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Key points

The analysis and interpretation of imaging data is challenging because variability due to technical variation and/or reader variability jeopardises the precision of the scores.

Signal-to-noise ratio is a valuable concept in imaging to describe warranted effects (change)(signal) in relation to unwarranted erratic effects (noise). For most imaging techniques, signal-to-noise ratio is rather poor.

In cohort studies and trials precautions are taken in the process of obtaining and scoring images in order to avoid spurious (biased) results. These precautions include protocolled image acquisition, use of multiple readers and concealed (random) time order

Imaging studies in trials and long-term extension studies thereof and in observational studies often include different read sessions. These read sessions may include different time points, so that the same time points of each patient are scored multiple times by different readers and in several read sessions. 

Investigators usually make convenient choices when deciding which read session to use and how to aggregate data of multiple readers into one score. These decisions lead to intentional data loss, which may affect statistical power and may result in bias and selection.

Multilevel longitudinal data-analysis making use of all individual data of all read sessions may account for correlated data at different levels, assures optimal data usage, and may lead to increased precision and statistical power. 
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Introduction

Imaging is an integral part of studying the course and outcome of inflammatory diseases in rheumatology. The topic is broad. Imaging may help to get an impression about the activity of the disease at a certain point in time: assessment of disease activity. But imaging data may also visualize and quantify the consequences of chronic inflammation over time: assessment of structural changes. In terms of outcome measurement, disease activity (and imaging data reflecting it) is volatile, reversible and therefore considered a process measure, whilst structural change is permanent, (largely) irreversible and therefore considered an outcome measure. 
Imaging may be used in studies for many reasons: in randomised controlled trials (RCT) in order to investigate some aspects of tested drugs; in observational studies in order to investigate predictive associations and disease outcomes; or in studies investigating the pathophysiology of a disease. 
It is good to realize that the term imaging entails the technique itself, as well as a (quantifying) score reflecting the result.  Both technical factors (equipment and technicians, processing of images) and factors related to scoring (methodological factors) determine the quality of the imaging-product (usually a score). 
It is obvious that these scores are sensitive to many disturbing factors. In clinical practice the merits of the technique are often overstated (‘the new technique is highly sensitive’), and the limitations regarding reliability are downplayed. In clinical studies, there is more appreciation for methodological fallacies and for analytical requirements. In this article we describe integrated analysis of imaging data as an example to better deal with imaging data, against a background of well-known and inherent methodological fallacies of imaging.  


Concept of signal-to-noise ratio

Signal-to-noise ratio is a scientific concept used in electronic engineering that compares the level of a desired signal to the level of background noise. Used metaphorically, it may refer to the ratio of useful information over false or irrelevant data, for instance in the interpretation of imaging results (or other clinical assessments). It is obvious that imaging data, such as data on radiographic progression in patients with rheumatoid arthritis, combines useful data (the signal) and irrelevant data (the noise). Imaging data classically have a rather poor signal-to-noise ratio for several reasons. We will explain here three sources of imaging variability using an example of radiographic progression in rheumatoid arthritis (RA).
The measure of radiographic changes, scored on consecutive radiographs of hands and feet obtained from patients with RA, is currently considered the regulatory standard for proving if a new drug has the ability to slow or stop the occurrence or progression of structural changes [1]. Abnormalities (erosions, joint space narrowing) are subtle and equivocal (judgemental) and changes over time are even subtler.  This requires optimal imaging quality, as well as consistent quality over time, for proper comparison and interpretation.  Subtle changes in positioning, exposure, windowing and others (noise) may jeopardise a proper interpretation and changes that are due to technical flaws can easily be interpreted as true changes (signal).  This type of noise can hardly be distinguished from true signal. In the context of a randomised clinical trial it is to be expected that technical noise is a random process that works similarly in both treatment arms, and that the (true) treatment effect (the nominator of the signal-to-noise ratio) is not affected. But random variation (noise) will still affect the denominator of the signal-to-noise ratio, and (thus) the statistical power to detect a difference between treatment arms. It is obvious that in uncontrolled observational studies the effects of noise are not erased, and expectations of readers about the most probable (or: wished) change may influence the interpretation of an imaging result (expectation bias). Examples in the rheumatologic literature (with commercial connotations) are paramount, but not always recognised. 
In addition to technical noise, there is random variation invoked by the reader who judges the images and provides a score [2]. The random variation is best visualized by test-retest experiments in which the same reader scores the same images twice without notice. Such experiments consistently prove that 80-90% of the variability in scoring observed between cases constitutes true variation between patients but 10-20% of it is due to random (intra-reader) error. Intra-reader variability affects the denominator and deflates the signal-to-noise ratio. 
A third source of variability is inter-reader variability [2]. It is obvious that two readers who provide a change score on a pair (two time points) of radiographs in the same patient hardly if ever arrive at exactly the same result. Readers may be conservative (they only score change if they are very certain) or sensitive (they score change already at a far lower threshold of certainty), and even if similar ‘personalities’ are paired results may differ substantially.
Technical variability, intra-reader variability and inter-reader variability are different sources of variability. They are hard to distinguish, but together constitute a significant level of noise in comparison to an often subtle ‘true’ signal.  This complicates the statistical detection of a treatment effect in an RCT. In fact this means that the interpretation of an imaging result (either in a single patient in clinical practice or in a group of patients in a RCT) should always include a proper consideration of the signal-to-noise ratio. In practice, this is sharply at odds with the common clinical belief that an imaging result is the product of technical innovation and should therefore gain more credit than any type of clinical data. The uncontested expansion of ultrasound in clinical rheumatology testifies of such a belief. 


Methodological precautions to constrain the effects of ‘noise’ 

Statisticians working for regulatory bodies are (more than clinical researchers) well aware of the inherent shortcomings of imaging data. They have implemented a set of measures aiming at a better elimination of the effects of noise in the interpretation of drug effects.  We will briefly discuss these measures that aim at avoiding the spurious effects of noise in clinical trial settings.

1. Images should be obtained under protocolled conditions. These protocols prescribe standard procedures to be used all over the world in order to avoid too much technical noise. This is one of the reasons that radiographic progression –whilst being a rather old-fashioned technique in comparison to magnetic resonance imaging, ultrasound and positron emission tomography – is still the regulatory standard for measuring radiographic progression in RCTs

2. Images should be scored by at least two readers. This procedure (and derivations thereof) can be considered as an elaboration of the central limit theorem stating that the average of scores of multiple readers gives a more truthful representation of true change than the score of one incidental reader [3]. It likely gives a better approximation of the truth and provides better insight into inter-reader variability that can be assessed by reliability statistics (intra-class-correlation coefficients, kappa-statistics and smallest detectable change)[2].

3. Images should be scored ‘double-blindly’. This means that readers not only are blind to the treatment allocated to a patient in an RCT when they score the images, but also that they are not aware of the time order of the images that they see on their screens. While this latter requirement effectively avoids expectations (e.g. ‘wishful thinking’) influencing the change score, it may be at the cost of the strength of the ‘signal’: We know that reading with known time order results in  the detection of more change while not increasing bias. [4]      

Many have asked why only imaging is subjected to these rigorous precautions, since clinical assessments may suffer similar limitations if not worse [5].  This is true and there are many explanations (eg. feasibility), but for the purpose of this article it suffices to state that these precautions importantly add to the credibility of imaging results of clinical trials.

Current imaging practice in studies 

Sponsors developing new treatments in a particular chronic disease, but also clinical researchers following a prospective cohort of patients, usually do not want to wait 5 to 10 years before they can analyse their results. They rather split these analyses up into different parts, usually with a different main aim.  A sponsor, for instance, is interested in a timely approval of their new drug and wants imaging data to be available at the shortest time interval that is still acceptable for regulatory authorities. In our example of radiographic progression in RA, that is usually after a follow up of at least 6 months. For this purpose, images are read in so called read sessions (or campaigns), in which two time points (random time order unknown to the reader) are compared in one session.   An analysis of this time-interval may serve then to approve a particular (new) drug if it proves superiority over placebo or an active comparator drug. 
But trials (and cohort-studies) usually do not stop after the first interval and additional study-questions may arise and provoke subsequent read sessions (eg. maintenance of effect).  
A subsequent read sessions is always considered a ‘stand-alone’.  This means that every subsequent read session will not only include the latest (new) time point, but also a re-read of one or more previous time points. This is also not an unusual practice in observational cohorts of patients.  Due to constraints in time and resources, it is frequently decided to exclude one or more time points in later read sessions. Of note, such a procedure may occur a number of times in a trial or a cohort study, providing a multitude of data exploring different time points per reading session, as visualised in Table 1. It is good to mention that all scores have been obtained under the same conditions, namely concealed time order and concealed treatment allocation. It is also good to mention that –due to limitations in the availability of readers over a significant time period- readers may differ across (usually not within) read sessions. This means that very often in one study database, data of different read sessions spanning different time frames, sometimes including different readers, are available (Table 1).

Analytical dilemmas

Investigators have to make a decision about which read sessions to choose for a particular study question. Since the availability of the last time point usually determines the choice for a particular read session, this implies that data of previous sessions will usually be ignored (intentional data loss) and the choice of the read sessions is based on the argument that a particular time point score is only present in the last read sessions.  While such a choice is completely rational from a logistic standpoint, it implies a preference and introduces a well-known bias that –from the principle of methodological rigor- would preferably be avoided: bias by study completion.
A second dilemma that leads to intentional data loss is the use of decision algorithms. Very often, investigators rely on consensus among readers. For instance, in case of discrete decisions (positive vs. negative) the final verdict is based on a ‘at least two out of three’ decision rule. Such a consensus decision may add to the truthfulness of an individual patient’s score, but on the other hand ignores the score of the deviating third reader, thus ignoring one source of reader-variability. Theoretically, it will depend on the type of study and the research question whether the advantage of a better estimate of the signal will outweigh the disadvantage of ignoring part of the noise. By any means, appreciating full data will we fairer, because it is less influenced by guided decisions.    
We have built the argument that imaging data are not free of bias and uncertainty. And we have argued that –appreciating the different sources of bias that may play a role in obtaining imaging scores- it may be preferable to use as many data as possible in obtaining the best estimate for an imaging result (or a derivative of that such as a change score). In the absence of a proper gold standard, the best estimate of ‘the truth’ will always be the aggregated mean score, appreciating the conditions under which these scores have been obtained.
The final argument to mention is the argument of statistical power. Imaging change scores are often subtle in comparison to clinical change scores, jeopardising statistical power to detect small effects. Statistical power is among others dependent on sample size, and using as many data as available will add to it (this is an important argument used by ‘big-data protagonists’) even though we are dealing with repeated assessments in the same patients.

Aggregating data

The simplest way of aggregating data would be to combine all available data of all different read sessions, and calculate grand mean scores irrespective of data-correlation. Such a procedure, while statistically powerful, is fallible for a number of statistical principles regarding correlated data, and may yield spurious results. Different read sessions of different time periods should be considered independent studies within the same study. There are many reasons for this. Readers may score patients differently when they are confronted with four in stead of two time points. Different readers may score the same patient differently. Readers may score differently 5 years earlier than today, etc. In addition, one session may include two time points (eg. baseline and month 6) while a second session may include one other time point (eg. baseline and month 12, but not month 6). 
Still, when aggregating the data, the dataset should statistically be considered as a dataset of correlated data (statistical dependence), and precautions should be taken to adjust for correlated data in order to avoid spurious results. 
Different levels of correlation can be distinguished:

1. The first level of correlation is the level of the patient. This means that a patient’s score on month 6 can be largely predicted by knowing the same patient’s score at baseline (and vice versa). In conventional analyses this type of correlation is usually adjusted for by simply applying change-scores over time (this means: one subtracts the score at baseline from the score at 6 months in order to obtain the 6-month change score). In longitudinal statistical models with time as a covariate (see below) change over time is analysed by obtaining the parameter estimate (regression coefficient) for the covariate time while adjusting for within-patient correlation.  

2. The second level of correlation is at the level of the reader. Different readers scoring the same set of images may still arrive at different scores. While part of this variability can be considered random, the same reader will repeatedly apply the same ‘rule’ with her own interpretation and will consistently do that in different patients and in different read sessions. A good example is a sensitive reader, who interprets equivocal changes as real changes and scores them accordingly, versus the conservative reader, who only scores changes if they are ‘crystal clear’. ‘Sensitive’ and ‘conservative’ are eponyms that reflect readers’ attitudes, like personality traits, and can be recognized across different studies. In conventional analysis, the spurious effects of between-reader variation is usually eliminated by taking the mean readers’ score in computations. In longitudinal models these mean scores can -and usually will- be used for modelling the data, but one may choose to model the individual reader’s scores separately and approach the problem as a two-level model. 

3. The third level of correlation is the level of read session. Obviously, there is a high level of statistical dependence across read sessions since they include the same patients and part of the same time points. Still, as argued above, it is different to score 4 sets of images from one patient as compared to only two sets, and these differences are indeed reflected in (subtly) different scores. In addition, read sessions may be performed several years apart, and the same reader may have increased experience or may have slightly changed her attitude towards scoring changes. The argument becomes entirely clear if over time different readers have been used. Many imaging studies have been analysed using longitudinal models appreciating the first two levels of correlation. But until recently, we have not seen models in which the effects of variability at the third level has been taken into consideration. However, the practice of the investigator making a convenient choice of analysing only the read session that includes the time points of main interest (often the latest time point) is still most common. We argue that this practice leads to unwarranted loss of information, while the presence of sophisticated models allows the handling of all available data at once.

Multilevel solutions

Longitudinal data analysis implies the proper handling of correlated data in order to avoid spurious estimates of the effect-size (e.g. mean change) and variability (e.g. 95% confidence interval). Essentially, two types of models are available for analysing longitudinal data with a multilevel template such as described in this paper. It is important to mention that these models are generic models, widely available in popular statistical software that is used in industry and academia, and can be used to analyse all kinds of longitudinal data. The application that we propagate here is absolutely not new, since it stems from work in social sciences, econometrics and education (in which multilevel approaches are paramount). In longitudinal clinical studies, however, multilevel databases are sparsely applied, probably because of interpretational problems. Clinical studies, such as RCTs, focus on fixed effects (e.g. the effects of a treatment on an outcome), while multilevel studies rather describe (or at least adjust for) random effects (here: effects in a (subgroup of) patients, effects per read sessions, effects per reader) 

The two types of modelling that exist are:

1. Generalised estimating equations (GEE) modelling allows for the correlation between observations without using a particular likelihood for the model that explains the origin of the correlations (correlation structure, or variance-co-variance matrix)[6]. In fact, GEE allows the analyst to specify one ‘overall’ working correlation structure that should suffice across all levels of correlation (in our example we identified 3 levels of correlation). It is therefore rather simple, but potentially more sensitive to wrong choices.
GEE is said to be most suitable when the investigator is interested in the average response of the population (here: the mean group-change over time) rather than in the regression parameters that enable the prediction of effect in a particular subgroup of the population. At first glance, GEE seems less suitable for imaging data with a structure that we have outlined in this paper (3 levels of correlation)

2. Generalized linear mixed models (GLMM) are well known in rheumatology because they allow the proper handling of correlated data, which are so inherent to follow up studies in patients [7].  These models are also known as multilevel models or mixed models, and are sometimes impurely referred to as random-effects models. GLMM includes random effects in the predictor-function, which may help getting insight into the origin of correlations and predict estimates in individual patients, or subgroups of patients with a particular baseline characteristic (prediction analysis). GLMM is computationally far more complex than GEE and –unlike GEE- requires the specification of several correlation structures. 


Examples of three-level integrated analysis

We have applied integrated three-level longitudinal data analysis, spanning different read sessions, using different readers, in two studies with multiple read sessions in two cohorts.

The first cohort was a database with clinical trial data of two clinical drug trials (adalimumab), and open label extensions thereof, spanning 7 read sessions (10 years) of one study and 6 read sessions (10 years) of the second study [8]. Both studies analysed radiographic progression in patients with RA. Both had started as drug-registration trials and had been extended to 10 years of follow up. The data were integrated using a three-level GLMM.  The results of the integrated 3-level approach were compared to the results of the conventional 10-year completers analysis. In general, main effects were not different regardless of the method of analysis. GLMM using all read sessions, though, allowed us to draw reasonably robust conclusions on subgroups of prognostic interest despite rather low numbers of patients per subgroup. 

The second (inception) cohort-study delivered data from a nationwide French study (DESIR) including patients with chronic back pain suggestive of axial spondyloarthritis (axSpA). The main question underlying this prospective cohort study was whether inflammation of the sacroiliac joints (SIJ) measured by magnetic resonance imaging (MRI) would eventually lead to radiographic changes measured on pelvic radiographs, and this question has been solved appropriately using conventional analysis [9].  But the study also included 3 subsequent read sessions with multiple readers for MRI and different readers for pelvic radiographs. All read sessions included baseline but the other time points were covered by different read sessions.  Changes over time in MRI and radiographic sacroiliitis were analysed by GEE (linear and dichotomous scores) as well as GLMM (linear scores), and included a comparison between the integrated analysis, a conventional completers analysis with individual readers scores and a completers analyses with combined readers scores based on decision algorithms.  The main findings in this study were that effect sizes (parameter estimates) were somewhat dependent on the method chosen, as were estimates of variability (here: 95% confidence intervals). But the ‘signal-to-noise ratio’ was not affected importantly [10].  The biggest advantage of the integrated analysis in comparison with the completers-only analysis (with- or without decision-algorithms) was that available data were used far more completely and in an entirely assumption-free manner, without loosing precision.  In additional benefit observed in this analysis was that associations with rare findings (that means: only occurring in few patients) obtained more robust (narrower 95% CIs) estimates using the integrated analysis than one of the completers analysis, suggesting that for rare events as many observations as possible are required.  

The place of integrated analysis in the interpretation of imaging data

Should integrated longitudinal data analysis become the standard for analysing imaging data in rheumatology? This is not an easy question because it involves issues of precision and issues of feasibility, which may easily conflict. From a standpoint of scientific rigor, integrated analysis should be preferred mainly for theoretical reasons. We plea for the use of all available data, because any decision or choice regarding the usability of particular data sets implies a potential bias, and convenient data are more likely to be chosen than inconvenient data. An assumption-free analysis that includes all data that have (once) been obtained conveys greater credibility than a dataset that has been selected based on investigators’ preferences. 

However, clinical audience will not easily understand integrated analyses. It will be relatively easy to convince statistical experts of the merits of integrated analyses, but clinical consumers will more likely rely on analyses that they understand rather than on data that reach them in ‘statistically manipulated manners’. The phrase that statisticians may ‘torture the data till they confess’ stems from clinicians that are statistically illiterate and (therefore) mistrust statistical methodology.
This argument extends to reviewers of manuscripts in the review process of scientific papers submitted to ‘our’ scientific journals. Very few reviewers are able to scrutinize papers  ‘built’ by statisticians, and many of these papers will be mistrusted and rejected.
We are believers of the dictum that data should be presented comprehensibly to clinical readership. Still we think that integrated analysis should have a place in the objective interpretation of imaging data from RCTs, long-term extensions thereof, and clinical cohort studies. Therefore we do not plea for refraining from conventional analysis of imaging data, but rather recommend to use conventional analysis and integrated analysis side by side,  to make optimal use of all available data without facing the risk that results are too much biased by choices based on expectations, beliefs and ‘wishful thinking’.

Conclusion
Analysis of imaging data in rheumatology is a challenge. Reliability of scores is an issue for several reasons. Signal-to-noise ratio of most imaging techniques is rather unfavourable (too little signal in relation to too much noise). Optimal usage of all available data may help to increase credibility of imaging data, but knowledge of complicated statistical methodology and the help of skilled statisticians is required. Clinicians should appreciate the merits of sophisticated data modelling and liaise with statisticians in order to increase the quality of imaging results, since proper imaging studies in rheumatology imply more than a ‘supersensitive’ imaging technique alone.  

Table 1: Example of a study with 200 patients starting at baseline and followed up during 36 months and the planning of 4 read sessions, each including different time points
	
	Time point

	Read session:
	Baseline
	6 months
	12 months
	24 months
	36 months

	First (R1,R2))
	X
	X
	
	
	

	Second (R1, R2)
	X
	
	X
	
	

	Third (R1, R2)
	X
	X
	
	X
	

	Fourth (R2, R4, R5)
	X
	
	X
	
	X

	
	
	
	
	
	

	Patients in study
	200 
	200 
	150 
	100 
	75 


R1, R2, etc.: Different readers.



Table 2: Comparison of the number of scores to be analysed between a conventional completers-only analysis and a 3-level integrated analysis approach using the patient numbers and the read sessions from Table 1
	
	Time point

	Type of analysis
	Baseline
	6 months
	12 months
	24 months
	36 months

	Completers-only analysis with constructed scores
	200
scores
	X
	150
scores
	X
	75
scores

	
	
	
	
	
	

	3-level integrated analysis using all data
	4800 scores
	800
scores
	900
scores
	200 
scores
	225 
scores


Constructed scores: aggregated score per time point based on a decision rule (e.g. mean readers’ score)
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