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identification reveal tissue specific effects
of expanded ataxin-3 in a spinocerebellar
ataxia type 3 mouse model
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Alexandre Seyer7, Peter A. C. ‘t Hoen1,8 and Willeke M. C. van Roon-Mom1*

Abstract

Background: Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by expansion
of the polyglutamine repeat in the ataxin-3 protein. Expression of mutant ataxin-3 is known to result in
transcriptional dysregulation, which can contribute to the cellular toxicity and neurodegeneration. Since the exact
causative mechanisms underlying this process have not been fully elucidated, gene expression analyses in brains of
transgenic SCA3 mouse models may provide useful insights.

Methods: Here we characterised the MJD84.2 SCA3 mouse model expressing the mutant human ataxin-3 gene
using a multi-omics approach on brain and blood. Gene expression changes in brainstem, cerebellum, striatum and
cortex were used to study pathological changes in brain, while blood gene expression and metabolites/lipids levels
were examined as potential biomarkers for disease.

Results: Despite normal motor performance at 17.5 months of age, transcriptional changes in brain tissue of the
SCA3 mice were observed. Most transcriptional changes occurred in brainstem and striatum, whilst cerebellum and
cortex were only modestly affected. The most significantly altered genes in SCA3 mouse brain were Tmc3, Zfp488,
Car2, and Chdh. Based on the transcriptional changes, α-adrenergic and CREB pathways were most consistently
altered for combined analysis of the four brain regions. When examining individual brain regions, axon guidance
and synaptic transmission pathways were most strongly altered in striatum, whilst brainstem presented with
strongest alterations in the pi-3 k cascade and cholesterol biosynthesis pathways. Similar to other
neurodegenerative diseases, reduced levels of tryptophan and increased levels of ceramides, di- and triglycerides
were observed in SCA3 mouse blood.

Conclusions: The observed transcriptional changes in SCA3 mouse brain reveal parallels with previous reported
neuropathology in patients, but also shows brain region specific effects as well as involvement of adrenergic
signalling and CREB pathway changes in SCA3. Importantly, the transcriptional changes occur prior to onset of
motor- and coordination deficits.
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Background
Spinocerebellar ataxia type 3 (SCA3), also known as
Machado Joseph Disease (MJD), is a progressive neuro-
degenerative disorder, with symptoms usually presenting
around midlife. SCA3 is the most common of the dom-
inantly inherited ataxias and is caused by a CAG repeat
expansion in the ATXN3 gene [1]. The CAG repeat is
translated into a polyglutamine (polyQ) stretch in the
ataxin-3 protein, which upon mutational expansion to
56–84 glutamines results in a gain of toxic protein func-
tion [2]. This protein toxicity mostly shows its effects in
the brain, and neuronal loss in SCA3 has been reported
predominantly in the brainstem, cerebellum (spinocere-
bellar pathways and dentate nucleus), striatum, thal-
amus, substantia nigra and pontine nuclei [3]. Over
time, the neuronal loss causes clinical symptoms in
SCA3 patients such as progressive ataxia, dystonia, spas-
ticity, and various other symptoms (reviewed in [1]).
The molecular mechanisms of mutant ataxin-3 toxicity

have been the subject of extensive research, and a range of
cellular changes have been suggested to contribute to tox-
icity. These include aggregation and nuclear localisation of
expanded ataxin-3 protein [4, 5], impaired protein degrad-
ation [6], mitochondrial dysfunction [7] and transcrip-
tional deregulation [8]. Transcriptional deregulation may
arise due to sequestration of transcription factors such as
TATA-box binding protein [9] and CREB binding protein
(CBP) [10] into the polyQ aggregates, thereby interfering
with their function. Previous gene expression studies have
identified altered inflammatory processes, cell signalling
and cell surface associated genes in cell and conditional
animal models of SCA3 [8, 11, 12]. Despite these recent
advances in SCA3 pathogenicity, it is currently still not
fully elucidated which molecular mechanisms are altered
in response to mutant ataxin-3. For this reason, it is useful
to examine genetic mouse models of SCA3 for transcrip-
tional changes that occur in different regions of the brain
to infer causative disease mechanisms [13].
Apart from gaining insight into disease mechanisms,

transcriptional changes may also be potentially useful
as biomarkers to track disease progression in SCA3.
Since it is not possible to study longitudinal gene ex-
pression changes in human brain tissue, it is useful to
establish potential transcriptional changes in periph-
eral tissues such as blood. In addition, metabolite and
lipid changes in blood can also be used as easily ob-
tainable biomarkers, and can potentially be used to
track disease progression [14]. Previous research by
our group has shown that there are common gene
expression signatures in blood and brain of patients
with Huntington disease [15]. Since patient material
is not readily available, genetic SCA3 mouse models
are a good starting point to identify such potential
disease biomarkers.

In this study, we set out to identify the molecular
mechanisms involved in SCA3 pathology. Current
next-generation sequencing techniques provide an attract-
ive means to objectively study the transcriptome and allow
for very sensitive and accurate assessment of changes in
gene expression. As such, we performed RNA sequencing
of brain and blood from the hemizygous MJD84.2 mouse
model of SCA3, which ubiquitously expresses the full hu-
man ATXN3 gene with 76–77 CAGs [16] and gene ex-
pression analysis was performed in 4 different regions of
the brain. Additionally, blood samples from the mice were
subjected to RNA sequencing and serum was used for
metabolomic and lipidomic analysis to identify potential
biomarkers capable of tracking disease progression.
We found that the MJD84.2 mice presented with re-

duced bodyweight compared to wild-type, but did not de-
velop motor symptoms even at 17.5 months of age. Gene
expression changes in blood were also not pronounced,
with pathway analysis suggesting respiratory electron
transport and mitochondrial function to be affected. In
parallel to other neurodegenerative disorders, further
metabolomic and lipidomic analyses of blood revealed de-
creased tryptophan and increased levels of a di- and tri-
glycerides and ceramides in SCA3 mice. In contrast to
blood, transcriptional changes were readily detected in
brain, with the highest number of differentially expressed
genes in brainstem and striatum. Somewhat surprisingly,
the cerebellum was affected to a smaller extent compared
to these two brain regions. The main deregulated path-
ways in brain were cellular signalling pathways (α-adrener-
gic and CREB signalling) and pathways related to synaptic
transmission. This study hence provides additional evi-
dence for affected CREB signalling in SCA3 and suggests
affected neurotransmission pathways, particularly in
striatum.

Methods
SCA3 mice and tissue sampling
MJD84.2 transgenic SCA3 mice [16] and wild-type
C57BL/6 mice were obtained from Jackson Laboratories
(Bar Harbor, Maine, USA). All animal experiments were
carried out in accordance with European Communities
Council Directive 2010/63/EU and were approved by the
Leiden University animal ethical committee. Breeding
was performed by crossing hemizygous SCA3 mice with
wild-types. ATXN3 CAG repeat lengths were verified for
each mouse through gene fragment analysis, using hu-
man specific primers (Additional file 1: Table S1) flank-
ing the CAG repeat similar to described previously [17].
Human ATXN3 repeat lengths were 76 or 77 for all
transgenic mice. Only male mice were used, and a total
of 8 transgenic and 8 wild-type mice were included in
the experiment (Table 1), though 2 transgenic mice did
not survive to the end of the study. Mice were group

Toonen et al. Molecular Neurodegeneration  (2018) 13:31 Page 2 of 18



housed in individually ventilated cages with food and
drinking water available ad libitum. Blood samples for
metabolomic analyses were obtained at 4, 12 and
16 months of age from 4 wild-type and 4 SCA3 mice.
Animals were fasted 4 h prior to obtaining 200 μl blood
through tail cut and collection in heparin lithium tubes.
Tubes were immediately spun down at 18,000 x g and
the supernatant (plasma) was stored at − 80 °C. For
RNA sequencing, 200 μl of blood was obtained by tail
cut at 9 months and 17.5 months of age. Blood samples
for RNA sequencing were collected in RNAprotect ani-
mal blood tubes (Qiagen) following manufacturer’s in-
structions, stored overnight at 4 °C and subsequently
frozen at − 80 °C until RNA isolation. At 17.5 months of
age, mice were sacrificed and brainstem, cerebellum,
striatum and cortex were dissected, snap-frozen in liquid
nitrogen and stored at − 80 °C.

Behavioural testing
To assess the motor phenotype and coordination of the
mice, a beamwalk test was performed. The beamwalk
balance test consisted of 2 boxes (20 × 20 × 20 cm) ele-
vated at 53 cm height and connected by a plastic cylin-
drical bar of ø 10 mm or ø 30 mm and 80 cm long.
Mice were placed in the transparent elevated box and
crossed the bar to an enclosed dark box. The average la-
tency to cross from 3 trials per testing day is reported.
The beamwalk test was performed when the mice were
4, 6, 7.5, 9 and 12 months of age.

Metabolite profiling in plasma
Analysis of the plasma samples was performed by Profi-
lomics (Gif-sur-Yvette, France). For extraction of metab-
olites, 15 μL plasma sample was treated with 60 μL of
methanol with a mixture of internal standards. Protein
was precipitated at 4 °C, centrifuged and supernatants
were dried under nitrogen. Samples were then resus-
pended in ammonium carbonate 10 mM pH 10.5/AcN
40:60 (v/v). Chromatography settings for LC-HRMS

were followed as outlined by Boudah et al... [18]. Plasma
extracts were separated on a HTC PAL-system (CTC
Analytics AG, Zwingen, Switzerland) coupled with a
Transcend 1250 liquid chromatographic system
(ThermoFisher Scientific, Les Ulis, France) using an aSe-
quant ZICpHILIC 5 μm, 2.1 × 150 mm at 15 °C (Merck,
Darmstadt, Germany). After injecting 10 μL of sample,
the column effluent was directly introduced into the
heated Electrospray (HESI) source of a Q-Exactive mass
spectrometer (Thermo Scientific, San Jose, CA) and ana-
lysis was performed in both ionization modes. Identifica-
tion of molecules was performed using TraceFinder3.1
software (ThermoFisher Scientific, Les Ulis, France). The
dataset was filtered and cleaned based on quality control
samples as described by Dunn et al [19].

Lipid profiling in plasma
Analysis of lipids in plasma was performed on identical
samples as described for the metabolite analysis. Lipid
analyses were performed at Profilomics (Gif-sur-Yvette,
France), in accordance with previously described
methods [20]. In brief, 50 μL of plasma was added to
245 μL of CHCl3/MeOH 1:1 (v/v) and 5 μL of internal
standard mixture. Extraction was performed after 2 h at
4 °C and centrifugation at 15,000×g for 10 min at 4 °C.
The upper phase (aqueous phase), containing ganglio-
side species and several lysophospholipids, was trans-
ferred and dried under a stream of nitrogen. The protein
interphase was discarded and the lower rich-lipid phase
(organic phase) was pooled with the dried upper phase.
Samples were then reconstituted in 50 μl CHCl3/MeOH
1:1, vortexed for 30 s, sonicated for 60 s and diluted 100
times in MeOH/IPA/H2O 65:35:5 (v/v/v) before injec-
tion. Similar to metabolite detection, plasma total lipid
extracts were separated on HTC PAL-system (CTC Ana-
lytics AG) coupled with a Transcend 1250 liquid chro-
matographic system (ThermoFisher Scientific) using a
kinetex C8 2.6 μm 2.1 × 150 mm column (Phenomenex,
Sydney, NSW, Australia). Mass spectrometry was per-
formed similar as for the metabolites and data process-
ing was done as previously described [20].

RNA isolation
After thawing, filled blood tubes were incubated for 4 h
at 25 °C to ensure proper cell lysis. Isolation of RNA was
subsequently performed using the RNeasy protect ani-
mal blood kit (Qiagen, Hilden, Germany) according to
manufacturer’s instructions for total RNA isolation in-
cluding DNAse treatment, resulting in isolation of RNA
molecules longer than approximately 200 nucleotides.
Reduction of alpha and beta globin mRNA was per-
formed on RNA samples using the GLOBINclear mag-
netic bead kit for mouse/rat (Qiagen) following
manufacturer’s instructions.

Table 1 RNA sequencing and metabolomic/lipidomic sample
overview

Analysis Tissue Wild-type mice SCA3 mice

RNA-seq brainstem 8 6

RNA-seq cerebellum 7 6

RNA-seq cortex 7 6

RNA-seq striatum 8 5

RNA-seq blood
(9 and 17.5 months)

6 5

Metabolomics plasma
(4 and 16 months)

4 4

Lipidomics plasma
(4 and 16 months)

4 4 (4 months),
3 (16 months)

Toonen et al. Molecular Neurodegeneration  (2018) 13:31 Page 3 of 18



For isolation of RNA from brain tissue, approximately
30 mg of tissue was transferred to next advance pink
bead tubes (Next Advance, Averill Park, US) containing
500 μl Trizol (Ambion, Thermo Fisher scientific, Wal-
tham, MA, USA). Tissue was homogenised in a bullet
blender BBX24 (Next Advance) for 3 min on setting 8.
A total of 100 μl chloroform was added and samples
were spun down at 10,000 x g for 15 min. The aqueous
phase contining the RNA was removed and an equal
volume of 70% ethanol was added. RNA purification was
then performed using the PureLink RNA mini kit
(Thermo Fisher scientific) in accordance with the manu-
facturer’s protocol using provided RNA columns and a
15 min DNase step. RNA was eluted in 80 μl nuclease
free water. Concentration and purity of RNA was mea-
sured using Nanodrop spectrophotometry and RNA was
stored at − 80 °C.

RNA sequencing
Library preparation and RNA sequencing was per-
formed at deCode Genetics (Reykjavik, Iceland). The
quality of RNA was assessed with the LabChip GX
using the 96-well RNA kit (Perkin Elmer). Approxi-
mately 1 μg of total RNA was used as starting material,
and the average RIN values were 7.7 (SD ± 0.5) for
brain tissue and 6.8 (SD ± 0.9) for blood. Non
strand-specific sample preparation was performed using
the TruSeq Poly-A v2 kit (Illumina, San Diego, USA)
following manufacturer’s instructions. In brief, mRNA
was captured using magnetic poly-T oligo-attached
magnetic beads, RNA molecules were fragmented, and
cDNA synthesis was performed using SuperScript II
(Invitrogen, Carlsbad CA, USA) with random hexamer
primers. Subsequently, 2nd strand cDNA synthesis was
performed in conjunction with RNAse-H treatment.
End repair was performed to generate blunt ends and
3′ adenylation was performed, followed by ligation of
indexing adapters to the ds-cDNA. PCR was performed
to amplify the fragments. Quality of sequencing librar-
ies was determined through pool sequencing on a
MiSeq instrument (Illumina) to assess insert size, sam-
ple diversity and optimize cluster densities. Pooled
samples (4 samples/pool) were clustered on paired-end
(PE) flowcells (1 pool per lane) using a cBot instrument
(Illumina). The sequencing was performed using a
HiSeq 2500 with v4 SBS sequencing kits (read lengths
2 × 125 cycles). Primary processing and base calling was
performed with Illumina’s HCS and RTA. Demultiplex-
ing and generation of FASTQ files was done with Illu-
mina scripts (bcl2fastq v1.8). The FASTQ files for the
mouse brain RNA can be found in the GEO repository,
accession GSE107958 and blood samples are listed
under accession GSE108069.

Sequencing data processing
Analysis of sequencing data was performed using the
BIOPET Gentrap in-house pipeline (http://biopet--
docs.readthedocs.io/en/v0.7.0/pipelines/gentrap/) The
fastqc toolkit (v0.11.2) was used to evaluate sequencing
quality (http://www.bioinformatics.babraham.ac.uk/pro
jects/fastqc/). Sickle (v1.33 with default settings) and
Cutadapt (v1.10, with default settings except for “-m
20”) were used to clean up reads. Cleaned reads were
aligned to the mouse reference genome build 10
(GRCm38/mm10) using STAR aligner version 2.3.0e
[21]. The non-default settings used by STAR are “–out-
FilterMultimapNmax 1 –outFilterMismatchNmax 10 –
outSJfilterReads Unique”. Average number of reads was
84 million (SD ± 18 million). On average, 66% of reads
were aligned to known genes. Gene raw read counts are
generated using HTSeq (v0.6.1) with the Refseq gene
annotation extracted from UCSC on 11–09-2015. The
non-default settings used by HTSeq are “–format bam
–stranded no”. Gene expression analysis was performed
using edgeR (v 3.14.0) [22]. The normalization was per-
formed using the trimmed mean of M-values (TMM)
normalization method [23].

Differential gene expression and statistical analysis
Analysis of gene expression was performed on genes ex-
ceeding an average 4 counts per million (CPM) across
all samples. Principle component analysis (PCA) was
performed to confirm sample consistency (i.e. clustering
per brain region). Additionally, correlation between
genotype and GC percentage or 5′ - 3′ ratios was
assessed for potential confounding effects. Differential
gene expression was performed using the generalized
linear model (GLM) likelihood ratio test functionality of
edgeR [22]. Analyses were performed for the 4 brain re-
gions separately, but also as a combined dataset, which
is termed “brain data combined” data throughout the
manuscript. For this combined analysis of all brain re-
gions, we modelled the effect of strain and tissue (brain
region) and the interaction between them to allow detec-
tion of strain effects that were either present in all brain
regions or tissue-specific. For this, a design matrix was
created with the function model.matrix(~ Tissue *
Strain) and dispersion was estimated accounting for this
design. A general linear model was fit using the glmFit
function, and likelihood ratio test then performed with
glmLRT on the combination of coefficients for Strain
and the interaction term Tissue*Strain. The null hypoth-
esis is that the gene shows no differential expression in
any brain region. This analysis is powerful for finding
genes with weak effects in several brain regions, but
does not allow inference of differential expression in any
specific brain regions. For differential gene expression
analysis between SCA3 and wildtype mice within
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individual brain regions, one coefficient was assigned to
each group using model.matrix(~ 0 + group). Likelihood
ratiotest was then performed using glmLRT function
with contrast argument to allow pairwise genotype com-
parison for each brain region. Analysis of differential
gene expression for blood was performed similar to
brain, but due to observation of a confounding influence,
GC-content correction was first performed using the
conditional quantile normalization (CQN) package as
previously described [24]. The GC-content correction
offset obtained from CQN was then included when esti-
mating dispersion in edgeR. The two time points (9 and
17.5 months) were included as contrasts for the likelihood
ratiotest. Genes with a false discovery rate (FDR,
Benjamini-Hochberg) below 0.05 were considered signifi-
cant. Plots were generated using ggplot2 package [25] or
graphpad Prism 7. Analysis of the metabolites and lipids
in blood was performed using a Welch’s t-test without
multiple testing correction (due to 4 vs 4 sample size), and
nominal p-values < 0.05 were considered significant.

Functional annotation of gene sets and pathway analysis
For identification of functional processes, sets of genes
with a FDR of < 0.05 were used, for each individual brain
region and also for all brain regions combined. This led
to inclusion of 585 genes from all brain regions com-
bined, 195 genes for brainstem and 824 genes from stri-
atum. Cerebellum and cortex did not present with
enough differentially expressed genes to perform path-
way analysis. Pathway analysis and exploration of
metabolite-phenotype links was performed using
Ingenuity Pathway Analysis (IPA) and the Euretos
Knowledge Platform (EKP) [26]. Euretos allows for se-
mantic search for biologically interesting connections
between genes, proteins, metabolites and drugs based on
an underlying database of 176 integrated data sources
(January 2017) [27]. Pathway analysis was performed by
the use of the Fisher exact test for gene set enrichment.
Overlapping significantly altered pathways between the
Euretos and Ingenuity analysis were considered as the
most reliable signal, and are hence listed as top overrep-
resented pathways.

Validation with RT-qPCR
RNA sequencing results were validated on the same
RNA samples using qPCR. cDNA synthesis was per-
formed using oligo-dT primers for brain and random
hexamer primers for blood RNA, with the Transcriptor
First Strand cDNA Synthesis Kit (Roche, Mannheim,
Germany) similar to described previously [28], but using
an incubation step of 60 min at 50 °C. qPCR was per-
formed with SensiMix SYBR & Fluorescein Kit (Bioline,
Taunton, USA) similar to previously described [28],
using 3 μl of 5× diluted cDNA for brain samples and

3 μl of 15× diluted cDNA for blood. Mouse reference
genes used were β-actin (Actb), Hypoxanthine-guanine
phosophoribosyltransferase (Hprt), and Ribosomal
Protein L22 (Rpl22) for brain tissue and Actb, vinculin
(Vcl) and Hprt for blood (Additional file 1: Table S1).
Primers were designed with Primer3 software [29] and
PCR efficiencies and expression values (N0) were deter-
mined using LinRegPCR 2014.0 19. Transcript level ex-
pression was then divided by the geometric mean of the
3 reference genes expression [30]. Statistical tests were
performed in graphpad (7.0) using the two-stage linear
step-up multiple testing procedure of Benjamini, Krieger
and Yekutieli, with Q = 5% and without assuming a con-
sistent SD.

Western blotting
Protein isolation and western blotting of mouse brain
tissue was performed following standard protocols. In
brief, brain tissue was homogenized in RIPA buffer using
a bullet blender BBX24 (Next Advance, Averill Park,
US). Protein concentration was determined using the
bicinchoninic acid kit (Thermo Fisher Scientific). A total
of 30 μg protein was boiled for 5 min with 4× Laemmli
sample buffer and separated on 10% Tris-glycine precast
gel (Biorad, Veenendaal, the Netherlands) and trans-
ferred to a nitrocellulose membrane. Membranes were
blocked in 5% low fat milk and incubated overnight at
4 °C with primary antibodies: rabbit anti-carbonic anhy-
drase 2 (car2) 1:2000 (Novus Biologicals, Littleton, CO,
USA), rabbit anti-psat1 1:1000 (Novus Biologicals) and
as loading control mouse anti-β-actin 1:5000 (Abcam,
Cambridge, UK). Detection was performed using sec-
ondary antibodies IRDye 680RD and 800CW (LI-COR
Biosciences, Lincoln, USA) 1:5000, and membranes were
imaged using Odyssey infrared imaging system
(LI-COR). Quantification was performed with Odyssey
software version 3.0 (Licor) using the integrated inten-
sity method. Intensity of car2 and psat1 protein bands
were divided by the β-actin intensity to correct for pro-
tein loading.

Results
SCA3 mice do not present with overt motor symptoms at
17 months of age
The MJD84.2 mouse model ubiquitously expresses
full-length mutant human ataxin-3 with 76–77 gluta-
mines, under control of the human ataxin-3 promoter.
During a 17.5 month period, the behavioural phenotype
of the mice was assessed using motor tests, and blood
was collected for assessment of biomarkers at transcript
and metabolite/lipid level. To this end, blood RNA for
sequencing was collected at two time points and blood
plasma for mass-spec was collected at three time points
(for experimental overview, see Fig. 1a). During the
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testing period, the MJD84.2 mice had a significantly
lower body weight compared to control mice (Fig. 1b).
Assessment of an ataxic phenotype using the beamwalk
balance tests at 5 time points revealed only one signifi-
cant difference. This difference was a faster performance
of SCA3 mice on the balance beam at 12 months of age
(Fig. 1c), likely attributable to the lower bodyweight. The
motor and balance performance of the SCA3 mice was
identical to the wild-type mice at all other time points
tested.

Individual brain regions are differently affected by
mutant ataxin-3
To establish differential gene expression changes be-
tween wild-type and SCA3 mice, RNA sequencing of
brain and blood tissue was performed (Table 1).
After exclusion of RNA samples with low concentra-
tion (< 200 ng), a total of 53 samples were success-
fully sequenced. The average number of reads per

sample was 84 million (SD ± 18 million) and on
average 66% of sequencing reads were aligned to
exons of known genes (Additional file 2: Figure S1).
Genes with average expression below 4 CPM were
excluded, resulting in a total of 12,372 genes to be
included for differential expression analysis. The
brain RNA sequencing data can be accessed at GEO
repository GSE107958. PCA plots showed good sep-
aration of samples based on brain region (Additional
file 3: Figure S2) and using an FDR of < 0.05, a total
of 585 genes were found significantly altered in the
SCA3 brain regions combined analysis. The top 25
genes from the analysis of brain regions combined
are listed in Table 2, with corresponding log2 fold
change per brain region. When examining each brain
region individually, the extent of differential gene ex-
pression in SCA3 mice differed greatly per brain re-
gion (Fig. 2a), with 238 genes differentially expressed
in brainstem, 8 in cerebellum, 19 in cortex and 933

a b

c

Fig. 1 Experimental design and behavioural testing in SCA3 mice. a MJD84.2 hemizygous mice were used as a model for SCA3. At indicated time points,
plasma was collected for metabolic and lipidomic analyses, and whole blood was collected for RNA sequencing purposes. At 17.5 months of age, mice were
sacrificed and 4 brain regions were isolated for RNA sequencing. b SCA3 mice show significantly lower bodyweight compared to wild-type mice. c The
beamwalk balance test shows identical performance in coordination/balance performance of SCA3 and wild-type mice, apart from a better performance of
SCA3 mice at 12 months of age. Depicted data represents 8 wild-type vs 8 SCA3 mice. Shown is mean +/− SEM, * = p < 0.05 using multiple t-test
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in striatum (FDR < 0.05) compared to wild-type mice.
This observation is consistent with smaller
fold-changes observed for most genes in cerebellum
and cortex. Of the differentially expressed genes, 6
(Rnf43, Zfp488, Car2, Chdh, Prob1, Il33) were con-
sistently significantly altered in all 4 brain regions

(Fig. 2b). For each brain region that we analysed, we
ranked the genes based on p-value, and the majority
of the genes in these 4 lists were unique to that par-
ticular brain region, thus revealing tissue specific
gene expression patterns. For validation we selected
6 genes from the top 25 significant genes of the

Table 2 Top 25 differentially expressed genes in SCA3 mice brains (regions combined)

Gene symbol Name FDR Brainstem
log2 fold
change

Cerebellum
log2 fold
change

Striatum
log2 fold
change

Cortex log2
fold change

Protein function
(GO term mol function
or biological process)

Tmc3 transmembrane channel-like gene
family 3

1.30E-61 1.16a 0.42 1.47a 1.16a ion transport

Zfp488 zinc finger protein 488 1.05E-56 1.79a 1.25a 1.29a 1.45a transcription, oligodendrocyte
specific

Car2 carbonic anhydrase 2 3.63E-44 −1.26a −0.64a − 1.26a −0.72a carbonate dehydratase activity

Chdh choline dehydrogenase 3.26E-40 1.04a 0.66a 0.85a 0.87a choline dehydrogenase
activity

Prob1 proline rich basic protein 1 9.30E-38 1a 0.62a 0.68a 0.59a unknown

Il33 interleukin 33 9.98E-35 −1.3a −0.98a −1.2a −0.87a cytokine activity

Fbxw15 F-box and WD-40 domain protein 15 5.97E-27 −1.8a −0.84 −1.44a −0.79 unknown

Rnf43 ring finger protein 43 5.64E-21 1.06a 0.74a 0.65a 0.88a ubiquitin-protein
transferase activity

Polr2a RNA polymerase II subunit A 2.00E-20 0.74a 0.16 0.47a 0.35 DNA-directed RNA polymerase
activity

Ppl periplakin 1.50E-19 2.14a 0.73 0.9a 0.62 cadherin binding involved
in cell-cell adhesion

Arsb arylsulfatase B 2.48E-16 0.53a 0.2 0.32a 0.18 sulphate hydrolysis

Kcnk13 potassium two pore domain channel
subfamily k member 13

3.04E-16 −0.97a −0.73a −0.81a −0.44 voltage-gated ion channel

Chil1 chitinase-3-like protein 1 7.24E-16 −0.75a −0.28 − 0.69a −0.56a carbohydrate metabolic
process

Serpinb1a serpin Family B Member 1 1.16E-15 −1.34a −0.86 −1.21a −0.81 negative regulation of
endopeptidase activity

Tspan2 tetraspanin 2 5.27E-15 −0.87a −0.3 − 0.99a −0.41 astrocyte and microglia
development

Hist1h2be Histone H2B type 1-C/E/G 2.39E-14 0.78a 0.18 0.77a 0.66a antibacterial humoral
response

Acot1 Acyl-coenzyme A thioesterase 1 1.90E-13 0.74a 0.35 0.28 0.29 acyl-CoA metabolic process

Erbb2ip erbin 1.86E-12 −0.89a −0.44 −0.54a − 0.30 cellular response to
tumor necrosis factor

Glul Glutamine synthetase 1.12E-11 −0.63a −0.25 − 0.45a −0.21 glutamine biosynthetic
process

Cbs Cystathionine beta-synthase 1.68E-11 −0.41a −0.06 − 0.40a −0.14 catalyzes first step of the
transsulfuration pathway

Qdpr Dihydropteridine reductase 2.10E-11 −0.64a −0.39 − 0.70a −0.36 6,7-dihydropteridine
reductase activity

Sox8 Transcription factor SOX-8 6.57E-11 0.58a 0.37 0.42a 0.38 enteric nervous system
development

Psat1 Phosphoserine aminotransferase 6.63E-11 0.48a 0.39 0.40a 0.46a L-serine biosynthetic process

Enpp6 Ectonucleotide pyrophosphatase/
phosphodiesterase family member 6

2.01E-10 0.20a 0.58 0.76a 1.25a choline metabolic process

Ttyh1 Protein tweety homolog 1 1.37E-09 −0.44a −0.12 −0.04 −0.14 chloride transport

Noted with aare genes that are also differentially expressed in individual brain regions
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brain region combined analysis, based on FDR, fold
change and expression level. Through qPCR on the
same samples as used for RNA sequencing, we vali-
dated the significant change in expression level for
all 6 genes (Fig. 2c). Finally, differential expression
was confirmed at the protein level for carbonic
anhydrase 2 (Car2) and phosphoserine aminotrans-
ferase 1 (Psat1), as these proteins were predicted to
be differentially expressed in all 4 brain regions.
Cortex and cerebellum of the SCA3 mice was avail-
able for validation of protein levels, and both brain
regions showed a similar direction of protein change
as was found on mRNA level and reached

significance for Car2 in both brain regions and for
Psat1 in cerebellum (Fig. 3 and Additional file 4:
Figure S3).

Cellular signalling pathways are altered in SCA3 mouse brain
To establish gene expression changes in SCA3 mice at
the gene function level, the Euretos knowledge platform
and Ingenuity pathway analysis (IPA) tools were used to
assess pathway enrichment. Both tools showed good
overlap in the top significant pathways for brain region
combined analysis. The top pathways associated with the
585 differentially expressed genes in SCA3 mouse brain
(4 regions combined) are listed in Table 3. The top

a b

c

Fig. 2 RNA sequencing results for SCA3 mouse brain. a Venn diagram depicting overlap of significantly altered genes (FDR < 0.05) from RNA
sequencing analysis between SCA3 and wild-type mice per brain region. Six genes were common to all four regions. b Plots of the 6 most
significantly altered genes in SCA3 mouse brain (combined regions). Expression values of genes are depicted separately for the 4 tested brain regions.
* = FDR < 0.01 c qPCR validation on equimolar cDNA from the 4 brain regions, as well as separately in brainstem confirms significant gene expression
changes. Based on 7 wild-type vs 6 SCA3 mice at 17.5 months of age. * = FDR < 0.01. Actb, Hprt and Rpl22 were used as reference genes
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pathways are sorted on ingenuity p-value, the complete
list of pathway analysis can be found in (Additional file 5:
Canonical pathways ingenuity). The combined region
pathways signify alterations in pathways which are most
consistent for the 4 brain regions, though effect size can

differ per individual region. From this combined analysis,
cellular signalling pathways were the most significantly
enriched pathways, namely: α-adrenergic, CREB and pro-
tein kinase A (PKA) signalling, which are all predicted to
be downregulated. CREB proteins can be activated by

a

b

c

Fig. 3 Protein validation of RNA sequencing results in SCA3 mouse brain. Western blot analysis of mouse brain lysates from cerebellum (a) and
cortex (b) probed for Car2 and Psat1 protein. Depicted are results of 4 wild-type and 3 SCA3 mice. c Quantification of band intensity reveals
significant downregulation of Car2 protein in cerebellum and cortex of SCA3 mice, and significant upregulation of Psat1 in cerebellum. Protein
expression was corrected per lane for β-actin levels. Based on 8 wild-type vs 6 SCA3 mice. * = p-value < 0.05 with student’s t-test

Table 3 Top overrepresented pathways for genes differentially expressed in SCA3 mouse brain

Pathway Number of genes p-value Pathway database

Brain regions combined analysis (585 genes)

α-adrenergic signalling 11 1.23E-05 IPA

CREB signalling in neurons 25 1.95E-05 IPA

Protein kinase A signalling 25 2.57E-05 IPA

Axon guidance 24 3.63E-05 IPA + Euretos

Transmission across chemical synapses 13 5.50E-05 IPA + Euretos

Superpathway of cholesterol biosynthesis (srebp) 6 6.03E-05 IPA + Euretos

Myelination (cellular process) 24 8.02E-06 IPA + Euretos

Brainstem (195 genes)

pi-3 k cascade 6 1.20E-04 IPA + Euretos

amino acid metabolism 9 1.31E-04 Euretos

Superpathway of Cholesterol Biosynthesis 5 1.74E-04 IPA + Euretos

Striatum (824 genes)

axon guidance 38 2.19E-07 IPA + Euretos

neurotransmitter receptor binding and downstream
transmission in the postsynaptic cell

19 9.72E-06 Euretos

synaptic transmission/long term potentiation 23 3.02E-05 IPA + Euretos

Overrepresented pathways based on Ingenuity (IPA) and Euretos pathway analyses. Where applicable, Ingenuity obtained p-values are preferentially reported. The
three top pathways in brainstem were also significantly altered in striatum
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phosphorylation by kinases, including PKA [31], and can
thus be involved in the same signalling cascade. Indeed,
both CREB and PKA signalling have been implicated in
Huntington disease [32, 33] and other neurodegenerative
disorders [34], and CREB signalling is known to be re-
quired for long-term synaptic plasticity and axonal out-
growth [35], which was also found as one of the most
significantly altered pathways. Similar to Huntington dis-
ease, sterol regulatory element binding proteins (SREBPs)
and cholesterol biosynthesis [36, 37] were also among the
top significantly altered pathways in the current SCA3
study. Finally, a total of 24 significantly altered genes were
associated with the cellular process of myelination
(go:0042552), suggesting a defect in myelin homeostasis in
SCA3 brain as was also reported for Huntington disease
[38].
Since ataxin-3 is ubiquitously expressed in brain, and

in SCA3 patients there is no clear correlation between
the affected brain regions and level of ataxin-3 expres-
sion [39], region specific pathological mechanisms are
likely at play. Indeed, different pathways were observed
when performing brain region combined analysis com-
pared to brainstem and striatum individually (Table 3
and Fig. 4a). In striatum, the predominant effects were
observed in axon guidance and synaptic transmission
pathways (Fig. 4b) in addition to neurotransmitter recep-
tor induced postsynaptic events. These pathways were
however not apparently affected in brainstem (Fig. 4c).
Of note, the affected neurotransmitter receptor pathway
is most likely glutamate dependent based on involved
genes (Grind2d and Grik1). Transcriptional analysis of
SCA1 [40, 41] as well as SCA7 [42] mouse models have
previously established a potential involvement of glutam-
ate signalling, suggesting that this may be a signalling
pathway that is more broadly affected in the polyQ cere-
bellar ataxias. Brainstem showed the most significant al-
terations in amino acid metabolism, cholesterol
biosynthesis and the pi-3 k cascade, though these path-
ways were also significantly altered in striatum. Due to
the small number of differentially expressed genes, path-
way analysis was not possible for cerebellum and cortex.

Differential gene expression in blood
Blood samples were collected at 9 and 17.5 months of
age, RNA was isolated and sequenced after depletion of
globin transcripts. Average number of reads was 57.5
million (SD ± 10.7 million), and on average 53% were
aligned to known genes (Additional file 6: Figure S4A).
The blood RNA sequencing data can be found under
GEO accession GSE108069. A total of 9800 genes were
used for gene expression analysis. Globin transcripts
were successfully reduced (Additional file 6: Figure S4B),
and were < 4 CPM. However, both average GC percent-
age and 5′-3′ bias were significantly lower in the

samples from SCA3 mice (Additional file 6: Figure S4C
and D). The GC content can have a confounding effect
on differential gene expression in RNA sequencing ana-
lysis, because it may arise during PCR amplification be-
fore sequencing, and it is difficult to separate from a
true signal [43]. For this reason, GC-content correction
was performed prior to analysis [24]. At 9 months of
age, only Uba52 was significantly downregulated in
blood of SCA3 mice, while at 17.5 months of age a total
of 142 genes were found differentially expressed com-
pared to wild-type mice. The top 10 differentially
expressed genes at 17.5 months are listed in Table 4 and
corresponding plots of the top 5 genes are shown in
(Fig. 5a). Of the significantly altered genes in SCA3
mouse blood, Tnfsf14 (Tumor Necrosis Factor (Ligand)
Superfamily, Member 14) has previously been reported
to be upregulated in blood of SCA3 patients [44].
Tnfsf14 showed a log fold change of 0.8 in SCA3
mouse blood, with a FDR of 0.048. Through qPCR
validation we were able to verify the expression
changes in SCA3 mouse blood for protein scribble
homolog (Scrib, log fold change − 0.4, FDR 0.02) and
cation-transporting ATPase 13A2 (Atp13a2, log fold
change − 0.4, FDR 0.037), and were able to confirm a
trend for 4 other genes tested (Fig. 5b). Pathway ana-
lysis of the significantly altered genes revealed an effect
on respiratory electron transport and mitochondria asso-
ciated genes.

Metabolic and lipid changes in blood of SCA3 mice
Plasma samples from 4 wild-type and 4 transgenic mice
were collected at 4, 12 and 16 months of age and used
for LC-MS detection of metabolites (Profilomics,
Gif-sur-Yvette, France). A total of 195 variables were de-
tected in both ionization modes, where 114 could be
matched at a level 1 annotation (retention time, relative
isotopic ratio and MS/MS spectra) and 81 with a level 2
annotation (no MS/MS data) to an in-house database of
metabolites. Combining positive and negative ion modes
led to detection of 148 unique metabolites. The corre-
sponding chemical classes of the detected metabolites
are depicted in (Additional file 7: Figure S5).
Alterations in metabolite levels were assessed between

wild-type and SCA3 mice at individual time points using
the Welch’s unequal variances t-test procedure by com-
paring the area under the curve (AUC) using log10
areas. Due to the low sample number, there was no cor-
rection for multiple testing and nominal p-values are re-
ported. A total of 32 metabolites were found to be
significantly different (p < 0.05) between SCA3 and
wild-type mice. The 10 most significantly altered metab-
olites, irrespective of testing time point, are listed in
Table 5. At 4 months of age, DL-Dihydroorotic-acid was
most significantly altered, whilst L-Threonic-acid was
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most significantly altered at 12 months of age, and
DL-tryptophan at 16 months Fig. 6a).
To assess alterations of the metabolome in SCA3 mice

over time, a PCA was performed (Additional file 8:
Figure S6). Age was weakly but significantly correlated
with the first principal component (PC), which explains
57% of variance (ρ = − 0.586, p < 0.05). Genotype also
weakly but significantly correlated with PC3,
explaining 7% of variance (Additional file 8: Figure
S6B) (ρ = − 0.463, p < 0.05), indicating that the effect

of mutant ataxin-3 expression in the mice did not in-
duce a strong effect on blood metabolite levels. When
comparing SCA3 to wild-type mice at 4, 12 and 16 months
of age, the number of significantly altered metabolites in
blood were 14, 20 and 4 respectively. From these metabo-
lites, only DL-Tryptophan was altered at two of the time
points, whilst the other metabolites were only found to be
altered at a single time point. The full list of measured
metabolites and comparisons between genotypes can be
found in (Additional file 9: Blood metabolites).

a b

c

Fig. 4 Affected pathways in SCA3 mouse brain. a Brainstem and striatum present with different top affected pathways based on gene expression
analysis. Expression of synaptic transmission associated genes in striatum (b) and brainstem (c) of wild-type and SCA3 mice confirm that the
transcriptional changes in this pathway are specific to striatum. Obtained from RNA sequencing of 8 wild-type and 6 SCA3 mice. Depicted are 10
out the 23 differentially expressed genes within synaptic transmission pathway

Table 4 Top 10 differentially expressed genes in SCA3 mouse blood at 17.5 months old

Gene symbol Name FDR Log fold
change

Protein function (GO term mol. function
or biological process)

Pdia6 protein disulfide isomerase associated 6 0.002 −0.6 apoptotic cell clearance

Hs3st3b1 heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1 0.002 0.9 glycosaminoglycan biosynthetic process

Klk8 kallikrein related-peptidase 8 0.004 1.0 endopeptidase activity

Il18r1 interleukin 18 receptor 1 0.007 0.7 interleukin-18-mediated signaling pathway

Runx2 runt related transcription factor 2 0.007 0.8 ATP binding

Reck reversion-inducing-cysteine-rich protein with kazal motifs 0.007 1.1 endopeptidase inhibitor activity

Tob1 transducer of ErbB-2.1 0.007 0.8 receptor tyrosine kinase binding

Phf13 PHD finger protein 13 0.007 0.6 chromatin binding

Rhoh ras homolog family member H 0.007 −0.5 mast cell activation

Smad7 Mothers Against Decapentaplegic Homolog 7 0.010 0.7 activin binding
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On the same plasma samples, lipid levels were also ex-
amined. A total of 491 unique lipids were identified, di-
vided over 26 classes (Additional file 7: Figure S5). To
have an overview of the dataset, areas of all unique lipids
from the same lipid class were summed. Differences in

levels of the individual lipids and of the lipid classes at 4,
12 and 16 months were assessed using the Welch’s un-
equal variance t-test without multiple testing correction
(Additional file 10: Table S2). Using this method, at
4 months of age no lipid classes were found significantly

a

b

Fig. 5 top 5 differentially expressed genes in blood of SCA3 mice. At 17.5 months 142 genes were differentially expressed (FDR < 0.05).
a Normalized expression of top 5 differentially expressed genes at 17.5 months of age in blood of wild-type and SCA3 mice as detected by RNA
sequencing. b qPCR validation of blood RNA confirms significant gene expression changes for Scrib and Atp13a2. Based on 8 wild-type vs 6 SCA3
mice at 17.5 months of age. * = FDR < 0.05. Actb, Vcl and Hprt (right columns) were used as reference genes

Table 5 Top altered blood metabolites in SCA3 mice at 3 time points

Compound ChEBI ID Fold change p-value Altered at Time points Associated pathway

4 months

DL-Dihydroorotic-acid 17025 1.61 ± 0.19 0.002 4 months Pyrimidine Metabolism

N-a-acetyl-L-arginine 40521 1.95 ± 0.39 0.003 4 months NA

3-hydroxydecanoic-acid /
10-hydroxydecanoic-acid

17409 1.51 ± 0.21 0.005 4 months Fatty Acid

12 months

L-Threonic-acid 15908 0.55 ± 0.08 0.001 12 months Ascorbate and aldarate metabolism

2-Aminoisobutyric-acid /
Aminobutyric-acid

27971 2.58 ± 0.69 0.002 12 months NA

Asparagine 17196 0.68 ± 0.08 0.003 12 months Ammonia Recycling / Aspartate Metabolism /
Transcription/Translation

16 months

Methylhistamine 29009 0.87 ± 0.06 0.019 16 months Histidine Metabolism

DL-Tryptophan 27897 0.74 ± 0.11 0.020 12 and 16 months NA

Threonine /
D-allo-Threonine

16857 0.77 ± 0.09 0.038 16 months Glycine and Serine Metabolism / Threonine and
2-Oxobutanoate Degradation / Transcription/Translation

Nominal p-values reported, associated pathway obtained from Profilomics database
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different in plasma between SCA3 and wild-type mice. At
12 months of age, glycerophosphoserine and sulfatides
were decreased significantly in the SCA3 mouse. At
16 months of age, di- and triacylglycerols and ceramides
were significantly increased in plasma of SCA3 mice com-
pared to wild-type. Both diacylglycerols and ceramides
have been linked to the oxidative stress and stress signal-
ling pathways [45, 46]. In contrast, glycerophosphoserine,
lyso-phosphoinositols and sulfatide were found to be de-
creased in the SCA3 mice over time. Interestingly, 3 of the
4 NeuGC-GM2 gangliosides were found significantly al-
tered at 16 months. The full list of measured lipids can be
found in (Additional file 11: Blood lipids). The most sig-
nificantly altered individual lipids are shown in (Fig. 5b).
Due to their association with disease progression, cera-
mides, sulfatides, glycerophosphoserine and triradylgly-
cerol may be of potential interest as biomarkers of disease
progression in these mice.

Discussion
Here, we determined gene expression as well as metab-
olite and lipid changes in the SCA3 MJD84.2 mouse
model [16]. Transcriptional deregulation is a known
pathogenic process in SCA3 [8], but so far few studies
have been performed to establish which transcriptional
changes occur and how these are involved in the mo-
lecular pathogenicity in SCA3. Furthermore, there is
currently a requirement for reliable (pre)clinical bio-
markers capable of tracking disease progression in
SCA3.

Multi-omic biomarker identification in blood of SCA3 mice
Both metabolites [47] and gene transcripts [48] may
serve as biomarkers to track neurodegenerative disease
progression in blood. Sequencing of whole blood RNA
revealed lower levels of Uba52 at 9 months of age,
whereas 142 genes were differentially expressed at

a

b

Fig. 6 Significantly altered metabolites at 4, 12 and 16 months of age in the MJD84.2 mouse model. a Levels of the 3 most significantly altered
metabolites over time. b Levels of 3 most significantly altered lipids over time. Listed profilomic ID can be found in (Additional file 9 and 11).
Based on 4 wild-type vs 4 SCA3 mice. Depicted is mean log areas ±SD per time point
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17.5 months of age in the SCA3 mice. A total of 10
genes have been reported as transcript biomarkers in
blood of SCA3 patients [44]. Of these 10 genes, only
upregulation of Tumor Necrosis Factor Superfamily
Member 14 (Tnfsf14) was also observed significantly up-
regulated in our dataset of the SCA3 mice. Despite the
modest overlap, this observation does solidify Tnfsf14 as
a potential blood biomarker for SCA3. Pathway analysis
of the 142 altered genes in our blood dataset suggested
affected respiratory electron transport pathways, in line
with mitochondrial abnormalities and increased oxida-
tive damage observed in peripheral blood of Huntington
patients [49] and mitochondrial DNA damage previously
reported in blood and brain of SCA3 mice [50]. Interest-
ingly, whole blood RNA sequencing of SCA2 patients
also suggested affected mitochondrial function [51], sug-
gesting a potential commonality between the different
polyQ disorders.
Metabolite analysis of blood revealed a range of altered

metabolites in SCA3 mouse blood at all three time
points tested. However, due to the small sample size
used, the results must be interpreted with caution and
the most relevant alterations in metabolites are those
that are represented at multiple time points and show
increasing fold change over time. In this regard,
DL-Tryptophan (CHEBI: 27897) was identified as the
most promising biomarker. DL-tryptophan levels were
found to be altered at both 12 and 16 months of age,
with lower levels in SCA3 mice (fold change 0.7 +/−
0.11). Interestingly, blood tryptophan levels have been
correlated with disease progression in blood of Hunting-
ton disease patients, with affected patients also showing
lower levels [52, 53]. Indeed, tryptophan and its degrad-
ation products have been proposed as pathogenic factors
in Huntington brain, with the tryptophan metabolite
quinolinate reported to be elevated in Huntington dis-
ease brain, due to increased 3-hydroxyanthranilate oxy-
genase activity [54]. To our knowledge, tryptophan
levels in blood of SCA3 patients have not been assessed
yet, and would thus be a good starting point to establish
a biomarker indicative of disease progression.
Lipidomic analyses revealed that at 16 months of age

the di- and triglycerides and ceramides (CHEBI: 85812
and 85777) levels were increased considerably in the
SCA3 mice (Additional file 9: Blood metabolites). Inter-
estingly, increased triglycerides levels have been detected
in blood of SCA3 patients [55], but ceramides have not
yet been assessed in a clinical setting. In a mouse model
for Huntington disease, increased diacylglycerol kinase
(DGK) activity has been observed, and a protective effect
of DGK inhibition was suggested [56]. In line with the
blood transcriptional changes, ceramides have been fre-
quently reported in relation with neurodegenerative dis-
orders, especially in the context of oxidative stress,

inflammation and apoptosis [57–59]. For instance, in
spinal cord tissue from amyotrophic lateral sclerosis
spinal cord patients, increased levels of ceramides were
detected and preceded the clinical phenotype in a mouse
model [60]. The proposed mechanism is that the mutant
protein leads to increased oxidative stress, thereby alter-
ing the sphingolipid metabolism to produce more cera-
mides and cholesterol esters, in turn sensitising motor
neurons susceptible to excitotoxicity and oxidative
stress, culminating in cell death [60]. A comparison be-
tween ceramides in blood and CNS tissue of the SCA3
mouse in future experiments may thus be useful to es-
tablish ceramides as a potential biomarker.

CREB and α-adrenergic signalling pathway transcripts are
most consistently altered throughout the SCA3 mouse brain
A combined brain region differential gene expression
analysis was performed in order to prioritise the most
robust and consistent transcriptional alterations across
all brain regions. In this manner, CREB and α-adrenergic
signalling pathways were determined as most strongly
affected in the SCA3 mouse brain. α-Adrenergic signal-
ling has not yet been extensively investigated for SCA3,
and further validation in other mouse models and pa-
tient brain material should thus be performed to more
reliably establish this finding. However, adenosine
homeostasis is reportedly changed in Huntington [61],
suggestive of potential parallels between the two polyQ
disorders. Additionally, an adenosine A2A receptor
agonist, though pleiotropic, was shown to have beneficial
effects on neurodegeneration and transcriptional dysreg-
ulation in a SCA3 transgenic mouse [62].
Downregulation of CREB signalling was the second

most affected pathway based on the RNA sequencing of
brain tissue in the SCA3 mice. This finding is in good
agreement with previous studies where ataxin-3 was
found to interact with CREB-binding protein, and in-
hibits transcription by this coactivator [63].This inhib-
ition likely takes place through sequestration of
CREB-binding protein by the polyglutamine, as evi-
denced in the polyQ disease spinal and bulbar muscular
atrophy (SBMA) [64]. Furthermore, an expanded poly-
glutamine stretch is also known to supress phosphoryl-
ation of CREB through binding of the coactivator
TAFII130, interfering with CREB-dependent transcrip-
tion and subsequently contributing to polyQ pathogen-
icity [65]. Also, CREB deficiency enhances polyQ
induced lethality in Drosophila, which can be partly res-
cued by increased CREB expression [66]. As CBP regu-
lates CREB [67] and SREBP transcriptional activity [68],
these results suggest that loss of CBP function underlies
at least part of the transcriptional dysregulation in the
SCA3 brain, similar to what has been suggested for
Huntington disease [69]. Consistent with the synaptic
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transmission related gene expression changes we ob-
served in striatum of the SCA3 mice, CREB signalling is
known to be required for long-term synaptic plasticity
and axonal outgrowth [35]. Together, these findings sug-
gest that CREB dependent transcription is indeed inhib-
ited due to presence of expanded polyQ protein, and
that the resulting transcriptional dysregulation contrib-
utes to the pathogenic mechanisms in SCA3 [34].
The relation between cellular dysregulation, neuronal

loss, cerebellar dysfunction and the onset of motor/coord-
ination symptoms in SCA3 is not yet elucidated. Other re-
ports using the MJD84.2 mouse found that changes in
Purkinje cell firing are an early disease manifestation that
occur prior to observable neurodegeneration, but coincide
with behavioural deficits of the mice [70]. Costa et al. also
reported onset of behavioural deficits in the homozygous
MJD84.2 mice, with unaltered Purkinje cell counts at the
same time point [71]. The 75 week time point used for
transcriptional analysis in this study corresponds to the
early and minor loss of Purkinje cells in the MJD84.2
mouse model reported by others [70], but there were no
behavioural deficits in the current study. Other molecular
hallmarks of SCA3 are however conclusively present in
these mice at this time point, including increased ataxin-3
nuclear localisation and insolubility [71–73], which is con-
sidered an early stage of aberrant protein aggregation, de-
ranged calcium signalling [72] and the increased
excitability in Purkinje cells [70].

Mutant ataxin-3 affects synaptic transmission pathways
more strongly in striatum
From the combined brain region transcriptional ana-
lysis, CREB and α-adrenergic signalling were found
most strongly affected. However, it was clear that the
contribution of each individual brain region to this
list was not equal. We observed larger fold changes
and more differentially expressed genes in striatum
and brainstem than observed in cortex and cerebel-
lum. As we and others have repeatedly shown similar
expression of the mutant ataxin-3 transgene in the
MJD84.2 mouse model in the brain regions tested
here [16, 73, 74], it is unlikely that variations in ex-
pression levels can explain these differences. Since
previous studies suggest that cellular ATXN3 tran-
script and protein levels do not correlate well with
neuronal degeneration in SCA3 [39, 75], these find-
ings are indicative of differential effects of mutant
ataxin-3 in each brain region. One of the more sur-
prising findings in our dataset was the fact that the
synaptic transmission pathways were more strongly
affected in striatum compared to brainstem and cere-
bellum. Pathway analysis of the transcriptome in the
brainstem showed that the pi-3 k cascade and choles-
terol biosynthesis pathways were most significantly

altered in this brain region of the SCA3 mouse. It is
not clear why different pathways are affected in brain-
stem compared to striatum in the SCA3 mouse. How-
ever, in a previous study we did note the strongest
nuclear localisation of mutant ataxin-3 in the substan-
tia nigra [73]. In SCA3 patients a marked reduction
in dopamine transport was found in striatum [76].
Given that the dopaminergic innervation of striatum
originates from substantia nigra [77, 78], pathogenic
nuclear localisation of mutant ataxin-3 may interfere
with this dopaminergic signalling. Indeed, in light of
the requirement of CREB for dopamine dependent
gene expression in the striatum [79], the observed al-
teration in CREB signalling in the striatum of the
SCA3 mouse may reflect affected dopaminergic sig-
nalling from substantia nigra. Nonetheless, in a more
severe SCA3 mouse model synaptic transmission and
signal transduction pathways were found altered in
cerebellum of symptomatic mice [8]. It will thus be
interesting to determine whether these synaptic trans-
mission deficiencies in cerebellum correlate with nu-
clear localisation or aggregation of mutant ataxin-3
and are a requirement for motor phenotype onset.
The affected axon guidance pathway in striatum of
SCA3 mice was also identified in a transcriptomic
study with SCA2 mice, where weighted correlation
network analysis of cerebellum found one module as-
sociated with axon guidance correlating to disease
status [80].

Emerging role of white matter dysfunction in SCA3
In a recent study, RNAseq profiling was performed
on pons of 22 week old MJD84.2 and two knock-in
SCA3 models [81]. A total of 38 genes were found
differentially expressed in pons of these mouse
models. In our study, we were able to identify 32 of
these reported genes, and indeed found significant
differential expression for 23 of those genes in brain-
stem of the MJD84.2 mice. This overlap argues for
the robustness of both studies, and since we observed
altered expression for 11 genes associated with mye-
lination (Olig1, Olig 2, Ddx54, Fyn, Egfr, Cdkn1c,
Pmp22, Klk6, Mal, Tspan2, and Aspa), our findings
further solidify white matter changes as a potential
disease process in brainstem of SCA3 mice. The top
downregulated protein identified in our study, Car2,
accumulates on oligodendrocyte processes associated
with myelinated axons and it is thought that Car2
may be involved in myelin formation in the central
nervous system [82], though no major myelin abnor-
malities have been observed in Car2 deficient mice
[83, 84]. Furthermore, Zfp488 (zinc finger protein
488) was significantly upregulated in SCA3 mice, and
plays a role in the differentiation of neural progenitor
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cells to mature oligodendrocytes, thereby assisting in
remyelination after injury [85]. Together, these gene
expression studies warrant further investigation of
these white matter related processes in SCA3
pathogenicity.

Conclusions
Taken together, we report here Tnfs14 transcript,
DL-tryptophan levels and spingolipids ceramides as po-
tential blood biomarkers for SCA3. Mechanistically, we
found alterations in transcript levels for CREB and
α-adrenergic pathways most consistently affected
throughout all brain regions of the MJD84.2 mice. In
striatum, synaptic transmission pathways were most
strongly affected, whilst brainstem showed largest
changes in the pi-3 k cascade.
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