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ABSTRACT	

	

The	 glucocorticoid	 hormone	 cortisol	 acts	 throughout	 the	 body	 to	 support	 circadian	

processes	and	adaptation	to	stress.	The	glucocorticoid	receptor	is	the	target	of	cortisol	

and	of	synthetic	glucocorticoids,	which	are	used	widely	in	the	clinic.	Both	agonism	and	

antagonism	 of	 the	 glucocorticoid	 receptor	may	 be	 beneficial	 in	 disease,	 but	 given	 the	

wide	expression	of	the	receptor	and	involvement	in	various	processes,	beneficial	effects	

are	 often	 accompanied	 by	 unwanted	 side	 effects.	 Selective	 glucocorticoid	 receptor	

modulators	 are	 ligands	 that	 induce	 a	 receptor	 conformation	 that	 allows	 activation	 of	

only	 a	 subset	 of	 downstream	 signalling	 pathways.	 Such	 molecules	 thereby	 combine	

agonistic	 and	 antagonistic	 properties.	 Here	 we	 discuss	 the	 mechanisms	 underlying	

selective	 receptor	modulation	 and	 their	 promise	 in	 treating	 diseases	 in	 several	 organ	

systems	where	cortisol	signalling	plays	a	role.	
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Cortisol	is	our	main	glucocorticoid	hormone	and	acts	throughout	the	body	to	

support	circadian	synchronization	of	the	organs,	and	–	notably	–	to	support	

coordinated	adaptation	to	stressors.	Many,	if	not	all,	organs	may	be	either	the	

cause	of	a	stress	response	(e.g.	bone	fracture)	or	involved	in	the	adaptive	

response	to	stressors	(e.g.	immune	system,	metabolic	tissues	etc).	Therefore	

most	cell	types	of	the	body	are	also	responsive	to	cortisol.		While	cortisol	as	a	

physiological	factor	has	many	beneficial	actions,	chronic	exposure	to	elevated	

concentrations	of	endogenous	cortisol,	disturbed	rhythmicity	of	cortisol,	and	

exposure	to	exogenous	glucocorticoids	can	have	extremely	deleterious	effects.	

Both	chronic	stress	and	the	medical	use	of	glucocorticoids	are	the	cause	of	many	

unwanted	glucocorticoid	(side)	effects.	

	

Cortisol	acts	via	two	types	of	receptors:	the	glucocorticoid	receptor	(GR)	and	the	

mineralocorticoid	receptor	(MR).	MR	also	acts	as	the	receptor	for	aldosterone,	in	

cell	types	that	enzymatically	degrade	cortisol.	The	MR	has	a	very	high	affinity	(Kd	

=	0.5	nM)	for	cortisol	,	whereas	GR	affinity	is	lower	(Kd	=	5	nM).	The	dynamic	

range	of	GR	occupancy	is	such	that	it	is	very	low	during	the	circadian	trough	(late	

evening	for	humans).	GRs	get	substantially	occupied	during	normal	circadian	

peak	levels,	and	stress-induced	steroid	levels	lead	to	further	occupancy,	towards	

saturation	of	the	receptors	(1).	While	there	are	likely	more	processes	that	are	

affected	by	cortisol	via	MR	than	is	often	appreciated,	we	will	focus	here	on	GR-

dependent	signalling.	GR	is	expressed	in	most	cells	of	the	body,	and	is	held	

responsible	for	most	of	the	classical	side	effects	of	glucocorticoid	overexposure.	

For	example,	the	therapeutic	goal	of	GR-mediated	immune	suppression	goes	
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hand	in	hand	with	GR-mediated	hyperglycemia	and	–	in	chronic	conditions	-	

osteoporosis.	

	

The	predominant	(or:	best	understood)	mode	of	action	of	MR	and	GR	is	their	role	

as	transcription	factors,	next	to	non-genomic	actions	that	also	exist	(2).	The	

unliganded	receptors	are	intracellular	and	upon	binding	of	cortisol	they	

translocate	to	the	nucleus	to	bind	to	the	DNA	and	stimulate	(e.g.	gluconeogenic	

liver	enzymes)	or	represses	(e.g.	pro-inflammatory	cytokines)	gene	expression.	

There	are	two	dominant	mechanism	of	gene	expression	regulation	via	GR	(3).	

The	first,	most	classic,	mechanism	is	that	GRs	bind	as	a	dimer	to	specific	

Glucocorticoid	Response	Elements	(GREs)	on	the	DNA.	Gene	transcription	tends	

to	be	stimulated	via	GRE-bound	GRs,	for	example	in	case	of	gluconeogenic	genes	

in	liver,	the	PER1/2	clock	genes,	and	the	molecular	chaperone	FKBP5	(4-7).	Also	

‘negative	GREs’	exist	where	direct	GR	binding	is	associated	with	gene	repression	

(8).	The	second	mechanism	of	cortisol	signalling	via	GRs	that	bind	to	other	–	non-

receptor	–	transcription	factors	to	modulate	their	activity.	This	mode	of	

signalling	can	be	either	stimulatory	or	repressive,	and	is	exemplified	by	the	

suppression	of	the	proinflammatory	transcription	factor	NF-kB	(9).	While	the	

second	mode	of	action	transrepression	seems	to	be	a	very	important	in	

suppressing	an	activated	immune	system,	whole	genome	analysis	of	GR	(and	

MR)	DNA	binding	points	to	GRE-dependent	transcription	as	being	dominant	in	

(rodent)	brain	(10,11).	

	

Given	the	side	effects	that	can	occur	after	immune	suppressive	GC	treatment,	and	

the	role	of	trans-repressive	protein-protein	interactions	of	GR	in	this	process,	a	
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logical	approach	has	been	to	generate	so	called	‘dissociated	GR	ligands’	as	

‘prednisolone	without	the	side	effects’,	based	on	effective	protein-protein	based	

transrepression	of	NF-kB,	without	efficacy	at	GREs	(12),	figure	1.	Since	then	it	

has	turned	out	that	full	anti-inflammatory	efficacy	also	depends	on	induction	of	

GRE-driven	GR	target	genes.	So	far	there	have	been	no	clinical	breakthroughs	of	

this	kind	of	molecules	(13),	but	developments	are	still	on-going	(14).	However,	

the	notion	of	gaining	specificity	of	cortisol	effects	by	dissociating	GR	signalling	

pathways	still	bears	substantial	promise	–	if	only	because	ligands	for	the	related	

estrogen	receptor	(ER)	show	proof	of	principle.	So	called	selective	estrogen	

receptor	modulators	(SERMs)	like	tamoxifen	act	as	ER	antagonists	in	breast	

cancer	cells,	but	as	agonist	in	bone	and	endometrium.	Thus,	it	has	been	clear	for	

a	long	time	that	tissue	specific	efficacy	of	steroid	receptor	ligands	can	exist	(15).	

	

Selective	targeting	of	GR	dependent	effects	may	be	achieved	by	targeting	specific	

tissues,	but	this	is	often	not	an	option.	The	tissue-specific	action	of	selective	

receptor	modulators	is	linked	to	what	happens	after	steroid	receptors	bind	to	

the	DNA	(figure	1).	The	stimulation	of	gene	transcription	entails	the	physical	

recruitment	of	downstream	signalling	partners.	The	interacting	partners	act	in	

complexes	to	either	open	up	chromatin	or	help	assembly	of	transcription	

machinery.	These	signalling	factors	that	form	the	bridge	between	steroid	

receptors	and	actual	transcription	are	called	nuclear	receptor	coregulators,	

which	may	either	act	as	coactivator	or	as	corepressor	(16).	An	operational	

definition	of	a	coactivator	is	a	protein	that	enhances	transcriptional	activity	of	a	

steroid	receptor	but	does	itself	not	bind	directly	to	the	DNA.	There	a	tens	or	

hundreds	of	proteins	that	may	act	as	coactivators	via	one	of	the	two	activation	
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function	domains	that	GR	harbours	(17).	Importantly,	expression	of	these	

coregulators	is	highly	cell	type	specific	(18),	and	GREs	in	different	genes	depend	

on	particular	(sets	of)	coactivators	(19,20).	The	tissue	specific	(ant)agonism	of	

the	SERM	tamoxifen	is	in	fact	attributed	to	the	induction	of	an	ER	conformation	

that	allows	ER-coactivator	interactions	within	the	endometrium,	but	not	with	

coactivators	that	are	necessary	for	ER-induced	mitosis	in	breast	cancer	cells	

(21).	

	

Already	in	2003,	it	appeared	that	a	GR	ligand	that	could	suppress	inflammation	

with	a	degree	of	specificity	over	metabolic	side	effects	did	so	by	selective	

recruitment	of	GR	coactivators	(22).	Recently	is	has	become	possible	to	predict	

at	a	medium	throughput	scale	whether	or	not	a	compound	will	have	selective	

modulator	type	effects,	using	a	peptide	array.	The	basis	for	this	prediction	is	that	

the	interaction	domains	on	coactivators	are	known	and	are	characterized	by	the	

presence	of	an	LxxLL	‘NR-box’	amino	acid	motif	(23).	Agonistic	activity	of	a	

ligand	may	be	defined	as	induction	of	GR-coactivator	interactions	(24).	Our	own	

work	showed	that	the	specific	GR	ligand	CORT108297	induces	a	pattern	of	

coactivator	interactions	that	is	intermediate	to	that	of	the	full	agonist	

dexamethasone	and	the	antagonist	mifepristone	(25).	Such	interaction	profiles	

immediately	suggest	efficacy	(that	is:	agonism)	in	processes	that	depend	on	

those	interactions	that	do	occur	and	antagonism	for	the	processes	that	simply	

cannot	be	induced	for	lack	of	interaction.	Although	such	assays	typically	involve	

reduced	(in	vitro)	systems,	the	prediction	of	selective	GR	modulation	has	indeed	

been	accurate	for	a	number	of	compounds	that	we	have	tested	(25,26).		
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We	have	evaluated	the	effects	of	two	such	compounds	in	some	detail	in	rodent	

models.	Of	interest,	the	two	compounds	CORT108297	and	CORT118335	differ	

subtly	in	the	interactions	they	induce	between	the	GR	AF-2	and	coregulator	NR-

boxes	in	vitro	(26).	Thus,	they	are	both	expected	to	act	as	selective	GR	

modulators,	but	with	a	different	molecular	profile.	This	prediction	held	true	

when	we	tested	the	two	compounds	in	well-known	behaviour	paradigm	that	is	

sensitive	to	GR	activation	(25,26).	

	

It	is	known	that	glucocorticoids	facilitate	the	formation	of	memories,	by	

strengthening	the	consolidation	process	that	takes	place	after	a	learning	

experience	(27).	This	effect	is	apparent	is	the	‘passive	avoidance’	learning	

paradigm.	In	this	setup	rats	are	placed	in	an	exposed	bright	light,	which	makes	

them	enter	a	–	presumed	safe	–	dark	chamber,	typically	within	10	second	or	so.	

Upon	entry	the	rat	receives	a	mild	but	unpleasant	electric	shock.	Because	of	this	

learning	experience,	the	rats	will	linger	in	the	exposed	outside	of	the	chamber	for	

two	to	three	minutes,	when	placed	back	the	next	day.	In	this	paradigm,	C108297	

treatment	led	to	5	to	6	minute	delay	before	entering	the	next	day.	This	suggests	

strong	agonism	on	the	GR,	and	blockade	with	the	antagonist	mifepristone	(a.k.a.	

RU486)	confirmed	this	(25).	In	contrast,	the	SGRM	CORT118335,	which	has	only	

a	subtly	different	coregulator	interaction	profile,	displayed	very	strong	

antagonism	in	the	same	memory	task	(26).	At	the	same	time,	CORT108297	also	

has	functional	antagonism	on	some	process,	and	both	compounds	show	agonism	

on	the	suppression	of	the	hypothalamus-pituitary-adrenal	axis	(25,28).	

	



	 8	

Thus,	differential	coregulator	interactions	can	be	a	means	to	identify	selective	GR	

modulators.	At	present,	we	do	not	know	whether	the	differences	from	the	

protein	arrays	lead	to	an	over-	or	underestimation	of	the	actual	differences	

between	ligands	in	vivo.	Moreover,	the	compounds	may	also	differ	in	other	

signalling	modes.	C108297	has	substantial	transrepressive	anti-inflammatory	

efficacy	(29),	while	C118335	is	much	less	potent	in	this	respect	(unpublished	

observations).	Moreover,	the	SGRMs	that	act	via	GREs	may	also	differ	in	their	

ability	to	induce	interactions	with	other	transcription	factors	that	bind	the	DNA	

in	the	vicinity	of	the	GREs.	Such	interactions	are	suggested	by	genome-wide	

analysis	of	GR	target	genes	and	binding	sites.	Only	a	subset	of	GRE	binding	

events	leads	to	actual	transcriptional	regulation	(30).	It	turns	out	that	functional	

GREs	are	enriched	in	binding	sites	for	other	transcription	factors	(31).	Such	

associated	transcription	factors	can	indeed	modulate	the	transcriptional	activity	

of	the	GRE-bound	GR	(10).	It	is	presently	unknown	how	different	GR	ligands	

affect	such	interactions.	Lastly,	we	have	no	idea	how	these	compounds	behave	in	

terms	of	non-genomic	GR-mediated	effects	that	also	occur	(2).	And	so:	much	

remains	to	be	determined	in	terms	of	full	molecular	characterization	of	SGRMs.	

	

A	more	pragmatic	question	is:	what	can	be	the	use	of	SGRMs	in	treating	disease?	

GR	agonism	is	a	very	common	goal	in	inflammation,	and	separation	of	anti-

inflammatory	action	from	all	other	GR-dependent	effects	would	still	be	a	‘golden	

bullet’	in	medicine	(32).	At	the	other	side	of	the	spectrum,	there	is	full	(or	

predominant)	antagonism	of	GR	using	mifepristone,	as	currently	used	in	a	subset	

of	patients	with	Cushing’s	Disease	(33).	However,	attenuating	glucocorticoid	

signalling	may	also	be	of	use	in	other	conditions	in	absence	of	clear	
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hypercortisolemia,	such	as	metabolic	disease	(34,35),	brain	disorders	(36,37)	

and	certain	types	of	cancer	(38,39).	Of	note,	in	many	disease	models	SGRMs	like	

CORT108297	and	CORT118335	are	also	effective,	sometimes	more	so	than	the	

classical	antagonist	mifepristone	(25,29,40-44).	Because	the	GR	is	expressed	in	

so	many	tissues,	the	potential	for	the	use	of	SGRMs	seems	substantial.	An	

additional	advantage	of	new	compounds		–	whether	they	are	SGRMs	of	full	GR	

antagonists	-	is	that	they	lack	affinity	for	androgen	and	progesterone	receptors	

that	is	a	characteristic	of	mifepristone	(45-48).	Of	note,	the	compound	C118335	

does	act	as	an	antagonist	for	the	mineralocorticoid	receptor,	at	a	lower	affinity	

than	for	GR	(26),	and	this	may	be	responsible	for	some	it	its	effects	(49).	

	

While	there	is	promise	for	the	use	of	SGRMs	in	treatment	of	disease,	it	is	a	big	

challenge	to	predict	which	tissues	and	processes	will	be	affected	by	new	GR	

modulating	compounds.	For	example,	even	if	we	know	the	coactivators	that	will	

be	recruited	by	a	SGRM-GR	complex,	in	most	cases	it	is	unknown	which	

signalling	pathways	are	involved	in	which	transcriptional	process.	Given	the	

large	number	of	coactivators	(17)	and	their	highly	gene	and	tissue	specific	

regulation,	such	analyses	are	very	time	consuming,	if	informative		

(20,50).	One	way	to	better	predict	efficacy	of	specific	SGRMs	is	to	have	a	

comprehensive	overview	of	which	coactivators	are	co-expressed	with	GR	in	

specific	tissues.	As	an	example	of	this	approach,	we	made	use	of	the	mouse	Allen	

Brain	Atlas,	in	which	expression	of	20,000	genes	in	about	900	distinct	brain	

regions	is	described	(51).	This	repository	allows	for	analysis	of	co-expression	of	

genes,	and	it	has	been	possible	to	in	this	way	describe	co-expression	of	GR	with	

its	potential	coregulators	(18).	Such	an	analysis	revealed	that	dopaminergic	
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regions	in	the	brain	are	strongly	enriched	in	the	coactivator	Pak-6	(52).	These	

descriptions	predict	(correctly	(53))	that	Pak6	affects	dopaminergic	function,	but	

also	that	GR	can	affect	dopamine	neurons	via	GR-Pak6	dependent	pathway	

(untested).	In	the	end,	molecular	characterization	of	receptor	interactions	as	

induced	by	SGRMs,	insight	in	cellular	distribution	and	activation	status	of	

coactivators,	and	gene-specific	need	for	coactivators	should	lead	to	better	

predictions	of	potential	indications	for	SGRM	use.	

	

In	conclusion,	the	wide	expression	of	GR	defines	it	as	a	target	in	many	diseases,	

but	immediately	predicts	many	potential	side	effects	of	global	activation	or	

inhibition.	The	use	of	selective	modulators	that	with	a	degree	of	specificity	

separate	signalling	pathways	is	an	attractive	approach	to	separate	wanted	from	

unwanted	effects.	Different	SGRMs	vary	substantially	in	their	biological	

activities.	This	reflects	the	complexity	of	GR	signalling,	but	it	emphasizes	the	

potential	of	these	compounds	to	help	understand	which	signalling	modes	are	

active	in	particular	processes,	and	it	emphasizes	that	very	different	pathological	

processes	may	be	modulated	with	a	fair	degree	of	selectivity.	
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Figure 1. Left hand side: GR may bind to the DNA either directly, via GREs, or via 
protein-protein interactions with transcription factors like NF-kB. ‘Dissociated 
ligands’ favor the latter interaction, which results in fewer side effects, but also loss 
of antiinflammatory efficacy. 
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