ZPH Manuscript Proof



# Recreational sandboxes for children and dogs can be a source of epidemic ribotypes of Clostridium dificile

| Journal:                      | Zoonoses and Public Health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | ZPH-Jan-17-035.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Manuscript Type:              | Original Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Date Submitted by the Author: | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Complete List of Authors:     | Orden, Cristina; FACULTAD DE VETERINARIA. UNIVERSIDAD<br>COMPLUTENSE, SANIDAD ANIMAL<br>Neila, Carlos; FACULTAD DE VETERINARIA. UNIVERSIDAD COMPLUTENSE,<br>SANIDAD ANIMAL<br>BLANCO, JOSE; FACULTAD DE VETERINARIA. UNIVERSIDAD<br>COMPLUTENSE, SANIDAD ANIMAL<br>ALVAREZ-PEREZ, SERGIO; FACULTAD DE VETERINARIA. UNIVERSIDAD<br>COMPLUTENSE, SANIDAD ANIMAL<br>Harmanus, Céline; Leiden University Medical Center<br>Kuijper, Ed; Leiden, Medicine Microbiology<br>GARCIA, MARTA; Universidad Complutense de Madrid, ANIMAL HEALTH |
| Subject Area:                 | Clostridia spp, Dog, Zoonoses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



| 1              |    |                                                                                                                                    |
|----------------|----|------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3         | 1  | Original Article                                                                                                                   |
| 4<br>5         | 2  |                                                                                                                                    |
| 6<br>7         |    |                                                                                                                                    |
| 8<br>9         | 3  | Recreational sandboxes for children and dogs can be a source of                                                                    |
| 10<br>11<br>12 | 4  | epidemic ribotypes of <i>Clostridium dificile</i>                                                                                  |
| 13<br>14       | 5  |                                                                                                                                    |
| 15<br>16<br>17 | 6  | Cristina Orden <sup>1</sup> , Carlos Neila <sup>1</sup> , José L. Blanco <sup>1</sup> , Sergio Álvarez-Pérez <sup>1</sup> , Celine |
| 18<br>19       | 7  | Harmanus <sup>2</sup> , Ed J. Kuijper <sup>2</sup> , and Marta E. García <sup>1</sup>                                              |
| 20<br>21       | 8  |                                                                                                                                    |
| 22<br>23<br>24 | 9  | Short title: C. difficile in sandboxes                                                                                             |
| 25<br>26       | 10 |                                                                                                                                    |
| 27<br>28       | 11 | Authors and affiliations                                                                                                           |
| 29<br>30<br>31 | 12 | <sup>1</sup> Department of Animal Health, Faculty of Veterinary, Universidad Complutense de                                        |
| 32<br>33       | 13 | Madrid, Madrid, Spain                                                                                                              |
| 34<br>35       | 14 | <sup>2</sup> Department of Medical Microbiology, Center of Infectious Diseases, Leiden University                                  |
| 36<br>37<br>29 | 15 | Medical Center, Leiden, Netherlands                                                                                                |
| 39<br>40       | 16 |                                                                                                                                    |
| 41<br>42       | 17 | Correspondence:                                                                                                                    |
| 43<br>44       | 18 | Prof. José L. Blanco, PhD, DVM. Departamento de Sanidad Animal, Facultad de                                                        |
| 45<br>46<br>47 | 19 | Veterinaria, Universidad Complutense de Madrid. Avda. Puerta de Hierro s/n, 28040                                                  |
| 48<br>49       | 20 | Madrid (Spain). Tel.: +34 91 394 3717. E-mail address: jlblanco@ucm.es                                                             |
| 50<br>51       |    |                                                                                                                                    |
| 52<br>53       |    |                                                                                                                                    |
| 54<br>55<br>56 |    |                                                                                                                                    |
| 57<br>58       |    | 1                                                                                                                                  |
| 59<br>60       |    | Zoonoses and Public Health                                                                                                         |
| ~~             |    |                                                                                                                                    |

The sand of public playgrounds can have a role in the transmission of various

In this study we demonstrated that the Gram-positive anaerobe Clostridium difficile is

| 2        |
|----------|
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 1/       |
| 14       |
| 15       |
| 16       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| ∠∠<br>วว |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 29       |
| 20       |
| 50       |
| 31       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
| 20       |
| 38<br>20 |
| 39       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 45       |
| 40       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 52       |
| 22       |
| 54       |
| 55       |
| 56       |
| 57       |

58 59

60

1

21

22

23

24

25

26

27

28

29

•

•

Impacts

# widely distributed in soils samples from children's and dog's sandboxes located within the metropolitanean area of Madrid. .ne pi .c ribotypes 0. Furthermore, we demonstrated the presence of genetically diverse strains of C. difficile, • including the epidemic PCR ribotypes 014 and 106, in the studied sandboxes.

infections, particularly in children.

| 30 | Summary                                                                                                |
|----|--------------------------------------------------------------------------------------------------------|
| 31 | Different studies have suggested that the sand of public playgrounds could have a role in              |
| 32 | the transmission of infections, particularly in children. Furthermore, free access of pets and         |
| 33 | other animals to the playgrounds might increase such a risk. We studied the presence of                |
| 34 | Clostridium difficile in 20 pairs of sandboxes for children and dogs located in different              |
| 35 | playgrounds within the Madrid region (Spain). C. difficile isolation was performed by                  |
| 36 | enrichment and selective culture procedures. The genetic (ribotype and amplified fragment              |
| 37 | length polymorphism [AFLP]) diversity and antibiotic susceptibility of isolates was also               |
| 38 | studied. Overall, 52.5% ( $21/40$ ) of samples were positive for the presence of <i>C. difficile</i> . |
| 39 | Eight of the 20 available isolates belonged to the toxigenic ribotypes 014 ( $n = 5$ ) and 106 ( $n$   |
| 40 | = 2), both regarded as epidemic, and CD047 ( $n = 1$ ). The other 12 isolates were non-                |
| 41 | toxigenic, and belonged to ribotypes 009 ( $n = 5$ ), 039 ( $n = 4$ ), and 067, 151 and CD048          |
| 42 | (one isolate each). Nevertheless, all isolates (even those of a same ribotype) were classified         |
| 43 | into different AFLP genotypes indicating non-relatedness. In conclusion, our results                   |
| 44 | revealed the presence of epidemic ribotypes of C. difficile in children's and dog's                    |
| 45 | sandboxes located nearby, which constitutes a major health risk.                                       |
| 46 |                                                                                                        |
| 47 | Keywords: Clostridium difficile; children; dog; epidemic strains; sandboxes.                           |
| 48 |                                                                                                        |

# 49 Introduction

The soil of playgrounds is a reservoir of diverse parasites and infectious agents (Martínez-Moreno et al., 2007; Dado et al., 2012; Gotkowska-Płachta and Korzeniewska, 2014; Staley et al., 2016). Furthermore, free access of domestic and wild animals to recreational areas can increase the burden of microbiological contamination (Haag-Wackernagel and Moch, 2004; Martínez-Moreno et al., 2007; Dado et al., 2012; Gotkowska-Płachta and Korzeniewska, 2014; Staley et al., 2016). Children are generally regarded as the main group at risk for environmental exposure to pathogens, not only because they are frequent users of playgrounds, but also due to the high prevalence of geophagia (i.e. consumption of sand) within this group, and the immaturity of their immunological, neurological and digestive systems (Nwachuku and Gerba, 2004; Dado et al., 2012; Gotkowska-Płachta and Korzeniewska, 2014). 

*Clostridium difficile* is a Gram-positive, anaerobic bacterium of widespread distribution in the environment, where it can survive under adverse conditions through the production of spores (Hensgens et al., 2012; Smits et al., 2016). This bacterial species was traditionally regarded as a primarily nosocomial pathogen, but this view has been challenged as the incidence of C. difficile infection (CDI) in people outside hospitals started to increase (Hensgens et al., 2012; Smits et al., 2016). In this context, diverse animal species, food products and environmental sources have been suggested to play a role in the transmission of the C. difficile and, in particular, of some epidemic genotypes such as ribotype 078 (Hensgens et al., 2012; Smits et al., 2016). However, to the best of our knowledge, the presence of C. difficile in sandboxes of playgrounds has only been explored in a limited number of studies (al Saif and Brazier, 1996; Higazi et al. 2011; Båverud et al., 2003).

Page 5 of 50

77

1 2

#### **ZPH Manuscript Proof**

| 2      |  |
|--------|--|
| 5      |  |
| 4      |  |
| 5      |  |
| 6      |  |
| 7      |  |
| ,<br>0 |  |
| 8      |  |
| 9      |  |
| 10     |  |
| 11     |  |
| 12     |  |
| 12     |  |
| 13     |  |
| 14     |  |
| 15     |  |
| 16     |  |
| 17     |  |
| 17     |  |
| 18     |  |
| 19     |  |
| 20     |  |
| 21     |  |
| 22     |  |
| 22     |  |
| 23     |  |
| 24     |  |
| 25     |  |
| 26     |  |
| 27     |  |
| 27     |  |
| 28     |  |
| 29     |  |
| 30     |  |
| 31     |  |
| 32     |  |
| 22     |  |
| 33     |  |
| 34     |  |
| 35     |  |
| 36     |  |
| 37     |  |
| 20     |  |
| 20     |  |
| 39     |  |
| 40     |  |
| 41     |  |
| 42     |  |
| 43     |  |
| 44     |  |
| 44     |  |
| 45     |  |
| 46     |  |
| 47     |  |
| 48     |  |
| 40     |  |
| 49     |  |
| 50     |  |
| 51     |  |
| 52     |  |
| 53     |  |
| 51     |  |
| 4<br>  |  |
| 55     |  |
| 56     |  |
| 57     |  |
| 58     |  |
| 59     |  |
| ~      |  |

In this study we determined the presence of *C. difficile* in 20 pairs of recreational
sandboxes for children and dogs located in different playgrounds within the Madrid region
(Spain). In addition, we compared the isolates recovered from children's and dog's
sandboxes in terms of genetic characteristics and *in vitro* antimicrobial susceptibility.

78 Materials and methods

# 79 *Sampling scheme*

Sampling was carried out on two consecutive days (July 1-2, 2015) in 20 pairs of children's and dog's sandboxes located nearby (within 94 m in all cases, mean  $\pm$  S.D. = 35.1  $\pm$  20.5 m; Table 1) in public playgrounds scattered throughout three zones (A, M and V; postal codes: E-28047, E-28222/E-28221/E-28220 and E-28400, respectively) within the Madrid region (central Spain) (Figure S1). Therefore, a total of 40 sandboxes (20 for children and 20 for dogs) were analyzed. The number and distribution of samples per sampling zone and sampling point is indicated in Table 1.

A 200-g sand sample was obtained from each sampling point according to the
procedure described in Córdoba et al. (2002). Briefly, four 50-g sand samples were
collected from different locations within the sampling point using a sterile plastic container
(Nirco, Madrid, Spain). All four sand samples were then thoroughly mixed in a sterile
plastic bag (Nirco), which was transported to the laboratory and kept frozen (-20°C) until
analyzed.

93

# 94 Microbiological analyses

Sand samples (50 g each, taken and aseptically weighted from the 200-g mixtures kept in the freezer) were transferred into sterile one-liter glass bottles, diluted 1:10 in peptone water (Laboratorios Conda, Madrid, Spain) and incubated under agitation (200 rpm) for 15 min at room temperature. These suspensions were then allowed to settle for 5 min and the supernatants were filtered though filter membranes (0.45 µm of pore size; Filter Lab, Barcelona, Spain) following the procedure detailed in Álvarez-Pérez et al. (2016). Filter membranes were then introduced into 10-ml glass tubes containing 5 ml of selective broth for enrichment of C. difficile (TecLaim, Madrid, Spain; see recipe in Blanco et al., 2013). After seven days of incubation at 37°C under anaerobiosis, 2 ml of the enrichment culture were mixed 1:1 with absolute ethanol (Panreac, Barcelona, Spain) in 5 ml sterile plastic tubes (Nirco) and left for 1 hour under agitation (200 rpm) at room temperature. Finally, tubes were centrifuged at 1520 g for 10 min, the supernatants were discarded and precipitates were spread with a sterile cotton-tipped swab (Nirco) onto a plate of CLO agar (bioMérieux, Marcy l'Etoile, France), which contains cycloserine and cefoxitin as selective agents. Inoculated plates were incubated under anaerobic conditions for 72 h at 37°C and suspected colonies were identified as *C. difficile* by colony morphology, the typical odor of this microorganism, and a positive result in a rapid specific immunoassay for detection of the constitutive antigen glutamate dehydrogenase (GDH) (C. Diff Quik Chek Complete; TECHLAB Inc., Blacksburg, VA, USA). The same immunoassay was used to determine the toxigenic/non toxigenic status of isolates, as it detects production of C. difficile toxins A and B. A single C. difficile isolate was selected from each primary culture and sub-cultured on CLO agar to obtain axenic cultures that could be used in subsequent tests. 

# ZPH Manuscript Proof

| 2<br>3<br>4    | 118 | Molecular characterization of isolates                                                               |
|----------------|-----|------------------------------------------------------------------------------------------------------|
| 5<br>6         | 119 | Possession of <i>tcdA</i> and <i>tcdB</i> genes (which encode for toxins A and B, respectively), and |
| 7<br>8         | 120 | cdtA and cdtB (which encode for the two components of binary toxin (CDT), respectively),             |
| 9<br>10<br>11  | 121 | was analyzed by conventional PCR protocols (Álvarez-Pérez et al. 2009, 2014, 2015).                  |
| 12<br>13       | 122 | Genotyping of isolates was performed by high-resolution capillary gel-based                          |
| 14<br>15       | 123 | electrophoresis PCR-ribotyping, following the procedures described in Fawley et al.                  |
| 16<br>17<br>18 | 124 | (2015). Ribotypes were designated according to the nomenclature of the Leiden (Prof. Ed              |
| 19<br>20       | 125 | Kuijper; The Netherlands)-Leeds (Dr. Warren Fawley and Prof. Mark Wilcox; UK)                        |
| 21<br>22<br>22 | 126 | database. Novel ribotypes were named using internal reference codes (prefix 'CD' followed            |
| 23<br>24<br>25 | 127 | by a number).                                                                                        |
| 26<br>27       | 128 | Isolates were further genetically characterized by amplified fragment length                         |
| 28<br>29<br>30 | 129 | polynorphism (AFLP) fingerprinting, using the protocol detailed in Álvarez-Pérez et al.              |
| 31<br>32       | 130 | (2017). A binary 0/1 matrix was created based on the absence/presence of AFLP markers                |
| 33<br>34       | 131 | and a dendrogram of AFLP patterns was created with PAST v.3.11 software (Hammer et                   |
| 35<br>36<br>27 | 132 | al., 2001) using Pearson's correlation coefficients and the unweighted-pair group method             |
| 37<br>38<br>39 | 133 | with arithmetic averages (UPGMA) clustering algorithm. Isolates clustering with <86%                 |
| 40<br>41       | 134 | similarity were considered to represent different AFLP genotypes (Killgore et al., 2008;             |
| 42<br>43       | 135 | Álvarez-Pérez et al., 2017).                                                                         |
| 44<br>45<br>46 | 136 |                                                                                                      |
| 47<br>48       | 137 | Antimicrobial susceptibility testing                                                                 |
| 49<br>50       | 138 | In vitro susceptibility of isolates was determined by the Etest (bioMérieux) on prereduced           |
| 51<br>52<br>53 | 139 | Brucella agar supplemented with vitamin K1 and haemin (bioMérieux), according to the                 |
| 54<br>55       | 140 | manufacturer's instructions. Plates were incubated anaerobically at 37°C and examined at             |
| 56<br>57       | 141 | 48 h. Tested antimicrobial compounds and breakpoints for antimicrobial resistance were as            |
| 58<br>59<br>60 |     | 7<br>Zoonoses and Public Health                                                                      |
| 00             |     |                                                                                                      |

| 2<br>3<br>4    | 142 | follows: penicillin G, $\geq 2 \ \mu g/ml$ ; teicoplanin, $\geq 2 \ \mu g/ml$ ; rifampicin, $\geq 4 \ \mu g/ml$ ; linezolid and |
|----------------|-----|---------------------------------------------------------------------------------------------------------------------------------|
| 5<br>6         | 143 | tigecycline, >4 $\mu$ g/ml; clindamycin, erythromycin and levofloxacin, ≥8 $\mu$ g/ml; imipenem,                                |
| 7<br>8         | 144 | minocycline and tetracycline, $\geq 16 \ \mu g/ml$ ; amoxicillin/clavulanic acid, $\geq 16/8 \ \mu g/ml$ ; and                  |
| 9<br>10<br>11  | 145 | metronidazole and vancomycin, ≥32 µg/ml. (CLSI, 2012; Álvarez-Pérez et al., 2013, 2014,                                         |
| 12<br>13       | 146 | 2015, 2017; Peláez et al. 2013).                                                                                                |
| 14<br>15       | 147 | In order to detect possible metronidazole heteroresistance, which is manifested as a                                            |
| 16<br>17<br>18 | 148 | slow growth of resistant subpopulations within the inhibition halo in the Etest at                                              |
| 19<br>20       | 149 | concentrations above the resistance breakpoint, metronidazole test plates were further                                          |
| 21<br>22       | 150 | incubated anaerobically at 37°C for five additional days (Peláez et al., 2008).                                                 |
| 23<br>24<br>25 | 151 |                                                                                                                                 |
| 26<br>27       | 152 | Data analysis                                                                                                                   |
| 28<br>29       | 153 | Fisher's exact test and Pearson's chi-square test were used for statistical analysis of                                         |
| 30<br>31<br>22 | 154 | categorical data where appropriate. $P$ -values of <0.05 were considered to be statistically                                    |
| 32<br>33<br>34 | 155 | significant in all cases.                                                                                                       |
| 35<br>36       | 156 |                                                                                                                                 |
| 37<br>38       | 157 | Results                                                                                                                         |
| 39<br>40<br>41 | 158 | Clostridium difficile was recovered from 21 (52.5%) of the sand samples analyzed,                                               |
| 42<br>43       | 159 | collected from 12 and 9 sandboxes located in recreational areas for dogs and children,                                          |
| 44<br>45       | 160 | respectively (Table 1). The distribution of isolates by sampling (sub)zone and type of                                          |
| 46<br>47<br>48 | 161 | sample (children's or dog's sandboxes) is shown in Table 1. There was no difference in C.                                       |
| 49<br>50       | 162 | <i>difficile</i> prevalence between children's and dog's sandboxes ( $P = 0.527$ ) or among                                     |
| 51<br>52       | 163 | sampling zones ( $P = 0.203$ ). A positive culture result for both samples of each pair was                                     |
| 53<br>54       | 164 | obtained in five cases, whereas C. difficile was recovered only from one sandbox of the pair                                    |
| 55<br>56<br>57 |     |                                                                                                                                 |
| 58<br>59       |     | 8                                                                                                                               |

Zoonoses and Public Health

Page 9 of 50

1

59

60

# ZPH Manuscript Proof

| 2              |     |                                                                                                                                                            |
|----------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4         | 165 | in 11 cases (four from children's sandboxes and seven from dog's sandboxes) and a                                                                          |
| 5<br>6         | 166 | negative culture result for both samples was obtained in four cases (Table 1).                                                                             |
| 7<br>8         | 167 | One C. difficile isolate (obtained from a children's sandbox in zone A [sample A-N-                                                                        |
| 9<br>10        | 168 | 2], Table 1) was lost during subculturing in the laboratory. Eight of the 20 remaining                                                                     |
| 11<br>12<br>13 | 169 | isolates (six from dog's and two from children's sandboxes) were toxigenic and belonged                                                                    |
| 14<br>15       | 170 | to ribotypes 014 ( $A^+B^+CDT^-$ , $n = 5$ ), 106 ( $A^+B^+CDT^-$ , $n = 2$ ) and CD047 (isolate M-P-4,                                                    |
| 16<br>17       | 171 | A <sup>+</sup> B <sup>+</sup> CDT <sup>-</sup> ) (Tables 1 and S1, Figure 1). The other 12 isolates were non-toxigenic (i.e. A <sup>-</sup> B <sup>-</sup> |
| 18<br>19       | 172 | CDT) and belonged to ribotypes 009 ( $n = 5$ ), 039 ( $n = 4$ ), and 067, 151 and CD048 (one                                                               |
| 20<br>21<br>22 | 173 | isolate each) (Tables 1 and S1, Figure 1). Further genetic characterization of isolates by                                                                 |
| 22<br>23<br>24 | 174 | AFLP fingerprinting classified each one of these into a different genotype (Figure 1 and                                                                   |
| 25<br>26       | 175 | Table S1) Notably clustering of isolates in the UPGMA dendrogram obtained from AFLP                                                                        |
| 27<br>28       | 176 | data was independent from the origin (both at the '(sub)zone' and 'children vs. dog areas'                                                                 |
| 29<br>30       | 170 | levele) and ribetime of iceletes (Figure 1)                                                                                                                |
| 31<br>22       | 1// | levels) and fibotype of isolates (Figure 1).                                                                                                               |
| 32<br>33<br>34 | 178 | Regardless of their origin and genotype, all studied isolates showed resistance to                                                                         |
| 35<br>36       | 179 | imipenem and levofloxacin (Figure 1 and Table S1). Additionally, the isolates of ribotypes                                                                 |
| 37<br>38       | 180 | CD048 and 151 (A-N-8 and V-N-1, respectively) displayed resistance to clindamycin and                                                                      |
| 39<br>40       | 181 | erythromycin, and a ribotype 014 isolate (A-P-3) was resistant to penicillin (Figure 1 and                                                                 |
| 41<br>42<br>42 | 182 | Table S1). MICs to the other antimicrobial compound tested were generally low, and fell                                                                    |
| 43<br>44<br>45 | 183 | below the resistance breakpoint in all cases (Table S1).                                                                                                   |
| 46<br>47       | 184 | Notably, the samples obtained from a pair of children's and dog's sandboxes in zone                                                                        |
| 48<br>49       | 185 | V (V-N-2/V-P-2; Figure 2) yielded <i>C. difficile</i> isolates of a same toxigenic ribotype (014)                                                          |
| 50<br>51       | 186 | and which showed a similar antimicrobial susceptibility profile, but the AFLP profiles of                                                                  |
| 52<br>53       |     |                                                                                                                                                            |
| 54<br>55       | 187 | such isolates displayed limited similarity (Pearson's correlation = $0.126$ ) (Figure 1). In                                                               |
| 56             |     |                                                                                                                                                            |
| 57<br>58       |     | 9                                                                                                                                                          |
|                |     |                                                                                                                                                            |

188 contrast, four pairs of sand samples (A-N-3/A-P-3, A-N-4/A-P-4, A-N-5/A-P-5 and V-N189 1/V-P-1) yielded *C. difficile* isolates of different ribotypes.

 191 Discussion

The growing number of pets and other animals leaving excrements in the sandboxes of playgrounds and other recreational areas constitute a serious epidemiological threat (Martínez-Moreno et al., 2007; Gotkowska-Płachta and Korzeniewska, 2014; Staley et al., 2016). Current tests for assessing the sanitary conditions of sandboxes focus on detecting some select pathogenic parasites and bacterial indicators of fecal contamination (Martínez-Moreno et al., 2007; Gotkowska-Płachta and Korzeniewska, 2014; Staley et al., 2016), but mostly neglect the possible presence of other emerging pathogens such as C. difficile. Reports of *C. difficile* presence in recreational sandboxes are still limited in number and of variable scope. For example, Al-Saif and Brazier (1996) reported the isolation of C. *difficile* from a 21% of soil samples taken from public parks, gardens, playgrounds and other locations in the suburbs of Cardiff, UK. Subsequent characterization of some of those soil isolates by PCR ribotyping and pyrolysis mass spectrometry (PyMS) fingerprinting revealed the presence of toxin-producers and different ribotypes (Al Saif et al., 1998). Similarly, Higazi et al. (2011) investigated by a PCR-based approach the presence of C. *difficile* in soil samples from public parks and elementary school playgrounds in a Midwestern town of the USA and reported an overall prevalence of 6.5%, but bacterial isolates were only obtained in some cases and these were not genotyped nor tested for antimicrobial resistance. Finally, Båverud et al. (2013) observed an overall C. difficile prevalence of 4% in soil samples obtained from public parks, playgrounds, gardens and 

# **ZPH Manuscript Proof**

| י<br>ר   |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 27       |  |
| 22       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 11<br>12 |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 52       |  |
| 55       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |

60

cultivated fields, but the origin and characteristics of recovered isolates were not detailed intheir paper.

In this study, we demonstrated that *C. difficile* is widely distributed in soils samples from both children's and dog's sandboxes located within the metropolitanean area of Madrid. Furthermore, our results revealed that recovered isolates were genetically diverse and displayed resistance to several antibiotics ( $\geq 2$  drugs, including in all cases imipenem and levofloxacin). Notably, analysis of AFLP fingerprinting results showed high genetic variation even among isolates obtained from a same sampling (sub)zone. Most *C. difficile* isolates recovered in this study from sandboxes belonged to

ribotypes 014 and 009. The toxigenic ribotype 014 is one of the most prevalent genotypes 220 221 isolated from human patients and animals in Europe (including Spain) and other countries such as Australia, Brazil and the USA (Bauer et al., 2011; Koene et al. 2012; Alcalá et al. 222 223 2012, 2015; Janezic et al., 2012, 2014; Tickler et al., 2014; Freeman et al., 2015; Knight et al., 2015a,b; Silva et al. 2015). Non-toxigenic ribotype 009 is also prevalent in both human 224 225 and animal hosts in some countries including Brazil (Silva et al. 2015), but it is rarely 226 reported in Spain and the rest of Europe (e.g. Koene et al. 2012; Wetterwik et al., 2013; Álvarez-Pérez et al., 2015). 227

Other ribotypes found in this study such as 039 and 106 are also frequently isolated from human and/or animal fecal samples (Bauer et al., 2011; Alcalá et al., 2012, 2015; Koene et al., 2012; Tickler et al., 2014; Freeman, 2015). In particular, ribotype 106 has been implicated in outbreaks of human disease in the UK (Ratnayake et al., 2011) and is also relatively common in continental Europe and North America (Bauer et al., 2011; Alcalá et al., 2012, 2015; Tickler et al., 2014; Freeman et al., 2015). We recently obtained several ribotype 106 isolates from the feces of dogs with diverse digestive disorders (Orden

11

Zoonoses and Public Health

# **ZPH Manuscript Proof**

| 3<br>4         | 235 | et al., 2017). Curiously, despite the frequent shedding of C. difficile ribotype 078 by       |
|----------------|-----|-----------------------------------------------------------------------------------------------|
| 5<br>6         | 236 | animals previously observed in Spain (Peláez et al., 2013; Álvarez-Pérez et al., 2013, 2014,  |
| 7<br>8         | 237 | 2015) and many other countries (Janezic et al., 2014) we did not found any isolate of this    |
| 9<br>10        | 238 | epidemic ribotype in the present study. Nevertheless, as a single C. difficile isolate from   |
| 11<br>12<br>13 | 239 | each primary culture was selected for detailed phenotypic and genetic characterization, we    |
| 14<br>15       | 240 | cannot discard the possibility that this and other ribotypes might have been overlooked.      |
| 16<br>17       | 241 | Finally, all isolates characterized in this study displayed high-level in vitro               |
| 18<br>19<br>20 | 242 | resistance to imipenem and levofloxacin, a phenotype which is fairly common among             |
| 20<br>21<br>22 | 243 | diverse ribotypes of C. difficile from different geographic locations (Alcalá et al., 2012;   |
| 23<br>24       | 244 | Keessen et al., 2013; Pirš et al., 2013; Freeman et al., 2015). As carbapenems and            |
| 25<br>26<br>27 | 245 | fluoroquinolones are widely used in human and veterinary medicine to treat a diversity of     |
| 27<br>28<br>29 | 246 | infections (Papich, 2011; Papp-Wallace et al., 2011; Redgrave et al., 2014), monitoring the   |
| 30<br>31       | 247 | resistance to these compounds in C. difficile and other emerging pathogens should be a        |
| 32<br>33       | 248 | priority. Furthermore, some isolates were found to be resistant to erythromycin,              |
| 34<br>35<br>36 | 249 | clindamycin and penicillin G, all of which are of common use in clinical practice (Papich,    |
| 37<br>38       | 250 | 2011). Although we did not detect any isolate with decreased susceptibility or                |
| 39<br>40       | 251 | heterogeneous resistance to metronidazole, we recommend to determine MIC values to this       |
| 41<br>42<br>42 | 252 | antibiotic even for environmental isolates, as metronidazole is still considered a first-line |
| 44<br>45       | 253 | drug for the treatment of anaerobe infections in human and animal medicine (Dhand and         |
| 46<br>47       | 254 | Snydman, 2009; Löfmark et al., 2010; Papich, 2016) and (hetero)resistant strains of C.        |
| 48<br>49       | 255 | difficile and other clostridia have been reported by different authors (Peláez et al., 2008,  |
| 50<br>51<br>52 | 256 | 2013; Álvarez-Pérez et al., 2013, 2014, 2015, 2017; Wetterwik et al., 2013).                  |
| 53<br>54       | 257 |                                                                                               |
| 55<br>56       | 258 | Conclusions                                                                                   |
| 57<br>58       |     | 12                                                                                            |
| 59<br>60       |     | Zoonoses and Public Health                                                                    |

Page 13 of 50

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

60

Acknowledgements

excellent technical assistance.

**Declaration of interest** 

References

1

### **ZPH Manuscript Proof**

In summary, our results revealed the presence of epidemic ribotypes of C. difficile in

pathogen should be considered in any environmental risk assessment.

children's and dog's sandboxes, which constitutes a major health risk. Due to the zoonotic

potential attributed to some ribotypes of *C. difficile*, the possible presence of this emerging

This work was funded by the Spanish Ministry of Economy and Competitiveness [grant

number AGL2013-46116-R]. Sergio Álvarez-Pérez acknowledges a 'Juan de la Cierva'

postdoctoral contract [JCI-2012-12396]. The funders had no role in study design, data

collection and interpretation, or the decision to submit the work for publication. We thank

None of the authors of this paper has a financial or personal relationship with other people

al Saif, N., and J. S. Brazier, 1996: The distribution of *Clostridium difficile* in the

Al-Saif, N.M., G. L. O'Neill, J. T. Magee, J. S. Brazier, and B. I. Duerden, 1998: PCR-

ribotyping and pyrolysis mass spectrometry fingerprinting of environmental and

or organizations that could inappropriately influence or bias the content of the paper.

environment of South Wales. J. Med. Microbiol. 45, 133-137.

the staff of the Genomics Service at Universidad Complutense de Madrid for providing

| 2        |  |
|----------|--|
| З        |  |
| 1        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 20       |  |
| 50       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 26       |  |
| 20       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 12       |  |
| 45       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 10       |  |
| 79<br>50 |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 55       |  |
| 20       |  |
| 57       |  |
| 58       |  |
| 59       |  |

hospital isolates of Clostridium difficile. J. Med. Microbiol. 47, 117-121.

| 3<br>4         | 282 | Alcalá, L., A. Martín, M. Marín, M. Sánchez-Somolinos, P. Catalán, T. Peláez, E. Bouza,                |
|----------------|-----|--------------------------------------------------------------------------------------------------------|
| 5<br>6         | 283 | on behalf of the Spanish Clostridium difficile Study Group, 2012: The undiagnosed                      |
| 7<br>8         | 284 | cases of <i>Clostridium difficile</i> infection in a whole nation: where is the problem? <i>Clin</i> . |
| 9<br>10<br>11  | 285 | Microbiol. Infect. 18, E204–E213.                                                                      |
| 11<br>12<br>13 | 286 | Alcalá, L., E. Reigadas, M. Marín, A. Martín, P. Catalán, E. Bouza, on behalf of the                   |
| 14<br>15       | 287 | Spanish Clostridium difficile Study Group, 2015: Impact of clinical awareness and                      |
| 16<br>17       | 288 | diagnostic tests on the underdiagnosis of Clostridium difficile infection. Eur. J. Clin.               |
| 18<br>19<br>20 | 289 | Microbiol. Infect. Dis. 34, 1515–1525.                                                                 |
| 20<br>21<br>22 | 290 | Álvarez-Pérez, S., J. L. Blanco, E. Martínez-Nevado, T. Peláez, C. Harmanus, E. Kuijper,               |
| 23<br>24       | 291 | and M. E. García, 2014: Shedding of <i>Clostridium difficile</i> PCR ribotype 078 by zoo               |
| 25<br>26       | 202 | animals, and report of an unstable metronidazole-resistant isolate from a zebra foal                   |
| 27             | 292 | animals, and report of an unstable metrometazore-resistant isolate from a zeora foar                   |
| 28<br>29       | 293 | (Equus quagga burchellii). Vet. Microbiol. 169, 218–222.                                               |
| 30<br>31       | 294 | Álvarez-Pérez, S., J. L. Blanco, E. Bouza, P. Alba, X. Gibert, J. Maldonado, and M.E.                  |
| 32<br>33<br>24 | 295 | Garcia, 2009: Prevalence of Clostridium difficile in diarrhoeic and non-diarrhoeic                     |
| 34<br>35<br>36 | 296 | piglets. Vet. Microbiol. 137, 302–305.                                                                 |
| 37<br>38       | 297 | Álvarez-Pérez, S., J. L. Blanco, T. Peláez, R. J. Astorga, C. Harmanus, E. Kuijper, and M.             |
| 39<br>40       | 298 | E. García, 2013: High prevalence of the epidemic <i>Clostridium difficile</i> PCR ribotype             |
| 41<br>42<br>42 | 299 | 078 in Iberian free-range pigs. Res. Vet. Sci. 95, 358-361.                                            |
| 43<br>44<br>45 | 300 | Álvarez-Pérez, S., J. L. Blanco, T. Peláez, M. P. Lanzarot, C. Harmanus, E. Kuijper, and               |
| 46<br>47       | 301 | M. F. García, 2015: Faecal shedding of antimicrobial-resistant <i>Clostridium difficile</i>            |
| 48             | 501 | Wi. E. Gurena, 2015. Facear sheading of antimerobial resistant <i>Crostriatian allytene</i>            |
| 49<br>50       | 302 | strains by dogs. J. Small. Anim. Pract. 56, 190-195.                                                   |
| 51<br>52       | 303 | Álvarez-Pérez, S., J. L. Blanco, T. Peláez, E. Martínez-Nevado, and M. E. García, 2016:                |
| 53<br>54       | 304 | Water sources in a zoological park harbor genetically diverse strains of Clostridium                   |
| 55<br>56       |     |                                                                                                        |
| 57             |     |                                                                                                        |

# ZPH Manuscript Proof

| 1<br>2                     |     |                                                                                              |
|----------------------------|-----|----------------------------------------------------------------------------------------------|
| 3<br>4                     | 305 | perfringens type A with decreased susceptibility to metronidazole. Microb. Ecol. 72,         |
| 5<br>6                     | 306 | 783–790.                                                                                     |
| 7<br>8                     | 307 | Álvarez-Pérez, S., J. L. Blanco, C. Harmanus, E. Kuijper, and M. E. García, 2017:            |
| 9<br>10<br>11              | 308 | Subtyping and antimicrobial susceptibility of Clostridium difficile PCR ribotype             |
| 12<br>13                   | 309 | 078/126 isolates of human and animal origin. Vet. Microbiol. 199, 15-22.                     |
| 14<br>15                   | 310 | Bauer, M. P., D. W. Notermans, B. H. van Benthem, J. S. Brazier, M. H. Wilcox, M.            |
| 16<br>17                   | 311 | Rupnik, D. L. Monnet, J. T. van Dissel, E. J. Kuijper, for the ECDIS Study Group,            |
| 18<br>19<br>20             | 312 | 2011: Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377,        |
| 21<br>22                   | 313 | 63–73.                                                                                       |
| 23<br>24                   | 314 | Båverud, V., A. Gustafsson, A. Franklin, A. Aspán, and A. Gunnarsson, 2003: Clostridium      |
| 25<br>26<br>27             | 315 | difficile: prevalence in horses and environment, and antimicrobial susceptibility.           |
| 27<br>28<br>29<br>30<br>31 | 316 | Equine Vet. J. 35, 465–471.                                                                  |
|                            | 317 | Blanco, J. L., S. Álvarez-Pérez, and M. E. García, 2013: Is the prevalence of Clostridium    |
| 32<br>33                   | 318 | difficile in animals underestimated? Vet. J. 197, 694–698.                                   |
| 34<br>35<br>36             | 319 | CLSI, 2012: Methods for antimicrobial susceptibility testing of anaerobic bacteria, 8th edn. |
| 37<br>38                   | 320 | CLSI M11-A8. Clinical and Laboratory Standards Institute, Wayne, PA.                         |
| 39<br>40                   | 321 | Córdoba, A., M. L. Ciarmela, B. Pezzani, M. I. Gamboa, M. M. De Luca, M. Minvielle,          |
| 41<br>42<br>43             | 322 | and J. A. Basualdo, 2002: Presencia de parásitos intestinales en paseos públicos             |
| 44<br>45                   | 323 | urbanos en La Plata, Argentina. Parasitol. Latinoam. 57, 25-29.                              |
| 46<br>47                   | 324 | Dado, D., F. Izquierdo, O. Vera, A. Montoya, M. Mateo, S. Fenoy, A. L. Galván, S. García,    |
| 48<br>49                   | 325 | A. García, E. Aránguez, L. López, C. del Águila, and G. Miró, 2012: Detection of             |
| 50<br>51<br>52             | 326 | zoonotic intestinal parasites in public parks of Spain. Potential epidemiological role       |
| 53<br>54                   | 327 | of microsporidia. Zoonoses Public Health. 59, 23-28.                                         |
| 55<br>56                   |     |                                                                                              |
| 57<br>58                   |     | 15                                                                                           |
| 59<br>60                   |     | Zoonoses and Public Health                                                                   |

| 2<br>3         | 328 | Dhand, A., and D. R. Snydman, 2009: Mechanism of resistance in metronidazole. In:         |
|----------------|-----|-------------------------------------------------------------------------------------------|
| 4<br>5         | 220 | Mayora D. L. (ad) Antimicrobial drug resistance. Volume 1. Mechanisms of drug             |
| 6<br>7         | 329 | Mayers, D. L. (ed) Antimicrobial drug resistance. Volume 1, Mechanisms of drug            |
| 8<br>9         | 330 | resistance, pp. 223–227. Humana Press. New York, NY.                                      |
| 10<br>11       | 331 | Fawley, W. N., C. W. Knetsch, D. R. MacCannell, C. Harmanus, T. Du, M. R. Mulvey, A.      |
| 12<br>13       | 332 | Paulick, L. Anderson, E. J. Kuijper, and M. H. Wilcox, 2015: Development and              |
| 14<br>15       | 333 | validation of an internationally-standardized, high-resolution capillary gel-based        |
| 16<br>17       | 334 | electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One 10,           |
| 18<br>19<br>20 | 335 | e0118150.                                                                                 |
| 21<br>22       | 336 | Freeman, J., J. Vernon, K. Morris, S. Nicholson, S. Todhunter, C. Longshaw, M. H.         |
| 23<br>24       | 337 | Wilcox, and the Pan-European Longitudinal Surveillance of Antibiotic Resistance           |
| 25<br>26<br>27 | 338 | among Prevalent Clostridium difficile Ribotypes' Study Group, 2015: Pan-European          |
| 28<br>29       | 339 | longitudinal surveillance of antibiotic resistance among prevalent Clostridium            |
| 30<br>31       | 340 | difficile ribotypes. Clin. Microbiol. Infect. 21, 248.e9–248.e16.                         |
| 32<br>33<br>34 | 341 | Gotkowska-Płachta, A., and E. Korzeniewska, 2015: Microbial evaluation of sandboxes       |
| 35<br>36       | 342 | located in urban area. Ecotoxicol. Environ. Saf. 113, 64–71.                              |
| 37<br>38       | 343 | Haag-Wackernagel, D., and H. Moch, 2004: Health hazards posed by feral pigeons. J.        |
| 39<br>40       | 344 | Infect. 48, 307–313.                                                                      |
| 41<br>42<br>43 | 345 | Hammer, Ø., D. A. T. Harper, and P. D. Ryan, 2001: PAST: Paleontological Statistics       |
| 44<br>45       | 346 | Software Package for Education and Data Analysis. Palaeontologia Electronica              |
| 46<br>47       | 347 | 4(1,art.4), 9pp.                                                                          |
| 48<br>49<br>50 | 348 | Hensgens, M. P., E. C. Keessen, M. M. Squire, T. V. Riley, M. G. Koene, E. de Boer, L. J. |
| 50<br>51<br>52 | 349 | Lipman, E. J. Kuijper, on behalf of European Society of Clinical Microbiology and         |
| 53<br>54       | 350 | Infectious Diseases Study Group for Clostridium difficile (ESGCD), 2012:                  |
| 55<br>56       |     |                                                                                           |
| 57<br>58       |     | 16                                                                                        |
| 59<br>60       |     | Zoonoses and Public Health                                                                |

# ZPH Manuscript Proof

| 1<br>ว         |     |                                                                                              |
|----------------|-----|----------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 351 | Clostridium difficile infection in the community: a zoonotic disease? Clin. Microbiol.       |
| 5<br>6         | 352 | Infect. 18, 635–645.                                                                         |
| 7<br>8         | 353 | Higazi, T. B., M. AL-Saghir, M. Burkett, and R. Pusok, 2011: PCR detection of                |
| 9<br>10<br>11  | 354 | Clostridium difficile and its toxigenic strains in public places in Southeast Ohio. Intl.    |
| 12<br>13       | 355 | J. Microbiol. Res. 2, 105–111.                                                               |
| 14<br>15       | 356 | Janezic, S., M. Ocepek, V. Zidaric, and M. Rupnik, 2012: Clostridium difficile genotypes     |
| 16<br>17<br>19 | 357 | other than ribotype 078 that are prevalent among human, animal and environmental             |
| 18<br>19<br>20 | 358 | isolates. BMC Microbiol. 12, 48.                                                             |
| 21<br>22       | 359 | Janezic, S., V. Zidaric, B. Pardon, A. Indra, B. Kokotovic, J. L. Blanco, C. Seyboldt, C. R. |
| 23<br>24       | 360 | Diaz, I. R. Poxton, V. Perreten, I. Drigo, A. Jiraskova, M. Ocepek, J. S. Weese, J. G.       |
| 25<br>26<br>27 | 361 | Songer, M. H. Wilcox, and M. Rupnik, 2014: International Clostridium difficile               |
| 28<br>29       | 362 | animal strain collection and large diversity of animal associated strains. BMC               |
| 30<br>31       | 363 | Microbiol. 14, 173.                                                                          |
| 32<br>33<br>34 | 364 | Killgore, G., A. Thompson, S. Johnson, J. Brazier, E. Kuijper, J. Pepin, E. H. Frost, P.     |
| 34<br>35<br>36 | 365 | Savelkoul, B. Nicholson, R. J. van den Berg, H. Kato, S. P. Sambol, W. Zukowski, C.          |
| 37<br>38       | 366 | Woods, B. Limbago, D. N. Gerding, and L. C. McDonald, 2008: Comparison of                    |
| 39<br>40       | 367 | seven techniques for typing international epidemic strains of Clostridium difficile:         |
| 41<br>42<br>43 | 368 | restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping,         |
| 44<br>45       | 369 | multilocus sequence typing, multilocus variable-number tandem-repeat analysis,               |
| 46<br>47       | 370 | amplified fragment length polymorphism, and surface layer protein A gene sequence            |
| 48<br>49<br>50 | 371 | typing. J. Clin. Microbiol. 46, 431-437.                                                     |
| 50<br>51<br>52 | 372 | Keessen, E. C., M. P. Hensgens, P. Spigaglia, F. Barbanti, I. M. Sanders, E. J. Kuijper, and |
| 53<br>54       | 373 | L. J. Lipman, 2013: Antimicrobial susceptibility profiles of human and piglet                |
| 55<br>56       | 374 | Clostridium difficile PCR-ribotype 078. Antimicrob. Resist. Infect. Control. 2, 14.          |
| 57<br>58       |     | 17                                                                                           |
| 59<br>60       |     | Zoonoses and Public Health                                                                   |

| 3<br>4         | 375 | Knight, D. R., M. M. Squire, and T. V. Riley, 2015a: Nationwide surveillance study of       |
|----------------|-----|---------------------------------------------------------------------------------------------|
| 5<br>6         | 376 | Clostridium difficile in Australian neonatal pigs shows high prevalence and                 |
| 7<br>8         | 377 | heterogeneity of PCR ribotypes. Appl. Environ. Microbiol. 81, 119-123.                      |
| 9<br>10<br>11  | 378 | Knight, D. R., S. Giglio, P. G. Huntington, T. M. Korman, D. Kotsanas, C. V. Moore, D. L.   |
| 12<br>13       | 379 | Paterson, L. Prendergast, C. A. Huber, J. Robson, L. Waring, M. C. Wehrhahn, G. F.          |
| 14<br>15       | 380 | Weldhagen, R. M. Wilson, and T. V. Riley, 2015b: Surveillance for antimicrobial             |
| 16<br>17       | 381 | resistance in Australian isolates of Clostridium difficile, 2013–14. J. Antimicrob.         |
| 18<br>19<br>20 | 382 | Chemother. 70, 2992–2999.                                                                   |
| 21<br>22       | 383 | Koene, M. G., D. Mevius, J. A. Wagenaar, C. Harmanus, M. P. Hensgens, A. M. Meetsma,        |
| 23<br>24       | 384 | F. F. Putirulan, M. A. van Bergen, and E. J. Kuijper, 2012: Clostridium difficile in        |
| 25<br>26<br>27 | 385 | Dutch animals: their presence, characteristics and similarities with human isolates.        |
| 28<br>29       | 386 | Clin. Microbiol. Infect. 18, 778–784.                                                       |
| 30<br>31       | 387 | Löfmark, S., C. Edlund, and C. E. Nord, 2010: Metronidazole is still the drug of choice for |
| 32<br>33<br>34 | 388 | treatment of anaerobic infections. Clin. Infect. Dis. 50(Suppl.1), S16-S23.                 |
| 35<br>36       | 389 | Martínez-Moreno, F. J., S. Hernández, E. López-Cobos, C. Becerra, I. Acosta, and A.         |
| 37<br>38       | 390 | Martínez-Moreno, 2007: Estimation of canine intestinal parasites in Córdoba (Spain)         |
| 39<br>40<br>41 | 391 | and their risk to public health. Vet. Parasitol. 143, 7–13.                                 |
| 41<br>42<br>43 | 392 | Nwachuku, N., and C. P. Gerba, 2004: Microbial risk assessment: don't forget the children.  |
| 44<br>45       | 393 | Curr. Opin. Microbiol. 7, 206–209.                                                          |
| 46<br>47       | 394 | Orden, C., J. L. Blanco, S. Álvarez-Pérez, M. Garcia-Sancho, F. Rodriguez-Franco, A.        |
| 48<br>49<br>50 | 395 | Sainz, A. Villaescusa, C. Harmanus, E. Kuijper, and M. E. Garcia, 2017: Isolation of        |
| 51<br>52       | 396 | Clostridium difficile from dogs with digestive disorders, including stable                  |
| 53<br>54       | 397 | metronidazole-resistant strains. Anaerobe 43, 78-81.                                        |
| 55<br>56<br>57 |     |                                                                                             |
| 58             |     | 18                                                                                          |
| 59<br>60       |     | Zoonoses and Public Health                                                                  |

# ZPH Manuscript Proof

| 1<br>2                                 |     |                                                                                          |
|----------------------------------------|-----|------------------------------------------------------------------------------------------|
| 3<br>4                                 | 398 | Papich, G. M., 2016: Saunders Handbook of Veterinary Drugs: Small and Large Animal,      |
| 5<br>6                                 | 399 | 4th Edn, pp. 524–526. Saunders. St. Louis, MO.                                           |
| 7<br>8                                 | 400 | Papp-Wallace, K. M., A. Endimiani, M. A. Taracila, and R. A. Bonomo, 2011:               |
| 9<br>10<br>11                          | 401 | Carbapenems: past, present, and future. Antimicrob. Agents Chemother. 55, 4943-          |
| 12<br>13                               | 402 | 4960.                                                                                    |
| 14<br>15                               | 403 | Peláez, T., L. Alcalá, J. L. Blanco, S. Álvarez-Pérez, M. Marín, A. Martín-López, P.     |
| 16<br>17                               | 404 | Catalán, E. Reigadas, M. E. García, and E. Bouza, 2013: Characterization of swine        |
| 18<br>19<br>20                         | 405 | isolates of Clostridium difficile in Spain: a potential source of epidemic multidrug     |
| 21<br>22                               | 406 | resistant strains? Anaerobe 22, 45–49.                                                   |
| 23<br>24                               | 407 | Peláez, T., E. Cercenado, L. Alcalá, M. Marín, A. Martín-López, J. Martínez-Alarcón, P.  |
| 25<br>26<br>27                         | 408 | Catalán, M. Sánchez-Somolinos, and E. Bouza, 2008: Metronidazole resistance in           |
| 28<br>29                               | 409 | Clostridium difficile is heterogeneous. J. Clin. Microbiol. 46, 3028–3032.               |
| 30<br>31                               | 410 | Pirš, T., J. Avberšek, I. Zdovc, B. Krt, A. Andlovic, T. Lejko-Zupanc, M. Rupnik, and M. |
| 32<br>33                               | 411 | Ocepek, 2013: Antimicrobial susceptibility of animal and human isolates of               |
| 34<br>35<br>36<br>37<br>38<br>39<br>40 | 412 | Clostridium difficile by broth microdilution. J. Med. Microbiol. 62, 1478–1485.          |
|                                        | 413 | Ratnayake, L., J. McEwen, N. Henderson, D. Nathwani, G. Phillips, D. Brown, and J. Coia, |
|                                        | 414 | 2011: Control of an outbreak of diarrhoea in a vascular surgery unit caused by a high-   |
| 41<br>42<br>43                         | 415 | level clindamycin-resistant Clostridium difficile PCR ribotype 106. J. Hosp. Infect.     |
| 44<br>45                               | 416 | 79, 242–247.                                                                             |
| 46<br>47                               | 417 | Redgrave, L. S., S. B.Sutton, M. A. Webber, and L. J. Piddock LJ, 2014: Fluoroquinolone  |
| 48<br>49                               | 418 | resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends     |
| 50<br>51<br>52                         | 419 | Microbiol. 22, 438–445.                                                                  |
| 53<br>54                               |     |                                                                                          |
| 55<br>56                               |     |                                                                                          |
| 57<br>58                               |     | 19                                                                                       |
| 59<br>60                               |     | Zoonoses and Public Health                                                               |

| 3<br>4         | 420 | Silva, R. O., M. Rupnik, A. N. Diniz, E. G. Vilela, and F. C. Lobato, 2015: Clostridium  |
|----------------|-----|------------------------------------------------------------------------------------------|
| 5<br>6         | 421 | difficile ribotypes in human and animals in Brazil. Mem. Inst. Oswaldo Cruz 110,         |
| 7<br>8         | 422 | 1062–1065.                                                                               |
| 9<br>10<br>11  | 423 | Smits, W. K., D. Lyras, D. B. Lacy, M. H. Wilcox, and E. J. Kuijper, 2016: Clostridium   |
| 12<br>13       | 424 | difficile infection. Nat. Rev. Dis. Primers. 2, 16020.                                   |
| 14<br>15       | 425 | Staley, Z. R., C. Robinson, and T. A. Edge, 2016: Comparison of the occurrence and       |
| 16<br>17       | 426 | survival of fecal indicator bacteria in recreational sand between urban beach,           |
| 18<br>19<br>20 | 427 | playground and sandbox settings in Toronto, Ontario. Sci. Total Environ. 541, 520-       |
| 21<br>22       | 428 | 527.                                                                                     |
| 23<br>24<br>25 | 429 | Tickler, I. A., R. V. Goering, J. D. Whitmore, A. N. Lynn, D. H. Persing, F. C. Tenover, |
| 25<br>26<br>27 | 430 | and Healthcare Associated Infection Consortium, 2014: Strain types and                   |
| 28<br>29       | 431 | antimicrobial resistance patterns of Clostridium difficile isolates from the United      |
| 30<br>31<br>22 | 432 | States, 2011 to 2013. Antimicrob. Agents Chemother. 58, 4214–4218.                       |
| 32<br>33<br>34 | 433 | Wetterwik, K. J., G. Trowald-Wigh, L. L. Fernström, and K. Krovacek, 2013: Clostridium   |
| 35<br>36       | 434 | difficile in faeces from healthy dogs and dogs with diarrhea. Acta Vet. Scand. 55, 23.   |
| 37<br>38<br>20 | 435 |                                                                                          |
| 40<br>41       | 436 |                                                                                          |
| 42<br>43       |     |                                                                                          |
| 44<br>45       |     |                                                                                          |
| 46<br>47       |     |                                                                                          |
| 48             |     |                                                                                          |
| 49             |     |                                                                                          |
| 50             |     |                                                                                          |
| 51<br>52       |     |                                                                                          |
| 53             |     |                                                                                          |
| 54             |     |                                                                                          |
| 55             |     |                                                                                          |
| 56             |     |                                                                                          |
| 5/<br>58       |     | 20                                                                                       |
| 50<br>59       |     | 20                                                                                       |
| 60             |     | Zoonoses and Public Health                                                               |

| 1<br>ว                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------|
| 2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 437 | List of Tables                                                                        |
| 5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 438 | Table 1. Overview of the samples analyzed in this study and the Clostridium difficile |
| 7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 439 | isolates obtained from them.                                                          |
| 6         7         8         9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         950         51         52 | 439 | isolates obtained from them.                                                          |
| 53<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                                                                                       |
| 55<br>56<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                                                                                       |
| 57<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 21                                                                                    |
| 59<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | Zoonoses and Public Health                                                            |

# **ZPH Manuscript Proof**

| 2          |  |
|------------|--|
| 3          |  |
| 4          |  |
| 5          |  |
| 6          |  |
| 7          |  |
| 8          |  |
| å          |  |
| 10         |  |
| 10         |  |
| 11         |  |
| 12         |  |
| 13         |  |
| 14         |  |
| 15         |  |
| 16         |  |
| 17         |  |
| 18         |  |
| 10         |  |
| יע ו<br>רר |  |
| 20         |  |
| 21         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 26         |  |
| 27         |  |
| 28         |  |
| 20         |  |
| 20<br>20   |  |
| 20         |  |
| 51         |  |
| 32         |  |
| 33         |  |
| 34         |  |
| 35         |  |
| 36         |  |
| 37         |  |
| 38         |  |
| 39         |  |
| 40         |  |
| -+U<br>⊿1  |  |
| 41         |  |
| 42         |  |
| 43         |  |
| 44         |  |
| 45         |  |
| 46         |  |
| 47         |  |
| 48         |  |
| 49         |  |
| 50         |  |
| 51         |  |
| 51         |  |
| 52         |  |
| 23         |  |
| 54         |  |
| 55         |  |
| 56         |  |
| 57         |  |
| 58         |  |
| 59         |  |
| 60         |  |

1

# 441 Figure Legends

442 Figure 1. Dendrogram of AFLP profiles obtained for the 20 *Clostridium difficile* isolates characterized in this study. The dendrogram was created by unweighted pair group method 443 with arithmetic averages (UPGMA) clustering using Pearson's correlation coefficients. 444 445 Individual AFLP genotypes are distinguished at  $\geq$ 86% similarity (red dotted vertical line). Isolates obtained from children's and dog's sandboxes are indicated by blue and yellow 446 backgrounds, respectively. Colored squares at the tip of branches indicate the ribotype (see 447 color legend on the lower left corner). In vitro resistance to clindamycin (C), erythromycin 448 (E), imipenem (I), levofloxacin (L) and/or penicillin G (P) is denoted by the red letters next 449 450 to strain names. Figure 2. Image showing the children's and dog's sandboxes from zone V which yielded 451 ribotype 014 Clostridium difficile isolates (see details in Results). 452 453 454 22 Zoonoses and Public Health

# 455 Supporting Information

456 Additional Supporting Information may be found in the online version of this article:

- **Table S1.** Characteristics of the *Clostridium difficile* isolates analyzed in this study.
- 458 Figure S1. Schematic representation of the Madrid region (central Spain), indicating the
- 459 approximate location of the zones from which sand samples were obtained in this study.

to periodo out

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| /        |  |
| 0        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 30       |  |
| 10       |  |
| 40<br>⊿1 |  |
| 41       |  |
| 4∠<br>⊿⊃ |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |

# 1 Original Article

| 2  |                                                                                                                                    |
|----|------------------------------------------------------------------------------------------------------------------------------------|
| 3  | Recreational sandboxes for children and dogs can be a source of                                                                    |
| 4  | epidemic ribotypes of <i>Clostridium dificile</i>                                                                                  |
| 5  |                                                                                                                                    |
| 6  | Cristina Orden <sup>1</sup> , Carlos Neila <sup>1</sup> , José L. Blanco <sup>1</sup> , Sergio Álvarez-Pérez <sup>1</sup> , Celine |
| 7  | Harmanus <sup>2</sup> , Ed J. Kuijper <sup>2</sup> , and Marta E. García <sup>1</sup>                                              |
| 8  |                                                                                                                                    |
| 9  | Short title: C. difficile in sandboxes                                                                                             |
| 10 |                                                                                                                                    |
| 11 | Authors and affiliations                                                                                                           |
| 12 | <sup>1</sup> Department of Animal Health, Faculty of Veterinary, Universidad Complutense de                                        |
| 13 | Madrid, Madrid, Spain                                                                                                              |
| 14 | <sup>2</sup> Department of Medical Microbiology, Center of Infectious Diseases, Leiden University                                  |
| 15 | Medical Center, Leiden, Netherlands                                                                                                |
| 16 |                                                                                                                                    |
| 17 | Correspondence:                                                                                                                    |
| 18 | Prof. José L. Blanco, PhD, DVM. Departamento de Sanidad Animal, Facultad de                                                        |
| 19 | Veterinaria, Universidad Complutense de Madrid. Avda. Puerta de Hierro s/n, 28040                                                  |
| 20 | Madrid (Spain). Tel.: +34 91 394 3717. E-mail address: jlblanco@ucm.es                                                             |
|    |                                                                                                                                    |
|    |                                                                                                                                    |
|    |                                                                                                                                    |
|    |                                                                                                                                    |

| 1<br>ว         |    |                                                                                                     |
|----------------|----|-----------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 21 | Impacts                                                                                             |
| 5<br>6         | 22 | • The sand of public playgrounds can have a role in the transmission of various                     |
| 7<br>8         | 23 | infections, particularly in children. However, most studies published so far have                   |
| 9<br>10<br>11  | 24 | focused on select pathogenic parasites and fecal bacteria.                                          |
| 12<br>13       | 25 | • In this study we demonstrated that the Gram-positive anaerobe <i>Clostridium difficile</i> is     |
| 14<br>15       | 26 | widely distributed in soils samples from children's and dog's sandboxes located within              |
| 16<br>17<br>18 | 27 | the metropolitanean area of Madrid.                                                                 |
| 19<br>20       | 28 | • Furthermore, we demonstrated the presence of genetically diverse strains of <i>C. difficile</i> , |
| 21<br>22       | 29 | including the epidemic PCR ribotypes 014 and 106, in the studied sandboxes.                         |
| 23<br>24<br>25 | 30 |                                                                                                     |
| 25<br>26       |    |                                                                                                     |
| 27<br>28       |    |                                                                                                     |
| 29             |    |                                                                                                     |
| 30             |    |                                                                                                     |
| 31             |    |                                                                                                     |
| 32<br>33       |    |                                                                                                     |
| 34             |    |                                                                                                     |
| 35             |    |                                                                                                     |
| 36             |    |                                                                                                     |
| 37             |    |                                                                                                     |
| 39             |    |                                                                                                     |
| 40             |    |                                                                                                     |
| 41             |    |                                                                                                     |
| 42             |    |                                                                                                     |
| 43<br>44       |    |                                                                                                     |
| 45             |    |                                                                                                     |
| 46             |    |                                                                                                     |
| 47             |    |                                                                                                     |
| 48<br>40       |    |                                                                                                     |
| 49<br>50       |    |                                                                                                     |
| 51             |    |                                                                                                     |
| 52             |    |                                                                                                     |
| 53             |    |                                                                                                     |
| 54<br>55       |    |                                                                                                     |
| 55<br>56       |    |                                                                                                     |
| 57             |    |                                                                                                     |
| 58             |    | 2                                                                                                   |
| 59             |    | _                                                                                                   |

| 31 | Summary                                                                                              |
|----|------------------------------------------------------------------------------------------------------|
| 32 | Different studies have suggested that the sand of public playgrounds could have a role in            |
| 33 | the transmission of infections, particularly in children. Furthermore, free access of pets and       |
| 34 | other animals to the playgrounds might increase such a risk. We studied the presence of              |
| 35 | Clostridium difficile in 20 pairs of sandboxes for children and dogs located in different            |
| 36 | playgrounds within the Madrid region (Spain). C. difficile isolation was performed                   |
| 37 | according to standardby enrichment and selective culture procedures. The genetic (ribotype           |
| 38 | and amplified fragment length polymorphism [AFLP]) diversity and antibiotic                          |
| 39 | susceptibility of isolates was also studied. Overall, 52.5% (21/40) of samples were positive         |
| 40 | for the presence of C. difficile. Eight of the 20 available isolates belonged to the toxigenic       |
| 41 | ribotypes 014 ( $n = 5$ ) and 106 ( $n = 2$ ), both regarded as epidemic, and CD047 ( $n = 1$ ). The |
| 42 | other 12 isolates were non-toxigenic, and belonged to ribotypes $009 (n = 5), 039 (n = 4),$          |
| 43 | and 067, 151 and CD048 (one isolate each). Nevertheless, all isolates (even those of a same          |
| 44 | ribotype) were classified into different AFLP genotypes indicating non-relatedness. In               |
| 45 | conclusion, our results revealed the presence of epidemic ribotypes of C. difficile in               |
| 46 | children's and dog's sandboxes located nearby, which constitutes a major health risk.                |
| 47 |                                                                                                      |
| 48 | Keywords: Clostridium difficile; children; dog; epidemic strains; sandboxes.                         |

Zoonoses and Public Health 1 ว

### **ZPH Manuscript Proof**

| 2                |  |
|------------------|--|
| 3                |  |
| 4                |  |
| 5                |  |
| 6                |  |
| 7                |  |
| ۰<br>۵           |  |
| 0                |  |
| 9                |  |
| 10               |  |
| 11               |  |
| 12               |  |
| 13               |  |
| 14               |  |
| 15               |  |
| 10               |  |
| 16               |  |
| 17               |  |
| 18               |  |
| 19               |  |
| 20               |  |
| 21               |  |
| י <u>-</u><br>רר |  |
| 22               |  |
| 23               |  |
| 24               |  |
| 25               |  |
| 26               |  |
| 27               |  |
| 28               |  |
| 20               |  |
| 29               |  |
| 30               |  |
| 31               |  |
| 32               |  |
| 33               |  |
| 34               |  |
| 35               |  |
| 26               |  |
| 20               |  |
| 37               |  |
| 38               |  |
| 39               |  |
| 40               |  |
| 41               |  |
| 42               |  |
| ⊿2               |  |
| 43               |  |
| 44               |  |
| 45               |  |
| 46               |  |
| 47               |  |
| 48               |  |
| 49               |  |
| 50               |  |
| 50               |  |
| 21               |  |
| 52               |  |
| 53               |  |
| 54               |  |
| 55               |  |
| 56               |  |
| 57               |  |
| 57               |  |
| 20               |  |
| 59               |  |

60

# 50 Introduction

51 The soil of playgrounds is a reservoir of diverse parasites and infectious agents (Martínez-Moreno et al., 2007; Dado et al., 2012; Gotkowska-Płachta and Korzeniewska, 2014; Staley 52 et al., 2016). Furthermore, free access of domestic and wild animals to recreational areas 53 54 can increase the burden of microbiological contamination (Haag-Wackernagel and Moch, 2004; Martínez-Moreno et al., 2007; Dado et al., 2012; Gotkowska-Płachta and 55 Korzeniewska, 2014; Staley et al., 2016). Children are generally regarded as the main 56 group at risk for environmental exposure to pathogens, not only because they are frequent 57 users of playgrounds, but also due to the high prevalence of geophagia (i.e. consumption of 58 sand) within this group, and the immaturity of their immunological, neurological and 59 digestive systems (Nwachuku and Gerba, 2004; Dado et al., 2012; Gotkowska-Płachta and 60 Korzeniewska, 2014). 61

*Clostridium difficile* is a Gram-positive, anaerobic bacterium of widespread 62 distribution in the environment, where it can survive under adverse conditions through the 63 production of spores (Hensgens et al., 2012; Smits et al., 2016). This bacterial species was 64 traditionally regarded as a primarily nosocomial pathogen, but this view has been 65 challenged as the incidence of C. difficile infection (CDI) in people outside hospitals started 66 to increase (Hensgens et al., 2012; Smits et al., 2016). In this context, diverse animal 67 species, food products and environmental sources have been suggested to play a role in the 68 transmission of the C. difficile and, in particular, of some epidemic genotypes such as 69 ribotype 078 (Hensgens et al., 2012; Smits et al., 2016). However, to the best of our 70 knowledge, the presence of C. difficile in sandboxes of playgrounds has only been explored 71 in a limited number of studies (al Saif and Brazier, 1996; Higazi et al. 2011; Båverud et al., 72 73 2003).

**ZPH Manuscript Proof** 

Page 28 of 50

| 2         |  |
|-----------|--|
| 3         |  |
| 4         |  |
| 5         |  |
| 6         |  |
| 7         |  |
| 8         |  |
| a         |  |
| 10        |  |
| 10        |  |
| 11        |  |
| 12        |  |
| 13        |  |
| 14        |  |
| 15        |  |
| 16        |  |
| 17        |  |
| 18        |  |
| 19        |  |
| 20        |  |
| 21        |  |
| ר ב<br>בר |  |
| 22        |  |
| 23        |  |
| 24        |  |
| 25        |  |
| 26        |  |
| 27        |  |
| 28        |  |
| 29        |  |
| 30        |  |
| 31        |  |
| 32        |  |
| 33        |  |
| 37        |  |
| 25        |  |
| 22        |  |
| 30        |  |
| 37        |  |
| 38        |  |
| 39        |  |
| 40        |  |
| 41        |  |
| 42        |  |
| 43        |  |
| 44        |  |
| 45        |  |
| 46        |  |
| 47        |  |
| ۰,<br>۲۵  |  |
| -TU<br>/0 |  |
| 77<br>50  |  |
| 5U        |  |
| 51        |  |
| 52        |  |
| 53        |  |
| 54        |  |
| 55        |  |
| 56        |  |
| 57        |  |
| 58        |  |
| 59        |  |
|           |  |

1

# In this study we determined the presence of *C. difficile* in 20 pairs of recreational sandboxes for children and dogs located in different playgrounds within the Madrid region (Spain). In addition, we compared the isolates recovered from children's and dog's sandboxes in terms of genetic characteristics and *in vitro* antimicrobial susceptibility. Materials and methods Sampling scheme

Sampling was carried out on two consecutive days (July 1-2, 2015) in 20 pairs of children's 81 and dog's sandboxes located nearby (within 94 m in all cases, mean  $\pm$  S.D. = 35.1  $\pm$  20.5 82 m; Table 1) in public playgrounds scattered throughout three zones (A, M and V; postal 83 codes: E-28047, E-28222/E-28221/E-28220 and E-28400, respectively) within the Madrid 84 region (central Spain) (Figure S1). Therefore, a total of 40 sandboxes (20 for children and 85 20 for dogs) were analyzed. The number and distribution of samples per sampling zone and 86 sampling point is indicated in Table 1. 87 A 200-g sand sample was obtained from each sampling point according to the 88 procedure described in Córdoba et al. (2002). Briefly, four 50-g sand samples were 89

collected from different locations within the sampling point using a sterile plastic container
(Nirco, Madrid, Spain). All four sand samples were then thoroughly mixed in a sterile
plastic bag (Nirco), which was transported to the laboratory and kept frozen (-20°C) until
analyzed, which took place within 24 h.

94

## **ZPH Manuscript Proof**

| 2      |
|--------|
| 3      |
| 4      |
| 5      |
| ر<br>ح |
| 6      |
| 7      |
| 8      |
| 9      |
| 10     |
| 10     |
| 11     |
| 12     |
| 13     |
| 14     |
| 15     |
| 16     |
| 10     |
| 17     |
| 18     |
| 19     |
| 20     |
| 21     |
| 22     |
| 22     |
| 25     |
| 24     |
| 25     |
| 26     |
| 27     |
| 28     |
| 20     |
| 29     |
| 30     |
| 31     |
| 32     |
| 33     |
| 34     |
| 25     |
| 55     |
| 36     |
| 37     |
| 38     |
| 39     |
| 40     |
| 41     |
| 41     |
| 42     |
| 43     |
| 44     |
| 45     |
| 46     |
| 17     |
| 4/     |
| 48     |
| 49     |
| 50     |
| 51     |
| 52     |
| 52     |
| 55     |
| 54     |
| 55     |
| 56     |
| 57     |
| 50     |
| 20     |

# 95 *Microbiological analyses*

96 Sand samples (50 g each, taken and aseptically weighted from the 200-g mixtures kept in the freezer) were transferred into sterile one-liter glass bottles, diluted 1:10 in peptone 97 water (Laboratorios Conda, Madrid, Spain) and incubated under agitation (200 rpm) for 15 98 99 min at room temperature. These suspensions were then allowed to settle for 5 min and the supernatants were filtered though filter papers-membranes (0.45 µm of pore size; Filter Lab, 100 Barcelona, Spain) following the procedure detailed in Álvarez-Pérez et al. (2016). Filter 101 papers membranes were then introduced into 10-ml glass tubes containing 5 ml of selective 102 broth for enrichment of C. difficile (TecLaim, Madrid, Spain; see recipe in Blanco et al., 103 2013). After seven days of incubation at 37°C under anaerobiosis, 2 ml of the enrichment 104 culture were mixed 1:1 with absolute ethanol (Panreac, Barcelona, Spain) in 5 ml sterile 105 plastic tubes (Nirco, Madrid, Spain) and left for 1 hour under agitation (200 rpm) at room 106 107 temperature. Finally, tubes were centrifuged at 1520 g for 10 min, the supernatants were discarded and precipitates were spread with a sterile cotton-tipped swab (Nirco) onto a 108 plate of CLO agar (bioMérieux, Marcy l'Etoile, France), which contains cycloserine and 109 110 cefoxitin as selective agents. Inoculated plates were incubated under anaerobic conditions for 72 h at 37°C and suspected colonies were identified as *C. difficile* by colony 111 morphology, the typical odor of this microorganism, and a positive result in a rapid specific 112 immunoassay for detection of the constitutive antigen glutamate dehydrogenase (GDH) (C. 113 Diff Quik Chek Complete; TECHLAB Inc., Blacksburg, VA, USA). The same 114 115 immunoassay was used to determine the toxigenic/non toxigenic status of isolates, as it 116 detects production of C. difficile toxins A and B. A single C. difficile isolate was selected from each primary culture and sub-cultured on CLO agar to obtain axenic cultures that 117 could be used in subsequent tests. 118

6

| 119 |                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------|
| 120 | Molecular characterization of isolates                                                               |
| 121 | Possession of <i>tcdA</i> and <i>tcdB</i> genes (which encode for toxins A and B, respectively), and |
| 122 | cdtA and cdtB (which encode for the two components of binary toxin (CDT), respectively),             |
| 123 | was analyzed by conventional PCR protocols (Álvarez-Pérez et al. 2009, 2014, 2015).                  |
| 124 | Genotyping of isolates was performed by high-resolution capillary gel-based                          |
| 125 | electrophoresis PCR-ribotyping, following the procedures described in Fawley et al.                  |
| 126 | (2015). Ribotypes were designated according to the nomenclature of the Leiden (Prof. Ed              |
| 127 | Kuijper; The Netherlands)-Leeds (Dr. Warren Fawley and Prof. Mark Wilcox; UK)                        |
| 128 | database (The Netherlands). If a matching PCR ribotype was not found, the electrophoresis            |
| 129 | profile was sent to Leeds for a search in the Leeds database of more than 600 PCR                    |
| 130 | ribotypes (Dr. Warren Fawley and Prof. Mark Wilcox, Leeds). Novel ribotypes were named               |
| 131 | using internal reference codes (prefix 'CD' followed by a number).                                   |
| 132 | Isolates were further genetically characterized by amplified fragment length                         |
| 133 | polynorphism (AFLP) fingerprinting, using the protocol detailed in Álvarez-Pérez et al.              |
| 134 | (2017). A binary 0/1 matrix was created based on the absence/presence of AFLP markers                |
| 135 | and a dendrogram of AFLP patterns was created with PAST v.3.11 software (Hammer et                   |
| 136 | al., 2001) using Pearson's correlation coefficients and the unweighted-pair group method             |
| 137 | with arithmetic averages (UPGMA) clustering algorithm. Isolates clustering with <86%                 |
| 138 | similarity were considered to represent different AFLP genotypes (Killgore et al., 2008;             |
| 139 | Álvarez-Pérez et al., 2017).                                                                         |
| 140 |                                                                                                      |
| 141 | Antimicrobial susceptibility testing                                                                 |
|     |                                                                                                      |
|     | 7                                                                                                    |
|     | Zoonoses and Public Health                                                                           |

Page 31 of 50

# ZPH Manuscript Proof

| 1<br>ว         |     |                                                                                                                                 |
|----------------|-----|---------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 142 | In vitro susceptibility of isolates was determined by the Etest (bioMérieux) on prereduced                                      |
| 5<br>6         | 143 | Brucella agar supplemented with vitamin K1 and haemin (bioMérieux), according to the                                            |
| 7<br>8<br>9    | 144 | manufacturer's instructions. Plates were incubated anaerobically at 37°C and examined at                                        |
| )<br>10<br>11  | 145 | 48 h. Tested antimicrobial compounds and breakpoints for antimicrobial resistance were as                                       |
| 12<br>13       | 146 | follows: penicillin G, $\geq 2 \ \mu g/ml$ ; teicoplanin, $\geq 2 \ \mu g/ml$ ; rifampicin, $\geq 4 \ \mu g/ml$ ; linezolid and |
| 14<br>15       | 147 | tigecycline, >4 $\mu$ g/ml; clindamycin, erythromycin and levofloxacin, ≥8 $\mu$ g/ml; imipenem,                                |
| 16<br>17<br>18 | 148 | minocycline and tetracycline, $\geq 16 \ \mu g/ml$ ; amoxicillin/clavulanic acid, $\geq 16/8 \ \mu g/ml$ ; and                  |
| 19<br>20       | 149 | metronidazole and vancomycin, ≥32 µg/ml. (CLSI, 2012; Álvarez-Pérez et al., 2013, 2014,                                         |
| 21<br>22       | 150 | 2015, 2017; Peláez et al. 2013).                                                                                                |
| 23<br>24<br>25 | 151 | In order to detect possible metronidazole heteroresistance, which is manifested as a                                            |
| 25<br>26<br>27 | 152 | slow growth of resistant subpopulations within the inhibition halo in the Etest at                                              |
| 28<br>29       | 153 | concentrations above the resistance breakpoint, metronidazole test plates were further                                          |
| 30<br>31       | 154 | incubated anaerobically at 37°C for five additional days (Peláez et al., 2008).                                                 |
| 32<br>33<br>34 | 155 |                                                                                                                                 |
| 35<br>36       | 156 | Data analysis                                                                                                                   |
| 37<br>38       | 157 | Fisher's exact test and Pearson's chi-square test were used for statistical analysis of                                         |
| 39<br>40<br>41 | 158 | categorical data where appropriate. <i>P</i> -values of <0.05 were considered to be statistically                               |
| 41<br>42<br>43 | 159 | significant in all cases.                                                                                                       |
| 44<br>45       | 160 |                                                                                                                                 |
| 46<br>47       | 161 | Results                                                                                                                         |
| 48<br>49<br>50 | 162 | Clostridium difficile was recovered from 21 (52.5%) of the sand samples analyzed,                                               |
| 50<br>51<br>52 | 163 | collected from 12 and 9 sandboxes located in recreational areas for dogs and children,                                          |
| 53<br>54       | 164 | respectively (Table 1). The distribution of isolates by sampling (sub)zone and type of                                          |
| 55<br>56<br>57 | 165 | sample (children's or dog's sandboxes) is shown in Table 1. There was no difference in C.                                       |
| 58             |     | 8                                                                                                                               |
| 60             |     | Zoonoses and Public Health                                                                                                      |

# ZPH Manuscript Proof

| 2        |  |
|----------|--|
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 20       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 4Z<br>13 |  |
| 43<br>44 |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 5/       |  |
| 20<br>20 |  |
| 59<br>60 |  |
| 00       |  |

| 166 | <i>difficile</i> prevalence between children's and dog's sandboxes ( $P = 0.527$ ) or among                                               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
| 167 | sampling zones ( $P = 0.203$ ). A positive culture result for both samples of each pair was                                               |
| 168 | obtained in five cases, whereas C. difficile was recovered only from one sandbox of the pair                                              |
| 169 | in 11 cases (four from children's sandboxes and seven from dog's sandboxes) and a                                                         |
| 170 | negative culture result for both samples was obtained in four cases (Table 1).                                                            |
| 171 | One C. difficile isolate (obtained from a children's sandbox in zone A [sample A-N-                                                       |
| 172 | 2], Table 1) was lost during subculturing in the laboratory. Eight of the 20 remaining                                                    |
| 173 | isolates (seven-six from dog's and four-two from children's sandboxes) were toxigenic and                                                 |
| 174 | belonged to ribotypes 014 ( $A^+B^+CDT^-$ , $n = 5$ ), 106 ( $A^+B^+CDT^-$ , $n = 2$ ) and CD047 (isolate                                 |
| 175 | M-P-4, A <sup>+</sup> B <sup>+</sup> CDT <sup>-</sup> ) (Tables 1 and S1, Figure 1). The other eight <u>12</u> isolates were non-         |
| 176 | toxigenic (i.e. A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> ) and belonged to ribotypes 009 ( $n = 5$ ), 039 ( $n = 4$ ), and 067, 151 |
| 177 | and CD048 (one isolate each) (Tables 1 and S1, Figure 1). Further genetic characterization                                                |
| 178 | of isolates by AFLP fingerprinting classified each one of these into a different genotype                                                 |
| 179 | (Figure 1 and Table S1). Notably, clustering of isolates in the UPGMA dendrogram                                                          |
| 180 | obtained from AFLP data was independent from the origin (both at the '(sub)zone' and                                                      |
| 181 | 'children vs. dog areas' levels) and ribotype of isolates (Figure 1).                                                                     |
| 182 | Regardless of their origin and genotype, all studied isolates showed resistance to                                                        |
| 183 | imipenem and levofloxacin (Figure 1 and Table S1). Additionally, the isolates of ribotypes                                                |
| 184 | CD048 and 151 (A-N-8 and V-N-1, respectively) displayed- resistance to clindamycin and                                                    |
| 185 | erythromycin, and a ribotype 014 isolate (A-P-3) was resistant to penicillin (Figure 1 and                                                |
| 186 | Table S1). MICs to the other antimicrobial compound tested were generally low, and fell                                                   |
| 187 | below the resistance breakpoint in all cases (Table S1).                                                                                  |
| 188 | Notably, the samples obtained from a pair of children's and dog's sandboxes in zone                                                       |
| 189 | V (V-N-2/V-P-2; Figure 2) yielded C. difficile isolates of a same toxigenic ribotype (014)                                                |

Page 33 of 50

1

# ZPH Manuscript Proof

| 2  |  |
|----|--|
| 3  |  |
| 1  |  |
| -  |  |
| 5  |  |
| 6  |  |
| 7  |  |
| 8  |  |
| 9  |  |
| 10 |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 16 |  |
| 17 |  |
| 17 |  |
| 18 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 22 |  |
| 23 |  |
| 23 |  |
| 24 |  |
| 25 |  |
| 26 |  |
| 27 |  |
| 28 |  |
| 29 |  |
| 30 |  |
| 21 |  |
| 31 |  |
| 32 |  |
| 33 |  |
| 34 |  |
| 35 |  |
| 36 |  |
| 20 |  |
| 57 |  |
| 38 |  |
| 39 |  |
| 40 |  |
| 41 |  |
| 42 |  |
| 43 |  |
| 11 |  |
| 44 |  |
| 45 |  |
| 46 |  |
| 47 |  |
| 48 |  |
| 49 |  |
| 50 |  |
| 50 |  |
| 51 |  |
| 52 |  |
| 53 |  |
| 54 |  |
| 55 |  |
| 56 |  |
| 50 |  |
| 57 |  |
| 58 |  |
| 59 |  |
| 60 |  |

| 190 | and which showed a similar antimicrobial susceptibility profile, but the AFLP profiles of           |
|-----|-----------------------------------------------------------------------------------------------------|
| 191 | such isolates displayed limited similarity (Pearson's correlation = $0.126$ ) (Figure 1). In        |
| 192 | contrast, four pairs of sand samples (A-N-3/A-P-3, A-N-4/A-P-4, A-N-5/A-P-5 and V-N-                |
| 193 | 1/V-P-1) yielded C. difficile isolates of different ribotypes.                                      |
| 194 |                                                                                                     |
| 195 | Discussion                                                                                          |
| 196 | The growing number of pets and other animals leaving excrements in the sandboxes of                 |
| 197 | playgrounds and other recreational areas constitute a serious epidemiological threat                |
| 198 | (Martínez-Moreno et al., 2007; Gotkowska-Płachta and Korzeniewska, 2014; Staley et al.,             |
| 199 | 2016). Current tests for assessing the sanitary conditions of sandboxes mostly focus on             |
| 200 | detecting some select pathogenic parasites and bacterial indicators of fecal contamination          |
| 201 | (Martínez-Moreno et al., 2007; Gotkowska-Płachta and Korzeniewska, 2014; Staley et al.,             |
| 202 | 2016), but mostly neglect the possible presence of other emerging pathogens such as $C$ .           |
| 203 | difficile.                                                                                          |
| 204 | Reports of C. difficile presence in recreational sandboxes are still limited in number              |
| 205 | and of variable scope. For example, Al-Saif and Brazier (1996) reported the isolation of <i>C</i> . |
| 206 | difficile from a 21% of soil samples taken from public parks, gardens, playgrounds and              |
| 207 | other locations in the suburbs of Cardiff, UK. Subsequent characterization of some of those         |
| 208 | soil isolates by PCR ribotyping and pyrolysis mass spectrometry (PyMS) fingerprinting               |
| 209 | revealed the presence of toxin-producers and different ribotypes (Al Saif et al., 1998).            |
| 210 | Similarly, Higazi et al. (2011) investigated by a PCR-based approach the presence of C.             |
| 211 | difficile in soil samples from public parks and elementary school playgrounds in a                  |
| 212 | Midwestern town of the USA and reported an overall prevalence of 6.5%, but bacterial                |
| 213 | isolates were only obtained in some cases and these were not genotyped nor tested for               |

Zoonoses and Public Health

antimicrobial resistance. Finally, Båverud et al. (2013) observed an overall *C. difficile*prevalence of 4% in soil samples obtained from public parks, playgrounds, gardens and
cultivated fields, but the origin and characteristics of recovered isolates were not detailed in
their paper.

In this study, we demonstrated that *C. difficile* is widely distributed in soils samples
from both children's and dog's sandboxes located within the metropolitanean area of
Madrid. Furthermore, our results revealed that recovered isolates were genetically diverse
and displayed resistance to several antibiotics (≥2 drugs, including in all cases imipenem
and levofloxacin). Notably, analysis of AFLP fingerprinting results showed high genetic
variation even among isolates obtained from a same sampling (sub)zone.

Most C. difficile isolates recovered in this study from sandboxes belonged to ribotypes 014 and 009. The toxigenic ribotype 014 is one of the most prevalent genotypes isolated from human patients and animals in Europe (including Spain) and other countries such as Australia, Brazil and the USA (Bauer et al., 2011; Koene et al. 2012; Alcalá et al. 2012, 2015; Janezic et al., 2012, 2014; Tickler et al., 2014; Freeman et al., 2015; Knight et al., 2015a,b; Silva et al. 2015). Non-toxigenic ribotype 009 is also prevalent in both human and animal hosts in some countries including Brazil (Silva et al. 2015), but it is rarely reported in Spain and the rest of Europe (e.g. Koene et al. 2012; Wetterwik et al., 2013; Álvarez-Pérez et al., 2015).

Other ribotypes found in this study such as 039 and 106 are also frequently isolated from human and/or animal fecal samples (Bauer et al., 2011; Alcalá et al., 2012, 2015; Koene et al., 2012; Tickler et al., 2014; Freeman, 2015). In particular, ribotype 106 has been implicated in outbreaks of human disease in the UK (Ratnayake et al., 2011) and is also relatively common in continental Europe and North America (Bauer et al., 2011;

Zoonoses and Public Health

# **ZPH Manuscript Proof**

| 3<br>4         | 238 | Alcalá et al., 2012, 2015; Tickler et al., 2014; Freeman et al., 2015). We recently obtained       |
|----------------|-----|----------------------------------------------------------------------------------------------------|
| 5<br>6         | 239 | several ribotype 106 isolates from the feces of dogs with diverse digestive disorders (Orden       |
| 7<br>8         | 240 | et al., 2017). Curiously, despite the frequent shedding of C. difficile ribotype 078 by            |
| 9<br>10<br>11  | 241 | animals previously observed in Spain (Peláez et al., 2013; Álvarez-Pérez et al., 2013, 2014,       |
| 12<br>13       | 242 | 2015) and many other countries (Janezic et al., 2014) we did not found any isolate of this         |
| 14<br>15       | 243 | epidemic ribotype in the present study. Nevertheless, as a single <i>C. difficile</i> isolate from |
| 16<br>17<br>18 | 244 | each primary culture was selected from each primary culture for detailed phenotypic and            |
| 19<br>20       | 245 | genetic characterization, we cannot discard the possibility that this and other ribotypes          |
| 21<br>22       | 246 | might have been overlooked.                                                                        |
| 23<br>24<br>25 | 247 | Finally, all isolates characterized in this study displayed high-level Iin vitro                   |
| 26<br>27       | 248 | resistance to imipenem and levofloxacin, a phenotype which -is fairly common among                 |
| 28<br>29       | 249 | elinical C. difficile isolates of diverse ribotypes of C. difficile from different geographic      |
| 30<br>31       | 250 | locations (Alcalá et al., 2012; Keessen et al., 2013; Pirš et al., 2013; Freeman et al., 2015).    |
| 32<br>33<br>34 | 251 | As -carbapenems and fluoroquinolones are widely used in human and veterinary medicine              |
| 35<br>36       | 252 | to treat a diversity of infections (Papich, 2011; Papp-Wallace et al., 2011; Redgrave et al.,      |
| 37<br>38       | 253 | 2014), monitoring the resistance to these compounds in C. difficile and other emerging             |
| 39<br>40<br>41 | 254 | pathogens should be a priority. Furthermore, some isolates were found to be resistant to           |
| 42<br>43       | 255 | erythromycin, clindamycin and penicillin G, all of which are of common use in clinical             |
| 44<br>45       | 256 | practice (Papich, 2011). Although we did not detect any isolate with decreased                     |
| 46<br>47<br>48 | 257 | susceptibility or heterogeneous resistance to metronidazole, we recommend to determine             |
| 49<br>50       | 258 | MIC values to this antibiotic even for environmental isolates, as metronidazole is still           |
| 51<br>52       | 259 | considered a first-line drug for the treatment of anaerobe infections in human and animal          |
| 53<br>54       | 260 | medicine (Dhand and Snydman, 2009; Löfmark et al., 2010; Papich, 2016) and                         |
| 55<br>56<br>57 | 261 | (hetero)resistant strains of C. difficile and other clostridia have been reported by different     |
| 58             |     | 12                                                                                                 |
| 59<br>60       |     | Zoonoses and Public Health                                                                         |

| 3<br>4         | 262 | authors (Peláez et al., 2008, 2013; Álvarez-Pérez et al., 2013, 2014, 2015, 2017; Wetterwik            |
|----------------|-----|--------------------------------------------------------------------------------------------------------|
| 5<br>6         | 263 | et al., 2013).                                                                                         |
| 7<br>8         | 264 |                                                                                                        |
| 9<br>10<br>11  | 265 | Conclusions                                                                                            |
| 12<br>13       | 266 | In summary, our results revealed the presence of epidemic ribotypes of C. difficile in                 |
| 14<br>15       | 267 | children's and dog's sandboxes, which constitutes a major health risk. Due to the zoonotic             |
| 16<br>17<br>18 | 268 | potential attributed to some ribotypes of <i>C. difficile</i> , the possible presence of this emerging |
| 19<br>20       | 269 | pathogen should be considered in any environmental risk assessment.                                    |
| 21<br>22       | 270 |                                                                                                        |
| 23<br>24<br>25 | 271 | Acknowledgements                                                                                       |
| 26<br>27       | 272 | This work was funded by the Spanish Ministry of Economy and Competitiveness [grant                     |
| 28<br>29       | 273 | number AGL2013-46116-R]. Sergio Álvarez-Pérez acknowledges a 'Juan de la Cierva'                       |
| 30<br>31<br>32 | 274 | postdoctoral contract [JCI-2012-12396]. The funders had no role in study design, data                  |
| 33<br>34       | 275 | collection and interpretation, or the decision to submit the work for publication. We thank            |
| 35<br>36       | 276 | the staff of the Genomics Service at Universidad Complutense de Madrid for providing                   |
| 37<br>38       | 277 | excellent technical assistance.                                                                        |
| 39<br>40<br>41 | 278 |                                                                                                        |
| 42<br>43       | 279 | Declaration of interest                                                                                |
| 44<br>45       | 280 | None of the authors of this paper has a financial or personal relationship with other people           |
| 46<br>47<br>48 | 281 | or organizations that could inappropriately influence or bias the content of the paper.                |
| 49<br>50       | 282 |                                                                                                        |
| 51<br>52       | 283 | References                                                                                             |
| 53<br>54       | 284 | al Saif, N., and J. S. Brazier, 1996: The distribution of Clostridium difficile in the                 |
| 55<br>56<br>57 | 285 | environment of South Wales. J. Med. Microbiol. 45, 133-137.                                            |
| 58             |     | 13                                                                                                     |
| 59<br>60       |     | Zoonoses and Public Health                                                                             |

| 2                           |     |                                                                                                        |
|-----------------------------|-----|--------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4                 | 286 | Al-Saif, N.M., G. L. O'Neill, J. T. Magee, J. S. Brazier, and B. I. Duerden, 1998: PCR-                |
| 5<br>6<br>7<br>8<br>9<br>10 | 287 | ribotyping and pyrolysis mass spectrometry fingerprinting of environmental and                         |
|                             | 288 | hospital isolates of Clostridium difficile. J. Med. Microbiol. 47, 117–121.                            |
|                             | 289 | Alcalá, L., A. Martín, M. Marín, M. Sánchez-Somolinos, P. Catalán, T. Peláez, E. Bouza,                |
| 12<br>13                    | 290 | on behalf of the Spanish Clostridium difficile Study Group, 2012: The undiagnosed                      |
| 14<br>15                    | 291 | cases of <i>Clostridium difficile</i> infection in a whole nation: where is the problem? <i>Clin</i> . |
| 16<br>17                    | 292 | Microbiol. Infect. 18, E204–E213.                                                                      |
| 18<br>19<br>20              | 293 | Alcalá, L., E. Reigadas, M. Marín, A. Martín, P. Catalán, E. Bouza, on behalf of the                   |
| 21<br>22                    | 294 | Spanish Clostridium difficile Study Group, 2015: Impact of clinical awareness and                      |
| 23<br>24                    | 295 | diagnostic tests on the underdiagnosis of Clostridium difficile infection. Eur. J. Clin.               |
| 25<br>26<br>27              | 296 | Microbiol. Infect. Dis. 34, 1515–1525.                                                                 |
| 28<br>29                    | 297 | Álvarez-Pérez, S., J. L. Blanco, E. Martínez-Nevado, T. Peláez, C. Harmanus, E. Kuijper,               |
| 30<br>31                    | 298 | and M. E. García, 2014: Shedding of Clostridium difficile PCR ribotype 078 by zoo                      |
| 32<br>33<br>34              | 299 | animals, and report of an unstable metronidazole-resistant isolate from a zebra foal                   |
| 35<br>36                    | 300 | (Equus quagga burchellii). Vet. Microbiol. 169, 218–222.                                               |
| 37<br>38                    | 301 | Álvarez-Pérez, S., J. L. Blanco, E. Bouza, P. Alba, X. Gibert, J. Maldonado, and M.E.                  |
| 39<br>40                    | 302 | Garcia, 2009: Prevalence of Clostridium difficile in diarrhoeic and non-diarrhoeic                     |
| 41<br>42<br>43              | 303 | piglets. Vet. Microbiol. 137, 302-305.                                                                 |
| 44<br>45                    | 304 | Álvarez-Pérez, S., J. L. Blanco, T. Peláez, R. J. Astorga, C. Harmanus, E. Kuijper, and M.             |
| 46<br>47                    | 305 | E. García, 2013: High prevalence of the epidemic Clostridium difficile PCR ribotype                    |
| 48<br>49<br>50              | 306 | 078 in Iberian free-range pigs. Res. Vet. Sci. 95, 358-361.                                            |
| 50<br>51<br>52              | 307 | Álvarez-Pérez, S., J. L. Blanco, T. Peláez, M. P. Lanzarot, C. Harmanus, E. Kuijper, and               |
| 53<br>54                    | 308 | M. E. García, 2015: Faecal shedding of antimicrobial-resistant Clostridium difficile                   |
| 55<br>56<br>57              | 309 | strains by dogs. J. Small. Anim. Pract. 56, 190-195.                                                   |
| 58                          |     | 14                                                                                                     |

Zoonoses and Public Health

| 1<br>2                                       |     |                                                                                              |
|----------------------------------------------|-----|----------------------------------------------------------------------------------------------|
| 3<br>4                                       | 310 | Álvarez-Pérez, S., J. L. Blanco, T. Peláez, E. Martínez-Nevado, and M. E. García, 2016:      |
| 5<br>6                                       | 311 | Water sources in a zoological park harbor genetically diverse strains of Clostridium         |
| 7<br>8                                       | 312 | perfringens type A with decreased susceptibility to metronidazole. Microb. Ecol. 72,         |
| 9<br>10                                      | 313 | <u>783–790.</u>                                                                              |
| 12<br>13                                     | 314 | Álvarez-Pérez, S., J. L. Blanco, C. Harmanus, E. Kuijper, and M. E. García, 2017:            |
| 14<br>15                                     | 315 | Subtyping and antimicrobial susceptibility of Clostridium difficile PCR ribotype             |
| 16<br>17                                     | 316 | 078/126 isolates of human and animal origin. Vet. Microbiol. 199, 15-22.                     |
| 18<br>19<br>20                               | 317 | Bauer, M. P., D. W. Notermans, B. H. van Benthem, J. S. Brazier, M. H. Wilcox, M.            |
| 20<br>21<br>22                               | 318 | Rupnik, D. L. Monnet, J. T. van Dissel, E. J. Kuijper, for the ECDIS Study Group,            |
| 23<br>24                                     | 319 | 2011: Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377,        |
| 25<br>26                                     | 320 | 63–73.                                                                                       |
| 27<br>28<br>29<br>30<br>31<br>32<br>33<br>24 | 321 | Båverud, V., A. Gustafsson, A. Franklin, A. Aspán, and A. Gunnarsson, 2003: Clostridium      |
|                                              | 322 | difficile: prevalence in horses and environment, and antimicrobial susceptibility.           |
|                                              | 323 | Equine Vet. J. 35, 465–471.                                                                  |
| 34<br>35<br>36                               | 324 | Blanco, J. L., S. Álvarez-Pérez, and M. E. García, 2013: Is the prevalence of Clostridium    |
| 37<br>38                                     | 325 | difficile in animals underestimated? Vet. J. 197, 694–698.                                   |
| 39<br>40                                     | 326 | CLSI, 2012: Methods for antimicrobial susceptibility testing of anaerobic bacteria, 8th edn. |
| 41<br>42                                     | 327 | CLSI M11-A8. Clinical and Laboratory Standards Institute, Wayne, PA.                         |
| 43<br>44<br>45                               | 328 | Córdoba, A., M. L. Ciarmela, B. Pezzani, M. I. Gamboa, M. M. De Luca, M. Minvielle,          |
| 46<br>47                                     | 329 | and J. A. Basualdo, 2002: Presencia de parásitos intestinales en paseos públicos             |
| 48<br>49                                     | 330 | urbanos en La Plata, Argentina. Parasitol. Latinoam. 57, 25-29.                              |
| 50<br>51<br>52                               | 331 | Dado, D., F. Izquierdo, O. Vera, A. Montoya, M. Mateo, S. Fenoy, A. L. Galván, S. García,    |
| 53<br>54                                     | 332 | A. García, E. Aránguez, L. López, C. del Águila, and G. Miró, 2012: Detection of             |
| 55<br>56                                     |     |                                                                                              |
| 57<br>58                                     |     | 15                                                                                           |
| 59<br>60                                     |     | Zoonoses and Public Health                                                                   |

Page 39 of 50

# ZPH Manuscript Proof

| 1<br>2         |     |                                                                                           |
|----------------|-----|-------------------------------------------------------------------------------------------|
| 3<br>4         | 333 | zoonotic intestinal parasites in public parks of Spain. Potential epidemiological role    |
| 5<br>6         | 334 | of microsporidia. Zoonoses Public Health. 59, 23-28.                                      |
| 7<br>8         | 335 | Dhand, A., and D. R. Snydman, 2009: Mechanism of resistance in metronidazole. In:         |
| 9<br>10<br>11  | 336 | Mayers, D. L. (ed) Antimicrobial drug resistance. Volume 1, Mechanisms of drug            |
| 12<br>13       | 337 | resistance, pp. 223–227. Humana Press. New York, NY.                                      |
| 14<br>15       | 338 | Fawley, W. N., C. W. Knetsch, D. R. MacCannell, C. Harmanus, T. Du, M. R. Mulvey, A.      |
| 16<br>17       | 339 | Paulick, L. Anderson, E. J. Kuijper, and M. H. Wilcox, 2015: Development and              |
| 18<br>19<br>20 | 340 | validation of an internationally-standardized, high-resolution capillary gel-based        |
| 21<br>22       | 341 | electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One 10,           |
| 23<br>24       | 342 | e0118150.                                                                                 |
| 25<br>26<br>27 | 343 | Freeman, J., J. Vernon, K. Morris, S. Nicholson, S. Todhunter, C. Longshaw, M. H.         |
| 27<br>28<br>29 | 344 | Wilcox, and the Pan-European Longitudinal Surveillance of Antibiotic Resistance           |
| 30<br>31       | 345 | among Prevalent Clostridium difficile Ribotypes' Study Group, 2015: Pan-European          |
| 32<br>33       | 346 | longitudinal surveillance of antibiotic resistance among prevalent Clostridium            |
| 34<br>35<br>36 | 347 | difficile ribotypes. Clin. Microbiol. Infect. 21, 248.e9-248.e16.                         |
| 37<br>38       | 348 | Gotkowska-Płachta, A., and E. Korzeniewska, 2015: Microbial evaluation of sandboxes       |
| 39<br>40       | 349 | located in urban area. Ecotoxicol. Environ. Saf. 113, 64-71.                              |
| 41<br>42<br>42 | 350 | Haag-Wackernagel, D., and H. Moch, 2004: Health hazards posed by feral pigeons. J.        |
| 43<br>44<br>45 | 351 | Infect. 48, 307–313.                                                                      |
| 46<br>47       | 352 | Hammer, Ø., D. A. T. Harper, and P. D. Ryan, 2001: PAST: Paleontological Statistics       |
| 48<br>49       | 353 | Software Package for Education and Data Analysis. Palaeontologia Electronica              |
| 50<br>51<br>52 | 354 | 4(1,art.4), 9pp.                                                                          |
| 52<br>53<br>54 | 355 | Hensgens, M. P., E. C. Keessen, M. M. Squire, T. V. Riley, M. G. Koene, E. de Boer, L. J. |
| 55<br>56       | 356 | Lipman, E. J. Kuijper, on behalf of European Society of Clinical Microbiology and         |
| 57<br>58       |     | 16                                                                                        |
| 59<br>60       |     | Zoonoses and Public Health                                                                |

| 2<br>3                                                                                                                                                                                                                                                                                           | 357 | Infectious Diseases Study Group for <i>Clostridium difficile</i> (ESGCD), 2012:                      |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 4<br>5                                                                                                                                                                                                                                                                                           | 358 | <i>Clostridium difficile</i> infection in the community: a zoonotic disease? <i>Clin. Microbiol.</i> |  |  |  |  |  |  |  |
| 6<br>7<br>9                                                                                                                                                                                                                                                                                      | 359 | Infect 18 635-645                                                                                    |  |  |  |  |  |  |  |
| 8<br>9<br>10<br>11<br>12                                                                                                                                                                                                                                                                         | 260 | Higazi T B M AI Saghir M Burkett and P Busak 2011: PCP detection of                                  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 300 | Ingazi, I. D., M. AL-Sagini, M. Durken, and K. Lusok, 2011. Tek detection of                         |  |  |  |  |  |  |  |
| 12                                                                                                                                                                                                                                                                                               | 361 | Clostridium difficile and its toxigenic strains in public places in Southeast Ohio. Intl.            |  |  |  |  |  |  |  |
| 14         15         16         17         18         19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40 | 362 | J. Microbiol. Res. 2, 105–111.                                                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 363 | Janezic, S., M. Ocepek, V. Zidaric, and M. Rupnik, 2012: Clostridium difficile genotypes             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 364 | other than ribotype 078 that are prevalent among human, animal and environmental                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 365 | isolates. BMC Microbiol. 12, 48.                                                                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 366 | Janezic, S., V. Zidaric, B. Pardon, A. Indra, B. Kokotovic, J. L. Blanco, C. Seyboldt, C. R.         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 367 | Diaz, I. R. Poxton, V. Perreten, I. Drigo, A. Jiraskova, M. Ocepek, J. S. Weese, J. G.               |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 368 | Songer, M. H. Wilcox, and M. Rupnik, 2014: International Clostridium difficile                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 369 | animal strain collection and large diversity of animal associated strains. BMC                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 370 | Microbiol. 14, 173.                                                                                  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 371 | Killgore, G., A. Thompson, S. Johnson, J. Brazier, E. Kuijper, J. Pepin, E. H. Frost, P.             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 372 | Savelkoul, B. Nicholson, R. J. van den Berg, H. Kato, S. P. Sambol, W. Zukowski, C.                  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  | 373 | Woods, B. Limbago, D. N. Gerding, and L. C. McDonald, 2008: Comparison of                            |  |  |  |  |  |  |  |
| 42<br>43                                                                                                                                                                                                                                                                                         | 374 | seven techniques for typing international epidemic strains of Clostridium difficile:                 |  |  |  |  |  |  |  |
| 44<br>45                                                                                                                                                                                                                                                                                         | 375 | restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping,                 |  |  |  |  |  |  |  |
| 46<br>47                                                                                                                                                                                                                                                                                         | 376 | multilocus sequence typing, multilocus variable-number tandem-repeat analysis,                       |  |  |  |  |  |  |  |
| 48<br>49<br>50                                                                                                                                                                                                                                                                                   | 377 | amplified fragment length polymorphism, and surface layer protein A gene sequence                    |  |  |  |  |  |  |  |
| 51<br>52                                                                                                                                                                                                                                                                                         | 378 | typing. J. Clin. Microbiol. 46, 431–437.                                                             |  |  |  |  |  |  |  |
| 53<br>54                                                                                                                                                                                                                                                                                         |     |                                                                                                      |  |  |  |  |  |  |  |
| 55<br>56                                                                                                                                                                                                                                                                                         |     |                                                                                                      |  |  |  |  |  |  |  |
| 57<br>58                                                                                                                                                                                                                                                                                         |     | 17                                                                                                   |  |  |  |  |  |  |  |
| 59<br>60                                                                                                                                                                                                                                                                                         |     | Zoonoses and Public Health                                                                           |  |  |  |  |  |  |  |

| 1<br>2         |     |                                                                                              |
|----------------|-----|----------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 379 | Keessen, E. C., M. P. Hensgens, P. Spigaglia, F. Barbanti, I. M. Sanders, E. J. Kuijper, and |
| 5<br>6         | 380 | L. J. Lipman, 2013: Antimicrobial susceptibility profiles of human and piglet                |
| 7<br>8         | 381 | Clostridium difficile PCR-ribotype 078. Antimicrob. Resist. Infect. Control. 2, 14.          |
| 9<br>10<br>11  | 382 | Knight, D. R., M. M. Squire, and T. V. Riley, 2015a: Nationwide surveillance study of        |
| 12<br>13       | 383 | Clostridium difficile in Australian neonatal pigs shows high prevalence and                  |
| 14<br>15       | 384 | heterogeneity of PCR ribotypes. Appl. Environ. Microbiol. 81, 119-123.                       |
| 16<br>17       | 385 | Knight, D. R., S. Giglio, P. G. Huntington, T. M. Korman, D. Kotsanas, C. V. Moore, D. L.    |
| 18<br>19<br>20 | 386 | Paterson, L. Prendergast, C. A. Huber, J. Robson, L. Waring, M. C. Wehrhahn, G. F.           |
| 21<br>22       | 387 | Weldhagen, R. M. Wilson, and T. V. Riley, 2015b: Surveillance for antimicrobial              |
| 23<br>24       | 388 | resistance in Australian isolates of Clostridium difficile, 2013–14. J. Antimicrob.          |
| 25<br>26<br>27 | 389 | Chemother. 70, 2992–2999.                                                                    |
| 27<br>28<br>29 | 390 | Koene, M. G., D. Mevius, J. A. Wagenaar, C. Harmanus, M. P. Hensgens, A. M. Meetsma,         |
| 30<br>31       | 391 | F. F. Putirulan, M. A. van Bergen, and E. J. Kuijper, 2012: Clostridium difficile in         |
| 32<br>33       | 392 | Dutch animals: their presence, characteristics and similarities with human isolates.         |
| 34<br>35<br>36 | 393 | Clin. Microbiol. Infect. 18, 778–784.                                                        |
| 37<br>38       | 394 | Löfmark, S., C. Edlund, and C. E. Nord, 2010: Metronidazole is still the drug of choice for  |
| 39<br>40       | 395 | treatment of anaerobic infections. Clin. Infect. Dis. 50(Suppl.1), S16-S23.                  |
| 41<br>42       | 396 | Martínez-Moreno, F. J., S. Hernández, E. López-Cobos, C. Becerra, I. Acosta, and A.          |
| 43<br>44<br>45 | 397 | Martínez-Moreno, 2007: Estimation of canine intestinal parasites in Córdoba (Spain)          |
| 46<br>47       | 398 | and their risk to public health. Vet. Parasitol. 143, 7–13.                                  |
| 48<br>49       | 399 | Nwachuku, N., and C. P. Gerba, 2004: Microbial risk assessment: don't forget the children.   |
| 50<br>51<br>52 | 400 | Curr. Opin. Microbiol. 7, 206–209.                                                           |
| 52<br>53<br>54 | 401 | Orden, C., J. L. Blanco, S. Álvarez-Pérez, M. Garcia-Sancho, F. Rodriguez-Franco, A.         |
| 55<br>56       | 402 | Sainz, A. Villaescusa, C. Harmanus, E. Kuijper, and M. E. Garcia, 2017: Isolation of         |
| 57<br>58       |     | 18                                                                                           |
| 59<br>60       |     | Zoonoses and Public Health                                                                   |

| 2<br>3<br>4    | 403 | Clostridium difficile from dogs with digestive disorders, including stable               |
|----------------|-----|------------------------------------------------------------------------------------------|
| 5<br>6         | 404 | metronidazole-resistant strains. Anaerobe 43, 78-81.                                     |
| 7<br>8         | 405 | Papich, G. M., 2016: Metronidazole. In: Papich, G. M. (ed), Saunders Handbook of         |
| 9<br>10        | 406 | Veterinary Drugs: Small and Large Animal, 4th Edn, pp. 524–526. Saunders. St.            |
| 11<br>12<br>12 | 407 | Louis, MO.                                                                               |
| 13<br>14<br>15 | 408 | Papp-Wallace, K. M., A. Endimiani, M. A. Taracila, and R. A. Bonomo, 2011:               |
| 16<br>17       | 409 | Carbapenems: past, present, and future. <i>Antimicrob. Agents Chemother</i> . 55, 4943–  |
| 18<br>19       | 410 | 4960.                                                                                    |
| 20<br>21       | /11 | Peláez T. I. Alcalá I. I. Blanco, S. Álvarez-Pérez, M. Marín, A. Martín-Lónez, P.        |
| 22<br>23       | 411 | relacz, T., E. Alcala, J. E. Blanco, S. Alvarez-relez, M. Marin, A. Martin-Lopez, T.     |
| 24             | 412 | Catalán, E. Reigadas, M. E. García, and E. Bouza, 2013: Characterization of swine        |
| 25<br>26<br>27 | 413 | isolates of Clostridium difficile in Spain: a potential source of epidemic multidrug     |
| 28<br>29       | 414 | resistant strains? <i>Anaerobe</i> 22, 45–49.                                            |
| 30<br>31       | 415 | Peláez, T., E. Cercenado, L. Alcalá, M. Marín, A. Martín-López, J. Martínez-Alarcón, P.  |
| 32<br>33<br>34 | 416 | Catalán, M. Sánchez-Somolinos, and E. Bouza, 2008: Metronidazole resistance in           |
| 35<br>36       | 417 | Clostridium difficile is heterogeneous. J. Clin. Microbiol. 46, 3028–3032.               |
| 37<br>38       | 418 | Pirš, T., J. Avberšek, I. Zdovc, B. Krt, A. Andlovic, T. Lejko-Zupanc, M. Rupnik, and M. |
| 39<br>40       | 419 | Ocepek, 2013: Antimicrobial susceptibility of animal and human isolates of               |
| 41<br>42<br>42 | 420 | Clostridium difficile by broth microdilution. J. Med. Microbiol. 62, 1478–1485.          |
| 43<br>44<br>45 | 421 | Ratnayake, L., J. McEwen, N. Henderson, D. Nathwani, G. Phillips, D. Brown, and J. Coia, |
| 46<br>47       | 422 | 2011: Control of an outbreak of diarrhoea in a vascular surgery unit caused by a high-   |
| 48<br>49       | 423 | level clindamycin-resistant Clostridium difficile PCR ribotype 106. J. Hosp. Infect.     |
| 50<br>51<br>52 | 424 | 79, 242–247.                                                                             |
| 53<br>54       |     |                                                                                          |
| 55<br>56       |     |                                                                                          |
| 57             |     | 10                                                                                       |
| эө<br>59       |     | 19                                                                                       |
| 60             |     | Zoonoses and Public Health                                                               |

# ZPH Manuscript Proof

| 2              |     |                                                                                          |
|----------------|-----|------------------------------------------------------------------------------------------|
| 3<br>4         | 425 | Redgrave, L. S., S. B.Sutton, M. A. Webber, and L. J. Piddock LJ, 2014: Fluoroquinolone  |
| 5<br>6         | 426 | resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends     |
| 7<br>8<br>0    | 427 | <u>Microbiol. 22, 438–445.</u>                                                           |
| 9<br>10<br>11  | 428 | Silva, R. O., M. Rupnik, A. N. Diniz, E. G. Vilela, and F. C. Lobato, 2015: Clostridium  |
| 12<br>13       | 429 | difficile ribotypes in human and animals in Brazil. Mem. Inst. Oswaldo Cruz 110,         |
| 14<br>15       | 430 | 1062–1065.                                                                               |
| 16<br>17<br>18 | 431 | Smits, W. K., D. Lyras, D. B. Lacy, M. H. Wilcox, and E. J. Kuijper, 2016: Clostridium   |
| 19<br>20       | 432 | difficile infection. Nat. Rev. Dis. Primers. 2, 16020.                                   |
| 21<br>22       | 433 | Staley, Z. R., C. Robinson, and T. A. Edge, 2016: Comparison of the occurrence and       |
| 23<br>24<br>25 | 434 | survival of fecal indicator bacteria in recreational sand between urban beach,           |
| 26<br>27       | 435 | playground and sandbox settings in Toronto, Ontario. Sci. Total Environ. 541, 520-       |
| 28<br>29       | 436 | 527.                                                                                     |
| 30<br>31<br>32 | 437 | Tickler, I. A., R. V. Goering, J. D. Whitmore, A. N. Lynn, D. H. Persing, F. C. Tenover, |
| 33<br>34       | 438 | and Healthcare Associated Infection Consortium, 2014: Strain types and                   |
| 35<br>36       | 439 | antimicrobial resistance patterns of Clostridium difficile isolates from the United      |
| 37<br>38       | 440 | States, 2011 to 2013. Antimicrob. Agents Chemother. 58, 4214–4218.                       |
| 39<br>40<br>41 | 441 | Wetterwik, K. J., G. Trowald-Wigh, L. L. Fernström, and K. Krovacek, 2013: Clostridium   |
| 42<br>43       | 442 | difficile in faeces from healthy dogs and dogs with diarrhea. Acta Vet. Scand. 55, 23.   |
| 44<br>45       | 443 |                                                                                          |
| 46<br>47<br>48 | 444 |                                                                                          |
| 49             |     |                                                                                          |
| 50<br>51       |     |                                                                                          |
| 52             |     |                                                                                          |
| 53             |     |                                                                                          |
| 54<br>55       |     |                                                                                          |
| 56             |     |                                                                                          |
| 57             |     | <b>2</b> 0                                                                               |
| 58<br>59       |     | 20                                                                                       |
| 60             |     | Zoonoses and Public Health                                                               |

| 445 | List of Tables                                                                        |
|-----|---------------------------------------------------------------------------------------|
| 446 | Table 1. Overview of the samples analyzed in this study and the Clostridium difficile |
| 447 | isolates obtained from them.                                                          |
| 448 |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     |                                                                                       |
|     | 21                                                                                    |
|     | Zoonoses and Public Health                                                            |

| 2              |     |            |
|----------------|-----|------------|
| 3<br>4         | 449 | Fi         |
| 5<br>6         | 450 | Fi         |
| 7<br>8         | 451 | ch         |
| 9<br>10        | 452 | W          |
| 11<br>12<br>12 | 453 | In         |
| 13<br>14<br>15 | 454 | Ise        |
| 16<br>17       | 455 | ba         |
| 18<br>19       | 456 | co         |
| 20<br>21       | 457 | (F         |
| 22<br>23<br>24 | 152 | to         |
| 24<br>25<br>26 | 450 | <b>E</b> : |
| 27<br>28       | 459 | ГI<br>.1   |
| 29<br>30       | 460 | rıt        |
| 31<br>32       | 461 |            |
| 33<br>34       | 462 |            |
| 35<br>36       |     |            |
| 37<br>38       |     |            |
| 39<br>40       |     |            |
| 41<br>42       |     |            |
| 43             |     |            |
| 44             |     |            |
| 46<br>47       |     |            |
| 48<br>49       |     |            |
| 50<br>51       |     |            |
| 52             |     |            |
| 55<br>54       |     |            |
| 55<br>56       |     |            |
| 57<br>58       |     |            |
| 59<br>60       |     |            |
| 60             |     |            |

|   | Figure Legends                                                                                   |
|---|--------------------------------------------------------------------------------------------------|
|   | Figure 1. Dendrogram of AFLP profiles obtained for the 20 Clostridium difficile isolates         |
|   | characterized in this study. The dendrogram was created by unweighted pair group method          |
|   | with arithmetic averages (UPGMA) clustering using Pearson's correlation coefficients.            |
|   | Individual AFLP genotypes are distinguished at $\geq$ 86% similarity (red dotted vertical line). |
|   | Isolates obtained from children's and dog's sandboxes are indicated by blue and yellow           |
|   | backgrounds, respectively. Colored squares at the tip of branches indicate the ribotype (see     |
| I | color legend on the lower left corner). In vitro resistance to clindamycin (C), erythromycin     |
|   | (E), imipenem (I), levofloxacin (L) and/or penicillin G (P) is denoted by the red letters next   |
|   | to strain names.                                                                                 |
| I | Figure 2. Image showing the children's and dog's sandboxes from zone V which yielded             |
|   | ribotype 014 Clostridium difficile isolates (see details in Results).                            |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |

# 463 Supporting Information

464 Additional Supporting Information may be found in the online version of this article:

- **Table S1.** Characteristics of the *Clostridium difficile* isolates analyzed in this study.
- 466 Figure S1. Schematic representation of the Madrid region (central Spain), indicating the
- 467 approximate location of the zones from which sand samples were obtained in this study.

to perievony

 

# ZPH Manuscript Proof

| Sampling           | Sampling | mpling Children's sandboxes |                                       | Dog's sandboxes                                         |               |                                    | Distance                                              |                       |
|--------------------|----------|-----------------------------|---------------------------------------|---------------------------------------------------------|---------------|------------------------------------|-------------------------------------------------------|-----------------------|
| zone<br>(subzones) | point    | Sample's code               | Positive for<br><i>C. difficile</i> ? | Ribotype (toxin<br>profile)                             | Sample's code | Positive for <i>C. difficile</i> ? | Ribotype (toxin<br>profile)                           | between<br>sandboxes† |
| A                  | 1        | A-N-1                       | No                                    |                                                         | A-P-1         | No                                 |                                                       | 36 m                  |
|                    | 2        | A-N-2*                      | Yes                                   | ND (+)*                                                 | A-P-2         | No                                 |                                                       | 26 m                  |
|                    | 3        | A-N-3                       | Yes                                   | 009 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> )   | A-P-3         | Yes                                | 014 (A <sup>+</sup> B <sup>+</sup> CDT <sup>-</sup> ) | 60 m                  |
|                    | 4        | A-N-4                       | Yes                                   | 014 (A <sup>+</sup> B <sup>+</sup> CDT <sup>-</sup> )   | A-P-4         | Yes                                | 039 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> ) | 0 m                   |
|                    | 5        | A-N-5                       | Yes                                   | 039 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> )   | A-P-5         | Yes                                | 106 (A <sup>+</sup> B <sup>+</sup> CDT <sup>-</sup> ) | 0 m                   |
|                    | 6        | A-N-6                       | Yes                                   | 009 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> )   | A-P-6         | No                                 |                                                       | 20 m                  |
|                    | 7        | A-N-7                       | No                                    |                                                         | A-P-7         | Yes                                | 009 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> ) | 50 m                  |
|                    | 8        | A-N-8                       | Yes                                   | CD048 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> ) | A-P-8         | No                                 |                                                       | 50 m                  |
|                    | 9        | A-N-9                       | Yes                                   | 009 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> )   | A-P-9         | No                                 |                                                       | 40 m                  |
|                    | 10       | A-N-10                      | No                                    |                                                         | A-P-10        | No                                 |                                                       | 30 m                  |
| М                  |          |                             |                                       |                                                         |               |                                    |                                                       |                       |
| M.1                | 1        | M-N-1                       | No                                    |                                                         | M-P-1         | No                                 |                                                       | 25 m                  |
|                    | 2        | M-N-2                       | No                                    |                                                         | M-P-2         | Yes                                | 106 (A <sup>+</sup> B <sup>+</sup> CDT <sup>-</sup> ) | 20 m                  |
|                    | 3        | M-N-3                       | No                                    |                                                         | M-P-3         | Yes                                | 067 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> ) | 94 m                  |
| M.2                | 5        | M-N-5                       | No                                    |                                                         | M-P-5         | No                                 |                                                       | 40 m                  |
| M.3                | 4        | M-N-4                       | No                                    |                                                         | M-P-4         | Yes                                | $CD047 (A^{+}B^{+}CDT^{-})$                           | 46 m                  |
|                    | 6        | M-N-6                       | No                                    |                                                         | M-P-6         | Yes                                | 039 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> ) | 17 m                  |
| V                  | 1        | V-N-1                       | Yes                                   | 151 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> )   | V-P-1         | Yes                                | 014 (A <sup>+</sup> B <sup>+</sup> CDT <sup>-</sup> ) | 30 m                  |
|                    | 2        | V-N-2                       | Yes                                   | $014 (A^{+}B^{+}CDT^{-})$                               | V-P-2         | Yes                                | $014 (A^{+}B^{+}CDT^{-})$                             | 46 m                  |
|                    | 3        | V-N-3                       | No                                    |                                                         | V-P-3         | Yes                                | 009 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> ) | 42 m                  |
|                    | 4        | V-N-4                       | No                                    |                                                         | V-P-4         | Yes                                | 039 (A <sup>-</sup> B <sup>-</sup> CDT <sup>-</sup> ) | 30 m                  |

**Table 1.** Overview of the samples analyzed in this study and the *Clostridium difficile* isolates obtained from them.

\* ND: not determined (this isolates was lost during subculturing in the laboratory).

3 † Distance between the children's and dog's sandboxes of each sampling point.



Dendrogram of AFLP profiles obtained for the 20 Clostridium difficile isolates characterized in this study. The dendrogram was created by unweighted pair group method with arithmetic averages (UPGMA) clustering using Pearson's correlation coefficients. Individual AFLP genotypes are distinguished at ≥86% similarity (red dotted vertical line). Colored squares at the tip of branches indicate the ribotype (see color legend on the lower left corner). In vitro resistance to clindamycin (C), erythromycin (E), imipenem (I), levofloxacin (L) and/or penicillin G (P) is denoted by the red letters next to strain names.

207x277mm (300 x 300 DPI)



Image showing the children's and dog's sandboxes from zone V which yielded ribotype 014 Clostridium difficile isolates (see details in Results).

176x132mm (150 x 150 DPI)

33Km

21km



- 54 55 56
- 57 58
- 59 60

Zoonoses and Public Health

210x297mm (128 x 128 DPI)