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implicate pathways that control energy intake and expenditure 
underpinning obesity
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Abstract

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), 

implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, 

non-coding variants from which pinpointing causal genes remains challenging. Here, we 

Southam, A.E.F., M. Karaleftheri; (HUNT-MI) O.L.H.; (BBMRI-NL)) S.H. Scholte, A.R.H.; (Inter99) T.J., N.G.; (INTERVAL Study) 
C.M., J.S., W.O., D.J.R.; (IRASFS) N.D.P., B.K., L.E.W.; (KORA) M.M.N.; (KORA S4) A. Peters; (LBC1921) J.M.S., A. Pattie; 
(LBC1921/LBC1936) I.J.D.; (LBC1936) J.C.; (Leipzig-Adults) M. Blüher, P. Kovacs; (LOLIPOP-Exome) J.C.C., J.S.K.; (LOLIPOP-
OmniEE) J.C.C., J.S.K.; (Marshfield Clinic Personalized Medicine Research Project) P.L.P., T.N.P.; (Massachusetts General Hospital 
Cardiology and Metabolic Patient Cohort (CAMP)) S.A.L., P.T.E.; (MESA) M.A.; (METSIM) X.S.; (Montreal Heart Institute Biobank 
(MHIBB)) G.L., K.S.L., V.T.; (MORGAM Data Centre) K.K.; (The NHAPC study, The GBTDS study) X.L.; (NESCOG (BBMRI-
NL)) T.J.P.; (OBB) F. Karpe, M.N.; (Ophthalamic Western Australia Biobank & Blue Mountains Eye Study) A.W.H.; (PCOS) C.M.L.; 
(PIVUS) L.L.; (PRIME - Belfast) F. Kee; (PRIME - Lille) P.A.; (PRIME - Strasbourg) M.M.; (PRIME - Toulouse) J.F.; (PROLAPSE 
(BBMRI-NL)) K.B.K.; (PROSPER) S.T.; (QIMR) G.W.M., D.R.N., A.C.H., S.E.M.; (Raine) A.W.H.; (RISC) B.B., E.F.; (Rotterdam 
Study I) O.H.F., M.A.I., M.C.M.G., F. Rivadeneira; (SDC) E.R.B.P.; (SHIP, SHIP-TREND) N.L., (SORBS) M.S., A. Tönjes; 
(Southampton) A.J.L., H.L.G.; (SR) M. Brumat; (The Mother Child Cohort of Norway) P.R.N., O.H.; (The Mount Sinai BioMe 
Biobank) E.P.B., Y. Lu, C.S.; (The NEO Study) R.d.M.; (The NBS and NBCS) K.K.A., L.A.K., T.E.G.; (The NHAPC study, The 
GBTDS study) X.L., H. Li, L. Sun, F.W.; (The Western Australian Pregnancy Cohort (Raine) Study) C.E.P., T.A.M.; (TUDR) 
W.H.H.S., K.H.L.; (TwinsUK) T.D.S., K.S.S.; (UCLA-Utrecht) R.S.K.; (UCP (BBMRI-NL)) M.C.H.d.G.; (UKGPCS) A. 
Lophatananon; (UKHLS) M. Kumari; (ULSAM) V. Giedraitis; (Utrecht Health Project) M.L.B.; (WGHS) D.I.C., P.M.R.; (Women's 
Health Initiative) C.K.; (WOSCOPS) C.J.P.; (WTCCC-UKT2D) M.I.M., K.R.O.; (YFS) T.L., O.T.R.
Data analysis of contributing studies
(1958 Birth Cohort) K.E.S., S.E.A.; (AGES) A.V.S.; (Airwave) E.E., M.P.S.L.; (AMC PAS) S.S.; (Amish) J.R.O., L.M.Y.A., J.A. 
Perry; (ARIC, Add Health) K.E.N., K.L.Y., M. Graff; (ASCOT-UK, ASCOT-SC) H.R.W.; H.Y.; (Athero-Express Biobank Study) 
S.W.v.d.L.; (ATVB, Ottawa) H.T.; (BBMRI-NL) L. Broer; (BioVU) T.L.E., A.G.; (BRAVE) R.C., D.S.A.; (BRIGHT) H.R.W.; 
(Cambridge Cancer Studies) J.G.D., A. Pirie, D.J.T.; (CARDIA) M.F., L.-A. Lin; (CARL) A. Robino, M.C., D.V.; (Cebu Longitudinal 
Health and Nutrition Survey) Y. Wu; (CHD Exome + Consortium) A.S.B., J.M.M.H., D.F.R., R.Y., P.S.; (CHES) Y.J.; (CHOP) J.P.B.; 
(CROATIA_Korcula) V.V.; (deCODE) V. Steinthorsdottir, G. Thorleifsson; (DHS) A.J.C., P. Mudgal, M.C.Y.N.; (DIABNORD) 
T.V.V.; (DIACORE) C.A.B., M. Gorski, M.R.; (Duke) A.P.P.; (EFSOCH) H.Y.; (EGCUT) T.E.; (eMERGE (Seattle)) T.S.C.; (ENDO) 
A.M., Tugce Karaderi, N.R.R.; (EPIC) J.H.Z.; (EPIC-Potsdam) K.M.; (EPIC-CVD) A.S.B., J.M.M.H., D.F.R., R.Y., P.S.; (EpiHealth) 
S.G.; (EUGENDA) J.C.G.; (EXTEND) H.Y.; (Family Heart Study) M.F.F.; (Fenland) J. Luan; (Fenland, EPIC) R.A.S.; (Fenland, 
InterAct) S.M.W.; (FIA3) T.V.V.; (FINCAVAS) J. Hernesniemi; (FIN-D2D 2007) H.P., M.U., M.V.; (Finnish Twin Cohort) L.H.; 
(FINRISK 2007 (T2D)) T. Korhonen, S.M., L. Moilanen, H.M.S.; (Finrisk Extremes and QC) S.V.; (Framingham Heart Study) C.T.L., 
N.L.H.C.; (FVG) I.G.; (GECCO) M.D.; (GeMEP) G. Tromp; (GENDEP) K.E.T., R.U.; (Generation Scotland) C.H., J.E.H.; (Genetic 
Epidemiology Network of Arteriopathy (GENOA)) L.F.B.; (GIANT-Analyst) A.E.J.; (GLACIER) T.V.V.; (GoDARTS) A.M.; 
(GRAPHIC) N.J.S., N.G.D.M., C.P.N.; (GSK-STABILITY) D.M.W., A.J.S.; (Health) J.B.J.; (Health ABC) M.A.N.; (Health and 
Retirement Study (HRS)) Wei Zhao, E.B.W.; (HELIC MANOLIS) L. Southam; (HELIC Pomak) L. Southam; (HUNT-MI) W. Zhou; 
(Inter99) N.G.; (INTERVAL Study) A.S.B.; (IRASFS) N.D.P., B.K.; (Jackson Heart Study (JHS)) L.A. Lange, J. Li; (KORA S4) 
T.W.W.; (LBC1921/LBC1936) G. Davies; (Leipzig-Adults) A.M.; (LOLIPOP-Exome) J.C.C., J.S.K., W. Zhang; (LOLIPOP-OmniEE) 
J.C.C., J.S.K., W. Zhang; (Massachusetts General Hospital Cardiology and Metabolic Patient Cohort (CAMP)) S.A.L., H. Lin; 
(MESA) J.I.R., X.G., J.Y.; (METSIM) J. Kuusisto, M.L., X.S.; (MONICA-Brianza) G.V.; (Montreal Heart Institute Biobank 
(MHIBB)) G.L., K.S.L., V.T.; (The NHAPC study, The GBTDS study) P.Y.; (OBB) A.M.; (Ophthalamic Western Australia Biobank & 
Blue Mountains Eye Study) G.C.P.; (PCOS) A.M., T. Karaderi, N.R.R.; (PIVUS) A.M., Tugce Karaderi, N.R.R.; (PROLAPSE 
(BBMRI-NL)) K.B.K.; (PROMIS) A. Rasheed, Wei Zhao; (PROSPER) J.W.J.; (QC GoT2D/T2D-GENES (FUSION, METSIM, etc)) 
A.E.L.; (QIMR) Y.S.; (RISC) H.Y.; (Rotterdam Study I) M.C.M.G., F. Rivadeneira; (SCOOP) V.M., A.E.H., G.M.; (SDC) C.T.H.; 
(SHIP/SHIP-Trend) A. Teumer; (SOLID TIMI-52) D.M.W., A.J.S.; (SORBS) A.P.M.; (Southampton) J.G.; (The Hoorn Diabetes Care 
System Cohort study (BBMRI-NL)) N.v.L.; (The Mother Child Cohort of Norway) S.J., O.H.; (The Mount Sinai BioMe Biobank) Y. 
Lu, C.S.; (The NEO Study) R.L.G.; (The NHAPC study, The GBTDS study) X.L., H. Li, Y.H.; (The Western Australian Pregnancy 
Cohort (Raine) Study) C.A.W.; (UCLA-Utrecht) L.M.O.L.; (UCP (BBMRI-NL)) M.C.H.d.G.; (UK Biobank) A.R.W., T.M.F.; 
(UKGPCS) A. Lophatananon; (UKHLS) M. Kumari; (UKOPS) J.P.T.; (ULSAM) A.M., T. Karaderi, N.R.R.; (Utrecht Health Project) 
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combined data from 718,734 individuals to discover rare and low-frequency (MAF<5%) coding 

variants associated with BMI. We identified 14 coding variants in 13 genes, of which eight in 

genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2, ZNF169) newly 

implicated in human obesity, two (MC4R, KSR2) previously observed in extreme obesity, and two 

variants in GIPR. Effect sizes of rare variants are ~10 times larger than of common variants, with 

the largest effect observed in carriers of an MC4R stop-codon (p.Tyr35Ter, MAF=0.01%), 

weighing ~7kg more than non-carriers. Pathway analyses confirmed enrichment of neuronal genes 

and provide new evidence for adipocyte and energy expenditure biology, widening the potential of 

genetically-supported therapeutic targets to treat obesity.

Obesity is a heritable disease and represents a major unmet public health problem with only 

a few safe and long-term effective therapies1 and intervention strategies2. To understand the 

genetic basis of obesity and identify potential targets for new therapies, genome-wide 

association studies (GWAS) for body mass index (BMI) and obesity risk have identified 

>250 common variants over the past decade3–7. Consistent with single-gene disorders of 

obesity8, tissue expression and gene-set enrichment analyses for genes in BMI-associated 

loci have shown that the central nervous system (CNS) plays a critical role in body weight 

regulation5. While the numerous GWAS loci have provided insight into broad biological 

mechanisms underlying body weight regulation, pinpointing the causal gene(s)/variant(s) 

remains a major challenge9, as GWAS-identified variants are typically non-coding and may 

affect genes at long distance. The association of intronic FTO variants with BMI illustrates 

the challenges of identifying causal regulatory effects. The proposed causal variant was 

found to regulate the expression of nearby RPGRIP1L in some studies10–12, whereas others 

found that it regulates distant IRX3/IRX5 genes in specific cell types13,14.

To expedite mapping of obesity-related genes, we performed an exome-wide search for low-

frequency (LF, minor allele frequency [MAF]=1–5%) and rare (R, MAF<1%) single 

nucleotide variants (SNVs) associated with BMI using exome-targeted genotyping arrays. A 

total of 125 studies (Nindividuals=718,734) performed single-variant association between up 

to 246,328 SNVs and BMI. In addition, we performed gene-based meta-analyses to 

aggregate rare and LF (R/LF) coding SNVs across 14,541 genes. Using genetic, functional 

and computational follow-up analyses, we gained insights into the function of BMI-

implicated genes, and the biological pathways through which they may influence body 

weight.

RESULTS

Fourteen rare and low-frequency coding variants in 13 genes

Our study comprises a discovery and a follow-up stage (Supplementary Figure 1, 

Supplementary Tables 1–3, Online Methods). In our primary analysis, the discovery stage 

includes data from 123 studies (Nmax=526,508) across five ancestry groups, predominantly 

European (~85%). Each study performed single-variant association analyses of coding 

variants present on the exome array, including up to 13,786 common (MAF>5%) and 

215,917 R/LF coding SNVs (exons and splicing sites). Summary statistics were combined 

using fixed-effect meta-analyses. SNV-associations of R/LF variants that reached suggestive 
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significance (P<2.0×10−6) were taken forward for follow-up in two European cohorts, 

deCODE (Nmax=72,613) and UK Biobank (Nmax=119,613 [interim release]). Overall 

significance was assessed after combining results of discovery and follow-up studies into a 

final meta-analysis (all-ancestries, sex-combined, additive model, Nmax=718,734); SNV-

associations that reached P<2×10−7 were considered array-wide significant15,16 (Table 1, 

Supplementary Table 4, Supplementary Figures 2–4). In secondary analyses, we performed 

sex-specific analyses, analyses limited to individuals of European ancestry, and analyses 

using a recessive model.

In our primary analysis of R/LF variants, we identified five rare SNVs in three genes (KSR2, 

2 in MC4R, 2 in GIPR) and nine LF SNVs in eight genes (ZBTB7B, 2 in ACHE, 
RAPGEF3, PRKAG1, RAB21, HIP1R, ZFHX3, ENTPD6) (Table 1, Box 1, Supplementary 

Table 5, Supplementary Figure 3a). In secondary analyses, we identified two additional LF 

SNVs; one in all-ancestry women-only (ZFR2) and one in European ancestry only analyses 

(ZNF169) (Table 1, Supplementary Tables 6–8, Supplementary Figures 3b, 3c). Of these 16 

SNVs, located in 13 genes, the two SNVs in MC4R (r2=1; D’=1) and two in ACHE 
(r2=0.98; D’=0.99) were in high LD, whereas the two SNVs in GIPR (r2=0; D’=0.16) were 

independent of each other. Hence, the 16 SNVs represent 14 independent SNVs (4 rare, 10 

LF), of which eight locate in genes not previously implicated in BMI (ZBTB7B, ACHE, 
RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2, ZNF169), and six are located in five loci that 

were previously identified by GWAS (PRKAG1/BCDIN3D, HIP1R/CLIP1, MC4R, GIPR/
QPCTL)5 and/or through sequencing of severe early-onset obesity cases (MC4R, 
KSR2)17–19 (Supplementary Figure 5). Conditional analyses established that coding SNVs 

in PRKAG1, MC4R and GIPR are independent of the common lead variants in GWAS loci 

(rs7138803, rs17782313, rs2287019, respectively), whereas the SNV in HIP1R and GWAS 

locus near CLIP1 (rs11057405) represent the same signal (Online Methods, Supplementary 

Tables 9, 10, Supplementary Figure 5).

Next, we performed gene-based association tests (SKAT, VT; broad, strict) in up to 14,541 

genes20 to examine whether these aggregated analyses would yield new evidence for 

multiple R/LF coding SNVs in the same gene affecting BMI (Online Methods). Using broad 

SNV inclusion criteria, associations for 13 genes reached array-wide significance 

(P<2.5×10−6)15,16, four of which had not been highlighted in single-variant analyses (Table 

2, Supplementary Table 11). Conditional analyses showed that only for GIPR was the gene-

based association driven by multiple SNVs (Table 2, Supplementary Table 12). For all other 

genes, associations were driven by a single SNV only, but these SNVs had not reached 

array-wide significance in single-variant analyses.

Taken together, we identified 14 R/LF coding SNVs in 13 genes that are independently 

associated with BMI; four rare SNVs in three genes, and 10 LF SNVs in 10 genes. One SNV 

(ZFR2) showed a sex-specific effect, whereas no ancestry-specific effects were observed 

(Supplementary Note, Supplementary Tables 6–8, Supplementary Figure 6). Eight (ACHE, 
ENTPD6, RAB21, RAPGEF3, ZBTB7B, ZFHX3, ZFR2, ZNF169) of these 13 genes have 

not been previously implicated in body weight regulation (Table 1).
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Novel common coding variants associated with BMI

Although the main focus of our study was on R/LF coding SNVs, we also identified 92 

common coding variants (P<2.0×10−7; Supplementary Tables 4; Supplementary Figures 4, 

7), of which 41 were novel (Supplementary Table 9, Supplementary Note). These novel 

common loci had not been identified in previous GWAS efforts, because our current sample 

size is more than twice as large as the most recent GWAS meta-analysis5, and also because 

some SNVs were not tested before, as they were not present on the HapMap reference panel 

and/or were on the X-chromosome, which was not analyzed. Because of the increased 

samples size, effect sizes of the 41 novel common loci are smaller (on average 0.014 SD/

allele, [range: 0.010–0.024]) than of previously established common loci (0.021 SD/allele, 

[0.010–0.050]) (Supplementary Figure 7).

Impact of R/LF SNVs on BMI and obesity risk

The minor allele for half of the 14 R/LF SNVs is associated with lower BMI (Table 1, 

Figure 1). The effects of LF SNVs range between 0.024 and 0.066 SD/allele, equivalent to 

~0.11 to 0.30 kg/m2 in BMI or ~0.315 to 0.864 kg in body weight for a 1.7m tall person. 

Effects of rare SNVs range between 0.06 and 0.54 SD per allele, equivalent to 0.26 to 2.44 

kg/m2 or 0.74 kg to 7.05 kg per allele (Table 1, Figure 1). By comparison, these rare SNV 

effect sizes are on average ten times larger than those for previously identified GWAS loci 

(effectmean=0.019 SD/allele, ~0.086 kg/m2 or ~0.247 kg/allele) of which the largest effect is 

seen for the FTO locus (0.08 SD/allele, ~0.35 kg/m2 or 1 kg/allele) and those for other 

GWAS loci range between 0.010 and 0.056 SD/allele (~0.045 to 0.25 kg/m2, or 0.130 to 

0.728 kg)5.

Effect sizes increase as MAF decreases, in particular for SNVs with a MAF<0.5% (~1 

heterozygote carrier in 100 people), consistent with the statistical power of our sample 

(Figure 1). For example, the nonsense p.Tyr35Ter MC4R SNV (rs13447324, MAF=0.01%) 

is present in ~1 in 5,000 individuals and results in a ~7 kg higher body weight for a 1.7m tall 

person. The two GIPR SNVs contribute independently to a lower body weight; carriers (1 in 

~455 individuals) of p.Arg190Gln (rs139215588) weigh ~1.92 kg (0.148 SD BMI) less than 

non-carriers and carriers (1 in ~385 individuals) of p.Glu288Gly (rs143430880) weigh ~1.99 

kg (0.153 SD BMI) less. Among 115,611 individuals of the UK Biobank, one apparently 

healthy 61-year-old woman, with no reported illnesses, carried both rare GIPR alleles and 

weighed ~11.2 kg less (equivalent to −0.86 SD BMI or 3.87 kg/m2) than the average non-

carrier of the same height (Supplementary Figure 8). The possible synergistic effect of the 

two GIPR alleles needs confirmation by additional individuals that carry both variants.

Even though effect sizes of LF and, in particular, rare SNVs tend to be larger than those of 

common GWAS-identified loci5, the 14 SNVs combined explain <0.1% of BMI variation, 

because of their low population frequency (Table 1, Online Methods). Also, although the 

effects of the four rare SNVs (KSR2, MC4R, 2 in GIPR) are large by GWAS standards, 

penetrance for obesity is still expected to be low. Indeed, using data from the UK Biobank 

(Nmax=119,781), we compared the prevalence of normal-weight (18.5 kg/m2 ≤ BMI < 25 

kg/m2) and obesity (BMI ≥ 30 kg/m2) between carriers and non-carriers (Supplementary 

Table 13, Online Methods). For GIPR (p.Arg190Gln, p.Glu288Gly), both BMI-decreasing 
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SNVs, carriers tended (P<0.05) to have a lower obesity prevalence (21.2%, 20.1%, 

respectively), compared to non-carriers (25.1%, 25%). For MC4R p.Tyr35Ter and KSR2 
p.Arg525Gln, the prevalence of obesity between carriers (30%, 25.7%, resp.) and non-

carriers (25.1%, 25.3%) was not significantly different.

We examined whether R/LF SNVs affect obesity risk early on in life by combining data 

from three case-controls studies of childhood obesity (Ncases=4,395; Ncontrols=13,072) 

(Online Methods, Supplementary Table 14). Associations for 10 of 13 SNVs were 

directionally consistent with those observed for BMI in adults (77%, Pbinomial=0.046), three 

of which (ZBTB7B, PRKAG1, RAB21) reached nominal significance (P<0.05). While no 

carriers of the MC4R mutations were available for analyses, the role of MC4R in body 

weight regulation in childhood was established almost two decades ago17,19,21.

Impact of R/LF SNVs on cardiometabolic and other traits

To examine whether identified SNVs affect other traits, we obtained results from multiple 

large-scale genetic consortia (GIANT15, MAGIC, GoT2D/T2D-GENES16, GLGC, ICBP22, 

REPROGEN23) (Supplementary Table 15, Supplementary Figure 9), and performed 

phenome-wide association (PheWAS) analyses using electronic medical record (EMR) data 

from BioVu and UK Biobank (Online Methods, Supplementary Table 16). The BMI-

increasing allele of ZBTB7B p.Pro190Ser is associated with greater height, and those of 

PRKAG1, ACHE, and RAPGEF3 SNVs are associated with shorter height, but association 

with other traits differ. Specifically, PRKAG1 p.Thr38Ser Ser-allele carriers appear heavier 

and shorter, have lower HDL-cholesterol levels, earlier age at menarche (reported before23) 

and higher systolic blood pressure, which is in agreement with PheWAS analyses showing 

an increased risk of “malignant essential hypertension” and “hypertension” (Supplementary 

Table 16). While carriers of the RAPGEF3 p.Leu300Pro Pro-allele are also heavier and 

shorter, they have a lower WHRadjBMI
24 and lower fasting insulin levels (Supplementary 

Table 15), consistent with PheWAS results that show lower odds of “secondary diabetes 

mellitus” (Supplementary Table 16). Thus, while all SNVs are associated with BMI, their 

patterns of association with other traits suggest they may affect different physiological 

pathways.

Gene set enrichment analyses

To test whether the R/LF variants implicate biological pathways, we performed gene set 

enrichment analyses. Similar to our previous analysis of GWAS for BMI5, we analyzed 

coding variants that reached P<5×10−4, using a DEPICT version adapted for exome-array 

analysis15 (Online Methods, Supplementary Note). We used 50 R/LF coding variants as 

input (all P<5×10−4; Online Methods) and observed significant enrichment (Figure 2, 

Supplementary Table 17, Supplementary Figure 10a). Many of these relate to neuronal 

processes, such as neurotransmitter release and synaptic function (e.g. glutamate receptor 

activity, regulation of neurotransmitter levels, synapse part), consistent with previous 

findings from GWAS5. When we excluded variants near (+/− 1Mb) previously identified 

GWAS loci, we still observed 29 significantly enriched gene sets (in 12 meta-gene sets) 

(Supplementary Table 18, Supplementary Figure 10b), thereby providing an independent 

confirmation of the GWAS gene set enrichment results. In addition to neuronal-related gene 
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sets, the analyses with R/LF coding variants newly identified a cluster of metabolic 

pathways related to insulin action and adipocyte/lipid metabolism (e.g. enhanced lipolysis, 

abnormal lipid homeostasis, increased circulating insulin level; Figure 2). Finally, we 

observed that R/LF BMI-associated coding variants are more effective at identifying 

enriched gene sets compared to common coding variants. Specifically, adding 192 common 

coding SNVs (all P<5×10−4) to the analysis decreased the number of enriched gene sets 

from 471 (106 meta-gene sets) seen with R/LF coding SNVs to 62 (24 meta-gene sets) 

(Supplementary Table 19, Supplementary Figure 10c). We observed fewer significant genes 

sets with the combined common and R/LF analysis, despite including more total coding 

variants and a higher fraction of array-wide significant coding variants. One possible 

explanation is that R/LF coding variants may fall in the causal gene more often than do 

common coding variants, which suggests that the R/LF variants are more likely to be causal, 

rather than simply in LD with causal variants.

We also used gene set enrichment analysis to prioritize candidate genes. Among the genes 

with R/LF coding variants associated with BMI at P<5×10−4, a subset is prominently 

represented in the CNS-related enriched gene sets (Figure 2) and is proposed to influence 

neurotransmission and/or synaptic organization, function and plasticity. These include genes 

in regions with suggestive evidence of association from GWAS (e.g. CARTPT, MAP1A, 
ERC2) and genes in regions not previously implicated by GWAS (e.g. CALY, ACHE, 
PTPRD, GRIN2A). The non-neuronal metabolic gene sets implicate two genes (CIDEA, 
ADH1B) that are markers of brown or “beige” adipose tissue25,26, providing new supporting 

evidence for a causal role of this aspect of adipocyte biology.

Drosophila fly results

To test for potential adiposity-driving effects of gene regulation, we performed tissue-

specific RNAi-knockdown experiments in Drosophila. We generated adipose-tissue (cg-

Gal4) and neuronal (elav-Gal4) specific RNAi-knockdown crosses for nine of the 13 

candidate genes for which fly orthologues exist (Supplementary Table 20) and performed 

whole body triglyceride analysis in young adult male flies. Triglycerides, the major lipid 

storage form in animals, were chosen as a direct measure of fly adiposity. Both neuronal and 

fat-body knockdown of zfh2, the orthologue of ZFHX3, resulted in significantly increased 

triglyceride levels. Adipose-tissue specific, but not neuronal, knockdown of epac 
(RAPGEF3) was lethal. Tissue-specific loss-of-function of the other seven genes tested did 

not affect triglyceride levels.

R/LF coding SNVs in monogenic and syndromic genes

We identified 39 genes in the literature that have been convincingly implicated in monogenic 

obesity or syndromes of which obesity is one of the main features (Supplementary Table 21, 

22, Supplementary Figure 11). Of the 652 R/LF SNVs in these 39 monogenic and/or 

syndromic genes, five R/LF SNVs were significantly associated with BMI (Bonferroni-

corrected P-value = 7.7×10−5 (=0.05/652)). Beside SNVs in MC4R (p.Tyr35Ter, Asp37Val) 

and KSR2 (Arg525Gln), already highlighted in the single-variant analyses, we identified an 

additional SNV in MC4R (p.Ile251Leu) and one in BDNF (p.Glu6Lys). MC4R p.Ile251Leu 

has been previously shown to protect against obesity27, whereas BDNF p.Glu6Lys, 
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independent of previously GWAS-identified SNVs (r2=0.01, D’=1.0)5, has not been 

implicated in body weight regulation before. We examined whether the 652 R/LF SNVs 

showed enrichment for association with BMI compared to R/LF coding SNVs in all other 

genes, but found no evidence to support this.

DISCUSSION

In this meta-analysis of exome-targeted genotyping data, we identified 14 R/LF coding 

variants in 13 genes associated with BMI. Eight of these genes (ACHE, ENTPD6, RAB21, 
RAPGEF3, ZBTB7B, ZFHX3, ZFR2, ZNF169) have not been previously implicated in 

human obesity, but evidence from animal studies provides support for a role in energy 

metabolism for some of these, such as ACHE28,29, RAPGEF330–33, and PRKAG134–39. 

Others fall into established BMI GWAS loci (PRKAG1/BCDIN3D, HIP1R/CLIP1, MC4R, 
GIPR/QPCTL)5 and/or were previously implicated in severe early-onset obesity (MC4R, 
KSR2)17–19 and using this exome-targeted approach, we pinpoint R/LF variants in these loci 

that play a role in obesity in the general population. Pathway analyses confirm a key role for 

neuronal processes, and newly implicate adipocyte and energy expenditure biology.

Consistent with other polygenic traits15,23,40–43, we show that large sample sizes are needed 

to identify R/LF variants. Observed effect sizes reflect the statistical power of our sample 

size, and are particularly large for SNVs with a MAF < 0.05%. The existence of rare alleles 

with larger effects on BMI than have been observed for common alleles might reflect 

negative or stabilizing selection on the extremes of BMI. However, rare variants with smaller 

effects almost certainly exist; larger samples will be needed to uncover these. Our study was 

limited to coding variants on the exome-array; large-scale sequencing studies will be needed 

to test for variants not covered by exome-arrays.

The strongest association was observed for a stop-codon (p.Tyr35Ter, rs13447324, MAF= 

0.01%) in MC4R, with carriers weighing on average 7kg more than non-carriers. MC4R is 

widely expressed in the CNS and is an established key player in energy balance 

regulation44,45. Mouse and human studies showed already two decades ago that MC4R-

deficiency results in extreme obesity, mainly through increased food intake46–49. p.Tyr35Ter, 

which results in MC4R-deficiency51, was one of the first MC4R mutations discovered in 

monogenic cases of obesity17,19, in whom the mutation is >20× more prevalent than in the 

general population17,50,52,53. Here, we show that p.Tyr35Ter plays a role outside the setting 

of early-onset and extreme obesity. Despite its large effect, penetrance is low, and does not 

fit the model of a fully penetrant Mendelian variant.

While significant R/LF coding variants are strong candidates for being causal, the strongest 

implication of causal genes is provided by association with multiple independent coding 

variants, as we demonstrate for GIPR. We identified two rare variants in GIPR 
(p.Arg190Gln, rs139215588, MAF=0.11%; p.Glu288Gly, rs143430880, MAF=0.13%) 

independently associated with lower BMI; carriers of either variant weigh ~2 kg less than 

non-carriers. Common variants in/near GIPR have been found to associate with lower BMI55 

and delayed glucose and insulin response to an oral glucose challenge54. However, the two 

rare variants influence BMI independently of these common ones and are not associated 
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with type 2 diabetes or glycemic traits tested. Rodent models have provided strong evidence 

for a role of GIPR in body weight regulation. Gipr-deficient mice are protected from diet-

induced obesity56 and have an increased resting metabolic rate57. Blocking GIP-signaling 

using a vaccination approach in mice on a high-fat diet reduces weight gain, mainly through 

reduced fat accumulation, mediated through increased energy expenditure58. Manipulation 

of incretins (GIP, GLP1) and their receptors has complex effects on obesity and insulin 

secretion/action that may differ between human and mice59. The human genetic data suggest 

that inhibition of GIPR-signaling might present a therapeutic target for the treatment of 

obesity60.

A fourth rare variant, in KSR2, (p.Arg525Gln, rs56214831, MAF=0.82%) increases body 

weight by ~740g/allele. KSR2 is another gene previously implicated in energy metabolism 

and obesity18,61,62. In a recent study, mutation carriers were hyperphagic, had a reduced 

basal metabolic rate and severe insulin resistance18. Consistent with human data, Ksr2−/− 

mice were obese, hyperphagic, and had a reduced energy expenditure18,61–63. KSR2 is 

almost exclusively expressed in the brain and interacts with multiple proteins64, including 

AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis61,62. 

Interestingly, KSR2 is one of the first genes implicated in severe, early-onset obesity in 

which mutations not only affect food intake but also basal metabolic rate, and is thought to 

act via neuronal effects18 (Figure 2).

Despite convincing associations of these four rare variants in MC4R, GIPR and KSR2, their 

penetrance for obesity is low (Supplementary Table 13). This is consistent with the 

polygenic and multifactorial nature of obesity, where variants across a range of frequencies 

and effect sizes contribute to the phenotype in any one person. Despite low predictive power, 

it remains possible that the identities of particular variants in any one person may contribute 

to different balances of underlying physiologies and hence, different responses to treatments. 

This was illustrated in two patients with monogenic obesity due to POMC mutations; these 

patients lack the main activator of MC4R and were effectively treated with an MC4R-

agonist65.

Of the coding variants in newly identified genes, some have well-known connections to 

obesity. For example, PRKAG1 encodes the γ1-subunit of AMPK, a critical cellular energy 

sensor34. In the hypothalamus, AMPK integrates hormonal and nutritional signals with 

neuronal networks to regulate food intake and whole-body energy metabolism35–37. 

Furthermore, hypothalamic AMPK is a key regulator of brown adipose tissue in mice36,38,39. 

The BMI-decreasing allele at the associated PRKAG1 variant (p.Thr38Ser, rs1126930, 

MAF=3.22%) has additional beneficial effects on blood pressure, providing additional 

genetic support for modulation of AMPK as an ongoing therapeutic avenue for treatment.

ACHE, in which p.His353Asn (rs1799805, MAF=3.9%) is associated with increased BMI, 

is another candidate gene related to neuronal biology, involved in the signaling of 

acetylcholine at neuromuscular junction and brain cholinergic synapses67,68. Inhibitors of 

ACHE, used to treat moderate-to-severe Alzheimer’s Disease69, results in weight loss in 

humans and Ache-deficient mice have delayed weight gain28,29. However, these may be 
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indirect consequences of adverse gastrointestinal and neuromuscular effects, 

respectively28,29,70,71.

Another LF coding variant (p.Leu300Pro, rs145878042, MAF=1.1%) is located in 

RAPGEF3, and has strong effects on multiple other phenotypes. The BMI-increasing 

300Pro-allele is associated with shorter height, lower WHRadjBMI and lower insulin levels, 

suggesting that this variant has multiple physiologic consequences. Data from animal 

models also suggest complex effects of RAPGEF3 on adipocyte biology, energy balance and 

glucose metabolism30–33. For example, in one study, global deletion of Rapgef3 in mice on a 

high-fat diet are resistant to obesity due to reduced food intake and have an increased 

glucose tolerance31. However, in a similar study, Rapgef3−/− mice develop severe obesity, 

increased respiratory exchange ratio and impaired glucose tolerance33. Adipose tissue-

specific Rapgef3 knockout mice on a high-fat diet are also more prone to obesity, show 

increased food intake, reduced energy expenditure, impaired glucose tolerance, and reduced 

circulating leptin levels72. More research is needed to understand the consequences of 

RAPGEF3 manipulation.

The remaining genes with significant associations, ENTPD6, HIP1R, RAB21, ZFR2, 
ZBTB7, and ZFHX3, have no clear prior evidence for a role in energy homeostasis, and in-

depth functional follow up is needed to gain insight in how they affect body weight. Here, 

we performed gene set enrichment analyses to better understand the biology implicated by 

our genetic data, and confirm the importance of neuronal processes, in particular synaptic 

function and neurotransmitter release, providing an independent validation of previous 

GWAS findings5. The combination of gene set enrichment and association analyses of 

coding variants also enables us to highlight candidate genes that are both within these gene 

sets and show association with BMI at R/LF coding variants. These include genes reaching 

array-wide significance (e.g. ACHE, ZFR2), and others with clear prior evidence for a role 

in body weight regulation (e.g. CARTPT73), but that had not been highlighted in our single-

variant or gene-based association analyses. Of note, the enrichment signals were stronger 

with R/LF coding variants only than with all coding variants, suggesting that R/LF variants 

are more likely to be causal and may more often point directly to relevant genes, whereas 

common coding variants may more often be proxies for common noncoding variants that 

affect nearby genes.

In addition, our gene set enrichment analyses now provide supporting evidence for a role of 

non-neuronal mechanisms as well. Specifically, CIDEA and ADH1B are both strongly 

predicted to be members of enriched gene sets related to insulin action and adipocyte 

biology, and both are markers that distinguish brown from white fat depots in mice25 and 

humans26. CIDEA is predominantly expressed in adipose tissue and known as a key 

regulator of energy metabolism25. Cidea-deficient mice are resistance to diet-induced 

obesity with increased lipolysis and mitochondrial uncoupling25. The connection of ADH1B 
to obesity is less clear, but the gene is highly expressed in human adipocytes, has been 

implicated by gene expression analyses in obesity and insulin resistance, and functions early 

in a potentially relevant metabolic pathway (retinoid biosynthesis)25,26,74,75. Similar 

pathways were implicated by recent work dissecting the signal near FTO13. However, 
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because SNV-association signals at ADH1B and CIDEA did not reache array-wide 

significance, additional genetic analysis of their role in obesity would be warranted.

In summary, we performed association analyses between R/LF variants and BMI in 

>700,000 individuals, and identified 14 variants in 13 genes, in 5 known and 8 novel genes. 

While each variant contributes little to BMI variation in the general population, they may 

have substantial impact on body weight at an individual level. Furthermore, prior literature 

for these genes and unbiased gene set enrichment analysis indicate a strong role for neuronal 

biology and also provide new support for a causal role of aspects of adipocyte biology. The 

identified genes provide potential targets that may lead to new and more precise approaches 

for the treatment of obesity, which has seen minimal innovation in the past 30 years1.

ONLINE METHODS

Study design & participants

The discovery cohort consisted of 123 studies (163 datasets) comprising 526,508 adult 

(≥18yrs) individuals of the following ancestries (Supplementary Figure 1): 1) European (N = 

449,889), 2) South Asian (N = 29,398), 3) African (N = 27,610), 4) East Asian (N = 8,839), 

and 5) Hispanic (N = 10,772). All participating institutions and coordinating centers 

approved this project and informed consent was obtained from all study participants. 

Discovery meta-analyses were carried out in each ancestry separately and in the All-

ancestries combined group, for both sex-specific and sex-combined analyses. SNVs for 

which associations reach suggestive significance (P<2.0×10−6) in the discovery analyses, 

were taken forward for follow-up in 192,226 individuals of European ancestry from the UK 

BioBank and deCODE. Conditional analyses were conducted in the All-ancestries and 

European descent groups. Study-specific design, sample quality control and descriptive 

statistics are provided in Supplementary Tables 1–3.

Phenotype

Body mass index (BMI: weight [in kilograms] / height [in meters]2) was corrected for age, 

age2 and genomic principal components (PC, derived from GWAS data, the variants with 

MAF > 1% on ExomeChip, or ancestry informative markers available on the ExomeChip), 

as well as any additional study-specific covariates (e.g. recruiting center), in a linear 

regression model. For studies with non-related individuals, residuals were calculated 

separately by sex, whereas for family-based studies sex was included as a covariate in the 

model. Additionally, residuals for case/control studies were calculated separately. Finally, 

residuals were subject to inverse normal transformation96.

Genotype calling

The majority of studies followed a standardized protocol and performed genotype calling 

using the designated manufacturer software, which was then followed by zCall97. For 10 

studies, participating in the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) Consortium, the raw intensity data for the samples from seven 

genotyping centers were assembled into a single project for joint calling98. Study-specific 
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quality control (QC) measures of the genotyped variants were implemented before 

association analysis (Supplementary Table 2).

Statistical analyses

Study-level association analyses—Individual cohorts were analyzed separately for 

each ancestry, in sex-combined and sex-specific groups, with either 

RAREMETALWORKER (see URL links at the end of the Online Methods) or RVTEST99 

(Supplementary Table 2), to associate inverse normal transformed BMI with genotype 

accounting for potential cryptic relatedness (kinship matrix) in a linear mixed model. These 

software tools are designed to perform score-statistics based rare-variant association 

analyses, can accommodate both unrelated and related individuals, and provide single-

variant results and variance-covariance matrices. The covariance matrix captures linkage 

disequilibrium (LD) relationships between markers within 1 Mb, which is used for gene-

level meta-analyses and conditional analyses100. Single-variant analyses were performed for 

both additive and recessive models.

Centralized quality-control—A centralized quality-control procedure, implemented in 

EasyQC101, was applied to individual cohort association summary statistics to identify 

cohort-specific problems: (1) assessment of possible problems in BMI transformation, (2) 

comparison of allele frequency alignment against 1000 Genomes Project phase 1 reference 

data to pinpoint any potential strand issues, and (3) examination of quantile-quantile (QQ) 

plots per study to identify any problems arising from population stratification, cryptic 

relatedness and genotype biases.

Meta-analyses—Meta-analyses were carried out by two different analysts at two sites in 

parallel. We excluded variants with a call rate < 95%, Hardy-Weinberg equilibrium P-value 

< 1×10−7, or large allele frequency deviations from reference populations (> 0.6 for all-

ancestry analyses and > 0.3 for ancestry-specific population analyses). Significance for 

single-variant analyses was defined at the array-wide level (a Bonferroni-corrected threshold 

of P < 2×10−7 for ~250,000 SNVs). To test for sex-differences of the significant variants (P 
< 2×10−7), we calculated the P-diff for each SNP, which tests for differences between 

women-specific and men-specific beta estimates using EasyStrata102. For gene-based 

analyses, we applied the sequence kernel association test (SKAT)103 and the Variable 

Threshold (VT)104 gene-based methods using two different sets of criteria (broad and strict) 

to select predicted damaging R/LF variants with MAF < 5%, based on coding variant 

annotation from five prediction algorithms (PolyPhen2 HumDiv and HumVar, LRT, 

MutationTaster and SIFT)20. Our broad gene-based tests included nonsense, stop-loss, splice 

site, and missense variants that are annotated as damaging by at least one algorithm 

mentioned above. Our strict gene-based tests included only nonsense, stop-loss, splice site, 

and missense variants annotated as damaging by all five algorithms. Statistical significance 

for gene-based tests was set at a Bonferroni-corrected threshold of P < 2.5×10−6 for about 

20,000 genes16,105. Singe-variant and gene-based meta-analyses were both performed using 

RareMETALS R-package106. As our secondary analyses are nested and/or highly correlated 

with our primary analysis, we chose the same, already stringent, Bonferroni-corrected 

significance threshold for both analyses.
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Genomic inflation—Although the overall λGC value is in the normal range for all coding 

variants (λGC = 1.1, Supplementary Table 23), we observed a marked genomic inflation of 

the test statistics even after adequate control for population stratification (linear mixed 

model) arising from common markers (λGC = 1.99, Supplementary Figure 2a and 

Supplementary Table 23). Such inflation is expected for a highly polygenic trait like BMI, as 

was previously confirmed for height15, and is consistent with our very large sample 

size5,107. Furthermore, some of the inflation may be due to the design of the ExomeChip, 

which besides R/LF coding SNVs also contains (common and non-coding) SNVs that 

include previously identified GWAS loci for all traits, including for BMI and BMI-related 

traits, reported in the GWAS catalogue at the time of its design.

After removing established loci (+/− 1Mb), the excess of significant associations is 

markedly reduced and inflation reduced (Supplementary Figures 2c and 2d).

Furthermore, to exclude the possibility that some of the observed associations between BMI 

and R/LF SNVs could be due to allele calling problems in the smaller studies, we performed 

a sensitivity meta-analysis with primarily European ancestry studies totaling >5,000 

participants. We found very concordant effect sizes, suggesting that smaller studies do not 

bias our results (Supplementary Figure 12).

Follow-up Analysis—We sought additional evidence for association of the top signals 

(P<2.0×10−6) identified in the discovery meta-analysis using two independent studies from 

the UK (UK Biobank, interim release, N = 119,613) and Iceland (deCODE, N = 72,613), 

respectively (Supplementary Tables 1–3). We used the same QC and analytical methodology 

as described above. We used the inverse-variance weighted fixed effects meta-analysis in 

METAL108, to combine the discovery and follow-up association results. Significant 

associations were defined at P < 2×10−7 in the combined meta-analysis of discovery, UK 

Biobank and deCODE results.

Effect of study design—To investigate the potential effect of study design of the 

participating studies, we tested for heterogeneity between population-based, all case-control 

studies; T2D case-control studies (Supplementary Table 26). None of these comparisons 

showed significant evidence of heterogeneity (P<7.4×10−5, correcting for multiple testing).

Conditional analyses—The RareMETALS R-package106 was used to identify 

independent BMI associated signals across the all-ancestry meta-analysis results in the 

discovery phase. RareMETALS performs conditional analyses by using covariance matrices 

from each individual cohort to distinguish true signals from the shadows of adjacent 

significant variants in LD. The conditional associations of all the variants within 1Mb of 

each R/LF coding variant were analyzed to identify [1] nearby secondary signals and [2] to 

determine independence from nearby non-coding variants or previously identified GWAS 

loci (previously defined as a window of 1Mb surrounding the lead SNP). Gene-based 

conditional analyses were also performed in RareMETALS.

Due to the selective coverage of variants on the ExomeChip, we also conducted the 

respective conditional analyses in the UK Biobank dataset that included 847,441 genome-
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wide genotyped markers, and 72,355,667 variants imputed against UK10k haplotype 

reference panel, merged with the 1000 Genomes Phase 3 reference panel. Where available, 

directly genotyped variants where used for conditional analyses. Otherwise, imputed 

variants with good imputation quality (IMPUTE2 info score > 0.6) were used. We used 

QCTOOL to extract variants of interest from the original imputed data set. Subsequently, 

GTOOL was used to convert to PLINK format (genotype calling threshold 0.99) and merged 

with the directly genotyped variants for conditional analyses in PLINK v1.90b3.35 64-bit 

(25 Mar 2016).

Conversions of effect size and explained variants—We assumed that 1 SD = 4.5 

kg/m2 BMI-units, based on population based data, and 1.7m as the average height of a 

person to convert effects sizes in SD-units into body weight. The variance explained by each 

variant was calculated using the effect allele frequency (f) and beta (β) from the meta 

analyses using the formula109 of explained variance = 2f(1-f)β2.

Penetrance analysis—We examined the penetrance for the four rare SNVs, p.Arg525Gln 

(rs56214831) in KSR2, p.Tyr35Ter (rs13447324) in MC4R, and p.Arg190Gln 

(rs139215588) and p.Glu288Gly (rs143430880) in GIPR in European ancestry data from the 

UKBiobank (N up to 120,000). For each variant, we compared the prevalence of 

underweight (BMI < 18.5 kg/m2), normal weight (18.5 kg/m2 ≤ BMI < 25 kg/m2), 

overweight (25 kg/m2 ≤ BMI < 30 kg/m2) and obesity (BMI ≥ 30 kg/m2) of non-carriers 

with non-carriers. We used a Pearson χ2 test to test for difference between distributions, and 

a χ2 for linear trend to test whether distributions of carriers were shifted compared to non-

carriers. For p.Arg525Gln in KSR2 and p.Tyr35Ter in MC4R, we hypothesized that obesity 

prevalence was higher in carriers than in non-carriers, whereas for the two GIPR variants, 

we hypothesized that the prevalence of normal weight was higher in carriers than non-

carriers.

Associations with obesity for the coding rare and low-frequency loci in 
children—For each of the 14 R/LF SNVs, we tested for association with childhood obesity 

in the CHOP cohort (Childhood Obesity: Early Programming by Infant Nutrition), the 

Severe Childhood Onset Obesity Project (SCOOP), the UK Household Longitudinal Study 

(UKHLS) and INTERVAL Study (INTERVAL). Summary statistics across the studies were 

combined using a fixed effects inverse-variance meta-analysis with METAL108.

In the CHOP study, cases (1,358 boys, 1,060 girls) were defined as having a BMI > 95th 

percentile at any point in their childhood. Controls (1,412 boys, 1,143 girls) were defined as 

having < 50th percentile consistently through throughout childhood. The BMI percentiles are 

based on the CDC 2000 Growth Charts. All children were classified based on their BMI 

measurements between the ages of 2 and 18. All individuals are of European ancestry and 

were collected at the Children’s Hospital of Philadelphia. Informed consent was obtained 

from all study participants and study protocols were approved by the local ethics 

committees. Genotypes were obtained using the HumanHap550v1, HumanHap550v3, and 

Human610-Quad high-density SNP arrays from Illumina. The intersection of all SNPs on 

the arrays was used in all subsequent pre-imputation analyses. Before imputation, we 

excluded SNPs with a Hardy-Weinberg equilibrium P-value < 1.0×10−6, call rate of < 95% 
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or MAF of < 1%. The genotypes were then pre-phased using Shapeit2 and imputed using the 

1000 Genomes Phase 1 integrated variant set with Impute2. After imputation, SNPs were 

excluded if the INFO score was < 0.4. Boys and girls were analyzed separately using a 

logistic regression of case and control status, adjusting for three eigenvectors, and summary 

statistics were combined using a fixed effects inverse-variance meta-analysis with 

METAL108.

SCOOP is a sub-cohort of the Genetics Of Obesity Study (GOOS) cohort. It includes >1,500 

UK European ancestry individuals with severe, early onset obesity (BMI Standard Deviation 

Score > 3 and obesity onset before the age of 10 years), in whom known monogenic causes 

of obesity have been excluded (cases with MC4R mutations were excluded). Two case-

control analyses with SCOOP cases were performed: 1) SCOOP vs. UKHLS for which array 

(Illumina HumanCoreExome) data was available, and 2) SCOOP vs. INTERVAL, for whom 

whole-exome sequencing data was available.

For the array based analyses, UKHLS controls were genotyped on the Illumina 

HumanCoreExome-12v1-0 Beadchip. SCOOP cases and 48 UKHLS controls were 

genotyped on the Illumina HumanCoreExome-12v1-1 Beadchip. The 48 overlapping 

UKHLS samples were used for quality control to ensure there were no systematic 

differences and bias between the two versions of the chip. SCOOP and UKHLS samples 

were phased with SHAPEITv2, and imputed with IMPUTE2 using the combined 

UK10K-1000G Phase III reference panel. For the WES analyses, SCOOP vs. INTERVAL 

controls were WES within the UK10K-EXOME project (Agilent v3) and the INTERVAL 

project (Agilent v5) respectively and were then jointly called and QC-ed on the union of the 

sequencing baits. Individuals overlapping or related between the array based and WES 

studies were removed.

After QC, 1,456 SCOOP and 6,460 UKHLS (BMI range 19–30), and 521 SCOOP and 4,057 

INTERVAL individuals were available for the two analyses; all were unrelated, of high 

quality, and of European ancestry. For both analyses (i.e. SCOOP vs. UKHLS and SCOOP 

vs. INTERVAL), a maximum likelihood frequentist association test with the additive genetic 

model was implemented in SNPTEST v2.5. In the SCOOP vs. UKHLS analysis, sex and the 

first six PCs were included as covariates and variants with a SNPTEST INFO score <0.4 and 

HWE p<10−6 were removed. For the SCOOP vs INTERVAL analysis, we performed an 

unadjusted analysis (adjustment for PCs did not change sufficiently the results) and variants 

were limited to those covered at ≥7× in at least 80% of each sequencing cohort, meeting the 

VQSR threshold of –2.52, missingness <80%, HWE P-value<10−8, and GQ ≥30.

Cross-trait analyses—We evaluated each of the 14 R/LF SNVs for their association with 

other relevant obesity-related traits and conditions. We performed lookups in ExomeChip 

meta-analysis results from other consortia, including; our own GIANT consortium (height15, 

WHR adjusted for BMI24), MAGIC (HbA1c, Fasting Insulin, Fasting Glucose, 2-hour 

glucose), GLGC (HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), triglycerides and 

total cholesterol)), IBPC40 (systolic and diastolic blood pressure), REPROGEN23 (age at 

menarche and menopause) and GoT2D/T2D-GENES16 (type 2 Diabetes). Associations were 

considered significant at P < 2.0×10−5, accounting for multiple testing.
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Phenome-wide association analysis (PheWAS)—To evaluate the potential for 

pleiotropic effects for SNPs discovered from primary analyses, we performed phenome-wide 

association studies (PheWASs) using genotype and phenotype data from two independent 

sources of electronic health records (EHR): Vanderbilt University Medical Center 

Biorepository (BioVU) and the United Kingdom BioBank (UKBB). Phenotype selection and 

analysis strategy were synchronized across sites. A total of 1502 hierarchical phenotype 

codes from EHRs were curated by grouping International Classification of Disease, Ninth 

Revision (ICD-9) clinical/billing codes as previously described110. Phenotype codes with 20 

or more cases and with minor allele count of 5 or greater in cases and controls were eligible 

for analysis. Series of logistic regression analyses were then performed in individuals of 

European ancestry for each eligible phenotype-genotype combination while adjusting for 5 

genetic ancestry PCs. Odds ratios from genotype-phenotype combinations present in both 

BioVU and UKBB were then aggregated using inverse-variance weighted fixed-effects 

meta-analysis. Associations with p-values corresponding to false discovery rate (FDR) cut 

off of less than 10% were considered statistically significant.

Gene set enrichment analysis—We adapted DEPICT, a gene set enrichment analysis 

method for GWAS data, for use with the ExomeChip (‘EC-DEPICT’). DEPICT’s primary 

innovation is the use of “reconstituted” gene sets, where many different types of gene sets 

(e.g. canonical pathways, protein-protein interaction networks, and mouse phenotypes) were 

extended through the use of large-scale microarray data (see111 for details). EC-DEPICT 

computes P-values based on Swedish ExomeChip data (Malmö Diet and Cancer [MDC], All 

New Diabetics in Scania [ANDIS], and Scania Diabetes Registry [SDR] cohorts, N=11,899) 

and, unlike DEPICT, takes as input only coding variants and only the genes directly 

containing those variants, rather than all genes within a specified amount of linkage 

disequilibrium (Supplementary Note).

Four analyses were performed for the BMI EC variants: [1] all coding variants with 

P<5×10−4, [2] all coding variants with P<5×10−4 independent of known GWAS variants5, 

[3] all coding R/LF variants with P<5×10−4, and [4] all coding R/LF variants with P<5×10−4 

independent of known GWAS variants. Affinity propagation clustering3 was used to group 

highly correlated gene sets into “meta-gene sets”. For each meta-gene set, the member gene 

set with the best P-value was used as representative for purposes of visualization 

(Supplementary Note). DEPICT for ExomeChip was written using the Python programming 

language (See URLs).

Drosophila RNAi knockdown experiments—For each of the 13 genes in which R/LF 

coding variants were associated with BMI, we searched for its corresponding orthologues in 

Drosophila in the ENSEMBL orthologue database. Orthologues were available for nine 

genes, but missing for ZBTB7B, MC4R, GIPR, and ZNF169. For each of the nine genes, we 

generated adipose-tissue (cg-Gal4) and neuronal (elav-Gal4) specific RNAi-knockdown 

crosses, leveraging upstream activation sequence (UAS)-inducible short-hairpin knockdown 

lines, available through the Vienna Drosophila Resource Center (VDRC). We crossed male 

UAS-RNAi flies and elav-GAL4 or CG-GAL4 virgin female flies. All fly experiments were 

carried out at 25 °C. Five-to-seven-day-old males were sorted into groups of 20, weighed 
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and homogenated in PBS with 0,05% Tween with Lysing Matrix D in a beadshaker. The 

homogenate was heat-inactivated for 10 min in a thermocycler at 70 °C. 10µl of the 

homogenate was subsequently used in triglyceride assay (Sigma, Serum Triglyceride 

Determination Kit) which was carried out in duplicates according to protocol, with one 

alteration: the samples were cleared of residual particulate debris by centrifugation before 

absorbance reading. Resulting triglyceride values were normalized to fly weight and larval/

population density. We used the non-parametric Kruskall-Wallis test to compare wild type 

with knockdown lines.

Enrichment analysis in monogenic genes of obesity—We identified 39 genes with 

strong evidence that disruption causes monogenic or syndromic forms of obesity 

(Supplementary Table 21). To test whether these genes are enriched for R/LF coding variant 

associations with BMI, we conducted simulations by matching each of the 39 genes with 

other genes based on gene length and number of variants tested, to create a matched set of 

genes. We generated 1,000 matched gene sets from our data and assessed how often the 

number of R/LF coding variants that exceeded given significance thresholds was greater in 

our monogenic/syndromic obesity gene set compared to the matched gene sets.
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BOX 1

Brief description of the 13 genes (alphabetical) identified

ACHE (acetylcholinesterase). ACHE is mainly expressed in brain and muscle76. Its 

encoded protein hydrolyzes acetylcholine (Ach) at brain cholinergic synapses and 

neuromuscular junctions, and thus terminates signal transmission67. Knockout mice 

showed a reduction in expression of muscarinic Ach receptors in brain regions associated 

with learning and memory and showed lower ability to initiate the signaling cascade77. 

This gene has fewer missense variants than expected and is highly intolerant to loss of 

function (LoF) mutations52.

ENTPD6 (ectonucleoside triphosphate diphosphohydrolase 6). Previously known as 

Interleukin 6 Signal Transducer-2, this gene is similar to E-type nucleotidases that 

participate in purine and pyrimidine metabolism, calcium ion binding, hydrolase activity, 

magnesium ion binding and nucleoside-diphosphatase activity78. It is widely expressed in 

many different tissues, in particular in the brain76.

GIPR (gastric inhibitory polypeptide receptor). GIPR encodes a G-protein coupled 

receptor for gastric inhibitory polypeptide that is secreted by intestinal K-cells after food 

ingestion59. GIPR activation stimulates insulin secretion from pancreatic β-cells and 

mediates fat deposition by increasing lipoprotein lipase activity, lipogenesis, fatty acid 

and glucose uptake in adipocytes. GIPR is mostly expressed in EBV-transformed 

lymphocytes, stomach and visceral adipose tissue76.

HIP1R (huntingtin interacting protein 1 related). HIP1R is a multi-domain protein that 

promotes actin binding and cell survival and interacts with CLTB and HIP1 (GeneCards). 

HIP1 and HIP1R appear to play central roles in clathrin-coated vesicle formation and 

intracellular membrane trafficking by promoting transient interaction between actin 

filaments and the endocytic machinery79,80. HIP1R is most expressed in the stomach 

tissue, brain (substantia nigra, spinal cord, hippocampus), and sun-exposed skin76.

KSR2 (kinase suppressor of ras 2). KSR2 is an intracellular protein that functions as a 

molecular scaffold to regulate MAP kinases ERK1/2 and determine cell fates. KSR2 also 

regulates AMPK activity controlling cellular thermogenesis, fat oxidation, and glucose 

metabolism18,61,62. Knockout mouse models and human mutations have been linked to 

obesity risk62. KSR2 is almost exclusively expressed in the brain. It has fewer missense 

variants than expected and is highly intolerant to LoF mutations52.

MC4R (melanocortin 4 receptor). MC4R is a seven-transmembrane G-protein coupled 

receptor, predominantly expressed in the brain76. MC4R has been known to play a key 

role in body weight regulation for more than 20 years. Activation of MC4R by α-MSH, a 

POMC-derived peptide, suppresses food intake; MC4R antagonists increase food intake 

and MC4R deficiency in human and rodent models results in hyperphagia and severe and 

early-onset obesity81. More than 150 MC4R mutations have been identified in individuals 

with severe, early-onset obesity81, many of which lead to a complete or partial loss of 

function82,83. Up to 6% of individuals with severe, early-onset obesity carry pathogenic 
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mutations in MC4R, making MC4R deficiency the most common form of monogenic 

obesity82,84.

PRKAG1 (protein kinase AMP-activated non-catalytic subunit gamma 1). The protein 

encoded by PRKAG1 is one of the gamma regulatory subunits of the AMP-activated 

protein kinase (AMPK), which is an important energy-sensing enzyme that monitors 

cellular energy status34. AMPK and PRKAG1 are ubiquitously expressed76. In the 

hypothalamus, AMPK influences food intake, energy expenditure and glucose 

homeostasis36. Muscle-specific overexpression of AMPK γ1 subunit in mice results in 

increased food intake, but does not affect body weight, presumably through a 

compensatory increased energy expenditure85.

RAB21 (member RAS oncogene family). RAB21 belongs to the Rab family of 

monomeric GTPases involved in the control of cellular membrane traffic. The encoded 

protein is widely expressed76 and plays a role in the targeted trafficking of integrins, and 

is involved in the regulation of cell adhesion and migration86. RAB21 is thought to be 

intolerant to LoF mutations52.

RAPGEF3 (rap guanine nucleotide exchange factor 3; also EPAC1). RAPGEF3 
encodes the exchange protein directly activated by cAMP isoform 1 (EPAC1), one of two 

cAMP sensors that are involved in numerous intracellular cAMP-mediated functions87. 

EPAC1 is ubiquitously expressed76, and insights from mouse knockout models suggest a 

role in energy homeostasis and the development of obesity and diabetes through the 

regulation of leptin and insulin signaling31,87.

ZFR2 (zinc finger RNA binding protein 2). The biological function of the gene product 

is as yet undetermined. GO annotations related to this gene include nucleic acid binding. 

It may have a role in dendritic branching and axon guidance88,89. ZFR2 is predominantly 

expressed in the brain76.

ZBTB7B (zinc finger and BTB domain containing 7B, also ThPOK). ZBTB7B is a 

transcription factor regulating T-cell fate in the thymus, particularly as the master 

regulator of CD4+ lineage commitment90. It is a repressor of type 1 collagen gene 

expression91. This gene is mainly expressed in T-cell lineages, skin and gastrointestinal 

tissues. ZBTB7B is thought to be intolerant to LoF mutations52.

ZFHX3 (zinc finger homeobox 3). ZFHX3 encodes a transcription factor with multiple 

homeodomains and zinc finger motifs and plays a role in cell-cycle, myogenic and 

neuronal differentiation. This gene is a tumor suppressor92 that influences circadian 

rhythms93,94 and sleep94. It may also contribute to the genesis of atrial fibrillation95. 

ZFHX3 is highly expressed in arterial tissue and also other tissues76. The ZFHX3 gene is 

highly intolerant to LoF mutations52.

ZNF169 (zinc finger protein 169). The biological function of the gene product is as yet 

unclear. GO annotations suggest that ZNF169 is involved in nucleic acid binding and 
transcriptional regulation. This gene is ubiquitously expressed76.

More details and references in Supplementary Table 24.
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Figure 1. Effect sizes (y-axis) of the 14 BMI-associated R/LF coding variants by their minor 
allele frequency
Effect sizes are expressed in body weight (kg) per allele, assuming a SD of 4.5 kg and an 

average-sized person of 1.7m tall. Solid markers indicate that the minor allele is associated 

with higher BMI, and clear markers indicate that the minor allele is associated with lower 

BMI. Variants were identified in all-ancestry analyses (light blue diamonds), the European 

ancestry analyses (dark blue square) and women-only analyses (pink diamond). Effect sizes 

for previously identified GWAS loci are shown in navy blue diamonds. The dotted line 

represents 80% power, assuming α = 2×10−7 and N= 525,000 (discovery sample size).
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Figure 2. Heatmap showing DEPICT gene set enrichment results for suggestive and significant 
rare and low-frequency coding SNVs
For any given square, the color indicates how strongly the corresponding gene (x-axis) is 

predicted to belong to the reconstituted gene set (y-axis), based on the gene’s Z-score for 

gene set inclusion in DEPICT’s reconstituted gene sets (red indicates a higher, blue a lower 

Z-score). To visually reduce redundancy and increase clarity, we chose one representative 

"meta-gene set" for each group of highly correlated gene sets based on affinity propagation 

clustering (Online Methods, Supplementary Note). Heatmap intensity and DEPICT P-values 

(Supplementary Table 17) correspond to the most significantly enriched gene set within the 

meta-gene set. Annotations for genes indicate (1) whether it has an OMIM annotation as 
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underlying a monogenic obesity disorder (black/grey), (2) the MAF of the significant 

ExomeChip (EC) variant (blue), (3) whether the variant’s P-value reached array-wide 

significance (<2×10−7) or suggestive significance (<5×10−4) (purple), (4) whether the 

variant was novel, overlapping “relaxed” GWAS signals from Locke et al.5 (GWAS 

P<5×10−4), or overlapping “stringent” GWAS hits (GWAS P<5×10−8) (pink), and (5) 

whether the gene was included in the gene set enrichment analysis or excluded by filters 

(orange/brown) (Online Methods, Supplementary Note). Annotations for gene sets indicate 

if the meta-gene set was significant (green; FDR <0.01, <0.05, or not significant) in the 

DEPICT analysis of GWAS results5. Here, two regions of particularly strong gene set 

membership are shown (see full heat map in Supplementary Figure 10a).
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