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Immunoglobulin class-switch recombination (CSR) and somatic hypermutations (SHMs) 
are prerequisites for antibody and immunoglobulin receptor maturation and adaptive 
immune diversity. The mismatch repair (MMR) machinery, consisting of homologs of 
MutSα, MutLα, and MutSβ (MSH2/MSH6, MLH1/PMS2, and MSH2/MSH3, respectively) 
and other proteins, is involved in CSR, primarily acting as a backup for nonhomologous 
end-joining repair of activation-induced cytidine deaminase-induced DNA mismatches 
and, furthermore, in addition to error-prone polymerases, in the repair of SHM-induced 
DNA breaks. A varying degree of antibody formation defect, from IgA or selective IgG 
subclass deficiency to common variable immunodeficiency and hyper-IgM syndrome, 
has been detected in a small number of patients with constitutional mismatch repair 
deficiency (CMMRD) due to biallelic loss-of-function mutations in one of the MMR genes 
(PMS2, MSH6, MLH1, or MSH2). To elucidate the clinical relevance of a presumed 
primary immunodeficiency (PID) in CMMRD, we systematically collected clinical history 
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and laboratory data of a cohort of 15 consecutive, unrelated patients (10 not previously 
reported) with homozygous/compound heterozygous mutations in PMS2 (n = 8), MSH6 
(n = 5), and MLH1 (n = 2), most of whom manifested with typical malignancies during 
childhood. Detailed descriptions of their genotypes, phenotypes, and family histories 
are provided. Importantly, none of the patients showed any clinical warning signs of PID 
(infections, immune dysregulation, inflammation, failure to thrive, etc.). Furthermore, we 
could not detect uniform or specific patterns of laboratory abnormalities. The concentra-
tion of IgM was increased in 3 out of 12, reduced in 3 out of 12, and normal in 6 out of 12 
patients, while concentrations of IgG and IgG subclasses, except IgG4, and of IgA, and 
specific antibody formation were normal in most. Class-switched B memory cells were 
reduced in 5 out of 12 patients, and in 9 out of 12 also the CD38hiIgM− plasmablasts 
were reduced. Furthermore, results of next generation sequencing-based analyses of 
antigen-selected B-cell receptor rearrangements showed a significantly reduced fre-
quency of SHM and an increased number of rearranged immunoglobulin heavy chain 
(IGH) transcripts that use IGHG3, IGHG1, and IGHA1 subclasses. T cell subsets and 
receptor repertoires were unaffected. Together, neither clinical nor routine immunological 
laboratory parameters were consistently suggestive of PID in these CMMRD patients, 
but previously shown abnormalities in SHM and rearranged heavy chain transcripts were 
confirmed.

Keywords: primary immunodeficiency, hyper-igM syndrome, Dna repair defect, mismatch repair, somatic 
hypermutation, class-switch recombination, iga deficiency, igg subclass deficiency

inTrODUcTiOn

Biallelic germline mutations in a mismatch repair (MMR) gene 
result in a condition referred to as Constitutional Mismatch 
Repair Deficiency Syndrome (CMMRD; OMIM #276300). This 
rare, devastating, cancer predisposition syndrome overlaps with 
the autosomal recessive form of Turcot’s syndrome, a condition 
characterized by the co-occurrence of multiple adenomatous 
colon polyps with an increased risk of colorectal cancer and of 
brain tumors (1). In addition, individuals with CMMRD have a 
very high risk of developing hematological and other malignan-
cies starting in early childhood [reviewed in Ref. (2)]. Often, 
patients with CMMRD show café-au-lait macules (CALMs) 
and other signs reminiscent of neurofibromatosis type 1 (NF1) 
which is of diagnostic importance (3). For the clinical diagnosis 
of CMMRD and tumor surveillance in affected patients, recent 
consensus reports provide helpful diagnostic scores and screen-
ing guidelines (4–7).

The main function of the MMR system is repairing replication 
errors that escape the proofreading activity of the polymerases 
[reviewed in Ref. (8)]. In addition, the MMR system is involved 
(i) in immunoglobulin class-switch recombination (CSR) in that 
it recognizes activation-induced cytidine deaminase- (AID) 
catalyzed conversion of cytidines to uridines in DNA switch 
regions and (ii) in somatic hypermutation (SHM) [reviewed in 
Ref. (9)]. Both processes are needed for B  cell maturation and 
for diversification and specification of the mammalian immu-
noglobulin repertoire. Defects of CSR are the molecular basis of 
hyper-IgM syndromes, which are primary immunodeficiencies 
(PIDs) with a predominant antibody formation defect associated 

with decreased IgG, IgA, and IgE, and normal or increased 
concentrations of IgM (9–11). With these functions, the MMR 
system constitutes a link between the immune system and tumor 
suppression (12).

Various levels of immunodeficiency were detected in single 
CMMRD patients or small patient series, supporting the hypoth-
esis that the MMR machinery contributes to immunoglobulin 
CSR and SHM. IgA deficiency or common variable immunodefi-
ciency (CVID) was first reported in one MSH2- and three MSH6-
deficient patients (13–15). Further analyses focused on defects 
related to CSR and allowed the identification of three PMS2- and 
eight MSH6-deficient individuals with biallelic loss-of-function 
mutations, who presented variable degrees of hyper-IgM-like 
features and clear defects of CSR in  vitro and in  vivo (16, 17). 
In addition, larger screens for single nucleotide polymorphisms 
within MMR genes in selected patient cohorts with IgA deficiency 
or with CVID led to the identification of certain monoallelic 
MSH5, MLH1, and MSH2 variants which could be linked to these 
PIDs (18, 19). Together, the results of these studies suggested that 
CMMRD consistently entails a PID.

The risk of malignancies is higher in most primary immune 
deficiency and dysregulation disorders (PID), but the mechanisms 
and frequencies of malignant transformation vary according to 
the different categories of PID (20). In CMMRD, any impairment 
of the immune system might be critical for the evolution of malig-
nancies, since it would compromise tumor immune surveillance, 
which could accelerate tumorigenesis in addition to the remark-
ably increased mutation rates that are intrinsic to cells with MMR 
deficiency. Because previous studies reported varying degrees of 
immunodeficiency in patients with CMMRD that might render 
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them less responsive to oncological immune therapy such as, 
e.g., checkpoint inhibition, the clarification of whether CMMRD 
patients suffered from PID has potential implications for future 
oncologic immune treatment strategies. On the other hand, 
a uniform pattern of clinical symptoms such as warning signs 
suggestive of PID or laboratory immunological abnormalities 
could facilitate early diagnosis of CMMRD. Furthermore, immu-
nodeficiency secondary to chemotherapy might be aggravated in 
these individuals, requiring additional caution and supportive 
measures.

The present systematic analysis of PID in CMMRD addressed 
the in vivo cellular, humoral, and clinical immune phenotypes of 
CMMRD patients from Europe and the Middle East.

resUlTs

Fifteen consecutive, unrelated patients with a genetically 
confirmed diagnosis of CMMRD reported from nine countries 
were included in this study (11 females, 4 males; age at inclu-
sion: 1–38 years, median age 9 years; age at first malignancy: 
0.7–22 years, median age 5 years). Five of these patients were 
included in previous studies, while data of the remaining 10 
patients were not published previously. Table  1 summarizes 
the patients’ genotypes, clinical presentations, and family 
histories.

In line with previous observations, homozygous (n  =  7) or 
compound heterozygous (n  =  1) PMS2 germline mutations 
were present in more than half of the patients; consanguinity 
was reported by five of the parents (Table  1). Two of the four 
novel patients with PMS2-deficiency (P5 and P12) had truncating 
mutations affecting both PMS2 alleles and the other two (P9 and 
P16) were homozygous for splice mutations leading to aberrant 
out-of-frame transcripts. Six of PMS2-deficient patients had a 
recent history of high-grade malignant glioma, and one had a 
recent history of Burkitt’s lymphoma. In one patient with glio-
blastoma, acute lymphoblastic leukemia (ALL), and in another 
one, T-cell Non-Hodgkin’s lymphoma (T-NHL) had preceded 
the brain tumor by 1 and 5 years, respectively. Two patients had 
metachronous LS-associated carcinomas, and three patients also 
had bowel adenomas.

Five patients had MSH6 mutations. Two patients from repor-
tedly consanguineous parents were each homozygous for a 
truncating MSH6 mutation. Three patients were compound 
heterozygous for two different MSH6 mutations. Interestingly, 
one of these patients (P13) had a de novo mutation that was 
absent in both genetically confirmed parents, while the second 
mutation was maternally inherited. While this patient had two 
different truncating mutations, the other two patients (P2 and 
P14) had one truncating and one missense mutation. Both mis-
sense MSH6 mutations (p.Asp439Gly and p.Tyr994Asn) are so 
far unreported, but could be classified as likely pathogenic at least 
in the context of CMMRD according to ACMG guidelines (25).
The tumor spectrum of MSH6-deficient patients included Wilms 
tumor, two medulloblastomas, and two NHL, which relapsed 
in one patient and was preceded by a B-cell ALL in the other 
patient (Table 1). One of the MSH6-deficient patients had bowel 
adenomas at 10  years of age. With a median age of 6.5 (range 

4–7) years, none of the other patients had bowel adenomas or 
LS-associated tumors.

One of two patients with biallelic mutations in MLH1 was 
from consanguineous parents. This patient (P8) carried the 
known missense mutation p.Ala111Val classified as likely 
pathogenic by the InSiGHT Variant Interpretation Committee. 
The other patient (P7) was compound heterozygous for the 
known missense mutation p.Ala21Glu classified as pathogenic 
by the InSiGHT Variant Interpretation Committee and the mis-
sense variant p.Val716Met which is classified as benign variant 
by the InSiGHT Variant Interpretation Committee. Of note, 
both patients (P7 and P8) showed in a germline microsatellite 
instability (gMSI) assay elevated gMSI ratios as did all PMS2-
deficient individuals tested for this feature and which is highly 
specific for CMMRD (26). Although, we cannot exclude that not 
the detected variant p.Val716Met but a different MLH1 muta-
tion is responsible for CMMRD in patient P7, it is noteworthy, 
that this variant has already previously been discussed to be 
potentially responsible in combination with a stop-mutation for 
the colorectal cancer in a 12-year-old boy (27). Both MLH1-
deficient patients (P7 and P8) had T-NHL at a very early age 
(8  months and 1  year), and P7 developed another lymphoma 
(B-NHL) at 12 years of age, a borderline phylloides tumor at 16 
and a glioblastoma at 21. She also had multiple bowel adenomas 
removed.

Two patients (P3 and P10) were from families with previously 
diagnosed CMMRD patients. One patient (P11) was diagnosed 
with CMMRD prior to tumor development (24). All 12 remaining 
index patients in the families fulfilled the C4CMMRD criteria for 
the clinical suspicion of CMMRD when they had their first tumor 
with a mean of 5.5 (range 3–7) C4CMMRD scoring points (5). 
Non-malignant features indicative of CMMRD according to the 
C4CMMRD scoring system were present in 13 out of 15 patients. 
Two or more CALM, hyper- and/or hypopigmented skin patches 
were noted in 13 patients, and cerebral cavernoma/hamartoma 
were present in three. Furthermore, vascular anomalies of the skin 
(hemangioma and venocapillary malformation) were reported 
in three patients, and one patient had a hepatic hemangioma. 
Parents of eight patients reported consanguinity. Family histories 
of LS or LS-associated carcinomas in the first, second, or third 
degree relatives were reported for five patients, and three had 
siblings with CMMRD-associated cancers (Table 1).

To define the clinical immunodeficiency associated with 
CMMRD, we first assessed the clinical immunological parameters. 
Patients’ clinical history data were obtained using a study ques-
tionnaire, which is provided in the Online Repository (Figure 
S1 in Supplementary Material; see Patients and Methods). Data 
were retrieved from 14 out of 15 patients and showed no clinical 
signs of PID (Table 2). A filled questionnaire was not available 
from P6, but her physician-reported history did not show any 
signs of PID. Only 2 out of 14 patients (P2 and P3; aged 4 and 
6 years) were reported to have 4–7 infections of the ear-nose-
throat tract or simple viral infections per year, which is within 
the physiological range at that age (Table  2). For none of the 
other patients an increased number of infections were reported. 
P3 had a history of bronchial asthma, with an IgE within the 
normal range (Table 2).
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TaBle 1 | Characteristics of 15 patients with CMMRD.

Patient 

(reference)

age 

(years) 

at study 

inclusiona

genotype  

(mutated gene, 

mutation at cDna  

level, mutation at 

protein level)

First symptom 

or malignancy 

(age, years)b; 

c4cMMrD points 

at first tumor 

diagnosis

history of clinical 

immunodeficiency 

or dysregulationc

Family tumors  

(age, years)

Parental 

consanguinity 

(as reported 

by parents)

nonmalignant 

features

Premalignancies hematological 

malignoma 

(age, years)

Brain tumor 

(age, years)

ls-associated 

cancer  

(age, years)

Others

P1  

(21)

38 PMS2

c.[137 G>T]; [137 G>T]; 

p.[Ser46Ile]; [Ser46Ile]

CRC (22); 6 Negative LS family, 

mother: CRC 

(46)

Yes Adenoma 

sebaceum, hepatic 

hemangioma

Dysplastic 

adenomata 

(colon)

– Glioblastoma  

(34)

CRC (22)

Duodenal Ca (36)

Endometrial 

Ca (35)

P2 

(unpublished)

4 MSH6

c.[467C>G]; [1316A>G]; 

p.[Ser156*]; [Asp439Gly]

Anaplastic 

medulloblastoma 

(4); 5

Negative Paternal 

grandfather: 

CRC (50), 

maternal cousin: 

AMLh (11)

No CALM, freckling, 

ash-leaf spots; 

hemangioma,  

non-therapy-

induced 

cavernoma

– Anaplastic 

medulloblastoma (4)

– –

P3  

(22)

6 MSH6

c.[3261dupC]; 

[3261dupC]; 

p.[Phe1088Leufs*5]; 

[Phe1088Leufs*5]

CALM, T-NHL (3); 6 Negative Two cousins 

affected with 

CMMRD-related 

malignancies

Yes ~10× CALM 

(generalized), 

bilateral frontal 

venous angioma; 

supra- and 

infratentorial 

hamartoma

T-NHL (3)

T-NHL relapse 

[as T-ALL] (6)

– – –

P5 

(unpublished)

10 PMS2

c.[634C>T]; 

[1239del]; p.[Gln212*]; 

[Asp414Thrfs*34]

Glioblastoma (9); 4 Negative No No CALM – Glioblastoma (9) – –

P6  

(23)

26 PMS2

c.[2192T>G]; [2192T>G]; 

p.[Leu731*]; [Leu731*]

CRC (20); 7 n.a. Maternal 

grandfather: 

CRC (40)

Yes CALM Villous adenoma 

(small bowel)

– Low grade diffuse 

astrocytoma 

(23) → high grade 

(26)d

CRC (20)

Papilla Vateri 

Ca (22)

–

P7 

(unpublished)

21 MLH1

c.[62C>A]; [2146G>A]; 

p.[Ala21Glu]; [Val716Met]e

T-NHL (1); 6 Negative LS family, 

mother: CRC 

(40), maternal 

aunt: CRC 

(50), maternal 

grandfather: 

CRC (64)

No 1× CALM, cerebral 

cavernoma, 

varicosis, vascular 

malformation with 

pigmentation 

disorder right calf

9 adenomas 

(small, large 

bowel)

T-NHL (1)

B-NHL (12)

Glioblastoma (21) – Borderline 

phylloides 

tumor (16)

P8 

(unpublished)

1 MLH1

c.[332C>T]; [332C>T]; 

p.[Ala111Val]; [Ala111Val]

T-NHL (7 months); 6 Negative Maternal grand-

mother: CRC/

breast cancer; 

paternal uncle: 

ColonCa (34)

Yes CALM T-NHL 

(7 months)

– – –

P9 

(unpublished)

3 PMS2

c.[2007-2A>G]; 

[2007-2A>G]f

ALL (2); 6 Negative Brother: CRC 

(12)

Yes CALM ALL (2) Glioblastoma (3) – –
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Patient 

(reference)

age 

(years) 

at study 

inclusiona

genotype  

(mutated gene, 

mutation at cDna  

level, mutation at 

protein level)

First symptom 

or malignancy 

(age, years)b; 

c4cMMrD points 

at first tumor 

diagnosis

history of clinical 

immunodeficiency 

or dysregulationc

Family tumors  

(age, years)

Parental 

consanguinity 

(as reported 

by parents)

nonmalignant 

features

Premalignancies hematological 

malignoma 

(age, years)

Brain tumor 

(age, years)

ls-associated 

cancer  

(age, years)

Others

P10 

(unpublished)

7 MSH6

c.[2653A>T]; [2653A>T]; 

p.[Lys885*]; [Lys885*]

Wilms tumor (5); 6 Negative Maternal uncle: 

B-NHL; affected 

siblings-CMMRD

Yes CALM – – – Wilms 

tumor (5)

P11 (24) 7 PMS2

c.[2444C>T]; [2444C>T]; 

p.[Ser815Leu]; 

[Ser815Leu]

CALM (7); n.a. Negative No Yes CALM – – – –

P12 

(unpublished)

13 PMS2

c.[1515delG]; [1515delG]; 

p.[Phe506fs]; [Phe506fs]

B-cell Burkitt 

lymphoma (13); 6

Negative No No CALM

Venocapillary 

malformation

Multiple 

dysplastic colonic 

adenomatous 

polyps

B-cell Burkitt 

lymphoma (13)

– – –

P13 

(unpublished)

10 MSH6 

c.[1135_1139delAGAGA]; 

[2277_2293del]; 

p.[Arg379*]; 

[Glu760Profs*6]

B-ALL (3); 3 Negative No No CALM (>6); 

Spitz naevus; 

hypopigmented 

areas; MRI 

signal alterations 

reminiscent of 

NF1-FASI; colitis 

chronica

Tubulous 

adenoma, low 

grade dysplasia

B-ALL; T-NHL 

(3; 7)

– – –

P14 

(unpublished)

7 MSH6

c.[2238dupT]; [2980T>A]; 

p.[Leu747Serfs*9]; 

[Tyr994Asn]

Medulloblastoma 

(6); 3

Negative No No CALM – Medulloblastoma 

(6 years)

P15  

(21)

12 PMS2

c.[2007-2A>G]; 

[2007-2A>G]f

T-NHL (4); 4 Negative No No CALM (>5), 

hypopigmented 

macules

– T-NHL (4) Glioblastoma (9)

P16 

(unpublished)

9 PMS2

c.[1145-31_1145-

13del]; [1145-31_1145-

13del]; p.[Asn383*; 

Gly382Valfs*19]; 

[Asn383*; 

Gly382Valfs*19]g

Glioblastoma (8); 4 Negative Paternal 

grandfather: 

prostate 

carcinoma 

(>70 years); one 

sister died from 

NHL (4 years)

Yes – (no signs of NF1) Glioblastoma (8)

aAt one time point within 4 years of patient recruitment, when blood sampling for immunological analyses was undertaken.
bAt first malignancy.
cDefined by immunological warning signs as assessed by a questionnaire (Figure S1 in Supplementary Material) with data shown in Table 2.
dCounted as one malignancy.
ep.Val716Met is classified a benign variant according to the InSiGHT Variant Interpretation Committee and it cannot be excluded that this patient carries a different pathogenic mutation on this allele.
fIn a different patient, it was shown that the mutation c.2007-2A>G leads to the following two aberrant transcripts: r.2007_2023del (p.Ser669Argfs*9) and r.2007_2174del (p.Ser669_Ala725delinsArg).
gcDNA-sequencing showed two aberrant transcripts: r.1144_1145insGATAGTCCACGTTTGCTTAG (p.Asn383Ter) and r.1145_2006del (p.Gly382Valfs*19).
hIn this family member, a germline mutation in CEBPa associated with a predisposition toward myeloid malignancies was detected.
CRC, colorectal carcinoma; LS, Lynch syndrome; CALM, café-au-lait macule (spots); T-NHL, T-cell Non-Hodgkin’s Lymphoma; ALL, acute lymphoblastic leukemia; NF1-FASI, NF1-associated foci of abnormal signal intensity; CMMRD, constitutional 
mismatch repair deficiency.
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TaBle 2 | History of clinical signs of immunodeficiency or immune dysregulation of 14 (out of 15)a patients with CMMRD.

P1 P2 P3 P5 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

immunodeficiency warning signs
Family history of immunodeficiency No No No No No No No No No No No No No No
Hospitalization for infections No No Only during 

chemo
No No Only during 

chemo
Only during 

chemo
Only 

during 
chemo

No No No Yes (in Syria) No No

Reactions/complications after live vaccines No No No No No n.a. No No No No No No No n.d.
Pathological healing of the navel No No No No No No No No No No No n.a. No n.d.
Delayed growth during childhood/reduced 
thriving

No No No No No No No No No No No No No No

infections
Frequency (per year) 0 7 4–5 Normal Normal Increased 

since chemo
Increased 

since chemo
Increased 

during 
chemo

Normal Normal Normal 1 Normal Normal

Severity n.a. Simple viral Simple viral, 
simple bacterial; 

history of 
bronchial asthma

Simple 
viral

Simple 
viral

Complicated 
viral 

complicated 
bacterial

Invasive 
fungal

Simple 
viral and 
invasive 
fungal

n.a. n.a. n.a. Complicated 
viral

Simple 
viral

Simple 
viral

Localization n.a. Respiratory 
tract

ENT, bacterial: 
lungs

ENT ENT Lungs 
bacteremia

Skin n.d. n.a. n.a. n.a. Bone 
marrow, liver

n.a. n.a.

Infectious agents n.a. n.d. During chemo: 
Staphylococcus 
aureus, MRSA, 

Aspergillus 
fumigatus

n.d. Normal 
spectrum

During 
chemo: 

opportunistic

During 
chemo: 

opportunistic, 
Candida 
albicans

During 
chemo: 
Herpes 
simplex, 

C. 
albicans

n.a. n.a. n.a. Parvovirus 
HCV

n.a. n.a.

Response to antibiotics n.a. Normal Delayed, during 
chemo

n.a. Normal Delayed n.d. Normal n.a. Normal Normal Normal n.a. n.a.

Requirement of corticosteroids or 
immunosuppression

Only as 
oncological 
treatment

No Yes, during 
chemo

No No Yes, during 
chemo

n.d. No No Yes, 
during 
chemo

No No n.a. No

autoimmunity/immune dysregulation
Granuloma No No No No No No No No No No No No No No
Autoimmunity No No No No No No No No No No No No No No
Autoinflammation/recurrent fever No No No No No No No No No No No n.a. No
Lymphoproliferation/splenomegaly No No Yes, mild axillary No No No No No No No Yes No No No
Hepatopathy, cholangitis, Cryptosporidium 
infection

No No No No No No No No No No No No No No

Inflammatory bowel disease No No No No No No No No No No No No No No
Interpretation regarding primary 
immunodeficiency (PID)

No signs No signs No signs No 
signs

No signs No signs No signs No signs No 
signs

No 
signs

No 
signs

No signs No 
signs

No 
signs

aNo immunological history data available from patient P6.
ENT, ear-nose-throat tract; chemo, cytostatic chemotherapy; MRSA, multidrug resistant Staphylococcus aureus; CMMRD, constitutional mismatch repair deficiency.
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TaBle 3 | Quantification of B cell subsets of CMMRD patients.

cD19/μl cD19+cD27+igD+  
(ncsBm) %B

cD19+cD27+igD−  
(csBm) %B

cD19+cD27−igD+ 
(naive) %B

cD21locD38lo  
(activ) %B

cD38hiigMhi  
(trans) %B

cD38hiigM−  
(csPlasmablasts) %B

P9 (PMS2; 3 years)a 7 – – – – – –
P11 (PMS2; 7 years) 548 15.21 4.52 73.87 8.29 5.6 0.15
P16 (PMS2; 8 years) 213 7.31 10.47 76.92 6.32 8.07 0.53
P5 (PMS2; 10 years) 193 13.85 9.88 74.75 6.84 8.22 0
P12 (PMS2; 13 years) 775 5.31 7.30 78.54 22.32 4.24 0.45
P15 (PMS2; 14 years) 168.5 5.1 5.37 80.81 69.43 4.7 0.14
P6 (PMS2; 26 years) 1,079 3.3 4.67 84.29 32.54 1.39 0
P1 (PMS2; 38 years) 317 6.75 1.93 89.29 84.21 0.73 0.1
P2 (MSH6; 4 years) 57 0.35 1.06 93.47 80.91 5.78 0.35
P3 (MSH6; 6 years) 46.5 10 30 0 6.67 0 0
P10 (MSH6; 7 years) 179 3.21 5.02 90.54 5.14 20.09 0.65
P14 (MSH6; 7 years) 582 4.71 5.54 84.49 9.25 7.99 0.23
P13 (MSH6; 10 years) 195 1.95 2.26 93.46 8.02 3.61 0.04
P8 (MLH1; 1 year)a 8 8 4 80 – – –
P7 (MLH1; 21 years) 342 3.15 2.14 92.24 62.95 1.29 0.18

controls/reference values (5th–95th percentile)
1 yearb (n = 26) 700–1,300 3.25–10.75 1–5 83.25–93.75 1–11 1–25 0.4–3.6
2–3 yearsb (n = 38) 700–1,300 4.9–14.2 2.9–9.2 74.7–90.5 1–11 1–25 0.4–3.6
4–5 yearsb (n = 38) 700–1,300 7–15.2 3.9–16.2 69.9–85.6 1.11 1–25 0.4–3.6
6–10 yearsb (n = 38) 300–500 2.93–19 3.85–16.5 63.1–89.15 1–11 1–25 0.4–3.6
11–18 yearsb (n = 22) 300–500 5.05–17.95 4–22.8 60.15–88.95 1–11 1–25 0.4–3.6
19–61 yearsb (n = 54) 300–500 7.4–32.5 6.5–29.1 42.6–82.3 1–11 1–25 0.4–3.6

Samples are sorted according to gene defect and age.
aData for patients P3, P8, and P9 were excluded from B cell analyses due to their recent treatment with rituximab (P8 and P9) and/or chemotherapy (P8 and P3) (italic).
bReference values for ncsBm, csBm, and naïve B-cells were taken from Huck et al. (29) for the age groups 1 year, 2–3 years, 4–5 years, 6–10 years, 11–18 years; and from Warnatz 
and Schlesier (28) for the age group 19–61 years and csPlasmablasts.
Reduced values are printed in red boldface.
Increased values are printed in green boldface.
CMMRD, constitutional mismatch repair deficiency.
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Next, we sought to determine whether there was any consistent 
abnormality detectable in the routine parameters of the cellular 
immune system. To this end, an analysis resembling an extended, 
routine, diagnostic workup of any suspected, combined immuno-
deficiency was performed. Due to the role of the MMR machinery 
in CSR and SHM, we focused on the B cell maturation stages. 
But also, T cell subsets and the T cell receptor repertoire were 
analyzed. Tables 3 and 4 show the raw data for the most relevant 
B and T  cell subsets together with the corresponding normal 
ranges (28, 29). Patients are grouped according to their genotype  
(i.e., mutated MMR gene) and sorted according to age. Importantly, 
no uniform pattern of variation from the norm was identified 
within the cellular immune system of CMMRD patients as a 
result of the routine PID diagnostic FACS analysis, including an 
analysis of memory B cell subsets. Class-switched memory B cells 
were reduced to a varying degree in 5 and normal in 7 out of 12 
patients. Still, we detected a clear trend of reduced CD38hiIgM− 
plasmablasts (measured as a percent of B  cells in 12 patients: 
normal in 3 patients, reduced in 7, absent in 2, and an increased in 
none) and a relative increase of CD21lowCD38low (activated) B cells 
in 6 of 12 patients across all three genotypes analyzed (Table 3). 
As expected, values of the following lymphocyte subsets were 
unremarkable with mild, inconsistent variations: T cells and T cell 
subsets including CD4+ and CD8+ T cells, T cell receptor alpha/
beta (TCRab)-positive CD4−CD8−CD3+ double negative T cells, 
TCRgamma/delta as well as naïve CD45RA+CD4+ (Table 4) and 
naïve CD8+ T cells (not shown), activated T cells (not shown), 

and NK cells and monocytes (Table 4). Furthermore, the results 
of the TCR repertoire (spectratyping), assessed by conducting 
quantitative sequencing of 24 TCR Vbeta family fragments from 
CD4 and CD8 T cells, was unremarkable in all individuals tested 
(n = 14; not shown). Overall, apart from a reduction in the num-
ber of class-switched B memory cells in 5 out of 12 individuals 
and of class-switched plasmablasts detected in most (9 out of 12), 
no abnormality of the cellular immune system was consistently 
found among these CMMRD patients.

Abnormal parameters of humoral immunity and B cell function 
such as IgG subclass or IgA deficiency, hypogammaglobulinemia, 
and hyper-IgM syndrome are expected in CMMRD as they were 
shown to occur in patients with defective CSR (16, 30, 31). Thus, 
we examined the results of the quantitative immunoglobulin iso-
types and subclass analyses (Figure 1) and of the specific antibody 
formation capacity (Table S1 in Supplementary Material). These 
serological analyses were conducted at the patients’ local hospi-
tals, and they were not conducted for all patients. The results were 
quite heterogeneous, with mostly normal, but some reduced and 
some increased immunoglobulin concentrations. Importantly, 
we did not observe a consistent reduction of IgA, IgG, or any IgG 
subclass except for IgG4 (in four out of seven tested patients). 
However, the interpretation of IgG4 subclass deficiency is limited, 
because normal ranges indicate that IgG4 might be undetectable 
throughout preschool age and still very low (0.05  g/l) even in 
healthy adults (32). IgG was mildly to moderately reduced in 
4 out of 12 tested patients, all of whom were ≥10 years of age 
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TaBle 4 | Quantification of T cell subsets and other peripheral blood mononuclear cells of CMMRD patients.

cD3+/μl cD3+cD4+ cD3+cD8+ cD4+cD45ra+ 
(%cD3)

Tcrab+cD4−cD8−cD56− 
(%cD3)

Tcrgd+ (%cD3) nK/μl Mono/μl stem cells  
in PB/μl

age-specific normal rangea 1,400–2,000 700–1,100 600–900 >11–30%  
(age-dep.)

<2% <11–15%  
(age-dep.)

200–300 400–1,000

P9 (PMS2; 3 years) 1,839 [1,800–3,000] 1,088 [1,000–1,800] 613 [800–1,500] 36.64 0.09 3.17 252 2,254 13
P11 (PMS2; 7 years) 5,139 3,209 1,748 53.81 0.06 7.21 566 609 3
P16 (PMS2; 8 years) 1,161 529 606 18.68 0.05 10.82 337 323 4
P5 (PMS2; 10 years) 954 543 377 77.22 0.20 5.93 140 400 1
P12 (PMS2; 13 years) 2,864 1,361 1,258 31.01 0.23 5.98 247 185 0
P15 (PMS2; 14 years) 1,786 112 755 30.25 0.13 5.37 278 684 0
P6 (PMS2; 26 years) 2,481 1,485 948 n.d. n.d. n.d. 189 1,664 14
P1 (PMS2; 38 years) 2,053 1,342 639 21.75 n.d. 1.7 266 320 n.d.
P2 (MSH6; 4 years) 644 [1,800–3,000] 483 [1,000–1,800] 189 [800–1,500] 60.8 0.15 3.29 124 735 0
P3 (MSH6; 6 years) 833 266 556 32.79 0 26.21 276 398 n.d.
P10 (MSH6; 7 years) 1,123 405 681 36.30 0.20 7.10 120 427 1
P14 (MSH6; 7 years) 1,697 903 754 22.54 0.52 4.69 253 386 1
P13 (MSH6; 10 years) 454 216 196 9.55 0.12 3.52 72 444 1
P8 (MLH1; 1 year)b 71 [1,800–3,000] 53 [1,000–1,800] 15 [800–1,500] 39.93 0 5.41 24 374 2
P7 (MLH1; 21 years) 1,378 776 538 19.91 0.21 3.41 323 690 1

Samples are sorted according to gene defect and age.
aExcept otherwise stated [square brackets].
bData of patients P3 and P8 were excluded from T cell analyses due to preceding chemotherapy (italic).
Reduced values are printed in red boldface.
Increased values are printed in green boldface.
TCRab, T cell receptor alpha/beta; CMMRD, constitutional mismatch repair deficiency.
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FigUre 1 | Immunoglobulin concentrations of patients with constitutional mismatch repair deficiency. Humoral immunologic analyses were performed locally at the 
patients’ hospitals, and the results were sent to the study center. None of the patients had received therapeutic (i.v. or s.c.) immunoglobulins within the last 6 months 
prior to analysis. Results from PMS2-deficient patients are shown as full dots, from MSH6-deficient patients as open dots, and from MLH1-deficient patient as open 
square. Age-specific normal ranges are shown as gray boxes. (a) Panels show serum concentrations of IgG, IgA, and IgM in g/dl, with age-specific, normal ranges. 
(B) Graphs show IgG subclass analyses, available from seven patients, related to age-specific, normal ranges to facilitate interpretation. Out of 15 patients, no 
serological data were available for P12, and those for P8 and P9 were excluded due to their having received prior chemo- or rituximab therapy.

9

Tesch et al. No Clinical PID in CMMRD

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1506

(Figure 1A). IgM was increased in 3 out of 12 of the tested patients 
(P2, P14, P16; Figure 1A). Of the three patients with increased 
IgM, one (P2) also had IgA deficiency and two (P2 and P14) a bor-
derline reduction of IgG2. The third patient (P16) had remarkably 
increased IgM, but normal IgA and IgG subclass, values. P14, in 
whom IgM concentrations were only slightly increased, displayed 
a remarkable increase in IgG1 and IgG3 (Figure  1). Of note, 
three patients had reduced concentrations of IgM (P7, P13, P15; 
Figure 1A), and six individuals had IgM concentrations within 

the normal range. IgE was detectable within the normal range in 
three and nearly absent or undetectable in four individuals (not 
shown). Antibody concentrations against vaccination antigens or 
childhood infections (such as against diphtheria toxin, tetanus 
toxoid, hepatitis B virus, rubeola, morbilli, haemophilus influ-
enza B polysaccharide, pneumococcal polysaccharide, varicella 
zoster virus, Epstein–Barr virus, cytomegalovirus; without recent 
therapeutic administration of immunoglobulins) tested positive 
for at least some of the tested antibodies in all patients (Table 
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FigUre 2 | Analysis of somatic hypermutation (SHM) and class-switch recombination (CSR) in B-cell receptor rearrangements. Detailed analysis of B-cell receptor 
rearrangements showed significantly decreased frequency of SHM in patients with constitutional mismatch repair deficiency (CMMRD) compared to healthy controls 
(HC) (a). In addition, the frequency of rearrangements that have the IGHG3, IGHG1, and IGHA1 subclass were increased in the CMMRD patients, suggesting a 
possible defect in CSR (B). Selection against B cells with a long complementary determining region (CDR3) (c), and B-cell that use the IGHV4-34 gene (D) was 
normal in the CMMRD patients. Red dots indicate MSH6-deficient patients and green dots indicate the PMS2-deficient patients. **P < 0.01 and ***P < 0.0005.
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S1 in Supplementary Material). Of note, all three patients with 
increased IgM concentrations had detectable levels of specific 
antibody formation against protein and polysaccharide antigens 
(P2, P14, P16; Table S1 in Supplementary Material). Despite the 
limitation that the vaccination and infection histories were not 
assessed in detail, compromising the interpretation of specific 
antibody concentrations, these results do not support a specific 
antibody formation defect in CMMRD patients. On the contrary, 
patients with a known history of infection or current infection at 
the time of analysis displayed an adequately increased concentra-
tion of specific antibodies (Table S1 in Supplementary Material). 
The results of the attempt to detect antinuclear antibodies were 
inconclusive with three patients showing negative results and 
two (albeit asymptomatic) patients who tested low-level positive. 
Together, these data do not support the hypothesis that patients 
with CMMRD regularly have a clinically relevant humoral 
immunodeficiency.

After B cells have encountered antigen, they migrate to the 
germinal center where they undergo SHM, CSR, and selection. 
To study the effect of MMR deficiency on these processes at the 
molecular level, we analyzed the B-cell receptor repertoire in five 
CMMRD patients using next generation sequencing of IGHG 
and IGHA transcripts derived from antigen-selected B cells. We 
obtained 253–568 unique immunoglobulin heavy chain (IGH) 
rearrangements per patient and compared them to age-matched 

healthy controls (HC) (Table S4 in Supplementary Material). 
Interestingly, the median frequency of SHM was significantly 
reduced in both IGHG and IGHA transcripts in all patients 
(Figure 2A). In addition, we analyzed the subclass distribution in 
the IGHG and IGHA transcripts. This distribution in the IGHG 
transcripts was altered in four of the five CMMRD patients, who 
hardly had IGHG transcripts that used the IGHG2 or IGHG4 
subclasses (Figure  2B). Also, in the IGHA transcripts, fewer 
transcripts with the IGHA2 subclass were present in four of the 
five CMMRD patients as compared to the HC. The IGHG2 and 
IGHG4 constant genes are located more distal in the IGH locus, 
further away from VDJ rearrangement compared to the IGHG3 
and IGHG1 constant gene, and are used during sequential 
switching during a single immune response or after consecu-
tive germinal center response. A reduction in these subclasses 
is often seen in patients with a CSR defect, like patients with 
Ataxia telangiectasia (33), and might indicate a defect in CSR or a 
disturbed immune response. Given the fact that the frequency of 
SHM is also reduced it is likely that B-cells in germinal center fail 
to undergo a second round of affinity maturation and therefore 
do not make it until switching toward the distal constant regions 
[see also Ref. (34)].

When B  cells differentiate from naïve B  cells to memory 
B cells, they are strongly selected against B cells that have a long 
complementary determining region (CDR3), and against B cells 
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that express the IGHV4–34 gene, because they are both associ-
ated with autoreactive B cells (35, 36). In the CMMRD patients, 
both the CDR3 length and the frequency of rearrangements that 
use the IGHV4–34 gene was normal (Figures 2C,D), suggesting 
that the selection against autoreactive B cells is normal and not 
affected by the MMR deficiency.

DiscUssiOn

This study included 10 hitherto unpublished and 5 recently 
reported, unrelated patients with CMMRD. Overall, the geno-
types and clinical presentations of these 15 patients, with respect 
to the pattern of malignancies, age-of-onset, and the spectrum of 
non-malignant symptoms, are in agreement with previous find-
ings. Interestingly, two of the patients had extended skin areas 
with vascular malformations, a feature that has not (yet) been 
included in the C4CMMRD scoring system (5). Patient P10 is 
the second CMMRD patient who has been reported with Wilms 
tumor (nephroblastoma), and patient P7 is the first CMMRD 
patient with a reported phylloides tumor. With respect to poten-
tial genotype–phenotype correlations, it is noteworthy that two 
MSH6-deficient patients (P2 and P14) had a medulloblastoma. 
Because six of the ten previously published CMMRD cases with 
medulloblastoma were also MSH6-deficient, and given that only 
approximately 20% of CMMRD patients are due to biallelic MSH6 
mutations, this suggests an over-representation of medulloblas-
toma among MSH6-deficient individuals. A high-grade glioma 
was diagnosed in seven patients, six of whom carried biallelic 
PMS2 mutations. Among the patients with PMS2 mutations, two 
(P1 and P6) had been diagnosed with colorectal cancer as first 
malignancy only in their early twenties, supporting the notion 
of less penetrant forms of CMMRD especially in PMS2-deficient 
individuals. Consistent with a higher penetrance of biallelic 
MLH1 mutations, both patients with MLH1 deficiency (P7 
and P8) had T-NHL in infancy. Nevertheless, one of them (P7) 
survived this as well as three additional, malignant tumors. We 
also report here the family history and data for the first CMMRD 
patient (P13) with one inherited and one de novo MSH6 mutation 
which is absent in both parents.

In the present study, we tested whether CMMRD is associated 
with a clinically relevant PID with a predominant antibody defi-
ciency or hyper-IgM-like syndrome and a consistent impairment 
of B memory formation, readily detectable by clinical history 
taking, physical examination, and routine immunological analy-
ses. This hypothesis was based on the known role of the MMR 
machinery in the immunoglobulin CSR and SHM in humans 
and mice (8, 9, 11, 18, 37–44), and previous findings in CMMRD 
patients (13–17). In contrast to earlier studies, in which MMR 
genes and their function were examined in selected PID patient 
cohorts, we took a more clinical and unbiased approach, attempt-
ing to confirm and describe or exclude a manifest and relevant 
PID in a series of consecutively registered patients with CMMRD. 
Following this systematic analysis, only inconsistent laboratory 
abnormalities, partially recapitulating previous human and 
mouse data, were found within extended routine analyses of the 
cellular and humoral immune system, and these lacked any clini-
cal correlation in terms of a symptomatic PID syndrome. None 

of the 15 patients showed any of the clinical warning signs of PID 
according to the international guidelines (45, 46). Although 3 out 
of 12 tested patients showed mildly to moderately increased IgM 
concentrations (1.77–3.68 g/dl with widely varying age-specific 
normal ranges), their IgG and specific antibody formation was 
intact, and only two of them had an accompanying borderline 
IgG2 reduction and one, an IgA deficiency. On the other hand, 3 
out of 12 patients had decreased IgM concentrations, and most 
showed normal IgG and IgG subclass concentrations except IgG4. 
Unfortunately, a complete immunological laboratory analysis was 
performed in only 12 out of 15 patients. Recent chemo- or immu-
nosuppressive therapy prevented the laboratory analyses in three 
patients, and the extended serological data could not be obtained 
from the patient’s local hospital in one patient. Although hyper-
IgM syndrome cannot be excluded on mere humoral parameters, 
clearly, the majority of the analyzed patients did not have sero-
logical laboratory results that suggested hyper-IgM syndrome 
(e.g., increased IgM and simultaneously decreased IgG and/or 
IgA) or a symptomatic, specific antibody formation defect. The 
fact that IgG concentrations appeared to be reduced more fre-
quently in adolescents and young adults (from 10 years of age and 
above; Figure 1A, upper panel) might indicate an age-dependent 
subclinical aggravation of the laboratory immune phenotype. 
By contrast, IgA concentrations were higher in these individuals 
than in younger patients (Figure 1A, center panel). These find-
ings are too inconsistent to support, but might be in line with, the 
hypothesis that long-lived IgG- and/or IgA-producing plasma cells 
gained relevance with age in this context (9, 47). Furthermore, the 
number of patients is too little to confirm this observed trend of 
age-dependence or to suspect a genotype–phenotype correlation, 
especially since older patients in our study cohort included more 
individuals with PMS2 deficiency than individuals with other 
MMR deficiencies. Accordingly, a potential conclusion of a higher 
degree of immunodeficiency in PMS2-deficient as compared to 
MSH6-deficient patients, as suggested by the findings in previous 
studies showing that three out of nine PMS2-deficient patients 
were symptomatic and needed IgG substitution, as compared to 
none out of eight MSH6-deficient individuals (16, 17), cannot 
be corroborated by our data. Because our study comprised an 
unselected collection of patients consecutively registered with 
CMMRD within a given time frame, we can exclude a selec-
tion bias toward or against immunodeficiency. Also, due to the 
recruitment modality, an environmental or epigenetic bias is 
unlikely in the presented cohort. Nevertheless, despite the lack 
of a clinical correlate such as bacterial infections that could be 
ascribed to antibody deficiency in our cohort, our data confirm 
previous studies insofar as a proportion of CMMRD patients had 
immune biological abnormalities such as reduced class-switched 
and non-class-switched memory B cells and varying alterations in 
immunoglobulin subtypes, and we detected decreased numbers 
of class-switched CD38hiIgM− plasmablasts in most individuals, 
which is together indicative for a sub-optimal germinal center 
reaction.

The data suggest a more redundant role for single components 
of the MMR system in vivo or for the MMR machinery as a whole 
in human, switched isotype, specific antibody formation, and 
B  cell differentiation. These components could be substituted, 
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e.g., by the base excision repair pathway (9, 11), rather than by 
other DNA repair mechanisms such as the MRE11–RAD50–NBS1 
complex or by ATM and NHEJ (10). The findings in this cohort 
of CMMRD patients are reminiscent of the immune phenotype of  
patients with XRCC4 deficiency. XRCC4 is a binding partner of 
LIG4 and component of the NHEJ pathway. XRCC4-deficient 
individuals show a junctional immunoglobulin diversification 
defect but have normal immunoglobulin concentrations and lack 
clinical signs of immunodeficiency (48).

Autoimmune diseases are typical findings in patients with 
combined immunodeficiency syndromes including CD40/CD40L 
deficiency (hyper-IgM syndromes type 3 and 1, respectively) and 
in predominant antibody formation disorders such as CVID. 
Furthermore, systemic lupus erythematosus (SLE) is a frequent 
finding in a subgroup of complement deficiencies (49) and SLE has 
been previously described in at least three independent MSH6-
deficient patients (17, 50, 51). We detected antinuclear antibodies  
in two of the five tested individuals in this cohort (P6, 26 years  
old and P11, 7 years old), both PMS2-deficient and asymptomatic 
with regards to autoimmunity. Due to the relatively high preva-
lence of antinuclear antibody (ANA) positivity (>10%) in the 
general pediatric and adolescent populations (52) and the small 
number of patients with CMMRD who have been tested for ANA 
to date, these findings should not be overvalued. Nevertheless, 
the association between CMMRD and ANA positivity and the 
risk of developing SLE should be further investigated, and at least 
a baseline ANA screening should be considered from the age of 
adolescence and onward.

Mismatch repair plays an important role in the resolution of 
the uracil:guanine mismatches that are introduced during SHM 
and CSR. Although on a cellular level no differences were found 
in the B-cell compartment, detailed molecular analysis of B-cell 
receptor rearrangements derived from antigen-selected B  cells 
showed a clear reduction in the frequency of SHM and alterations 
in the IGHG and IGHA subclass distribution. These effects on 
SHM and CSR can have multiple causes, like a defect in T:B cell 
interaction, or an intrinsic defect in the SHM and CSR process 
itself. Based on the previous studies showing that MMR has a 
role in SHM and CSR, it is most likely that the defect observed in 
the CMMRD patients in SHM and CSR is caused by an intrinsic 
defect in these processes. This, however, did not result in constant 
changes in the frequency of memory B cells, and only in 3 out of 
15 patients the level of IgM was mildly to moderately increased.

Taken together with previous findings our results suggest 
that, although IgG2/4 subclass deficiency, IgA deficiency, or—
rarely—more severe phenotypes of antibody formation, B  cell 
class switch, maturation, and memory formation defects may be 
found in patients with CMMRD, they are neither constant nor 
obligatory diagnostic hallmarks of this syndrome and tend to lack 
a clinical correlate.

PaTienTs anD MeThODs

Patient and Data acquisition
Patient identification was achieved through the network of human 
geneticists and (pediatric) oncologists working throughout 

Europe and the Middle East who were informed about the study  
at conferences and via personal communication from 2014 to 
2017. Most of participating physicians were partners of the con-
sortium “Care for CMMRD (C4CMMRD).” Of the 19 patients 
who were originally included in the analysis as they were evalu-
ated for CMMRD on the basis of their phenotypic and oncologic 
features, four had to be excluded since CMMRD was excluded. 
Two of these patients had a diagnosis of Lynch syndrome (each 
one had a heterozygous mutation in PMS2 and MSH2) and two 
had other cancer prone conditions. Results from three patients 
had to be excluded from some of the analyses because they had 
recently received chemo- and/or B  cell-depleting (anti-CD20) 
immune therapy (P3, P8, and P9, respectively). Importantly, 
in all other patients, blood sampling was undertaken before 
chemo-, steroid or immunosuppressive treatment or until an 
adequate interval after therapy, with readiness to ensure immune 
reconstitution, reflected in part by normal complete blood counts 
(not shown), monocyte, NK, and T cell subset analyses (Table 3), 
and confirmed by the physician in charge prior to lab analyses. 
None of the patients had received therapeutic immunoglobulins 
prior to inclusion and blood sampling. To obtain clinical history 
data with a focus on immunodeficiency, we designed a question-
naire interrogating the most relevant facts regarding the patients’ 
histories and clinical statuses including infections according to 
the “extended clinical warning signs for PID” (45, 46), inpatient 
or intravenous antibiotic treatment, failure to thrive, signs of 
immune dysregulation such as autoimmunity and inflammation, 
etc. (Figure S1 in Supplementary Material). Extended routine 
immunologic laboratory data were obtained by conducting ret-
rospective chart reviews guided by the study questionnaire and 
by collecting results from recommended immunological analyses 
that were justified by previous reports on a varying degree of 
humoral immunodeficiency and impaired B cell maturation in 
defects of CSR (16, 17, 30, 31, 53). The study was performed in 
compliance with current guidelines for good clinical practice 
and the Declaration of Helsinki with an IRB approval (29-178 ex 
16/17) from the Medical University Graz (IRB00002556).

genetic laboratory analyses
Standard molecular genetic testing included for all novel patients 
fully or partially analyzed at the Division of Human Genetics at 
the Medical University Innsbruck (P2, P7, P12, P13, P14, and P16) 
mutation analysis and concomitantly gMSI analysis of peripheral 
blood lymphocyte DNA as previously described by Ingham et al. 
(26). Increased gMSI ratios indicate biallelic mutations in PMS2, 
MLH1, or MSH2, while biallelic MSH6 mutations escape the 
detection by this assay. For mutation analysis, all exonic coding 
and flanking intronic regions of the MMR and the EPCAM gene 
were enriched by using hybridization-based TruSightCancer 
panel (Illumina) and sequenced on a MiSeq platform (Illumina). 
Sequence data were analyzed with the SeqNext Software (JSI) and 
all variants present in ≥5% of the reads were classified according 
to the consensus recommendations of the American College of 
Medical Genetics (25) as (likely) pathogenic (denoted mutations),  
unclassified, or (likely) irrelevant variants. Quantitative analysis 
of the sequence data with respect to copy number variations 
(CNVs) was performed with the CNV tool of the SeqNext 
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Software (JSI) and in parallel with the CNV Detective Software 
cnMOPS (54). CMMRD patients with a variant of unknown 
significance (VUS; or a monoallelic mutation) in one of the MMR 
genes were additionally analyzed by direct cDNA-sequencing of 
the entire coding sequence to assess for potential splice effects of 
VUS and/or to uncover/exclude (other) mutations that escaped 
the detection of massive parallel sequencing (55). This analysis 
was so far not possible for patient P7. For the detection of PMS2 
CNVs multiplex ligation-dependent probe amplification (MLPA) 
analysis using the SALSA MLPA-Kit P008-B1 (MRC Holland) 
was performed according to Wernstedt et al. (56).

Mutation analysis for patients P8, P9, and P10 was performed 
at the Hereditary Cancer Laboratory at the University Hospital 
Doce de Octubre (Madrid, Spain). Here, all exonic coding and 
flanking intronic regions of the MMR genes were amplified using 
a custom designed primer panel with Ion AmpliSeq Library 
Kit 2.0 reagent (ThermoFisher) and sequenced on an Ion PGM 
System (ThermoFisher). Data were analyzed using Ion Reporter 
software (ThermoFisher).

All detected mutations were confirmed in a second DNA-
sample that was extracted from an independently extracted blood 
sample. Nucleotide positions were numbered according to the 
recommendations of the Human Genome Variation Society (57) 
with the A of the start codon ATG in exon 1 representing the 
nucleotide position c.1 using the reference numbers NM_000249.3 
for MLH1, NM_000251.2 for MSH2, NM_000179.2 for MSH6, 
and NM_000535.5 for PMS2.

immunologic laboratory analyses
In addition to routine chemistry and clinical immunology labo-
ratory analyses, special immunologic analyses were performed 
centrally in Graz, Austria, which included flow cytometry per-
formed on a Cytomics FC500 flow cytometer (Beckman Coulter, 
Brea, Calif) with a panel of mAbs from Beckman Coulter 
(Vienna, Austria), Becton Dickinson (Vienna, Austria), Dako 
(Glostrup, Denmark), and Miltenyi Biotech (Vienna, Austria and 
Bergisch Gladbach, Germany). Analysis of TCR V beta diversity 
(spectratyping) was performed as follows: RNA from enriched 
subsets was extracted using RNeasy Protect Mini Kit (Qiagen, 
Hilden, Germany) following manufacturer instructions. The 
amount of RNA was determined with Eppendorf Biophotometer 
plus (Eppendorf, Hamburg, Germany). Finally, a concentration 
of 1 µg RNA was used for reverse transcription with a First Strand 
cDNA Synthesis Kit for RT-PCR AMV (Roche, Vienna, Austria), 
carried out following manufacturer instructions. cDNA was 
diluted 1:5 for PCR using AmpliTaq Gold™ DNA Polymerase 
(Applied Biosystems, Vienna, Austria), 1× PCR Gold Buffer 
(Applied Biosystems, Vienna, Austria), 2.5 mM MgCl2 (Applied 
Biosystems, Vienna, Austria), 0.4 mM dNTP Polymerization Mix 
(GE Healthcare, Vienna, Austria), 0.5 µM TCR C β 5′FAM labeled 
primer (Ingenetix, Vienna, Austria), and 0.5 µM unlabeled TCR 
V β primer (Ingenetix, Vienna, Austria) according to Monteiro 
et al. (58). This resulted in 25 reactions per sample. Cycle condi-
tions were a denaturation step at 94°C for 6  min, 35 cycles at 
94°C for 1 min each, 59°C for 1 min, and 72°C for 1 min, with a 
final annealing step at 72°C for 7 min. After amplification, 1 µl of 
PCR-product was supplemented with 0.5 µl of GeneSCan™-500 

ROX™ Size Standard (Applied Biosystems, Vienna, Austria) and 
12 µl HI-DI Formamide (Applied Biosystems, Vienna, Austria). 
Electrophoresis was performed with a 3130 Genetic Analyzer 
(Applied Biosystems, Vienna Austria) and 3130 Data Collection 
Software. Analyses were conducted using the GeneScan® 
Software (Applied Biosystems, Vienna Austria). Calculations 
included peak count (Complexity score) and single peak area as 
percentages of whole peak area.

next generation sequencing of the B-cell 
repertoire
Peripheral blood mononuclear cells were isolated from peripheral 
blood using Ficoll, and mRNA was isolated using the Gen-
Elute Mammalian total RNA miniprep kit from Sigma Aldrich  
(St. Louis, MO, USA). cDNA was created from 2 μg RNA using 
the Superscript II reverse transcriptase kit from Invitrogen 
(Paisley, UK). IGH transcripts were amplified in a multiplex PCR 
using the forward VH1-6 FR1 (BIOMED-2) primers and either 
the CgCH or the IGHA reverse primer which were adapted with 
a multiplex identifier sequence to be able to multiplex the PCR 
products (59–61). PCR products were purified by gel extraction 
(Qiagen, Valencia, CA, USA) and Agencourt AMPure XP beads 
(Beckman Coulter, Fullerton, CA, USA). The PCR products were 
sequenced on the 454 GS junior using the Lib-A V2 kit (Roche). 
The raw data were demultiplexed, 40 nt trimmed at the 5′ and 
3′ side to remove the primer sequence, and converted to fasta 
files using ARGalaxy (62). The fasta files were uploaded in IMGT 
High-V-Quest (version 1.5.6) (63) for alignment with the refer-
ence sequences. Subsequently, the IMGT output files were ana-
lyzed using ARGalaxy (62). To obtain unique rearrangements and 
reduce the presence of errors in the sequences, only sequences 
present two or more times (based on CDR1–CDR3 nucleotide 
sequence) were included once in the analysis. In addition, incom-
plete sequences or sequences containing an ambiguous “n” base 
were excluded. Since the data from the CMMRD patients were 
very clonal (determined using Change-O) (64), we only included 
one sequence per clone in the analysis. Samples that contained 
less than 45 unique IGH rearrangements were excluded from the 
analysis. Data from the CMMRD patients was compared to 10 
HC (6–22 years of age), which were previously published (36). 
Details on the number of sequences obtained after filtering can 
be found in Table S2 in Supplementary Material.

Data Presentation
Due to the small patient number, only a descriptive data 
analysis was performed. Figures were designed using Prism 7.0c 
(GraphPad software, La Jolla, CA, USA).

eThics sTaTeMenT

The study was performed in compliance with current guidelines 
for good clinical practice and the Declaration of Helsinki with 
an IRB approval (29-178 ex 16/17) from the Medical University 
Graz (IRB00002556). Extended routine immunologic laboratory 
data were obtained by conducting retrospective chart reviews 
guided by the study questionnaire and by collecting results from 
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