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TO THE EDITOR, 
 
Wrinkles are among the most notable components of skin aging and are influenced by many 

different risk factors (Hamer et al., 2017). Although wrinkle variation has been shown to be a 

heritable trait, (55%, (Gunn et al., 2009)), specific gene variants for wrinkles have not yet been 

identified. Previous studies have identified the MC1R gene influencing skin photoaging and 

pigmented spots (Elfakir et al., 2010, Jacobs et al., 2015, Liu et al., 2016, Suppa et al., 2011), but 

its role in wrinkling is not clear. In this study, we performed the largest GWAS for global facial 

wrinkles available to date in 3,513 participants from the Rotterdam Study (RS) using a digital 

wrinkle measure (Hamer et al., 2017) and sought to replicate the most suggestive associations in 

an independent dataset of 599 participants from the Leiden Longevity Study (LLS). 

 

A detailed description of the methods is presented in the Supplementary Material. The RS is an 

ongoing Dutch prospective population-based cohort study of 14,926 participants aged ≥45 years 

(Hofman et al., 2015). The current study includes 3,513 north-western European participants, for 

whom standardized facial photographs and quality-controlled genotype data were available. The 

LLS is a family-based study (Westendorp et al., 2009), including 599 participants for the current 

study. In the RS, wrinkle area was digitally quantified as wrinkle area percentage of the face 

using semi-automated image analysis of high-resolution facial photographs. For wrinkle grading 

in the LLS, a 9-point photonumeric scale was used (Gunn et al., 2009). In the RS, DNA from 

whole blood was extracted following standard protocols and quality controls were applied on 

markers and individuals (Hofman et al., 2015). Imputations were performed with 1000Genomes 

(GIANT Phase I version 3) as the reference panel (Genomes Project et al., 2012). In total 

30,072,738 markers were genotyped/imputed. After quality controls, 9,009,554 autosomal SNPs 
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were available. In the LLS, imputation was performed similarly and association testing was 

conducted using QT-assoc (Uh et al., 2015). The RS served as discovery dataset. We performed 

linear regression using an additive model (SNP dosage data, (Aulchenko et al., 2010)) adjusting 

for age, sex, the first four genetic principal components, and two technical variables. These last 

two variables correct for possible variations in resolution and flash light of the facial photos 

(Hamer et al., 2017). For variations in resolution, a variable describing the batch number was 

used. For flash light variation, the in-person difference between skin lightness in the images and 

that taken by a spectrophotometer (CM-600d; Konica-Minolta, Osaka, Japan) on the cheek was 

used, by calculating the residuals of these two lightness variables regressed on each other (Jacobs 

et al., 2015a). We selected all SNPs with P-values <5×10−6 for the replication phase. We also 

performed a meta-analysis of the RS and LLS together for the top hits, as well as a genome-wide 

meta-analysis. Several sensitivity analyses (top SNP associations in men and women separately; 

with different facial wrinkling sites; possible interactions between SNPs and sex, BMI and 

smoking; a “univariate” analysis excluding age and sex) and validation of previously published 

associations between SNPs and skin aging were performed (Supplementary Material).  

 

In the RS, the majority were women (n=2,045, 58.2%) and the median age was 66.2 (range 51-

98; men 66.5, range 51-96; women 66.0 range 51-98) years. Men showed a higher average 

wrinkle area (median facial wrinkle area 4.4%, IQR 2.9-6.2) than women (3.5%, IQR 2.1-5.5). In 

the LLS, the mean age was 63.1 years and 53.8% were women (Supplementary Table S1). The 

GWAS of global facial wrinkle area in the RS yielded 25 suggestive hits (P-values <5×10−6, 

Table 1), but none of them were genome-wide significant (Figure 1, Supplementary Figures S1 

and S2). The strongest signal was found for an intergenic SNP (rs10476781; P-value 9.5×10−8) 



   4 

on chromosome 5 between the Neuromedin U Receptor 2 (NMUR2) and CTB-1202.1 (long non-

coding RNA,LINC01933) genes. In the RS this SNP had a minor allele frequency of 6% and an 

imputation score of 0.5. The SNP rs10476781 showed moderate LD (r2=0.4) with other SNPs on 

chromosome 5, explaining the moderate imputation score. The effect allele (rs10476781(T), 

allele frequency 94%) had an effect size of -0.21 (SE 0.04).  

Estimating pairwise LD between all SNPs with suggestive associations (25 SNPs, Table 1) 

resulted in 11 independent loci (r2≤0.5). Of note, there was no LD between rs10476781 and other 

suggestive SNPs in our dataset (r2≤0.5, Supplementary Table S2, Supplementary Figure S3). We 

tested for associations between wrinkles in the LLS replication cohort and the 25 SNPs with 

suggestive associations. The top SNP, rs10476781, had a nominal P-value of 0.08 in the LLS, 

while the others could not be replicated (all P-values>0.2). In a meta-analysis of the two cohorts 

for the top hits, rs10476781 was genome-wide significant (P-value 2.2×10-8, Table 1). Other 

suggestive associations (P-values<=5×10-6) from the genome-wide meta-analysis of the two 

cohorts are presented in Supplementary Table S7 and Supplementary Figure S4.  Additional 

genome-wide meta-analysis of the RS and LLS did not reveal any new findings (Supplementary 

Material, including Table S7). 

 

Because of known sex differences in facial wrinkling (Hamer et al., 2017), we also tested for 

associations between the top SNPs and global wrinkling in a sex-stratified analysis. No genome 

wide significant hits or interactions (SNP*sex) were found (Supplementary Table S3).  

 

This is the largest GWAS of global facial wrinkling conducted thus far, in which we found that 

the rs10476781 SNP was a suggestive hit for global facial wrinkling in the RS (3,513 north-
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western Europeans) and a significant genome-wide hit in a meta-analysis of the RS and LLS 

cohorts together (n=4,122). However, we cannot exclude that this may be a false positive finding 

since the imputation score in the RS was moderate, and the SNP has a very low frequency in the 

general population (MAF<0.01, and thus was not included in the latest release of 

1000Genomes).The latter likely explains the moderate imputation quality as rare variants are 

more difficult to impute. However, it has a higher frequency in Dutch populations (GoNL, a 

Dutch-specific reference dataset; 2% MAF, with a low quality though), and, among the 

replicated SNPs in the LLS cohort, this SNP had the lowest P-value. Further confirmation of the 

association of this SNP with wrinkles is now required 

The MC1R gene influences skin aging (Elfakir et al., 2010, Law et al., 2017, Liu et al., 2016, 

Suppa et al., 2011). However, we did not find any significant association between MC1R variants 

and wrinkles, which suggests these variants are not influencing facial wrinkle variation as 

measured in the RS cohort, but instead other skin aging phenotypes, e.g. pigmented age spots 

(Jacobs et al., 2015). Furthermore, we did not replicate SNPs previously reported as associated 

with skin aging, bar a nominally significant association between rs12203592 and wrinkles in the 

LLS. Reasons for the lack of association could be that these SNPs are false positives due to the 

small sample sizes (Ioannidis, 2003), or due to phenotypic heterogeneity in photoaging versus 

wrinkling in our study. Also, genetic heterogeneity could play a role.  

 

We cannot exclude that other SNPs may be associated with wrinkling, since the heritability was 

42% in the RS (P-value 4.4×10-8, 95%CI 28%–61%, (Yang et al., 2010)). Most probably the 

effects of each influencing SNP are too small to be detected with a sample size as used in this 

study since we had a 77% power to detect SNPs with moderate effects (Supplementary Results). 
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This highlights the importance of increasing sample sizes for future GWAS. Another limitation 

is that in the replication cohort only photonumeric grading was available although there is a high 

correlation between digital and photonumeric grading (Spearman’s rho 0.8-0.9 (Hamer et al., 

2015)), hence we believe our replication is valid.  

 

In conclusion, we found a genome-wide statistically significant association between the SNP 

rs10476781 (P-value=2.2×10-8) and global facial wrinkling in a meta-analysis of two 

independent north-western European cohorts. This intergenic SNP (628 KB downstream of the 

Neuromedin U Receptor gene) is an interesting candidate but needs further validation. 
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Table 1. Top SNP (P-values <5×10-6) of the GWAS for global facial wrinkles in the Rotterdam Study (RS, discovery cohort) and 
Leiden Longevity Study (LLS, replication cohort) and a meta-analysis of these 2 cohorts.  

 Discovery cohort (RS, n=3,513) Replication cohort (LLS, n=599) Meta-analysis (RS & LLS, n=4,112) 

SNP Chr Positio
n* EA OA EAF OAF Beta 

(SE) 
P-

valu
e 

EA EAF Beta (SE) 
P-

valu
e 

EA Dir Z** P-value I2 
Coch
ran’s 

Q 
Het P-
value 

1:3118674:D 1 311867
4 D I 0.12 0.88 0.11 

(0.02) 
1.8 

×10-6 I 0.90 0.18 (0.13) 0.18 D +  ̵ 3.90 9.7 ×10-5 89.4
0 9.40 0.002 

rs11577655 1 311948
9 T C 0.13 0.87 0.11 

(0.02) 
4.6 

×10-6 C 0.90 0.17 (0.13) 0.19 T +  ̵ 3.74 1.9 ×10-4 88.6
0 8.79 0.003 

rs6429657 1 147023
54 A G 0.96 0.04 -0.19 

(0.04) 
1.6 

×10-6 G 0.05 0.17 (0.18) 0.35 A ̵   ̵ -4.79 1.7 ×10-6 0 0.95 0.33 

rs702491 1 541949
92 T C 0.19 0.81 0.09 

(0.02) 
2.4 

×10-6 T 0.21 0.09 (0.09) 0.33 T ++ 4.74 2.1 ×10-6 0 0.78 0.38 

rs61812508 1 147251
772 A G 0.05 0.95 -0.18 

(0.04) 
4.3 

×10-6 G 0.96 0.08 (0.20) 0.69 A ̵   ̵ -4.40 1.1 ×10-5 48.2
0 1.93 0.16 

rs11583958 1 147291
718 A T 0.04 0.96 -0.18 

(0.04) 
3.3 

×10-6 T 0.96 -0.04 (0.19) 0.84 A ̵ + -4.22 2.4 ×10-5 73.9
0 3.83 0.05 

1:246689691:I 1 246689
691 D I 0.60 0.40 0.07 

(0.02) 
3.7 

×10-6 D 0.59 -0.05 (0.07) 0.54 D +  ̵ 4.05 5.2 ×10-5 81.5
0 5.42 0.02 

rs114667268 2 124334
90 T C 0.01 0.99 -0.49 

(0.10) 
2.9 

×10-6 C 0.99 -0.44 (0.65) 0.49 T ̵ + -4.07 4.8 ×10-5 82.9
0 5.84 0.02 

rs7608236 2 180062
867 A G 0.29 0.71 -0.07 

(0.02) 
4.1 

×10-6 G 0.72 -0.06 (0.08) 0.43 A ̵ + -3.96 7.6 ×10-5 83.9
0 6.20 0.01 

rs116248825 3 264201
35 A C 0.04 0.96 -0.28 

(0.06) 
4.1 

×10-6 C 0.96 0.28 (0.25) 0.27 A ̵   ̵ -4.68 2.9 ×10-6 0 0.55 0.46 

rs9867656 3 301000
84 A G 0.34 0.66 -0.07 

(0.01) 
3.7 

×10-6 A 0.35 -0.06 (0.07) 0.37 A ̵   ̵ -4.62 3.9 ×10-6 0 0.89 0.35 

rs11711327 3 301012
54 A G 0.66 0.34 0.07 

(0.01) 
3.1 

×10-6 G 0.35 -0.06 (0.07) 0.38 A ++ 4.65 3.3 ×10-6 0 0.93 0.34 

rs112608607 5 102908
739 T C 0.97 0.03 0.22 

(0.05) 
3.8 

×10-6 T 0.97 0.21 (0.22) 0.35 T ++ 4.63 3.7 ×10-6 0 0.83 0.36 
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rs113322056 5 102913
288 A G 0.96 0.04 0.20 

(0.04) 
2.9 

×10-6 A 0.96 0.18 (0.21) 0.41 A ++ 4.64 3.4 ×10-6 3.60 1.04 0.31 

rs146551307 5 102915
236 T C 0.96 0.04 0.20 

(0.04) 
2.9 

×10-6 T 0.96 0.18 (0.21) 0.42 T ++ 4.64 3.5 ×10-6 3.80 1.04 0.31 

5:102915644:
D 5 102915

644 D I 0.04 0.96 -0.19 
(0.04) 

4.7 
×10-6 I 0.96 0.16 (0.21) 0.44 D ̵   ̵ -4.53 6.0 ×10-6 6.40 1.07 0.30 

rs10476781 5 151763
633 T C 0.94 0.06 -0.21 

(0.04) 
9.5 

×10-8 T 0.94 -0.33 (0.19) 0.08 T ̵   ̵ -5.60 2.2 ×10-8 0 0.19 0.67 

rs72811030 5 179729
009 A G 0.38 0.62 0.07 

(0.02) 
1.7 

×10-6 G 0.60 -0.04 (0.08) 0.62 A ++ 4.61 4.0 ×10-6 46.3
0 1.86 0.17 

rs1225927 6 787103
7 T G 0.75 0.25 0.07 

(0.02) 
3.5 

×10-6 T 0.75 0.08 (0.08) 0.30 T ++ 4.69 2.8 ×10-6 0 0.67 0.41 

9:16847398:D 9 168473
98 D I 0.98 0.02 0.30 

(0.07) 
4.7 

×10-6 I 0.02 -0.13 (0.31) 0.68 D ++ 4.39 1.1 ×10-5 46.4
0 1.86 0.17 

rs185291539 10 843384
21 A G 0.98 0.02 0.41 

(0.09) 
4.8 

×10-6 A 0.97 0.03 (0.26) 0.90 A ++ 4.28 1.9 ×10-5 62.2
0 2.64 0.10 

rs62047859 16 768263
91 A T 0.03 0.97 0.21 

(0.04) 
1.0 

×10-6 T 0.97 -0.26 (0.24) 0.29 A ++ 4.92 8.9 ×10-7 0 0.80 0.37 

rs62077967 17 612532
63 C G 0.96 0.04 0.19 

(0.04) 
4.6 

×10-6 C 0.96 -0.05 (0.19) 0.81 C +  ̵ 4.15 3.4 ×10-5 74.1
0 3.87 0.05 

rs72845240 17 613615
39 C G 0.04 0.96 -0.19 

(0.04) 
4.7 

×10-6 G 0.96 -0.06 (0.19) 0.77 C ̵ + -4.12 3.8 ×10-5 75.5
0 4.08 0.04 

rs189819077 18 349330
12 A G 0.03 0.97 -0.20 

(0.04) 
1.8 

×10-6 G 0.97 0.15 (0.23) 0.51 A ̵   ̵ -4.67 3.0 ×10-6 32.9
0 1.49 0.22 

 
Analyses are adjusted for age, sex and the first four genetic principal components; additionally, for the RS also for technical variables of the digital measurement. *Based on 
GRCh37/hg19; **weighted Z-score. Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; EA, effect allele; OA, other allele; EAF, effect allele frequency; 
OAF, other allele frequency; SE, standard error; Dir, direction of the effects; I2, heterogeneity I2; Het P-value, heterogeneity P-value.
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Figure 1. Manhattan plot of the GWAS associations for wrinkle area in the discovery cohort 
(Rotterdam Study, n=3,513). All SNPs are represented by dots and displayed per chromosome 
(X-axis); Y-axis shows negative log10-transformed P-values. 
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