therefore, instead of 
increasing the specificity of NKT cells, immunotherapies should 
focus on the most important function of NKT cells, their regula-
tory function.

In conclusion, several NKT  cell-based immunotherapies 
have been tested in clinical trials. To date, a beneficial effect in 
a minority of cancer patients has been reported. These clinical 
trials were mainly based on the activation and expansion of type 
I NKT  cells with α-GalCer. As addressed in our hypothetical 
model (Figure 5), NKT cells may switch to immunosuppressive 
functional subsets or become anergic due to chronic stimulation 
during cancer progression which might explain the absence of 
beneficial clinical responses in patients upon treatment with 
α-GalCer. We propose that it is essential to prevent and break 
NKT cell anergy in cancer patients and skew NKT cells in cancer 
patients toward TH1-like subsets with antitumor activity in addi-
tion to expansion of the NKT cell population.

FOCUS OF FUTURE NKT CELL-BASED 
IMMUNOTHERAPIES

In this review, we discussed the role of NKT cells in cancer and 
conclude that NKT cells play a central role in anticancer treat-
ment due to their important regulatory function. To improve 
NKT  cell-based immunotherapies for the treatment of cancer 
patients, several aspects of the current treatment strategies need 
further attention.

Expansion of the NKT Cell Population
TH1-like NKT cells (either type I or type II) have the potential 
to induce effective antitumor responses. Combined with the fact 
that their numbers are decreased in cancer patients, it is essential 
to expand this cell population in patients. For instance, induced 
pluripotent stem cells might be used to expand the numbers of 
autologous NKT cells in patients ex vivo (262–264). Furthermore, 
culturing methods aiming at obtaining high numbers of 
NKT cells must be optimized. At the moment, according to the 
Clinical Trials registry, multiple clinical trials1 are ongoing that 
study the safety and clinical efficacy of adoptive type I NKT cell 
transfer in patients with solid tumors. As discussed in this review, 
this infusion should be accompanied by a protocol that prevents 

1 https://clinicaltrials.gov/ct2/show/NCT02562963, https://clinicaltrials.gov/ct2/
show/NCT03198923, and https://clinicaltrials.gov/ct2/show/NCT01801852.
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induction of NKT cell anergy and generation of immunosuppres-
sive NKT cell subsets.

Prevention and Breaking of  
NKT Cell Anergy
Until now, only a limited number of studies focused on pre-
vention or breaking of NKT  cell anergy. Parekh et  al. showed 
that blockade of the interaction between PD-1 and its ligands 
prevented the induction of type I NKT cell anergy in vivo (265). 
Blockade of the PD-1/PD-L1 axis was, however, unable to reverse 
established NKT cell anergy (265, 266). In addition, in vitro and 
in vivo studies showed that stimulation of type I NKT cells with 
IL-2 overcomes anergy and restores their capacity to proliferate 
(144, 146). The proliferative capacity of patient-derived type I 
NKT cells was also reported to increase upon COX-2 inhibition 
or culture with G-CSF (222, 267). It might, therefore, be an option 
to treat patients with a combination of anti-PD-1 antibody, such 
as nivolumab, combined with IL-2/G-CSF or COX-2 inhibition 
to prevent and reverse NKT cell anergy.

Skewing of NKT Cells toward  
TH1-Like Subsets
NKT cells in which anergy was reversed retained their TH2-biased 
cytokine profile upon IL-2 stimulation and did not change back 
toward a TH1-like subset with antitumor activity (146). It is there-
fore also necessary to use agents that are able to skew the cytokine 
profile of activated NKT cells toward a TH1 profile, which means 
a change in functional subset. For instance, culturing of patient-
derived TH2-biased type I NKT cells with IL-12 resulted in IFN-γ 
production of these cells in response to α-GalCer in vitro (219). 
In addition, Laurent et  al. showed that chemical modification 
of the α-GalCer compound was able to increase TH1-associated 
cytokine production by activated type I NKT cells, whereas stim-
ulation of type I NKT cells with conventional α-GalCer resulted 
in production of both TH1- and TH2-associated cytokines (268). 
Other synthetic agonists have also been described that induce a 
TH1-skewed cytokine profile in type I or type II NKT cells (83, 
190, 269, 270). Hence, the use of modified NKT cell-activating 
agents in cancer patients might skew the cytokine profile of 

NKT cells toward a TH1 profile while simultaneously preventing 
the induction of anergy.

CONCLUDING REMARKS

Due to their important regulatory function, NKT cells are prom-
ising candidates for immunotherapies in patients diagnosed with 
cancer. However, NKT cell-based immunotherapies that focus on 
activating NKT cells have resulted in beneficial clinical responses 
in a minority of patients so far. In this review, we illustrated a 
hypothetical model regarding the role of NKT  cells in solid 
tumors based on their function and phenotype. During early 
tumor development, TH1-like NKT cell subsets have the potential 
to initiate effective antitumor immune responses against tumors. 
However, when NKT cells become overstimulated and anergic 
during tumor progression, they lose their antitumor function 
and start facilitating immune escape. The role of NKT cells in 
cancer might therefore be more dynamic than initially thought. 
So far, studies have primarily focused on methods to activate 
and expand the type I NKT cell population in patients, but the 
contribution of functionally altered NKT cells to the failure of 
NKT cell-based immunotherapies has been largely ignored. In 
this review, we conclude that there should be three important 
focuses of future research in cancer patients: (1) expansion of the 
NKT cell population, (2) prevention and breaking of NKT cell 
anergy, and (3) skewing of NKT  cells toward TH1-like subsets 
with antitumor activity.
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