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A B S T R A C T

Since the discovery of the human leukocyte antigen (HLA) system, the role of HLA molecules in the field of
transplantation has been appreciated: better matching leads to better graft function. Since then, the association
of other genetic polymorphisms with clinical outcome has been investigated in many studies. Genome-wide
association studies (GWAS) represent a powerful tool to identify causal genetic variants, by simultaneously
analyzing millions of single nucleotide polymorphisms scattered across the genome. GWAS in transplantation
may indeed be useful to reveal novel markers that may potentially be involved in the mechanism of allograft
rejection and graft failure. However, the relevance of GWAS for risk stratification or donor selection for an
individual patient is limited as is already reflected by the fact that many parameters, significant in one study,
cannot be confirmed in another one.

1. Introduction

Human leukocyte antigen (HLA) matching has a beneficial effect on
kidney graft survival [1,2]. In addition, many other candidate genes
beyond HLA loci have been reported to affect kidney transplantation
[3,4]. Discrepant results among many of those have been reported,
although the association between pharmacogenomics and tacrolimus
blood concentrations was frequently observed [5].

Genome-wide association study (GWAS) represents an unbiased
approach to identify genetic variants, which are associated with human
disease. The approach enables analysis of millions of single nucleotide
polymorphisms (SNPs) scattered across the genome. GWAS may also
provide a robust genomic platform to characterize genetic risk factors
of adverse transplant outcome. Here we discuss that GWAS may be
applied to identify novel molecules and pathways involved in acute
rejection (AR) and to predict transplant outcomes, but that the tech-
nology has not yet been proven to provide a useful guidance for
treatment of the individual patient.

2. Treatment of recipients after transplantation

Despite the application of efficient immunosuppressive drugs, acute
rejection episodes still occur in kidney transplant recipients. A rise in
serum creatinine may indicate a decreased graft function and a need of
further diagnosis by an allograft biopsy. Pulse corticosteroid therapy is
the first line of treatment for acute cellular rejection [6,7]. Antibody
therapy, such as antithymocyte globulin (ATG) or alemtuzumab, is a
more effective approach to normalize kidney function for patients who
have more severe forms of acute rejection and/or who do not respond
to the pulse steroid treatment [7]. Patients with acute antibody medi-
ated rejection may be treated with plasmapheresis, intravenous

immune globulin (IVIG) or rituximab [7]. Recipients with viral disease
after transplantation may benefit from a reduction in dosage of im-
munosuppression [7].

Irrespective of the type of treatment, all therapies have been relying
on clinical monitoring in blood serum and urine, and diagnostic as-
sessment in allograft biopsies, rather than on genetic diversity between
individuals.

3. HLA and transplant outcome

The HLA antigens are the most important histocompatibility anti-
gens involved in alloimmune responses. T cell mediate rejection
(TCMR), characterized by the presence of T cells and inflammatory cells
in the interstitium and tubular epithelium of the allograft, may be
triggered by three distinct mechanisms. Direct allorecognition is driven
by the direct interaction between the T cell receptor on recipient T cells
and mismatched HLA antigens on donor derived antigen presentation
cells (APC). In this process, activated CD4+ T cells produce in-
flammatory cytokines and CD8+ cytotoxic T cells directly destruct the
allograft. At a later time point after transplantation the indirect allor-
ecognition pathway becomes more dominant, whereby donor-derived
antigens are processed and presented by recipient APCs to recipient
CD4+ T cells [8]. Recipient dendritic cells transferred with intact
donor HLA can also prime recipient T cells via the semidirect pathway
[9]. B cells can be activated after recognizing foreign HLA to differ-
entiate to plasma cells and produce donor specific antibodies. These
may lead to allograft destruction, which is termed as antibody mediate
rejection (ABMR). The presence of antibodies against donor-specific
HLA and of C4d deposition in the tissue represents strong evidence for
the diagnosis of ABMR [10]. It is important to recognize that TCMR
may be encountered as a single entity and as a mixed form with features
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of ABMR [11].
Matching for the HLA-A, HLA-B, and HLA-DR loci has been re-

cognized as great importance for outcome after organ transplantation
[12]. The beneficial effect of HLA matching was challenged by high
graft survival rate in living donors [13]. However, the significant effect
of HLA matching was still observed under the umbrella of efficient
immunosuppressive therapy [2]. Therefore, HLA typing and matching
remain crucial for graft and patient survival.

4. Non-HLA genetics of transplant outcome

Terasaki estimated that only 18% of graft loss at 10 years for ca-
daveric donors can be explained by HLA-related immunologic factors,
whereas 38% was caused by non-HLA factors and 43% by non-im-
munological factors [14]. One non-HLA-related risk factor is re-
presented by the human H-Y antigen: a male donor allograft to a female
recipient is associated with elevated risk of graft loss after kidney
transplantation [15,16]. The MHC class I polypeptide-related sequence
A (MICA) represent potential non-HLA antigens that may elicit an an-
tibody production. Transplant recipients with pre-existing anti-MICA
antibody are reported to have an inferior one year graft survival [17]. A
number of studies have shown that the presence of non-HLA antibodies,
as identified by protein microarray, is associated with allograft injury
[18–20]. In HLA compatible kidney transplantations, mismatching for
killer-cell immunoglobulin-like receptors (KIR) and ligands was asso-
ciated with inferior long term graft survival [21]. In a larger in-
dependent study, the effect of KIR-ligand mismatching could not be
verified [22].

Pharmacogenetics involves the study of genetic variants in drug
metabolizing enzymes and transporters. The relationship between SNPs
in the drug metabolizing factor CYP3A5 and tacrolimus trough levels in
the blood of transplanted patients has been widely described in litera-
ture. Hence, dosing adjustments of tacrolimus should be adjusted ac-
cording to the CYP3A5 genotype, in order to achieve optimal ther-
apeutic concentrations and to reduce tacrolimus toxicity [23,24].
However, pharmacogenetic tests are hardly adopted in transplant cen-
ters to optimize the starting dose of immunosuppression. One of the
reasons may be the lack of a relevant impact of pharmaco-genotyping
test on transplant outcomes [25–28]. On the other hand, therapeutic
drug monitoring is widely accepted to correct for the effect of phar-
macogenetic polymorphisms [29].

Most genetic association studies in kidney transplantation have
been focused on SNPs located within or flanking the genes encoding for
proteins that play a pivotal role in immune responses, including cyto-
kines, chemokines, toll-like receptors, ficolins, and complement com-
ponents [3,30–35]. Overviews of genetic variants investigated in rela-
tion to transplant outcome, especially occurrence of acute rejection,
have been reviewed previously [3–5]. Many genetic studies have led to
observation of a significant association between candidate SNPs and
transplant outcome, but validation of the clinical impact of the same
SNPs in follow-up studies often led to inconsistent results. For example,
transplant recipients with the complement C3S/S variant (common al-
lele) receiving a kidney allograft with the uncommon variant C3F/F or
C3F/S had a beneficial graft outcome, but a larger collaborative study
showed that genotypic distribution of C3 alleles does not significantly
influence kidney transplantation outcome [34,35]. The inconsistent
results may be due to differences in population composition and char-
acteristics, inadequate sample size, lack of statistical correction for
multiple testing, and lack of validation in an independent cohort.
Currently, no singular candidate SNP has unambiguously shown an
association with transplant outcome in both a sufficiently large dis-
covery and validation cohort.

5. GWAS in transplantation

The candidate SNP approach, as described above, does not provide

complete coverage of all possible variants in the genome, and may be
limited to genes with a known or postulated involvement in rejection.
GWAS enable simultaneous analysis of millions of SNPs spanning the
entire genome, which may provide novel insight in the genetic sus-
ceptibility of rejection.

Until this moment, GWAS has been performed occasionally in the
transplantation field. In 326 Irish kidney transplant recipients, who
received a graft from a deceased donor, O'Brien and colleagues reported
the association of two genetic variants with five-year graft function
[36]. However, in a validation study of 1638 Caucasians transplant
recipients no association of these two particular SNPs could be found
with serum creatinine levels and long term graft survival [37]. This
highlights the importance of validation in genetic association studies
and expansion of sample size, for example by international collabora-
tion, to limit false discovery rates.

A large collaborative GWAS of mostly Belgian and French origin,
including 778 European kidney transplant recipients, led to identifi-
cation of two risk loci associated with TCMR, using a DNA pooling
approach [38]. Two variants were identified (rs10846175 and
rs7976329) located in the first intron of protein tyrosine phosphatase
receptor type O and one variant (rs10765602) located upstream of
coiled-coil domain containing 67, which may play a role in signal
transduction in the immune synapse. The authors did not determine the
precise mechanism how these SNPs act locally or distantly on genes that
are involved in the allo-immune response. Furthermore, the pooled
DNA approach may not efficiently reduce the standard deviation of an
allele frequency, in case confirmation is not performed by genotyping
on individual DNA samples [39]. Unfortunately, in our GWAS in 279
kidney transplant recipients (unpublished), a cohort for which we cal-
culated to have sufficient power for validation, we could not confirm
the association of these SNPs with biopsy proven acute rejection.

GWAS in African-American kidney transplant recipients led to the
identification of two novel CYP3A5 variants (rs10264272 and
rs41303343), which were associated with tacrolimus trough levels
[23]. The number of loss-of-function alleles were related to increased
one year eGFR, but not to acute rejection incidence [23]. Other GWAS
in kidney and in heart transplantation have shown association with
occurrence of new-onset diabetes after transplantation (NODAT) and
cutaneous squamous cell carcinoma after transplantation [40,41].
GWAS in bone marrow transplantation were mainly focused on acute
GvHD and minor HLA antigens, providing evidence that genetic dis-
parity is associated with rejection [42]. Unfortunately, minor HLA an-
tigen disparities identified in identical hematopoietic stem-cell trans-
plantation have no effect on death censored graft survival in kidney
transplantation [43].

Genomic research in transplantation is more complicated than
genomic research of common diseases, because it involves the inter-
action between the recipient and the donor graft. A small pilot study
showed that the number of amino acid mismatches in trans-membrane
proteins was negatively correlated with long term allograft function,
independent of HLA matching and donor age [44]. Other on-going
GWAS in kidney transplantation combined analysis of recipient and
donor genomes, such as homozygous loss–of-function variants and
nonsynonymous SNP mismatching [45]. These efforts may provide
novel insight in the mechanism of rejection.

6. GWAS: Limitations and requirements

One of the main limitations to GWAS is the requirement of stringent
significance thresholds due to multiple testing, with typically required
P-value of less than 10−8 for single SNPs. Fulfilment of such require-
ment helps in limiting false positive discoveries, but it also considerably
reduces the power to detect associated SNPs. The only way to overcome
this limitation is to increase the sample size. However, an intrinsic
problem associated with a large multicentre GWAS in transplantation is
the fact that donor selection and clinical protocols, including kind and
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dose of immunosuppression, will differ, which certainly may affect the
outcome. Another drawback is that individual genetic variants, im-
plicated by GWAS, have only a small effect on complex traits [46].
Riancho pointed out that, even after combining all available GWAS
from databases on a particular trait, the polymorphisms identified only
explain less than 10% of the susceptibility to the disease [47]. In other
words, it seems impossible to explain a complex trait with the aid of a
few genetic polymorphisms. A third remark concern the fact that the
biological function of many variants identified by GWAS, which are
mostly located in none-coding regions of the genome, is unknown.
Thus, follow-up mechanistic studies would be required to elucidate the
role of genetic variants in the process of allograft rejection.

Overall, GWAS represent a powerful approach to identify genetic
variants associated with clinical transplant outcome on the population
level, and to further expand our knowledge of the mechanism of re-
jection and graft failure for developing novel treatment strategies. Risk
assessment for the individual patient using this technology is difficult.
At present, GWAS approaches have not provided a useful guidance in
daily clinical practice for personalized treatment of the transplanted
patient.
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