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 Impacts 21 

• The sand of public playgrounds can have a role in the transmission of various 22 

infections, particularly in children. 23 

• In this study we demonstrated that the Gram-positive anaerobe Clostridium difficile is 24 

widely distributed in soils samples from children’s and dog’s sandboxes located within 25 

the metropolitanean area of Madrid. 26 

• Furthermore, we demonstrated the presence of genetically diverse strains of C. difficile, 27 

including the epidemic PCR ribotypes 014 and 106, in the studied sandboxes. 28 

29 
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Summary 30 

Different studies have suggested that the sand of public playgrounds could have a role in 31 

the transmission of infections, particularly in children. Furthermore, free access of pets and 32 

other animals to the playgrounds might increase such a risk. We studied the presence of 33 

Clostridium difficile in 20 pairs of sandboxes for children and dogs located in different 34 

playgrounds within the Madrid region (Spain). C. difficile isolation was performed by 35 

enrichment and selective culture procedures. The genetic (ribotype and amplified fragment 36 

length polymorphism [AFLP]) diversity and antibiotic susceptibility of isolates was also 37 

studied. Overall, 52.5% (21/40) of samples were positive for the presence of C. difficile. 38 

Eight of the 20 available isolates belonged to the toxigenic ribotypes 014 (n = 5) and 106 (n 39 

= 2), both regarded as epidemic, and CD047 (n = 1). The other 12 isolates were non-40 

toxigenic, and belonged to ribotypes 009 (n = 5), 039 (n = 4), and 067, 151 and CD048 41 

(one isolate each). Nevertheless, all isolates (even those of a same ribotype) were classified 42 

into different AFLP genotypes indicating non-relatedness. In conclusion, our results 43 

revealed the presence of epidemic ribotypes of C. difficile in children’s and dog’s 44 

sandboxes located nearby, which constitutes a major health risk. 45 

 46 

Keywords: Clostridium difficile; children; dog; epidemic strains; sandboxes. 47 

48 
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Introduction 49 

The soil of playgrounds is a reservoir of diverse parasites and infectious agents (Martínez-50 

Moreno et al., 2007; Dado et al., 2012; Gotkowska-Płachta and Korzeniewska, 2014; Staley 51 

et al., 2016). Furthermore, free access of domestic and wild animals to recreational areas 52 

can increase the burden of microbiological contamination (Haag-Wackernagel and Moch, 53 

2004; Martínez-Moreno et al., 2007; Dado et al., 2012; Gotkowska-Płachta and 54 

Korzeniewska, 2014; Staley et al., 2016). Children are generally regarded as the main 55 

group at risk for environmental exposure to pathogens, not only because they are frequent 56 

users of playgrounds, but also due to the high prevalence of geophagia (i.e. consumption of 57 

sand) within this group, and the immaturity of their immunological, neurological and 58 

digestive systems (Nwachuku and Gerba, 2004; Dado et al., 2012; Gotkowska-Płachta and 59 

Korzeniewska, 2014). 60 

Clostridium difficile is a Gram-positive, anaerobic bacterium of widespread 61 

distribution in the environment, where it can survive under adverse conditions through the 62 

production of spores (Hensgens et al., 2012; Smits et al., 2016). This bacterial species was 63 

traditionally regarded as a primarily nosocomial pathogen, but this view has been 64 

challenged as the incidence of C. difficile infection (CDI) in people outside hospitals started 65 

to increase (Hensgens et al., 2012; Smits et al., 2016). In this context, diverse animal 66 

species, food products and environmental sources have been suggested to play a role in the 67 

transmission of the C. difficile and, in particular, of some epidemic genotypes such as 68 

ribotype 078 (Hensgens et al., 2012; Smits et al., 2016). However, to the best of our 69 

knowledge, the presence of C. difficile in sandboxes of playgrounds has only been explored 70 

in a limited number of studies (al Saif and Brazier, 1996; Higazi et al. 2011; Båverud et al., 71 

2003). 72 
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In this study we determined the presence of C. difficile in 20 pairs of recreational 73 

sandboxes for children and dogs located in different playgrounds within the Madrid region 74 

(Spain). In addition, we compared the isolates recovered from children’s and dog’s 75 

sandboxes in terms of genetic characteristics and in vitro antimicrobial susceptibility. 76 

 77 

Materials and methods 78 

Sampling scheme 79 

Sampling was carried out on two consecutive days (July 1-2, 2015) in 20 pairs of children’s 80 

and dog’s sandboxes located nearby (within 94 m in all cases, mean ± S.D. = 35.1 ± 20.5 81 

m; Table 1) in public playgrounds scattered throughout three zones (A, M and V; postal 82 

codes: E-28047, E-28222/E-28221/E-28220 and E-28400, respectively) within the Madrid 83 

region (central Spain) (Figure S1). Therefore, a total of 40 sandboxes (20 for children and 84 

20 for dogs) were analyzed. The number and distribution of samples per sampling zone and 85 

sampling point is indicated in Table 1. 86 

A 200-g sand sample was obtained from each sampling point according to the 87 

procedure described in Córdoba et al. (2002). Briefly, four 50-g sand samples were 88 

collected from different locations within the sampling point using a sterile plastic container 89 

(Nirco, Madrid, Spain). All four sand samples were then thoroughly mixed in a sterile 90 

plastic bag (Nirco), which was transported to the laboratory and kept frozen (-20ºC) until 91 

analyzed. 92 

93 
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Microbiological analyses 94 

Sand samples (50 g each, taken and aseptically weighted from the 200-g mixtures kept in 95 

the freezer) were transferred into sterile one-liter glass bottles, diluted 1:10 in peptone 96 

water (Laboratorios Conda, Madrid. Spain) and incubated under agitation (200 rpm) for 15 97 

min at room temperature. These suspensions were then allowed to settle for 5 min and the 98 

supernatants were filtered though filter membranes (0.45 µm of pore size; Filter Lab, 99 

Barcelona, Spain) following the procedure detailed in Álvarez-Pérez et al. (2016). Filter 100 

membranes were then introduced into 10-ml glass tubes containing 5 ml of selective broth 101 

for enrichment of C. difficile (TecLaim, Madrid, Spain; see recipe in Blanco et al., 2013). 102 

After seven days of incubation at 37°C under anaerobiosis, 2 ml of the enrichment culture 103 

were mixed 1:1 with absolute ethanol (Panreac, Barcelona, Spain) in 5 ml sterile plastic 104 

tubes (Nirco) and left for 1 hour under agitation (200 rpm) at room temperature. Finally, 105 

tubes were centrifuged at 1520 g for 10 min, the supernatants were discarded and 106 

precipitates were spread with a sterile cotton-tipped swab (Nirco) onto a plate of CLO agar 107 

(bioMérieux, Marcy l’Etoile, France), which contains cycloserine and cefoxitin as selective 108 

agents. Inoculated plates were incubated under anaerobic conditions for 72 h at 37°C and 109 

suspected colonies were identified as C. difficile by colony morphology, the typical odor of 110 

this microorganism, and a positive result in a rapid specific immunoassay for detection of 111 

the constitutive antigen glutamate dehydrogenase (GDH) (C. Diff Quik Chek Complete; 112 

TECHLAB Inc., Blacksburg, VA, USA). The same immunoassay was used to determine 113 

the toxigenic/non toxigenic status of isolates, as it detects production of C. difficile toxins A 114 

and B. A single C. difficile isolate was selected from each primary culture and sub-cultured 115 

on CLO agar to obtain axenic cultures that could be used in subsequent tests. 116 

 117 
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Molecular characterization of isolates 118 

Possession of tcdA and tcdB genes (which encode for toxins A and B, respectively), and 119 

cdtA and cdtB (which encode for the two components of binary toxin (CDT), respectively), 120 

was analyzed by conventional PCR protocols (Álvarez-Pérez et al. 2009, 2014, 2015). 121 

Genotyping of isolates was performed by high-resolution capillary gel-based 122 

electrophoresis PCR-ribotyping, following the procedures described in Fawley et al. 123 

(2015). Ribotypes were designated according to the nomenclature of the Leiden (Prof. Ed 124 

Kuijper; The Netherlands)-Leeds (Dr. Warren Fawley and Prof. Mark Wilcox; UK) 125 

database. Novel ribotypes were named using internal reference codes (prefix ‘CD’ followed 126 

by a number). 127 

Isolates were further genetically characterized by amplified fragment length 128 

polynorphism (AFLP) fingerprinting, using the protocol detailed in Álvarez-Pérez et al. 129 

(2017). A binary 0/1 matrix was created based on the absence/presence of AFLP markers 130 

and a dendrogram of AFLP patterns was created with PAST v.3.11 software (Hammer et 131 

al., 2001) using Pearson’s correlation coefficients and the unweighted-pair group method 132 

with arithmetic averages (UPGMA) clustering algorithm. Isolates clustering with <86% 133 

similarity were considered to represent different AFLP genotypes (Killgore et al., 2008; 134 

Álvarez-Pérez et al., 2017). 135 

 136 

Antimicrobial susceptibility testing 137 

In vitro susceptibility of isolates was determined by the Etest (bioMérieux) on prereduced 138 

Brucella agar supplemented with vitamin K1 and haemin (bioMérieux), according to the 139 

manufacturer’s instructions. Plates were incubated anaerobically at 37°C and examined at 140 

48 h. Tested antimicrobial compounds and breakpoints for antimicrobial resistance were as 141 
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follows: penicillin G, ≥2 µg/ml; teicoplanin, >2 µg/ml; rifampicin, ≥4 µg/ml; linezolid and 142 

tigecycline, >4 µg/ml; clindamycin, erythromycin and levofloxacin, ≥8 µg/ml; imipenem, 143 

minocycline and tetracycline, ≥16 µg/ml; amoxicillin/clavulanic acid, ≥16/8 µg/ml; and 144 

metronidazole and vancomycin, ≥32 µg/ml. (CLSI, 2012; Álvarez-Pérez et al., 2013, 2014, 145 

2015, 2017; Peláez et al. 2013). 146 

In order to detect possible metronidazole heteroresistance, which is manifested as a 147 

slow growth of resistant subpopulations within the inhibition halo in the Etest at 148 

concentrations above the resistance breakpoint, metronidazole test plates were further 149 

incubated anaerobically at 37°C for five additional days (Peláez et al., 2008). 150 

 151 

Data analysis 152 

Fisher’s exact test and Pearson’s chi-square test were used for statistical analysis of 153 

categorical data where appropriate. P-values of <0.05 were considered to be statistically 154 

significant in all cases. 155 

 156 

Results 157 

Clostridium difficile was recovered from 21 (52.5%) of the sand samples analyzed, 158 

collected from 12 and 9 sandboxes located in recreational areas for dogs and children, 159 

respectively (Table 1). The distribution of isolates by sampling (sub)zone and type of 160 

sample (children’s or dog’s sandboxes) is shown in Table 1. There was no difference in C. 161 

difficile prevalence between children’s and dog’s sandboxes (P = 0.527) or among 162 

sampling zones (P = 0.203). A positive culture result for both samples of each pair was 163 

obtained in five cases, whereas C. difficile was recovered only from one sandbox of the pair 164 
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in 11 cases (four from children’s sandboxes and seven from dog’s sandboxes) and a 165 

negative culture result for both samples was obtained in four cases (Table 1). 166 

One C. difficile isolate (obtained from a children’s sandbox in zone A [sample A-N-167 

2], Table 1) was lost during subculturing in the laboratory. Eight of the 20 remaining 168 

isolates (six from dog’s and two from children’s sandboxes) were toxigenic and belonged 169 

to ribotypes 014 (A+B+CDT-, n = 5), 106 (A+B+CDT-, n = 2) and CD047 (isolate M-P-4, 170 

A+B+CDT-) (Tables 1 and S1, Figure 1). The other 12 isolates were non-toxigenic (i.e. A-B-
171 

CDT-) and belonged to ribotypes 009 (n = 5), 039 (n = 4), and 067, 151 and CD048 (one 172 

isolate each) (Tables 1 and S1, Figure 1). Further genetic characterization of isolates by 173 

AFLP fingerprinting classified each one of these into a different genotype (Figure 1 and 174 

Table S1). Notably, clustering of isolates in the UPGMA dendrogram obtained from AFLP 175 

data was independent from the origin (both at the ‘(sub)zone’ and ‘children vs. dog areas’ 176 

levels) and ribotype of isolates (Figure 1). 177 

Regardless of their origin and genotype, all studied isolates showed resistance to 178 

imipenem and levofloxacin (Figure 1 and Table S1). Additionally, the isolates of ribotypes 179 

CD048 and 151 (A-N-8 and V-N-1, respectively) displayed resistance to clindamycin and 180 

erythromycin, and a ribotype 014 isolate (A-P-3) was resistant to penicillin (Figure 1 and 181 

Table S1). MICs to the other antimicrobial compound tested were generally low, and fell 182 

below the resistance breakpoint in all cases (Table S1). 183 

Notably, the samples obtained from a pair of children’s and dog’s sandboxes in zone 184 

V (V-N-2/V-P-2; Figure 2) yielded C. difficile isolates of a same toxigenic ribotype (014) 185 

and which showed a similar antimicrobial susceptibility profile, but the AFLP profiles of 186 

such isolates displayed limited similarity (Pearson’s correlation = 0.126) (Figure 1). In 187 
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contrast, four pairs of sand samples (A-N-3/A-P-3, A-N-4/A-P-4, A-N-5/A-P-5 and V-N-188 

1/V-P-1) yielded C. difficile isolates of different ribotypes. 189 

 190 

Discussion 191 

The growing number of pets and other animals leaving excrements in the sandboxes of 192 

playgrounds and other recreational areas constitute a serious epidemiological threat 193 

(Martínez-Moreno et al., 2007; Gotkowska-Płachta and Korzeniewska, 2014; Staley et al., 194 

2016). Current tests for assessing the sanitary conditions of sandboxes focus on detecting 195 

some select pathogenic parasites and bacterial indicators of fecal contamination (Martínez-196 

Moreno et al., 2007; Gotkowska-Płachta and Korzeniewska, 2014; Staley et al., 2016), but 197 

mostly neglect the possible presence of other emerging pathogens such as C. difficile. 198 

Reports of C. difficile presence in recreational sandboxes are still limited in number 199 

and of variable scope. For example, Al-Saif and Brazier (1996) reported the isolation of C. 200 

difficile from a 21% of soil samples taken from public parks, gardens, playgrounds and 201 

other locations in the suburbs of Cardiff, UK. Subsequent characterization of some of those 202 

soil isolates by PCR ribotyping and pyrolysis mass spectrometry (PyMS) fingerprinting 203 

revealed the presence of toxin-producers and different ribotypes (Al Saif et al., 1998). 204 

Similarly, Higazi et al. (2011) investigated by a PCR-based approach the presence of C. 205 

difficile in soil samples from public parks and elementary school playgrounds in a 206 

Midwestern town of the USA and reported an overall prevalence of 6.5%, but bacterial 207 

isolates were only obtained in some cases and these were not genotyped nor tested for 208 

antimicrobial resistance. Finally, Båverud et al. (2013) observed an overall C. difficile 209 

prevalence of 4% in soil samples obtained from public parks, playgrounds, gardens and 210 
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cultivated fields, but the origin and characteristics of recovered isolates were not detailed in 211 

their paper. 212 

In this study, we demonstrated that C. difficile is widely distributed in soils samples 213 

from both children’s and dog’s sandboxes located within the metropolitanean area of 214 

Madrid. Furthermore, our results revealed that recovered isolates were genetically diverse 215 

and displayed resistance to several antibiotics (≥2 drugs, including in all cases imipenem 216 

and levofloxacin). Notably, analysis of AFLP fingerprinting results showed high genetic 217 

variation even among isolates obtained from a same sampling (sub)zone. 218 

Most C. difficile isolates recovered in this study from sandboxes belonged to 219 

ribotypes 014 and 009. The toxigenic ribotype 014 is one of the most prevalent genotypes 220 

isolated from human patients and animals in Europe (including Spain) and other countries 221 

such as Australia, Brazil and the USA (Bauer et al., 2011; Koene et al. 2012; Alcalá et al. 222 

2012, 2015; Janezic et al., 2012, 2014; Tickler et al., 2014; Freeman et al., 2015; Knight et 223 

al., 2015a,b; Silva et al. 2015). Non-toxigenic ribotype 009 is also prevalent in both human 224 

and animal hosts in some countries including Brazil (Silva et al. 2015), but it is rarely 225 

reported in Spain and the rest of Europe (e.g. Koene et al. 2012; Wetterwik et al., 2013; 226 

Álvarez-Pérez et al., 2015). 227 

Other ribotypes found in this study such as 039 and 106 are also frequently isolated 228 

from human and/or animal fecal samples (Bauer et al., 2011; Alcalá et al., 2012, 2015; 229 

Koene et al., 2012; Tickler et al., 2014; Freeman, 2015). In particular, ribotype 106 has 230 

been implicated in outbreaks of human disease in the UK (Ratnayake et al., 2011) and is 231 

also relatively common in continental Europe and North America (Bauer et al., 2011; 232 

Alcalá et al., 2012, 2015; Tickler et al., 2014; Freeman et al., 2015). We recently obtained 233 

several ribotype 106 isolates from the feces of dogs with diverse digestive disorders (Orden 234 
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et al., 2017). Curiously, despite the frequent shedding of C. difficile ribotype 078 by 235 

animals previously observed in Spain (Peláez et al., 2013; Álvarez-Pérez et al., 2013, 2014, 236 

2015) and many other countries (Janezic et al., 2014) we did not found any isolate of this 237 

epidemic ribotype in the present study. Nevertheless, as a single C. difficile isolate from 238 

each primary culture was selected for detailed phenotypic and genetic characterization, we 239 

cannot discard the possibility that this and other ribotypes might have been overlooked. 240 

Finally, all isolates characterized in this study displayed high-level in vitro 241 

resistance to imipenem and levofloxacin, a phenotype which is fairly common among 242 

diverse ribotypes of C. difficile from different geographic locations (Alcalá et al., 2012; 243 

Keessen et al., 2013; Pirš et al., 2013; Freeman et al., 2015). As carbapenems and 244 

fluoroquinolones are widely used in human and veterinary medicine to treat a diversity of 245 

infections (Papich, 2011; Papp-Wallace et al., 2011; Redgrave et al., 2014), monitoring the 246 

resistance to these compounds in C. difficile and other emerging pathogens should be a 247 

priority. Furthermore, some isolates were found to be resistant to erythromycin, 248 

clindamycin and penicillin G, all of which are of common use in clinical practice (Papich, 249 

2011). Although we did not detect any isolate with decreased susceptibility or 250 

heterogeneous resistance to metronidazole, we recommend to determine MIC values to this 251 

antibiotic even for environmental isolates, as metronidazole is still considered a first-line 252 

drug for the treatment of anaerobe infections in human and animal medicine (Dhand and 253 

Snydman, 2009; Löfmark et al., 2010; Papich, 2016) and (hetero)resistant strains of C. 254 

difficile and other clostridia have been reported by different authors (Peláez et al., 2008, 255 

2013; Álvarez-Pérez et al., 2013, 2014, 2015, 2017; Wetterwik et al., 2013). 256 

 257 

Conclusions 258 
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In summary, our results revealed the presence of epidemic ribotypes of C. difficile in 259 

children’s and dog’s sandboxes, which constitutes a major health risk. Due to the zoonotic 260 

potential attributed to some ribotypes of C. difficile, the possible presence of this emerging 261 

pathogen should be considered in any environmental risk assessment. 262 
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Figure Legends 441 

Figure 1. Dendrogram of AFLP profiles obtained for the 20 Clostridium difficile isolates 442 

characterized in this study. The dendrogram was created by unweighted pair group method 443 

with arithmetic averages (UPGMA) clustering using Pearson’s correlation coefficients. 444 

Individual AFLP genotypes are distinguished at ≥86% similarity (red dotted vertical line). 445 

Isolates obtained from children’s and dog’s sandboxes are indicated by blue and yellow 446 

backgrounds, respectively. Colored squares at the tip of branches indicate the ribotype (see 447 

color legend on the lower left corner). In vitro resistance to clindamycin (C), erythromycin 448 

(E), imipenem (I), levofloxacin (L) and/or penicillin G (P) is denoted by the red letters next 449 

to strain names.  450 

Figure 2. Image showing the children’s and dog’s sandboxes from zone V which yielded 451 

ribotype 014 Clostridium difficile isolates (see details in Results). 452 

 453 

454 
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Supporting Information 455 

Additional Supporting Information may be found in the online version of this article: 456 

Table S1. Characteristics of the Clostridium difficile isolates analyzed in this study. 457 

Figure S1. Schematic representation of the Madrid region (central Spain), indicating the 458 

approximate location of the zones from which sand samples were obtained in this study. 459 

 460 

Page 23 of 50

Zoonoses and Public Health

ZPH Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

1 
 

Original Article 1 

 2 

Recreational sandboxes for children and dogs can be a source of 3 

epidemic ribotypes of Clostridium dificile 4 

 5 

Cristina Orden1, Carlos Neila1, José L. Blanco1, Sergio Álvarez-Pérez1, Celine 6 

Harmanus2, Ed J. Kuijper2, and Marta E. García1 7 

 8 

Short title: C. difficile in sandboxes  9 

 10 

Authors and affiliations 11 

1
 Department of Animal Health, Faculty of Veterinary, Universidad Complutense de 12 

Madrid, Madrid, Spain 13 

2
 Department of Medical Microbiology, Center of Infectious Diseases, Leiden University 14 

Medical Center, Leiden, Netherlands 15 

 16 

Correspondence: 17 

Prof. José L. Blanco, PhD, DVM. Departamento de Sanidad Animal, Facultad de 18 

Veterinaria, Universidad Complutense de Madrid. Avda. Puerta de Hierro s/n, 28040 19 

Madrid (Spain). Tel.: +34 91 394 3717. E-mail address: jlblanco@ucm.es20 

Page 24 of 50

Zoonoses and Public Health

ZPH Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

2 
 

 Impacts 21 

• The sand of public playgrounds can have a role in the transmission of various 22 

infections, particularly in children. However, most studies published so far have 23 

focused on select pathogenic parasites and fecal bacteria. 24 

• In this study we demonstrated that the Gram-positive anaerobe Clostridium difficile is 25 

widely distributed in soils samples from children’s and dog’s sandboxes located within 26 

the metropolitanean area of Madrid. 27 

• Furthermore, we demonstrated the presence of genetically diverse strains of C. difficile, 28 

including the epidemic PCR ribotypes 014 and 106, in the studied sandboxes. 29 

30 
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Summary 31 

Different studies have suggested that the sand of public playgrounds could have a role in 32 

the transmission of infections, particularly in children. Furthermore, free access of pets and 33 

other animals to the playgrounds might increase such a risk. We studied the presence of 34 

Clostridium difficile in 20 pairs of sandboxes for children and dogs located in different 35 

playgrounds within the Madrid region (Spain). C. difficile isolation was performed 36 

according to standardby enrichment and selective culture procedures. The genetic (ribotype 37 

and amplified fragment length polymorphism [AFLP]) diversity and antibiotic 38 

susceptibility of isolates was also studied. Overall, 52.5% (21/40) of samples were positive 39 

for the presence of C. difficile. Eight of the 20 available isolates belonged to the toxigenic 40 

ribotypes 014 (n = 5) and 106 (n = 2), both regarded as epidemic, and CD047 (n = 1). The 41 

other 12 isolates were non-toxigenic, and belonged to ribotypes 009 (n = 5), 039 (n = 4), 42 

and 067, 151 and CD048 (one isolate each). Nevertheless, all isolates (even those of a same 43 

ribotype) were classified into different AFLP genotypes indicating non-relatedness. In 44 

conclusion, our results revealed the presence of epidemic ribotypes of C. difficile in 45 

children’s and dog’s sandboxes located nearby, which constitutes a major health risk. 46 

 47 

Keywords: Clostridium difficile; children; dog; epidemic strains; sandboxes. 48 

49 
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Introduction 50 

The soil of playgrounds is a reservoir of diverse parasites and infectious agents (Martínez-51 

Moreno et al., 2007; Dado et al., 2012; Gotkowska-Płachta and Korzeniewska, 2014; Staley 52 

et al., 2016). Furthermore, free access of domestic and wild animals to recreational areas 53 

can increase the burden of microbiological contamination (Haag-Wackernagel and Moch, 54 

2004; Martínez-Moreno et al., 2007; Dado et al., 2012; Gotkowska-Płachta and 55 

Korzeniewska, 2014; Staley et al., 2016). Children are generally regarded as the main 56 

group at risk for environmental exposure to pathogens, not only because they are frequent 57 

users of playgrounds, but also due to the high prevalence of geophagia (i.e. consumption of 58 

sand) within this group, and the immaturity of their immunological, neurological and 59 

digestive systems (Nwachuku and Gerba, 2004; Dado et al., 2012; Gotkowska-Płachta and 60 

Korzeniewska, 2014). 61 

Clostridium difficile is a Gram-positive, anaerobic bacterium of widespread 62 

distribution in the environment, where it can survive under adverse conditions through the 63 

production of spores (Hensgens et al., 2012; Smits et al., 2016). This bacterial species was 64 

traditionally regarded as a primarily nosocomial pathogen, but this view has been 65 

challenged as the incidence of C. difficile infection (CDI) in people outside hospitals started 66 

to increase (Hensgens et al., 2012; Smits et al., 2016). In this context, diverse animal 67 

species, food products and environmental sources have been suggested to play a role in the 68 

transmission of the C. difficile and, in particular, of some epidemic genotypes such as 69 

ribotype 078 (Hensgens et al., 2012; Smits et al., 2016). However, to the best of our 70 

knowledge, the presence of C. difficile in sandboxes of playgrounds has only been explored 71 

in a limited number of studies (al Saif and Brazier, 1996; Higazi et al. 2011; Båverud et al., 72 

2003). 73 
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In this study we determined the presence of C. difficile in 20 pairs of recreational 74 

sandboxes for children and dogs located in different playgrounds within the Madrid region 75 

(Spain). In addition, we compared the isolates recovered from children’s and dog’s 76 

sandboxes in terms of genetic characteristics and in vitro antimicrobial susceptibility. 77 

 78 

Materials and methods 79 

Sampling scheme 80 

Sampling was carried out on two consecutive days (July 1-2, 2015) in 20 pairs of children’s 81 

and dog’s sandboxes located nearby (within 94 m in all cases, mean ± S.D. = 35.1 ± 20.5 82 

m; Table 1) in public playgrounds scattered throughout three zones (A, M and V; postal 83 

codes: E-28047, E-28222/E-28221/E-28220 and E-28400, respectively) within the Madrid 84 

region (central Spain) (Figure S1). Therefore, a total of 40 sandboxes (20 for children and 85 

20 for dogs) were analyzed. The number and distribution of samples per sampling zone and 86 

sampling point is indicated in Table 1. 87 

A 200-g sand sample was obtained from each sampling point according to the 88 

procedure described in Córdoba et al. (2002). Briefly, four 50-g sand samples were 89 

collected from different locations within the sampling point using a sterile plastic container 90 

(Nirco, Madrid, Spain). All four sand samples were then thoroughly mixed in a sterile 91 

plastic bag (Nirco), which was transported to the laboratory and kept frozen (-20ºC) until 92 

analyzed, which took place within 24 h. 93 

94 
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Microbiological analyses 95 

Sand samples (50 g each, taken and aseptically weighted from the 200-g mixtures kept in 96 

the freezer) were transferred into sterile one-liter glass bottles, diluted 1:10 in peptone 97 

water (Laboratorios Conda, Madrid. Spain) and incubated under agitation (200 rpm) for 15 98 

min at room temperature. These suspensions were then allowed to settle for 5 min and the 99 

supernatants were filtered though filter papers membranes (0.45 µm of pore size; Filter Lab, 100 

Barcelona, Spain) following the procedure detailed in Álvarez-Pérez et al. (2016). Filter 101 

papers membranes were then introduced into 10-ml glass tubes containing 5 ml of selective 102 

broth for enrichment of C. difficile (TecLaim, Madrid, Spain; see recipe in Blanco et al., 103 

2013). After seven days of incubation at 37°C under anaerobiosis, 2 ml of the enrichment 104 

culture were mixed 1:1 with absolute ethanol (Panreac, Barcelona, Spain) in 5 ml sterile 105 

plastic tubes (Nirco, Madrid, Spain) and left for 1 hour under agitation (200 rpm) at room 106 

temperature. Finally, tubes were centrifuged at 1520 g for 10 min, the supernatants were 107 

discarded and precipitates were spread with a sterile cotton-tipped swab (Nirco) onto a 108 

plate of CLO agar (bioMérieux, Marcy l’Etoile, France), which contains cycloserine and 109 

cefoxitin as selective agents. Inoculated plates were incubated under anaerobic conditions 110 

for 72 h at 37°C and suspected colonies were identified as C. difficile by colony 111 

morphology, the typical odor of this microorganism, and a positive result in a rapid specific 112 

immunoassay for detection of the constitutive antigen glutamate dehydrogenase (GDH) (C. 113 

Diff Quik Chek Complete; TECHLAB Inc., Blacksburg, VA, USA). The same 114 

immunoassay was used to determine the toxigenic/non toxigenic status of isolates, as it 115 

detects production of C. difficile toxins A and B. A single C. difficile isolate was selected 116 

from each primary culture and sub-cultured on CLO agar to obtain axenic cultures that 117 

could be used in subsequent tests. 118 
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 119 

Molecular characterization of isolates 120 

Possession of tcdA and tcdB genes (which encode for toxins A and B, respectively), and 121 

cdtA and cdtB (which encode for the two components of binary toxin (CDT), respectively), 122 

was analyzed by conventional PCR protocols (Álvarez-Pérez et al. 2009, 2014, 2015). 123 

Genotyping of isolates was performed by high-resolution capillary gel-based 124 

electrophoresis PCR-ribotyping, following the procedures described in Fawley et al. 125 

(2015). Ribotypes were designated according to the nomenclature of the Leiden (Prof. Ed 126 

Kuijper; The Netherlands)-Leeds (Dr. Warren Fawley and Prof. Mark Wilcox; UK) 127 

database (The Netherlands). If a matching PCR ribotype was not found, the electrophoresis 128 

profile was sent to Leeds for a search in the Leeds database of more than 600 PCR 129 

ribotypes (Dr. Warren Fawley and Prof. Mark Wilcox, Leeds).Novel ribotypes were named 130 

using internal reference codes (prefix ‘CD’ followed by a number). 131 

Isolates were further genetically characterized by amplified fragment length 132 

polynorphism (AFLP) fingerprinting, using the protocol detailed in Álvarez-Pérez et al. 133 

(2017). A binary 0/1 matrix was created based on the absence/presence of AFLP markers 134 

and a dendrogram of AFLP patterns was created with PAST v.3.11 software (Hammer et 135 

al., 2001) using Pearson’s correlation coefficients and the unweighted-pair group method 136 

with arithmetic averages (UPGMA) clustering algorithm. Isolates clustering with <86% 137 

similarity were considered to represent different AFLP genotypes (Killgore et al., 2008; 138 

Álvarez-Pérez et al., 2017). 139 

 140 

Antimicrobial susceptibility testing 141 
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In vitro susceptibility of isolates was determined by the Etest (bioMérieux) on prereduced 142 

Brucella agar supplemented with vitamin K1 and haemin (bioMérieux), according to the 143 

manufacturer’s instructions. Plates were incubated anaerobically at 37°C and examined at 144 

48 h. Tested antimicrobial compounds and breakpoints for antimicrobial resistance were as 145 

follows: penicillin G, ≥2 µg/ml; teicoplanin, >2 µg/ml; rifampicin, ≥4 µg/ml; linezolid and 146 

tigecycline, >4 µg/ml; clindamycin, erythromycin and levofloxacin, ≥8 µg/ml; imipenem, 147 

minocycline and tetracycline, ≥16 µg/ml; amoxicillin/clavulanic acid, ≥16/8 µg/ml; and 148 

metronidazole and vancomycin, ≥32 µg/ml. (CLSI, 2012; Álvarez-Pérez et al., 2013, 2014, 149 

2015, 2017; Peláez et al. 2013). 150 

In order to detect possible metronidazole heteroresistance, which is manifested as a 151 

slow growth of resistant subpopulations within the inhibition halo in the Etest at 152 

concentrations above the resistance breakpoint, metronidazole test plates were further 153 

incubated anaerobically at 37°C for five additional days (Peláez et al., 2008). 154 

 155 

Data analysis 156 

Fisher’s exact test and Pearson’s chi-square test were used for statistical analysis of 157 

categorical data where appropriate. P-values of <0.05 were considered to be statistically 158 

significant in all cases. 159 

 160 

Results 161 

Clostridium difficile was recovered from 21 (52.5%) of the sand samples analyzed, 162 

collected from 12 and 9 sandboxes located in recreational areas for dogs and children, 163 

respectively (Table 1). The distribution of isolates by sampling (sub)zone and type of 164 

sample (children’s or dog’s sandboxes) is shown in Table 1. There was no difference in C. 165 
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difficile prevalence between children’s and dog’s sandboxes (P = 0.527) or among 166 

sampling zones (P = 0.203). A positive culture result for both samples of each pair was 167 

obtained in five cases, whereas C. difficile was recovered only from one sandbox of the pair 168 

in 11 cases (four from children’s sandboxes and seven from dog’s sandboxes) and a 169 

negative culture result for both samples was obtained in four cases (Table 1). 170 

One C. difficile isolate (obtained from a children’s sandbox in zone A [sample A-N-171 

2], Table 1) was lost during subculturing in the laboratory. Eight of the 20 remaining 172 

isolates (seven six from dog’s and four two from children’s sandboxes) were toxigenic and 173 

belonged to ribotypes 014 (A+B+CDT-, n = 5), 106 (A+B+CDT-, n = 2) and CD047 (isolate 174 

M-P-4, A+B+CDT-) (Tables 1 and S1, Figure 1). The other eight 12 isolates were non-175 

toxigenic (i.e. A-B-CDT-) and belonged to ribotypes 009 (n = 5), 039 (n = 4), and 067, 151 176 

and CD048 (one isolate each) (Tables 1 and S1, Figure 1). Further genetic characterization 177 

of isolates by AFLP fingerprinting classified each one of these into a different genotype 178 

(Figure 1 and Table S1). Notably, clustering of isolates in the UPGMA dendrogram 179 

obtained from AFLP data was independent from the origin (both at the ‘(sub)zone’ and 180 

‘children vs. dog areas’ levels) and ribotype of isolates (Figure 1). 181 

Regardless of their origin and genotype, all studied isolates showed resistance to 182 

imipenem and levofloxacin (Figure 1 and Table S1). Additionally, the isolates of ribotypes 183 

CD048 and 151 (A-N-8 and V-N-1, respectively) displayed  resistance to clindamycin and 184 

erythromycin, and a ribotype 014 isolate (A-P-3) was resistant to penicillin (Figure 1 and 185 

Table S1). MICs to the other antimicrobial compound tested were generally low, and fell 186 

below the resistance breakpoint in all cases (Table S1). 187 

Notably, the samples obtained from a pair of children’s and dog’s sandboxes in zone 188 

V (V-N-2/V-P-2; Figure 2) yielded C. difficile isolates of a same toxigenic ribotype (014) 189 
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and which showed a similar antimicrobial susceptibility profile, but the AFLP profiles of 190 

such isolates displayed limited similarity (Pearson’s correlation = 0.126) (Figure 1). In 191 

contrast, four pairs of sand samples (A-N-3/A-P-3, A-N-4/A-P-4, A-N-5/A-P-5 and V-N-192 

1/V-P-1) yielded C. difficile isolates of different ribotypes. 193 

 194 

Discussion 195 

The growing number of pets and other animals leaving excrements in the sandboxes of 196 

playgrounds and other recreational areas constitute a serious epidemiological threat 197 

(Martínez-Moreno et al., 2007; Gotkowska-Płachta and Korzeniewska, 2014; Staley et al., 198 

2016). Current tests for assessing the sanitary conditions of sandboxes mostly focus on 199 

detecting some select pathogenic parasites and bacterial indicators of fecal contamination 200 

(Martínez-Moreno et al., 2007; Gotkowska-Płachta and Korzeniewska, 2014; Staley et al., 201 

2016), but mostly neglect the possible presence of other emerging pathogens such as C. 202 

difficile. 203 

Reports of C. difficile presence in recreational sandboxes are still limited in number 204 

and of variable scope. For example, Al-Saif and Brazier (1996) reported the isolation of C. 205 

difficile from a 21% of soil samples taken from public parks, gardens, playgrounds and 206 

other locations in the suburbs of Cardiff, UK. Subsequent characterization of some of those 207 

soil isolates by PCR ribotyping and pyrolysis mass spectrometry (PyMS) fingerprinting 208 

revealed the presence of toxin-producers and different ribotypes (Al Saif et al., 1998). 209 

Similarly, Higazi et al. (2011) investigated by a PCR-based approach the presence of C. 210 

difficile in soil samples from public parks and elementary school playgrounds in a 211 

Midwestern town of the USA and reported an overall prevalence of 6.5%, but bacterial 212 

isolates were only obtained in some cases and these were not genotyped nor tested for 213 
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antimicrobial resistance. Finally, Båverud et al. (2013) observed an overall C. difficile 214 

prevalence of 4% in soil samples obtained from public parks, playgrounds, gardens and 215 

cultivated fields, but the origin and characteristics of recovered isolates were not detailed in 216 

their paper. 217 

In this study, we demonstrated that C. difficile is widely distributed in soils samples 218 

from both children’s and dog’s sandboxes located within the metropolitanean area of 219 

Madrid. Furthermore, our results revealed that recovered isolates were genetically diverse 220 

and displayed resistance to several antibiotics (≥2 drugs, including in all cases imipenem 221 

and levofloxacin). Notably, analysis of AFLP fingerprinting results showed high genetic 222 

variation even among isolates obtained from a same sampling (sub)zone. 223 

Most C. difficile isolates recovered in this study from sandboxes belonged to 224 

ribotypes 014 and 009. The toxigenic ribotype 014 is one of the most prevalent genotypes 225 

isolated from human patients and animals in Europe (including Spain) and other countries 226 

such as Australia, Brazil and the USA (Bauer et al., 2011; Koene et al. 2012; Alcalá et al. 227 

2012, 2015; Janezic et al., 2012, 2014; Tickler et al., 2014; Freeman et al., 2015; Knight et 228 

al., 2015a,b; Silva et al. 2015). Non-toxigenic ribotype 009 is also prevalent in both human 229 

and animal hosts in some countries including Brazil (Silva et al. 2015), but it is rarely 230 

reported in Spain and the rest of Europe (e.g. Koene et al. 2012; Wetterwik et al., 2013; 231 

Álvarez-Pérez et al., 2015). 232 

Other ribotypes found in this study such as 039 and 106 are also frequently isolated 233 

from human and/or animal fecal samples (Bauer et al., 2011; Alcalá et al., 2012, 2015; 234 

Koene et al., 2012; Tickler et al., 2014; Freeman, 2015). In particular, ribotype 106 has 235 

been implicated in outbreaks of human disease in the UK (Ratnayake et al., 2011) and is 236 

also relatively common in continental Europe and North America (Bauer et al., 2011; 237 
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Alcalá et al., 2012, 2015; Tickler et al., 2014; Freeman et al., 2015). We recently obtained 238 

several ribotype 106 isolates from the feces of dogs with diverse digestive disorders (Orden 239 

et al., 2017). Curiously, despite the frequent shedding of C. difficile ribotype 078 by 240 

animals previously observed in Spain (Peláez et al., 2013; Álvarez-Pérez et al., 2013, 2014, 241 

2015) and many other countries (Janezic et al., 2014) we did not found any isolate of this 242 

epidemic ribotype in the present study. Nevertheless, as a single C. difficile isolate from 243 

each primary culture was selected from each primary culture for detailed phenotypic and 244 

genetic characterization, we cannot discard the possibility that this and other ribotypes 245 

might have been overlooked. 246 

Finally, all isolates characterized in this study displayed high-level Iin vitro 247 

resistance to imipenem and levofloxacin, a phenotype which  is fairly common among 248 

clinical C. difficile isolates of diverse ribotypes of C. difficile from different geographic 249 

locations (Alcalá et al., 2012; Keessen et al., 2013; Pirš et al., 2013; Freeman et al., 2015). 250 

As  carbapenems and fluoroquinolones are widely used in human and veterinary medicine 251 

to treat a diversity of infections (Papich, 2011; Papp-Wallace et al., 2011; Redgrave et al., 252 

2014), monitoring the resistance to these compounds in C. difficile and other emerging 253 

pathogens should be a priority. Furthermore, some isolates were found to be resistant to 254 

erythromycin, clindamycin and penicillin G, all of which are of common use in clinical 255 

practice (Papich, 2011). Although we did not detect any isolate with decreased 256 

susceptibility or heterogeneous resistance to metronidazole, we recommend to determine 257 

MIC values to this antibiotic even for environmental isolates, as metronidazole is still 258 

considered a first-line drug for the treatment of anaerobe infections in human and animal 259 

medicine (Dhand and Snydman, 2009; Löfmark et al., 2010; Papich, 2016) and 260 

(hetero)resistant strains of C. difficile and other clostridia have been reported by different 261 
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authors (Peláez et al., 2008, 2013; Álvarez-Pérez et al., 2013, 2014, 2015, 2017; Wetterwik 262 

et al., 2013). 263 

 264 

Conclusions 265 

In summary, our results revealed the presence of epidemic ribotypes of C. difficile in 266 

children’s and dog’s sandboxes, which constitutes a major health risk. Due to the zoonotic 267 

potential attributed to some ribotypes of C. difficile, the possible presence of this emerging 268 

pathogen should be considered in any environmental risk assessment. 269 
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Figure Legends 449 

Figure 1. Dendrogram of AFLP profiles obtained for the 20 Clostridium difficile isolates 450 

characterized in this study. The dendrogram was created by unweighted pair group method 451 

with arithmetic averages (UPGMA) clustering using Pearson’s correlation coefficients. 452 

Individual AFLP genotypes are distinguished at ≥86% similarity (red dotted vertical line). 453 

Isolates obtained from children’s and dog’s sandboxes are indicated by blue and yellow 454 

backgrounds, respectively. Colored squares at the tip of branches indicate the ribotype (see 455 

color legend on the lower left corner). In vitro resistance to clindamycin (C), erythromycin 456 

(E), imipenem (I), levofloxacin (L) and/or penicillin G (P) is denoted by the red letters next 457 

to strain names.  458 

Figure 2. Image showing the children’s and dog’s sandboxes from zone V which yielded 459 

ribotype 014 Clostridium difficile isolates (see details in Results). 460 
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Additional Supporting Information may be found in the online version of this article: 464 

Table S1. Characteristics of the Clostridium difficile isolates analyzed in this study. 465 

Figure S1. Schematic representation of the Madrid region (central Spain), indicating the 466 

approximate location of the zones from which sand samples were obtained in this study. 467 
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Table 1. Overview of the samples analyzed in this study and the Clostridium difficile isolates obtained from them. 1 

Sampling 

zone 

(subzones) 

Sampling 

point 

Children’s sandboxes  Dog’s sandboxes  Distance 

between 

sandboxes† 
Sample’s 

code 

Positive for 

C. difficile? 

Ribotype (toxin 

profile) 

Sample’s 

code 

Positive for 

C. difficile? 

Ribotype (toxin 

profile) 

A 1 A-N-1 No   A-P-1 No   36 m 

 2 A-N-2
*
 Yes ND (+)*  A-P-2 No   26 m 

 3 A-N-3 Yes 009 (A
-
B

-
CDT

-
)  A-P-3 Yes 014 (A

+
B

+
CDT

-
)  60 m 

 4 A-N-4 Yes 014 (A
+
B

+
CDT

-
)  A-P-4 Yes 039 (A

-
B

-
CDT

-
)  0 m 

 5 A-N-5 Yes 039 (A
-
B

-
CDT

-
)  A-P-5 Yes 106 (A

+
B

+
CDT

-
)  0 m 

 6 A-N-6 Yes 009 (A
-
B

-
CDT

-
)  A-P-6 No   20 m 

 7 A-N-7 No   A-P-7 Yes 009 (A
-
B

-
CDT

-
)  50 m 

 8 A-N-8 Yes CD048 (A
-
B

-
CDT

-
)  A-P-8 No   50 m 

 9 A-N-9 Yes 009 (A
-
B

-
CDT

-
)  A-P-9 No   40 m 

 10 A-N-10 No   A-P-10 No   30 m 

M           

     M.1 1 M-N-1 No   M-P-1 No   25 m 

 2 M-N-2 No   M-P-2 Yes 106 (A
+
B

+
CDT

-
)  20 m 

 3 M-N-3 No   M-P-3 Yes 067 (A
-
B

-
CDT

-
)  94 m 

     M.2 5 M-N-5 No   M-P-5 No   40 m 

     M.3 4 M-N-4 No   M-P-4 Yes CD047 (A
+
B

+
CDT

-
)  46 m 

 6 M-N-6 No   M-P-6 Yes 039 (A
-
B

-
CDT

-
)  17 m 

V 1 V-N-1 Yes 151 (A
-
B

-
CDT

-
)  V-P-1 Yes 014 (A

+
B

+
CDT

-
)  30 m 

 2 V-N-2 Yes 014 (A
+
B

+
CDT

-
)  V-P-2 Yes 014 (A

+
B

+
CDT

-
)  46 m 

 3 V-N-3 No   V-P-3 Yes 009 (A
-
B

-
CDT

-
)  42 m 

 4 V-N-4 No   V-P-4 Yes 039 (A
-
B

-
CDT

-
)  30 m 

* ND: not determined (this isolates was lost during subculturing in the laboratory). 2 

† Distance between the children’s and dog’s sandboxes of each sampling point. 3 
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Dendrogram of AFLP profiles obtained for the 20 Clostridium difficile isolates characterized in this study. The 
dendrogram was created by unweighted pair group method with arithmetic averages (UPGMA) clustering 

using Pearson’s correlation coefficients. Individual AFLP genotypes are distinguished at ≥86% similarity (red 

dotted vertical line). Colored squares at the tip of branches indicate the ribotype (see color legend on the 
lower left corner). In vitro resistance to clindamycin (C), erythromycin (E), imipenem (I), levofloxacin (L) 

and/or penicillin G (P) is denoted by the red letters next to strain names.  
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Image showing the children’s and dog’s sandboxes from zone V which yielded ribotype 014 Clostridium 
difficile isolates (see details in Results).  
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