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At present, accumulating evidence suggests that inhibition of receptor activator of nuclear factor kappa-B
ligand (RANKL) does not only induce an increase in bone mass and strength, but also has anti-tumor
effects. Denosumab, an antibody targeting RANKL, is used to treat osteoporosis and to prevent skeletal
related events (SREs) in patients with bone metastases originating from solid tumors. However, expres-
sion of RANKL and its receptor activator of nuclear factor kappa-B (RANK) is not solely restricted to cells
involved in homeostasis of the bone and RANKL-RANK signalling appears to play a substantial role in
many other processes in the body like mammary physiology, mammary tumorigenesis and the immune
system. In pre-clinical models, RANKL inhibition has been shown to reduce skeletal tumor burden and
distant metastases as well as to decrease mammary carcinogenesis. Clinically, RANKL inhibition improves
bone-metastasis free survival in patients with prostate cancer and disease-free survival in patients with
breast cancer. In addition, RANKL treatment may form a preventative strategy in patients at high risk for
malignancies of the breast. Current clinical studies are evaluating the effect of denosumab on survival,
the immune system and other biomarkers into a greater extent. To that purpose, a systematic review
of the literature was performed and a narrative review synthesized, describing the present pre-clinical
and clinical evidence of an anti-tumor effect of RANKL inhibition and the potential role of the immune
system as one of the underlying mechanisms.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

It is thought that signaling induced by interaction of receptor
activator of nuclear factor kappa-B ligand (RANKL), a member of
the tumor necrosis factor (TNF) cytokine family [1], with its recep-
tor, receptor activator of nuclear factor kappa-B (RANK), is involved
in all steps of breast tumor development; from initial tumor forma-
tion to migration of cancer cells and subsequent metastasis [2].
Breast cancer is the most common cancer amongst women with
an incidence of roughly 1.7 million new cases worldwide [WR1].
In metastatic breast cancer, the bone is the most common sec-
ondary site, which is involved in about 70% of patients [3]. Also
cancers from the prostate, lung, kidney and thyroid frequently
metastasise to the bone [4]. Bone metastases can cause severe
morbidity and a consecutive reduced quality of life by inducing
skeletal related events (SREs) [5], defined as pathological fractures,
need for orthopaedic surgery, need for radiotherapy to the bone or
spinal cord compression [6]. Due to the development of improved
treatment options, advanced breast cancer has become a chronic
illness in many patients [WR2]. The prolonged life expectancy
brings along challenges in the management of advanced breast
cancer and SREs. Although bisphosphonates have been used suc-
cessfully for many years to prevent and manage these SREs, deno-
sumab has also been registered for this purpose and is increasingly
used.

Denosumab is a fully human IgG2 monoclonal antibody with
affinity and specificity for human RANKL [WR3]. Denosumab
blocks the binding of RANKL to its receptor RANK expressed on
osteoclasts, causing a subsequent reduction of the formation, func-
tion and survival of these osteoclasts and as a consequence, bone
resorption is reduced [WR3,7]. By binding of RANKL, denosumab
mimics the action of the natural decoy receptor of RANKL called
osteoprotegerin (OPG) [8]. Denosumab (at a dose of 60 mg q6
months) is currently registered for the treatment of patients at
high risk for bone fractures, including postmenopausal women
and men with osteoporosis, men with prostate cancer receiving
hormone ablation therapy and women with breast cancer receiv-
ing aromatase inhibitor treatment [WR4]. Furthermore, deno-
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sumab (at a dose of 120 mg q4 weeks) is used to prevent SREs in
patients with a solid tumor that has spread to the bone and to treat
giant cell tumors of bone [WR3]. Additionally, new evidence sug-
gests that denosumab may also have anti-tumor effects by osteo-
clast dependent and independent mechanisms. Anti-tumor
effects of RANKL inhibition have intensively been studied pre-
clinically. Clinically the first data are emerging. Here we summa-
rize current pre-clinical and clinical evidence of the anti-tumor
effects of RANKL inhibition in malignant solid tumors, with a spe-
cial focus on breast cancer, and speculate on its potential capacity
to modulate the tumor immune microenvironment.

Methods

In cooperation with a trained librarian, two search strategies
were composed. The following databases were searched: PubMed,
Embase (OVID-version), Web of Science, and COCHRANE Library.

The two query consisted of the combination of the following
subjects:

Query 1: denosumab/RANKL inhibition and anti-cancer.
Query 2: denosumab/RANKL inhibition and immunity.

For the different concepts, all relevant keyword variations were
used, not only keyword variations in the controlled vocabularies of
the various databases, but the free text word variations of these
concepts as well. The search strategy was optimized for all con-
sulted databases, taking into account the differences of the various
controlled vocabularies as well as the differences of database-
specific technical variations (e.g., the use of quotation marks).
The final search was performed on the 30th of June 2017. The bib-
liographic databases yielded 876 references for query number 1,
and 211 references for query number 2 (English publications only).
Relevant publications were also checked for related publications.
For the complete search strategies, see the appendix.

On the 30th of June 2017, a systemic search in clinicaltrials.gov
was performed using the following terms in the field ‘‘Interven
tion/Treatment”: Denosumab OR PROLIA OR XGEVA OR AMG 162
OR RANKL. The search yielded 157 results.

Anti-tumor effects of RANKL inhibition

Over the past decades, it has become clear that the RANK-
RANKL axis is not exclusively involved in bone remodelling [9],
but exerts a broad range of functions in the body. The RANK-
RANKL axis is known to play an important role in the immune sys-
tem [10], mammary physiology, mammary tumorigenesis [2] and
the central nervous system [11]. In the cancer setting, it is thought
that the RANK-RANKL pathway is involved in each stage of tumori-
genesis [2]. Therefore, the effect of inhibition of RANKL is expected
to reach further than exclusively the inhibition of bone resorption.
Combining this with emerging preclinical and clinical evidence, it
is hypothesized that denosumab, by inhibiting the RANK-RANKL
pathway, possesses both direct and indirect anti-tumor effects. A
direct, osteoclast independent, anti-tumor effect is thought to be
established by the effect of RANKL inhibition on RANK and RANKL
expressing tumor cells [2,12]. Indirect anti-tumor effects are
thought to be established either by changing the bone microenvi-
ronment (osteoclast dependent) or by the effect of RANKL inhibi-
tors on non-cancerous cells like immune cells [10,12]. Obviously,
all of these cells must express RANK and/or RANKL.

Expression of RANK and RANKL

RANK and RANKL are expressed on a wide variety of different
cell types (Fig. 1). The interaction between T cells expressing
RANKL and mature dendritic cells expressing RANK, ameliorates
the growth and activation of T cells [1,13] and enhances the sur-
vival and function of dendritic cells [10,13,14]. Immature dendritic
cells express both RANK and RANKL and longevity is attained in an
autocrine way [15]. Both RANK and RANKL can also be found on B
cells where it plays a role in the development and function of B
cells [16,17]. Monocytes andmacrophages express RANK and when
bound by RANKL this induces effector function, antigen presenta-
tion and survival [18]. Osteoblasts, bone lining cells, bone stromal
cells [19] and osteocytes [20] express RANKL, while osteoclasts
express RANK [21], jointly regulating bone homeostasis upon
interaction of RANK with RANKL [9]. RANK and RANKL are further-
more expressed in a wide variety of healthy tissues including
breast, lymph nodes and the brain [22] and are required for normal
functioning of these healthy tissues. Also, cancer cells can express
both RANK and RANKL and use this expression in their advantage
for survival and migration [2].
Pre-clinical evidence for an anti-tumor effect of RANKL
inhibition

While in humans, inhibition of the RANK-RANKL axis can be
accomplished by use of denosumab, it cannot be readily used in
non-primate animal studies since denosumab recognizes primate
RANKL only [WR3,WR4]. However, in vitro and in vivo non-
primate animal experiments have successfully been performed
with OPG-Immunoglobulin Fc segment complex (OPG-Fc) and
RANK-Immunoglobulin Fc segment complex (RANK-Fc), mimick-
ing the action of denosumab [23].

In numerous mouse models, RANKL inhibition was tested alone,
as well as in combination with chemotherapeutics and targeted
therapies, to evaluate the effect of RANKL inhibition on osteolytic
bone lesions, bone metastasis and survival (Table 1).

In five separate mouse models of breast cancer bone metastasis,
it was shown that treatment with OPG-Fc caused inhibition of the
growth of skeletal metastases when given in a preventive [24–26]
or therapeutic setting [24,27,28]. In one of the models, treatment
with OPG-Fc resulted in a significant improvement in overall sur-
vival [24]. Complete prevention of bone metastases [29] or a
decrease in tumor burden in the bone was observed when mice
were treated with OPG-Fc or RANK-Fc given either after [30–33]
or before [30,31] a tumor challenge with prostate cancer cells.
Moreover, a reduction in skeletal tumor burden upon RANKL inhi-
bition was observed in a colon adenocarcinoma mouse model [27],
a mouse model of melanoma metastasis [34] and two non-small
cell lung cancer mouse models [35,36].

A combination of OPG-Fc or RANK-Fc with chemotherapy aug-
mented the clinical benefit in several models. In two models of
non-small cell lung cancer bone metastasis, mice treated with
OPG-Fc showed less skeletal tumor burden and had a higher over-
all survival when compared to the control arm. When docetaxel
was added these clinical benefits were even more pronounced
[37]. Also, two separate studies in a prostate cancer bone metasta-
sis model revealed that while treatment with OPG-Fc or RANK-Fc
suppressed skeletal tumor burden on its own, the addition of doc-
etaxel significantly increased this effect resulting in a better med-
ian survival time in one of the studies [38,39]. Furthermore,
addition of OPG-Fc or RANK-Fc to panitumumab, an antibody
against the epidermal growth factor receptor, in an epidermoid
carcinoma mouse model [40], to rhApo2L/TRAIL/dulanermin in a
breast cancer mouse model [41] or to tamoxifen in a breast cancer
mouse model [42] resulted in stronger decrease of tumor burden in
the bone more than either of the targeted drugs alone.

These different mouse models show that, besides preventing
excessive bone resorption, RANKL inhibition can lead to prevention



Fig. 1. Expression of RANK and RANKL. RANK and RANKL are expressed on different cell types, from cells in healthy tissues to cancerous cells and immune cells. The figure
was created using adapted images from Servier Medical Art by Servier, licensed under a Creative Commons Attribution 3.0 Unported License (available at http://smart.
servier.com/).

Table 1
Mouse models studying the effect of RANKL inhibition on bone metastasis and
survival. STB = Skeletal tumor burden, OS = Overall survival.

Cancer type Intervention Effect Reference

Breast cancer OPG-Fc ; STB "
OS

[24]

Breast cancer OPG-Fc ; STB [25]
Breast cancer OPG-Fc/zoledronic acid ; STB [26]
Breast cancer OPG-Fc ; STB [27]
Breast cancer OPG/ibandronate ; STB [28]
Prostate cancer OPG-Fc ; STB [29]
Prostate cancer OPG-Fc ; STB [30]
Prostate cancer OPG-Fc ; STB [31]
Prostate cancer RANK-Fc ; STB [32]
Prostate cancer OPG-Fc ; STB [33]
Colon cancer OPG-Fc ; STB [27]
Melanoma OPG-Fc/zoledronic acid ; STB [34]
Non-small cell lung

cancer
OPG-Fc/zoledronic acid ; STB [35]

Non-small cell lung
cancer

RANK-Fc ; STB [36]

Non-small cell lung
cancer

OPG-Fc + docetaxel ; STB "
OS

[37]

Prostate cancer OPG-Fc + docetaxel ; STB "
OS

[38]

Prostate cancer RANK-Fc + docetaxel ; STB [39]
Epidermoid

carcinoma
OPG-Fc + panitumumab ; STB [40]

Breast cancer RANK-Fc + rhApo2L/
TRAIL/dulanermin

; STB [41]

Breast cancer OPG-Fc + tamoxifen ; STB [42]
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of bone metastases. This might be explained by an indirect anti-
tumor effect of RANKL inhibition. By blocking RANKL it is possible
to disrupt the so called ‘‘vicious cycle”. In this vicious cycle, RANKL
is abundantly expressed by, among others, osteoblasts, inducing
osteoclast mediated bone resorption. Upon bone resorption,
growth factors like transforming growth factor-b (TGF-b) and
insulin-like growth factor-1 (IGF-1) are released, which then stim-
ulate cancer cells, homed to places with a high bone turnover [43],
to proliferate and to release bone resorbing factors like parathyroid
hormone-related protein (PTHrP) and interleukin-6 (IL-6), eventu-
ally stimulating RANKL producing cells to secrete more RANKL
[44,45] (Fig. 2). In accordance with Pagets ‘‘seed and soil” theory
[46], altering the microenvironment of the bone by inhibition of
RANKL makes the bone less attractive for tumor cells as a site for
metastasis and consequently, this prevents and decreases tumor
outgrowth in the bone.
Direct anti-tumor effects of RANKL inhibition

The above described observed effect of RANKL inhibition on
bone metastases might also be partially explained by the fact that
RANKL inhibition is capable of blocking the direct effect of RANKL
on tumor cells expressing RANK. Studies demonstrated that RANKL
can induce migration of cancer cells expressing RANK [33,34] by
triggering a metastasis gene signature [33]. This phenomenon
was shown to apply to many tumor types [2]. As described earlier,
Jones et al. showed that RANKL inhibition curtailed the skeletal
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Fig. 2. The vicious cycle. RANKL is secreted by e.g. osteoblasts, osteocytes, bone lining cells and bone stromal cells, activating osteoclasts which elicits bone resorption.
Growth factors like TGF-b and IGF-1 are then released, which stimulate cancer cells to proliferate and to release bone resorbing factors like PTHrP and IL-6 stimulating
osteoblasts and other RANKL producing cells to secrete more RANKL. Inhibition of RANKL can interrupt this cycle. The figure was created using adapted images from Servier
Medical Art by Servier, licensed under a Creative Commons Attribution 3.0 Unported License (available at http://smart.servier.com/).
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tumor burden in a mouse model of melanoma metastasis. Interest-
ingly, zoledronic acid did not [34]. In another model for breast can-
cer, skeletal tumor growth was decreased upon both RANKL
inhibition and treatment with zoledronic acid. However, the tumor
burden was significantly more restrained with RANKL inhibition
than with zoledronic acid [26]. These two models suggest a direct
effect of RANKL on RANK expressing tumor cells in skeletal metas-
tases [26,34]. More evidence of a direct RANKL effect on RANK
expressing tumor cells was delivered by the studies of Gonzalez-
Suarez et al. [47] and Tan et al. [48]. Using transgenic and ortho-
topic breast cancer mouse models that display spontaneous metas-
tases to the lung, they were able to show that RANKL inhibition in
mouse mammary tumor virus (MMTV)-neu mice [47], RANK
knockdown within the used orthotopic mammary tumor cell line
and RANKL inhibition in mice bearing tumors induced by this cell
line decreased metastases in the lung [48]. Recently, Yoldi et al.
demonstrated that knocking out RANK in MMTV-Polyoma Middle
T mice also leads to a reduction in lung metastases as a result of
increased tumor cell differentiation [49]. These data show that
RANKL is directly involved in metastasis of RANK expressing tumor
cells and that RANKL inhibition is capable of reducing skeletal
tumor burden and visceral metastases in a direct manner.

Progestin (as used in hormone replacement therapy) has been
reported to increase the risk of breast cancer, both pre-clinically
and clinically [50,51]. The mechanism behind the increased inci-
dence of breast cancer caused by progestin seems to be RANK/
RANKL related and indicates that this axis may also drive tumori-
genesis. A major clue in unravelling this mechanism was the dis-
covery of the role of the RANK-RANKL axis in the formation of
lobulo-alveolar mammary structures, required for lactation. Upon
knockout of RANKL or RANK, mice failed to develop the mammary
gland during pregnancy properly [52]. It is known that proges-
terone, partly via RANK/RANKL, mediates the proliferation of the
mammary epithelium in mice [53] and human beings [54]; proges-
terone stimulated progesterone receptor (PR) positive cells, upreg-
ulate RANKL leading to RANKL stimulation of PR negative cells in a
paracrine way [55]. Via the same pathway mammary tumorigene-
sis can be established. In a MMTV-RANK transgenic mice model,
treatment with carcinogen and progesterone lead to an increase
of pre-neoplasia and mammary tumor development compared to
wild type mice that were treated similarly. Moreover, when these
mice were treated with a RANKL inhibitor, mammary tumor devel-
opment was reduced. In addition, treatment with a RANKL inhibi-
tor also reduced mammary tumor development in MMTV-neu
transgenic mice [47]. Furthermore, deletion of RANK in the
mammary-gland epithelial cells in another study resulted in a
diminished rate and a delay in medroxyprogesterone acetate
(MPA, a progestin)-driven breast cancer in mice [56]. This study
also observed a MPA driven expansion of mammary stem cells
and a decrease of expansion upon deletion of RANK in the
mammary-gland epithelial cells, in line with studies demonstrat-
ing that RANKL can mediate progesterone driven mammary stem
cell expansion [57,58]. Furthermore, deletion of RANK also led to
a decrease of the self-renewal capacity of mammary cancer stem
cells. These two pre-clinical studies show that progesterone driven
breast cancer is mediated by RANK/RANKL and that RANKL inhibi-
tion can attenuate this effect in a direct way. Additionally, inactiva-
tion of RANK leads to impaired breast cancer recurrence by
eliciting differentiation of tumor cells and make tumors become
more sensitive to treatment with docetaxel [49].

Two separate studies suggested that breast cancer driven by
BRCA1mutations may also be mediated via RANK/RANKL. In mouse
models mimicking BRCA1 deficiency, RANKL inhibition resulted in
diminished breast tumorigenesis [59], RANK inactivation led to a
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Table 2
Finished and ongoing clinical trials investigating anti-tumor effects of denosumab. BMFS = bone-metastasis free survival, OS = overall survival, PFS = progression-free survival,
DFS = disease-free survival, DTC = disseminated tumor cells, CTC = circulating tumor cells, IHC = immunohistochemistry. Studies with a NCT number can be found on
https://clinicaltrials.gov and studies with an ACTRN number can be found on http://www.anzctr.org.au/default.aspx.

Cancer type Phase Denosumab Comparator Primary endpoint Secondary
endpoint (s)

Status Reference

Prostate cancer 3 120 mg every 4 weeks Placebo BMFS Time to first bone
metastasis

Finished [62]

Lung cancer 3 120 mg every 4 weeks Zoledronic
acid

Time to first on-study SRE OS (exploratory) Finished [65]

Lung cancer
(SPLENDOUR)

3 120 mg every 3–4 weeks No denosumab OS PFS Ongoing NCT02129699

Lung cancer 2 120 mg every 3–4 weeks Placebo OS PFS Ongoing NCT01951586
Breast cancer

(D-CARE)
3 120 mg every 4 weeks for 6

months, then every 3
months

Placebo BMFS OS, DFS Ongoing [63]
NCT01077154

Breast cancer
(ABCSG-18)

3 60 mg every 6 months Placebo Time to first clinical fracture DFS, BMFS, OS Ongoing [64]
NCT00556374

Breast cancer 2 120 mg every 4 weeks for 6
months, then every 3
months

No comparator Reduction of bone marrow
DTC

DTC counts Ongoing NCT01545648

Breast cancer 2 120 mg every 4 weeks No comparator Reduction of CTC – Ongoing NCT01952054
Breast cancer

(D-Beyond)
2 120 mg twice, one week

apart
No comparator Chang in Ki67 (IHC) Tumor apoptosis Ongoing NCT01864798

Breast cancer
(GeparX)

2 120 mg every 4 weeks No denosumab pCR rates – Ongoing NCT02682693

Breast cancer 2 120 mg every 4 weeks for
three months

No comparator Fraction of patients with
reduction in CTC

Percent change in
CTC, PFS

Ongoing NCT03070002

Healthy subjects -
breast

1 60 mg or 120 mg once No denosumab Change in Ki67 (IHC) – Finished NCT02099461

Breast cancer 1 120 mg once No comparator Pharmacodynamic markers
of RANKL inhibition

– Ongoing NCT02900469

Breast cancer
(BRCA-D)

– 120 mg every 4 weeks for
three months

No comparator Change in Ki67 (IHC) – Ongoing ACTRN12614000694617

Melanoma
(CHARLI)

1/2 120 mg every 4 weeks (first
4 weeks weekly)

No comparator PFS OS Not yet open NCT03161756
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delay and lower incidence of breast cancer as well as limited pro-
gression of already established tumors and RANKL inhibition led
to prevention of pre-neoplastic lesions [60]. In the latter study, a
reduced expansion of mammary progenitor cells upon RANK inacti-
vation was observed. Following these studies, Cuyàs et al. reported
that the formationofmammospheres inBRCA1deficient breast cells,
was impaired when cells were treated with denosumab [61].

Clinical evidence for an anti-tumor effect of denosumab

The anti-tumor effect of denosumab is tested in several trials
with breast, lung, melanoma and prostate cancer patients. An over-
view of these clinical trials can be found in Table 2.

Denosumab and its effect on bone metastases

Only one clinical trial reported data on the effect of RANKL inhi-
bition on bone metastases. In this phase III study, patients with
castration-resistant prostate cancer (n = 1432) were randomized
between either denosumab (120 mg every four weeks) or placebo.
Treatment with denosumab prolonged the bone-metastasis free
survival (29.5 versus 25.2 months; hazard ratio (HR) = 0.85; 95%
confidence interval (CI) = 0.73–0.98; p = .028) which was the pri-
mary endpoint. Furthermore, denosumab delayed the time to first
bone metastasis as compared to placebo (33.2 versus 29.5 months;
HR = 0.84; 95% CI = 0.71–0.98; p = .032) [62]. These modest but
promising results make that the data of the ongoing D-CARE study
in patients with high risk early breast cancer and the same primary
endpoint, are eagerly awaited. In this phase III study, patients (n =
4509) receiving standard of care (neo)adjuvant therapy are ran-
domized between adjuvant denosumab (120 mg every four weeks
for six months, then every three months) or placebo for the dura-
tion of five years [63].
Denosumab and its effect on survival

Interestingly, some clinical trials, although not primarily
designed to study an effect on survival, did find a survival advan-
tage of denosumab as compared to either zoledronic acid or
placebo.

The interim analysis of the ABCSG-18 trial, a phase III trial with
postmenopausal breast cancer patients receiving adjuvant aro-
matase inhibition (n = 3425) and randomizing between adjuvant
denosumab (60 mg every 6 months) and placebo, showed an
improved disease-free survival in the patients treated with deno-
sumab (HR = 0.816; p = .051) [64]. More long term data from this
trial and data on disease-free and overall survival from the above
mentioned D-CARE trial are awaited [63].

An anti-tumor effect of denosumab was observed not only in
breast cancer patient but also in patients with lung cancer. First,
in an exploratory and hypothesis-generating subgroup analysis of
a phase III trial, where lung cancer patients with bone metastases
(n = 811) were randomized between denosumab (120 mg every
four weeks) and zoledronic acid (4 mg every four weeks), deno-
sumab gave an increased overall survival compared to zoledronic
acid (8.9 versus 7.7 months; HR = 0.80; 95% CI = 0.67–0.95; p =
.01) [65]. To validate these findings, the randomized, open-label
phase III SPLENDOUR trial (Survival imProvement in Lung cancEr
iNduced by DenOsUmab theRapy) is investigating the effect of
denosumab (120 mg every 3–4 weeks) as an addition to standard
first-line chemotherapy in patients with advanced non-small cell
lung cancer (n = 1000). The primary outcome measure is overall
survival. Secondary outcome includes progression free survival
[WR5]. In addition, a second randomized controlled phase II trial
in patients with advanced non-small cell lung cancer (n = 226),
examines the effect of denosumab (120 mg every 3–4 weeks) com-
pared to placebo (2:1 randomization) in addition to standard first
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line chemotherapy [WR6]. Also the retrospective analysis of
another trial in 149 patients with non-squamous non-small cell
lung cancer and bone metastases, roughly one third of whom
received denosumab, one third received zoledronic acid and one
third received no bone targeting agents, suggested that treatment
with denosumab is associated with a better overall survival [66].
Denosumab and its effect on breast tissue in BRCA1 mutation carriers

Two of the above described pre-clinical studies, also tested the
effect of denosumab in patients with a BRCA1 mutation. In the first
study, using BRCA1 mutation carriers derived three dimensional
breast organoid systems, it was found that the hyper responsive-
ness to progesterone of this tissue is abated upon denosumab
treatment. Furthermore, three BRCA1-mutation carriers were trea-
ted with denosumab where after a decrease in proliferation, as
measured by Ki67 expression, of the breast epithelial cells was
observed when comparing pre- and posttreatment biopsies [59].
These patients are part of the BRCA-D trial, which is currently
recruiting pre-menopausal women carrying a BRCA1 or BRCA2
mutation and pre-menopausal women with no mutation but at
high risk for breast cancer (n = 40). The primary endpoint is change
in Ki67 expression in the breast epithelium [WR7]. In the other
study, the expansion of mammary progenitor cells was reduced
when these cells were treated with denosumab [60].
An anti-tumor effect of RANKL inhibition mediated via the
immune system

The involvement of RANK-RANKL signalling in the immune sys-
tem is indisputable. The pathway is known to play a role in the
development of the immune system as reviewed by Cheng et al.
[10] and Ferrari-Lacraz et al. [67]. The RANK/RANKL pathway plays
an essential role in both stimulation of the immune system (e.g.
lymph-node, B- and T-cell development) and inhibition of the
immune system (e.g. generation of regulatory T-cells and induction
of T-cell tolerance) [10,67].

Although RANK, RANKL and OPG knockout mice have a clearly
disrupted immune phenotype (e.g. lymph node agenesis, impaired
T or B cell development) [67], the effect of mutations in these genes
in humans is less well studied and the clinical relevance is uncer-
tain. So far, a study in humans carrying mutations in both
TNFRSF11A (RANK) genes showed a defect in immunoglobulin pro-
duction in three out of eight studied patients and two of these
patients failed to respond to tetanus vaccination [68], while a study
in humans carrying mutations in both TNFSF11 (RANKL) genes did
not reveal any evident immune defects [69]. In addition, the last
group of patients did not seem to have an increased risk of infec-
tions or immune defects [69]. The difference in phenotype between
mice models and humans might be explained by species-specific
differences or by residual function of RANK or RANKL despite the
mutation [10,67,69]. Blocking of the RANK-RANKL axis is not
expected to have severe immune mediated side effects since
RANKL inhibition did not overtly affect the immune response
[67,70–73], nor did it impair local or systemic inflammation
parameters [74] in animal models. Also, clinical trials suggest no
significant increase in infections or development of (new) neo-
plasms in patients treated with denosumab compared to pla-
cebo/no comparator (60 mg regime) [75,76] or zoledronic acid
(120 mg regime) [77]. This might be explained by the existence
of the redundant CD40-CD40L axis [67,78].

Interestingly, there is some pre-clinical evidence that does point
at an immune mediated anti-tumor effect via RANKL inhibition.
Tumor infiltrating regulatory T cells expressing RANKL (Fig. 1), were
shown todrive pulmonarymetastasesmediatedvia RANK-RANKL in
a breast cancermodel [48]. One can imagine a vicious cycle inwhich
regulatory T cells expansion is driven by M2 type tumor associated
macrophages present in the tumor, whereupon RANKL produced
by these regulatory T cells attracts more M2–macrophages. Due to
this immunosuppressive microenvironment tumor cell growth is
sustained and eventually metastases may arise [2]. Blockade of the
RANK/RANKL axis might interfere in this process. Indeed, a reduc-
tion in regulatory T cells was observed in a mouse model of type 1
diabetes upon blockade of the RANK/RANKL axis [79]. Furthermore,
Khan et al. demonstrated that inhibition of RANKL transiently
blocked T cell tolerance, leading to an increased number of mela-
noma specific T cells and an improved anti-tumor response [80].
Studies of the immune modulatory effect of RANKL inhibition in
the clinical setting are limited. In line with the role of regulatory T
cells inmetastases, a case report described a patientwithmetastatic
melanoma with a remarkable response upon treatment with the
combination of denosumab and the CTLA4-specific antibody ipili-
mumab. Albeit that it was not yet clear if this was the underlying
mechanism [81]. Following this case study, recently it was shown
that combination of RANKL inhibition and anti-CTLA4 is indeed
more effective than either one of the agents alone in different tumor
mousemodels. An effect on lungmetastaseswas reported to depend
on natural killer cells and an effect on subcutaneous tumors on CD8
+ T cells. The effect of the combinational therapy was not related to
an increased depletion efficacy of regulatory T cells [82]. The combi-
natorial effect of anti-RANKL and immune checkpoint inhibitors in
patients will be investigated in the CHARLI trial, which is a phase
1/2 study examining the effect of denosumab in combination with
nivolumab (anti-PD1 specific antibody)with orwithout ipilimumab
and is about to start recruiting patients soon (Table 2).

Two clinical studies investigated the effect of denosumab on
lymphocyte counts with conflicting outcomes. While one study
(n = 49) reported no changes in T and B cell counts [83], the other
(n = 10) demonstrated an upregulation (defined as the percent
change versus baseline) of T and B cells upon treatment with deno-
sumab [84]. However, it must be noted that the number of patients
and dosing regimen in the two studies was different; the first study
administered a single dose (either 0.01, 0.03, 0.1, 0.3, 1.0, or 3.0
mg/kg) whereas the second study administered 60 mg every 6
months for one year.

In conclusion, although an immune mediated anti-tumor effect
of denosumab is well conceivable, strong pre-clinical and clinical
evidence currently is lacking and results of the new trials have to
be awaited.
Discussion and future perspectives

RANK-RANKL interaction does not only influence bone home-
ostasis but plays a critical role in numerous processes in the body.
At present, pre-clinical and clinical evidence pointing towards an
anti-tumor effect of RANKL inhibition is expanding. Several mech-
anisms underlying this effect have been proposed and investi-
gated; this includes direct and indirect, osteoclast mediated and
osteoclast independent effects. The role of the RANK/RANKL axis
in primary breast cancer development and the observed decrease
in proliferation of mammary tissue of patients at increased risk
for breast cancer upon treatment with denosumab, indicate that
RANKL inhibition might also be used as prevention in patients at
high risk for breast cancer. We speculate that anti-RANKL therapy
has an effect on the immune system and that modulation of the
immune system via RANKL might induce an anti-tumor effect.
However, current conclusions are still premature and more data
has to be generated. To get more insight in the immune modula-
tion of RANKL inhibition and a possible dose dependent effect of
denosumab, we have initiated a phase II study, PERIDENO, in which
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the effect of denosumab treatment on the systemic and local
immune environment will be determined in patients with early
breast cancer [WR8].

In order to determine if certain groups of patients might benefit
particularly from denosumab as an anti-cancer agent, future stud-
ies should also focus on menopausal status. In postmenopausal
women lacking oestrogen, RANKL is upregulated, resulting in
accelerated bone resorption and a consequent risk of osteoporosis
[85]. It can also be considered that RANKL upregulation is disad-
vantageous in terms of tumor growth; RANKL upregulation may
result in a more favourable microenvironment in the bone and
have a direct effect on RANK expressing cancerous cells, as outlined
in this review. This indicates that postmenopausal women, in the
therapeutic cancer setting, might benefit more from anti-RANKL
therapy than pre- or premenopausal women. This concept was
shown to be true for bisphosphonates. When given as adjuvant
treatment, bisphosphonates curtail the recurrence rate, the distant
recurrence rate as well as decrease the bone recurrence rate in
patients with early breast cancer and improve breast cancer sur-
vival. However, this effect was only seen in postmenopausal and
not in premenopausal women [86]. In the neoadjuvant setting, a
similar trend was observed in postmenopausal patients [87].

Denosumab is considered to be an effective and safe drug.
Denosumab has shown to be superior to zoledronic acid in terms
of SRE prevention in a combined analysis, where three randomized
phase III trials with a similar set-up were included [77]. In these
trials either patients with bone metastases as a result of advanced
breast cancer [88], prostate cancer [89] or other solid tumors or
multiple myeloma [90] were included. Patients were either treated
with denosumab (120 mg) or zoledronic acid (4 mg) every 4
weeks. Denosumab was shown to be superior in diminishing the
risk of a first SRE by 17% and first and subsequent SRE by 18% com-
pared to zoledronic acid [77]. Furthermore, no major differences
were observed in the number of adverse and serious adverse
events between the two groups. Particularly, the number of cases
with osteonecrosis of the jaw, infections and new malignancies
were similar between the groups. There were more cases of
hypocalcaemia, 9.6% in the denosumab group versus 5.0% in the
zoledronic acid group, and less cases of renal toxicity, 9.2% versus
11.8%, respectively, as expected [91,92]. In the open-label exten-
sion of two of the included trials, patients with advanced breast
cancer [88] and patients with advanced prostate cancer [89] were
offered to continue denosumab or switch from zoledronic acid to
denosumab for an additional period up to two years. The data from
this extension period, up to 5 years in the breast cancer group and
5.6 years in the prostate cancer group, confirmed the findings of
the safety profile of denosumab [93]. For the treatment of osteo-
porosis, the registration of denosumab (60 mg) was based on
robust data in postmenopausal woman with osteoporosis showing
a significant risk reduction in (non-)vertebral and hip fractures
[94]. Although it is thought this dosage of denosumab can be
administered safely [76,95], limited comparative data on safety
and effectiveness between denosumab and zoledronic acid are
available at present and no conclusions on superiority of one agent
over the other can be drawn yet [96]. Regarding osteonecrosis of
the jaw in earlier mentioned studies, this adverse event occurred
in up to 6.9% in the open-label extension trial of Stopeck et al.
[93], in six cases in the crossover group (2207 patients enrolled)
and in seven cases in the long-term group (2343 patients enrolled)
in the open-label extension of the FREEDOM trial of Bone et al.
[76], while in the ABCSG-18 trial of Gnant et al., no cases of
osteonecrosis of the jaw were reported [95]. Therefore, with these
safety data, utilizing denosumab in the future as an anti-tumor
agent should be considered without major risks.

Interestingly, recently a new RANKL receptor, the leucine-rich
repeat-containing G-protein-coupled receptor 4 (LRG4) was dis-
covered [97]. LRG4 induces, when bound by RANKL, inhibition of
osteoclast differentiation which is in contrast with the effect of
binding of RANKL to RANK. Although the exact relationship
between LRG4 and cancer is not clear yet, it was shown that it is
involved in the proliferation of several tumor cell lines [98]. Hence,
future studies should also bear in mind the potential interactions
between RANKL and LRG4.

In conclusion, pre-clinical and clinical studies suggest that
denosumab possesses an anti-tumor effect but more research is
needed and trial results are awaited to confirm current evidence.
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Appendix

Query 1: denosumab/RANKL inhibition and anti-cancer.
Database
 Search Strategy
 Number of
references
Number of
unique
references
PubMed
 ((‘‘Denosumab”[majr] OR ‘‘denosumab”[tiab] OR denosumab⁄[tiab] OR ‘‘Prolia”
[tiab] OR ‘‘Xgeva”[tiab] OR ‘‘AMG 16200[tiab] OR ”AMG-16200[tiab] OR ‘‘RANKL
inhibitor”[tiab] OR ‘‘RANKL inhibitors”[tiab] OR ‘‘rank l inhibitor”[tiab] OR ‘‘anti
RANKL”[tiab] OR ‘‘anti RANK L”[tiab] OR ‘‘RANKL inhibition”[tiab] OR ‘‘rankl
inhibiting”[tiab] OR ‘‘RANKL-inhibitor”[tiab] OR ‘‘RANKL-inhibitors”[tiab] OR ‘‘ra
nk-l-inhibitor”[tiab] OR ‘‘anti-RANKL”[tiab] OR ‘‘anti-RANK-L”[tiab] OR ‘‘RANKL-
inhibition”[tiab] OR ‘‘rankl-inhibiting”[tiab]) AND (‘‘anti-tumor”[tw] OR ‘‘anti-
tumor”[tw] OR ‘‘anti-cancer”[tw] OR ‘‘anti-neoplastic”[tw] OR ‘‘anti tumor”[tw] OR
‘‘anti tumor”[tw] OR ‘‘anti cancer”[tw] OR ‘‘anti neoplastic”[tw] OR ‘‘antitumor”
[tw] OR ‘‘antitumour”[tw] OR ‘‘anticancer”[tw] OR ‘‘antineoplastic”[tw] OR anti-
tumor⁄[tw] OR anti-tumor⁄[tw] OR anti-cancer⁄[tw] OR anti-neoplastic⁄[tw] OR
637
 637
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Appendix (continued)
Database
 Search Strategy
 Number of
references
Number of
unique
references
anti tumor⁄[tw] OR anti tumor⁄[tw] OR anti cancer⁄[tw] OR anti neoplastic⁄[tw] OR
antitumor⁄[tw] OR antitumour⁄[tw] OR anticancer⁄[tw] OR antineoplas⁄[tw] OR
‘‘Drug Screening Assays, Antitumor”[Mesh] OR ‘‘Antineoplastic Agents”[mesh] OR
‘‘Antineoplastic Agents”[Pharmacological Action] OR ‘‘Neoplasms/drug therapy”[majr]
OR ‘‘Tumor Microenvironment”[Mesh] OR ‘‘Survival Rate”[mesh] OR ‘‘survival”[tw]
OR ‘‘Survival”[mesh] OR ‘‘Mortality”[mesh] OR ‘‘mortality”[tw] OR ‘‘mortality”[Su
bheading]))
Embase
(OVID-
version)
((⁄‘‘Denosumab”/OR ‘‘denosumab”.ti,ab OR denosumab⁄.ti,ab OR ‘‘Prolia”.ti,ab OR
‘‘Xgeva”.ti,ab OR ‘‘AMG 16200.ti,ab OR ”AMG-16200.ti,ab OR ‘‘RANKL inhibitor”.ti,ab
OR ‘‘RANKL inhibitors”.ti,ab OR ‘‘rank l inhibitor”.ti,ab OR ‘‘anti RANKL”.ti,ab OR
‘‘anti RANK L”.ti,ab OR ‘‘RANKL inhibition”.ti,ab OR ‘‘rankl inhibiting”.ti,ab OR ‘‘R
ANKL-inhibitor”.ti,ab OR ‘‘RANKL-inhibitors”.ti,ab OR ‘‘rank-l-inhibitor”.ti,ab OR
‘‘anti-RANKL”.ti,ab OR ‘‘anti-RANK-L”.ti,ab OR ‘‘RANKL-inhibition”.ti,ab OR ‘‘rankl-
inhibiting”.ti,ab) AND (exp ‘‘antineoplastic activity”/ OR ‘‘anti-tumor”.ti,ab OR
‘‘anti-tumor”.ti,ab OR ‘‘anti-cancer”.ti,ab OR ‘‘anti-neoplastic”.ti,ab OR ‘‘anti
tumor”.ti,ab OR ‘‘anti tumor”.ti,ab OR ‘‘anti cancer”.ti,ab OR ‘‘anti neoplastic”.ti,ab
OR ‘‘antitumor”.ti,ab OR ‘‘antitumour”.ti,ab OR ‘‘anticancer”.ti,ab OR ‘‘anti
neoplastic”.ti,ab OR anti-tumor⁄.ti,ab OR anti-tumor⁄.ti,ab OR anti-cancer⁄.ti,ab OR
anti-neoplastic⁄.ti,ab OR anti tumor⁄.ti,ab OR anti tumor⁄.ti,ab OR anti cancer⁄.ti,ab
OR anti neoplastic⁄.ti,ab OR antitumor⁄.ti,ab OR antitumour⁄.ti,ab OR anticancer⁄.ti,
ab OR antineoplas⁄.ti,ab OR ‘‘Survival Rate”/OR ‘‘survival”.ti,ab OR exp ‘‘Survival”/
OR exp ‘‘Mortality”/OR ‘‘mortality”.ti,ab)) NOT conference review.pt
549
 174
Web of
Science
((TI = (‘‘Denosumab” OR ‘‘denosumab” OR denosumab⁄ OR ‘‘Prolia” OR ‘‘Xgeva” OR
‘‘AMG 16200 OR ”AMG-16200 OR ‘‘RANKL inhibitor” OR ‘‘RANKL inhibitors” OR ‘‘rank l
inhibitor” OR ‘‘anti RANKL” OR ‘‘anti RANK L” OR ‘‘RANKL inhibition” OR ‘‘rankl
inhibiting” OR ‘‘RANKL-inhibitor” OR ‘‘RANKL-inhibitors” OR ‘‘rank-l-inhibitor” OR
‘‘anti-RANKL” OR ‘‘anti-RANK-L” OR ‘‘RANKL-inhibition” OR ‘‘rankl-inhibiting”)
AND TS = (‘‘antineoplastic activity” OR ‘‘anti-tumor” OR ‘‘anti-tumor” OR ‘‘anti-
cancer” OR ‘‘anti-neoplastic” OR ‘‘anti tumor” OR ‘‘anti tumor” OR ‘‘anti cancer” OR
‘‘anti neoplastic” OR ‘‘antitumor” OR ‘‘antitumour” OR ‘‘anticancer” OR
‘‘antineoplastic” OR anti-tumor⁄ OR anti-tumor⁄ OR anti-cancer⁄ OR anti-
neoplastic⁄ OR anti tumor⁄ OR anti tumor⁄ OR anti cancer⁄ OR anti neoplastic⁄ OR
antitumor⁄ OR antitumour⁄ OR anticancer⁄ OR antineoplas⁄ OR ‘‘Survival Rate” OR
‘‘survival” OR ‘‘Survival” OR ‘‘Mortality” OR ‘‘mortality”)) OR (TS = (‘‘Denosumab”
OR ‘‘denosumab” OR denosumab⁄ OR ‘‘Prolia” OR ‘‘Xgeva” OR ‘‘AMG 16200 OR
”AMG-16200 OR ‘‘RANKL inhibitor” OR ‘‘RANKL inhibitors” OR ‘‘rank l inhibitor” OR
‘‘anti RANKL” OR ‘‘anti RANK L” OR ‘‘RANKL inhibition” OR ‘‘rankl inhibiting” OR
‘‘RANKL-inhibitor” OR ‘‘RANKL-inhibitors” OR ‘‘rank-l-inhibitor” OR ‘‘anti-RANKL”
OR ‘‘anti-RANK-L” OR ‘‘RANKL-inhibition” OR ‘‘rankl-inhibiting”) AND TI = (‘‘anti
neoplastic activity” OR ‘‘anti-tumor” OR ‘‘anti-tumor” OR ‘‘anti-cancer” OR ‘‘anti-
neoplastic” OR ‘‘anti tumor” OR ‘‘anti tumor” OR ‘‘anti cancer” OR ‘‘anti neoplastic”
OR ‘‘antitumor” OR ‘‘antitumour” OR ‘‘anticancer” OR ‘‘antineoplastic” OR anti-
tumor⁄ OR anti-tumor⁄ OR anti-cancer⁄ OR anti-neoplastic⁄ OR anti tumor⁄ OR anti
tumor⁄ OR anti cancer⁄ OR anti neoplastic⁄ OR antitumor⁄ OR antitumour⁄ OR
anticancer⁄ OR antineoplas⁄ OR ‘‘Survival Rate” OR ‘‘survival” OR ‘‘Survival” OR
‘‘Mortality” OR ‘‘mortality”)))
178
 43
Cochrane
Library
((‘‘Denosumab” OR ‘‘denosumab” OR denosumab⁄ OR ‘‘Prolia” OR ‘‘Xgeva” OR
‘‘AMG 16200 OR ”AMG-16200 OR ‘‘RANKL inhibitor” OR ‘‘RANKL inhibitors” OR ‘‘rank l
inhibitor” OR ‘‘anti RANKL” OR ‘‘anti RANK L” OR ‘‘RANKL inhibition” OR ‘‘rankl
inhibiting” OR ‘‘RANKL-inhibitor” OR ‘‘RANKL-inhibitors” OR ‘‘rank-l-inhibitor” OR
‘‘anti-RANKL” OR ‘‘anti-RANK-L” OR ‘‘RANKL-inhibition” OR ‘‘rankl-inhibiting”)
AND (‘‘antineoplastic activity” OR ‘‘anti-tumor” OR ‘‘anti-tumor” OR ‘‘anti-cancer”
OR ‘‘anti-neoplastic” OR ‘‘anti tumor” OR ‘‘anti tumor” OR ‘‘anti cancer” OR ‘‘anti
neoplastic” OR ‘‘antitumor” OR ‘‘antitumour” OR ‘‘anticancer” OR ‘‘antineoplastic”
OR anti-tumor⁄ OR anti-tumor⁄ OR anti-cancer⁄ OR anti-neoplastic⁄ OR anti tumor⁄

OR anti tumor⁄ OR anti cancer⁄ OR anti neoplastic⁄ OR antitumor⁄ OR antitumour⁄

OR anticancer⁄ OR antineoplas⁄ OR ‘‘Survival Rate” OR ‘‘survival” OR ‘‘Survival” OR
‘‘Mortality” OR ‘‘mortality”)):ti,ab,kw
71
 22
Total
 1.435
 876
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Database
 Search Strategy
 Number of
references
Number of
unique
references
PubMed
 ((‘‘Denosumab”[majr] OR ‘‘denosumab”[tiab] OR denosumab⁄[tiab] OR ‘‘Prolia”
[tiab] OR ‘‘Xgeva”[tiab] OR ‘‘AMG 16200[tiab] OR ”AMG-16200[tiab] OR ‘‘RANKL
inhibitor”[tiab] OR ‘‘RANKL inhibitors”[tiab] OR ‘‘rank l inhibitor”[tiab] OR ‘‘anti
RANKL”[tiab] OR ‘‘anti RANK L”[tiab] OR ‘‘RANKL inhibition”[tiab] OR ‘‘rankl
inhibiting”[tiab] OR ‘‘RANKL-inhibitor”[tiab] OR ‘‘RANKL-inhibitors”[tiab] OR ‘‘ra
nk-l-inhibitor”[tiab] OR ‘‘anti-RANKL”[tiab] OR ‘‘anti-RANK-L”[tiab] OR ‘‘RANKL-
inhibition”[tiab] OR ‘‘rankl-inhibiting”[tiab]) AND (‘‘Immunity”[mesh] OR
‘‘immunity”[tw] OR ‘‘immunology”[Subheading] OR ‘‘immunology”[tw] OR
‘‘Immune System”[mesh] OR ‘‘immune system”[tw] OR ‘‘Lymphocytes”[mesh] OR
‘‘lymphocytes”[tw] OR ‘‘Lymphocyte Count”[mesh] OR ‘‘lymphocyte”[tw] OR
immunologic⁄[tw] OR ‘‘Immunologic Techniques”[Mesh] OR ‘‘Immune System
Phenomena”[Mesh] OR ‘‘immune”[tw] OR ‘‘Immune System Processes”[Mesh]))
172
 172
Embase
(OVID-
version)
((⁄‘‘Denosumab”/ OR ‘‘denosumab”.ti,ab OR denosumab⁄.ti,ab OR ‘‘Prolia”.ti,ab OR
‘‘Xgeva”.ti,ab OR ‘‘AMG 16200.ti,ab OR ”AMG-16200.ti,ab OR ‘‘RANKL inhibitor”.ti,ab
OR ‘‘RANKL inhibitors”.ti,ab OR ‘‘rank l inhibitor”.ti,ab OR ‘‘anti RANKL”.ti,ab OR
‘‘anti RANK L”.ti,ab OR ‘‘RANKL inhibition”.ti,ab OR ‘‘rankl inhibiting”.ti,ab OR ‘‘R
ANKL-inhibitor”.ti,ab OR ‘‘RANKL-inhibitors”.ti,ab OR ‘‘rank-l-inhibitor”.ti,ab OR
‘‘anti-RANKL”.ti,ab OR ‘‘anti-RANK-L”.ti,ab OR ‘‘RANKL-inhibition”.ti,ab OR ‘‘rankl-
inhibiting”.ti,ab) AND (exp ⁄‘‘Immunity”/ OR ‘‘immunity”.ti,ab OR exp
⁄‘‘immunology”/OR ‘‘immunology”.ti,ab OR exp ⁄‘‘Immune System”/OR ‘‘immune
system”.ti,ab OR exp ⁄‘‘Lymphocyte”/OR ‘‘lymphocytes”.ti,ab OR ⁄‘‘Lymphocyte
Count”/OR ‘‘lymphocyte”.ti,ab OR immunologic⁄.ti,ab OR exp ⁄‘‘immunological
procedures”/OR ‘‘immune”.ti,ab)) NOT conference review.pt
88
 25
Web of
Science
TS = ((‘‘Denosumab” OR ‘‘denosumab” OR denosumab⁄ OR ‘‘Prolia” OR ‘‘Xgeva” OR
‘‘AMG 16200 OR ”AMG-16200 OR ‘‘RANKL inhibitor” OR ‘‘RANKL inhibitors” OR ‘‘rank l
inhibitor” OR ‘‘anti RANKL” OR ‘‘anti RANK L” OR ‘‘RANKL inhibition” OR ‘‘rankl
inhibiting” OR ‘‘RANKL-inhibitor” OR ‘‘RANKL-inhibitors” OR ‘‘rank-l-inhibitor” OR
‘‘anti-RANKL” OR ‘‘anti-RANK-L” OR ‘‘RANKL-inhibition” OR ‘‘rankl-inhibiting”)
AND (‘‘Immunity” OR ‘‘immunity” OR ‘‘immunology” OR ‘‘immunology” OR
‘‘Immune System” OR ‘‘immune system” OR ‘‘Lymphocyte” OR ‘‘lymphocytes” OR
‘‘Lymphocyte Count” OR ‘‘lymphocyte” OR immunologic⁄ OR ‘‘immunological
procedures” OR ‘‘immune”))
69
 13
Cochrane
Library
((‘‘Denosumab” OR ‘‘denosumab” OR denosumab⁄ OR ‘‘Prolia” OR ‘‘Xgeva” OR
‘‘AMG 16200 OR ”AMG-16200 OR ‘‘RANKL inhibitor” OR ‘‘RANKL inhibitors” OR ‘‘rank l
inhibitor” OR ‘‘anti RANKL” OR ‘‘anti RANK L” OR ‘‘RANKL inhibition” OR ‘‘rankl
inhibiting” OR ‘‘RANKL-inhibitor” OR ‘‘RANKL-inhibitors” OR ‘‘rank-l-inhibitor” OR
‘‘anti-RANKL” OR ‘‘anti-RANK-L” OR ‘‘RANKL-inhibition” OR ‘‘rankl-inhibiting”)
AND (‘‘Immunity” OR ‘‘immunity” OR ‘‘immunology” OR ‘‘immunology” OR
‘‘Immune System” OR ‘‘immune system” OR ‘‘Lymphocyte” OR ‘‘lymphocytes” OR
‘‘Lymphocyte Count” OR ‘‘lymphocyte” OR immunologic⁄ OR ‘‘immunological
procedures” OR ‘‘immune”))
6
 1
Total
 335
 211
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