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Abstract 29 

 30 

Objective. To investigate the prevalence of somatic mutations in Indonesian cervical carcinoma 31 

patients in the context of histology and human papillomavirus (HPV) type. 32 

 33 

Methods. In total 174 somatic hot-spot mutations in 13 genes were analyzed by mass 34 

spectrometry in 137 Indonesian cervical carcinomas.  35 

 36 

Results. In 66/137 tumors (48%) 95 mutations were identified. PIK3CA was most frequently 37 

mutated (24%), followed by FBXW7 (7%), CTNNB1 (6%), and PTEN (6%). In squamous cell 38 

carcinomas more often multiple mutations per sample (p=0.040), and more PIK3CA (p=0.039) 39 

and CTNNB1 (p=0.038) mutations were detected compared to adenocarcinomas. PIK3CA 40 

mutations were associated with HPV 16 positivity,  CDKN2A mutations with HPV 52 positivity, 41 

and, interestingly, PTEN mutations with HPV negativity. Balinese tumor samples more often 42 

carried multiple mutations (p=0.019), and more CTNNB1, CDKN2A, and NRAS mutations 43 

compared to Javanese samples.  44 

 45 

Conclusions. Potentially targetable somatic mutations occurred in 48% of Indonesian cervical 46 

carcinomas. The landscape of mutations is predominated by mutations concerning the PI3K 47 

pathway, and we prompt for more research on developing therapies targeting this pathway, 48 

explicitly for the more advanced stage cervical carcinoma patients.  49 

 50 

Keywords  51 

 52 

cervical carcinoma, somatic mutation, PIK3CA, Indonesia, human papillomavirus, cancer 53 

genomics 54 

 55 

56 
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Introduction 57 

 58 

Today, around 85% of the global burden of cervical cancer occurs in the least developed 59 

countries of the world [1]. In Indonesia, cervical cancer is the second most common cancer in 60 

women, with estimated age-standardized incidence and mortality rates (ASR) of 17.3 and 8.2 per 61 

100,000 women per year, respectively. Herewith, the clinical (and economic) burden of this 62 

disease in Indonesia is substantial. By contrast, in the Netherlands, cervical cancer is the twelfth 63 

most common cancer in women, with an ASR for incidence and mortality of 6.8 and 1.6 per 64 

100,000 women per year, respectively [1]. 65 

Cervical cancer is caused by a persistent infection with high risk type human papillomavirus 66 

(HPV) [2]. Meta-analyses have shown that HPV type 16 and 18 are responsible for approximately 67 

73% of all cervical cancer cases worldwide, followed by HPV type 58, 33, 45, 31, and 52. 68 

However, considerable inter- and intraregional variation of HPV type distribution was described 69 

[3, 4]. We have previously investigated the HPV type distribution in the Indonesian population [5] 70 

and in Indonesian cervical cancer patients [6], and reported relatively high prevalence rates of 71 

HPV type 18 (1.3% population, 38% in cancer) and HPV type 52 (1.8% population, 14% in 72 

cancer), and a high percentage of multiple HPV infections (2.3% population, 14% in cancer).  73 

However, with a worldwide overall HPV prevalence of 10% in healthy women, it is known that 74 

only a minority of women are prone to develop cervical cancer. The progression from initial 75 

infection to a persistent infection into premalignant lesions and eventually invasive cervical cancer 76 

is a multifactorial process, influenced by many life-style, environmental, cultural, political, 77 

geographical, and socioeconomic factors, such as smoking, parity, age, sexual behavior, and the 78 

quality of health care facilities [7]. The differences in incidence and mortality rates for cervical 79 

cancer between low-resource and industrialized countries are often ascribed to differences in 80 

these factors, and, predominantly, by the (lack of) implementation of cytological screening and/or 81 

vaccination programs [8]. 82 

In addition, recent studies have shown that various genetic and epigenetic events play an 83 

important role in the carcinogenesis of cervical cancer, such as copy number alterations, loss of 84 
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heterozygosity, tumor suppressor gene inactivation, or oncogene activation [9-13]. Insight into the 85 

molecular mechanisms driving tumorigenesis has become more and more relevant with the 86 

emergence of targeted drug therapies. Two well-known examples of successful targeting 87 

therapies are trastuzumab for HER2 overexpressing mamma carcinoma patients, and 88 

vamurafenib for BRAF mutated melanoma patients [14, 15]. Disappointingly, for cervical cancer, 89 

no tumor-specific targeting drugs have proved to be successful yet, though diverse novel agents 90 

are enrolled in ongoing clinical trials [16] (https://www.clinicaltrials.gov). Furthermore, the 91 

presence or absence of certain somatic mutations in cervical cancer was suggested to be 92 

associated with different outcomes to adjuvant chemotherapy treatment and radiation sensitivity 93 

[17-19]. Knowledge concerning a tumor’s genetic make-up may guide individualized treatment 94 

strategies.  95 

Over the past few years, several research groups, including ours, have evaluated the genomic 96 

alterations of very small to quite large cohorts of cervical cancer patients [12, 20-26]. And very 97 

recently, The Cancer Genome Atlas (TCGA) Research Network published their integrated 98 

genomic and molecular characterization of cervical cancer [13]. However, in Indonesia, a high 99 

prevalence country for cervical cancer, genetic profiles were never investigated. Whilst preventive 100 

vaccines are introduced slowly and with the greatest difficulty [27], still most women present with 101 

advanced stage disease. The urge and need for alternative (targeted) adjuvant treatments is 102 

greatest in countries like Indonesia, where these treatments seem to be the most faraway though.  103 

In the present study, we analyzed the prevalence of somatic mutations in Indonesian cervical 104 

carcinoma patients, and placed this in the context of histology and HPV type. Furthermore, we 105 

discussed the similarities and differences in cervical cancer mutation profiles between Indonesian 106 

and Dutch cervical cancer patients.  107 

 108 

Methods 109 

 110 

Patient samples 111 

 112 
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This study was assessed by the Institutional Review Board. All samples were blinded for patient 113 

identification and used according to the Code of Conduct for responsible use of human tissue in 114 

the context of health research 2011 (https://www.federa.org/sites/default/files/images/print_ 115 

version_code_of_conduct_english.pdf).  116 

In total 142 cervical cancer specimens from Indonesia were available. Seventy-four cases derived 117 

from the outpatient clinic of the Dr. Cipto Manungkusumo National General Hospital, Jakarta, 118 

Java, Indonesia, and consisted of a consecutive cohort of patients diagnosed with invasive 119 

cervical cancer (2001-2002) as described previously [6]. An additional 10 Javanese cervical 120 

adenocarcinoma samples (2011) were provided from the Santosa Hospital, Bandung, Java, 121 

Indonesia. Fifty-eight cases derived from the Sanglah General Hospital, Denpasar, Bali, 122 

Indonesia, and consisted of two consecutive cohorts of patients diagnosed with invasive cervical 123 

cancer (27 cases from 2009, and 31 cases from 2011).  124 

Of all included patients, formalin-fixed, paraffin-embedded (FFPE) material containing a 125 

representative part of the cervical tumor was available at the Leiden University Medical Center. 126 

Histological sections were reviewed for morphology by an experienced pathologist (GJF). When 127 

no glandular components were seen, sections were stained with Periodic Acid Schiff Plus and 128 

Alcian Blue to detect intracytoplasmic mucus. Cases were classified as squamous cell carcinoma 129 

(SCC), adenocarcinoma (AC), or adenosquamous carcinoma (ASC) according to the WHO 2014 130 

histological classification of tumors of the uterine cervix [28]. Three samples were excluded from 131 

further analysis due to poor fixation or unclear morphology.  132 

All samples included in this study were typed for HPV using the SPF10 primer set and INNO-LiPA 133 

HPV genotyping extra line probe assay (Fujirebio Europe, Gent, Belgium) according to the 134 

manufacturers protocol.  135 

For DNA isolation, three to five 0.6mm tissue cores were punched out of a marked tumor area of 136 

the FFPE tissue block containing >70% tumor. Of some FFPE blocks 10µm tissue sections were 137 

taken instead of cores as they contained >70% of tumor cells. DNA was isolated either manually, 138 

followed by a DNA purification step (NucleoSpin Tissue kit, Machery-Nagel, Germany), or using 139 

the automated Tissue Preparation System (Siemens Healthcare Diagnostics, NY, USA) [29]. 140 

https://www.federa.org/sites/default/files/images/print_%20version_code_of_conduct_english.pdf
https://www.federa.org/sites/default/files/images/print_%20version_code_of_conduct_english.pdf
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After DNA isolation, the FFPE tissue blocks were returned to Indonesia to be stored in the 141 

respective local archives.  142 

 143 

Mutation Genotyping 144 

 145 

The GyneCarta mutation genotyping panel (Agena Bioscience, San Diego) was used to detect 146 

174 known mutations in 13 validated oncogenes and tumor suppressor genes being BRAF, 147 

CDKN2A, CTNNB1, FBXW7, FGFR2, FGFR3, FOXL2, HRAS, KRAS, NRAS, PIK3CA, 148 

PPP2R1A, and PTEN [29]. 149 

All samples (N=142), plus 28 (20%) samples in duplicate and 16/28 in triplicate, four negative 150 

controls (H2O), and two wild type leukocyte DNA samples were genotyped using the iPLEX 151 

technology system (Sequenom Inc., San Diego, USA) for matrix-assisted laser 152 

desorption/ionization time-of-flight mass spectrometry following the manufacturers’ protocol [30].  153 

Two investigators (VS, MT), blinded for tumor identification, analyzed the data independently 154 

using Mass Array Typer Analyzer software (TYPER 1.0.22, Sequenom, Hamburg, Germany) and 155 

Mutation Surveyor (Softgenetics, State College, Pennsylvania, USA). Two samples failed for all 156 

assays (one from Bali, one from Java) and were excluded from further analysis.  157 

 158 

Statistics 159 

 160 

Statistical analyses were performed with IBM-SPSS Data Editor (version 20.0, Armonk, New 161 

York, USA) using the independent Students t-Test to compare numerical data and the Chi-162 

squared test or Fisher’s exact test to compare categorical and normally distributed data. 163 

Pearson’s correlation coefficients were used to detect bivariate correlations for HPV positivity or 164 

type and mutation status. Binary Logistic regression models were used to perform multivariate 165 

analyses for somatic mutation status, or gene specific mutation status, correcting for age, region, 166 

histological classification (block 1, method = Enter), and HPV type 16, 18, 52, and 45, and other 167 
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gene mutations (block 2, method = Backward Stepwise Conditional).  All tests were two-tailed, 168 

and p values < 0.05 were considered statistically significant. 169 

 170 

Results 171 

 172 

Samples 173 

 174 

In total 137 samples were analyzed, 82 samples (60%) from Java, 55 samples (40%) from Bali. 175 

Tumor characteristics are summarized in table 1. Morphologically, 91 (66%) tumors were 176 

classified as SCC, 30 (22%) as AC, and 16 (12%) as ASC. The histological subtypes were 177 

unequally distributed amongst the two populations with relatively less SCC, and more AC and 178 

ASC in the Javanese cohort (table 1).  179 

In total 120 (88%) samples were HPV positive, with HPV 16 as the most frequently detected HPV 180 

type (45%), followed by HPV 18 (29%) and 52 (12%). HPV 39 was the fourth most frequent HPV 181 

type, predominantly detected in the Balinese cohort, but occurred in 8/10 cases together with 182 

another high risk HPV type. HPV 16 was more frequently detected in SCC compared to AC and 183 

ASC (56%, 20%, and 25%, respectively, p=0.001), whereas HPV 18 was more frequently 184 

detected in AC and ASC, compared to SCC (53%, 69%, and 14%, respectively, p=0.000). HPV 185 

18 was more frequently detected in Javanese samples, which correlated with the higher 186 

frequency of AC and ASCs in this cohort (table 1).  187 

 188 

Mutation analyses 189 

 190 

In table 2, all detected mutations are listed, and in figures 1 and 2, the mutation spectrum is 191 

visualized for single (in grey) and multiple (in black) mutations per gene, for the total cohort, per 192 

region, or per histological subtype.  193 

In total, 95 somatic mutations were identified in 66/137 cervical tumors (48%). In 45 tumors (33%) 194 

one mutation was detected, in 14 tumors (10%) two mutations were detected, in six tumors (4%) 195 



8 

 

three mutations were detected, and in one tumor four mutations were detected. Multiple 196 

mutations occurred within genes and between genes. HRAS mutations occurred significantly 197 

more often with a concomitant CDKN2A (N=2, OR 16.7, 95% CI 1.8-158.8) or NRAS mutation 198 

(N=2, OR 16.7, 95% CI 1.8-158.8).  199 

In the Javanese cohort 44 mutations were detected in 34/82 tumors (42%), in the Balinese cohort 200 

51 mutations were detected in 32/55 tumors (58%) (p=0.055). In the Balinese cohort significantly 201 

more tumors showed ≥ 2 mutations per sample compared to the Javanese cohort (14/55 (25%) 202 

vs. 7/82 (9%), respectively, p=0.019). Comparing both cohorts per gene, significant differences 203 

were seen between Java and Bali for CTNNB1 (2% vs. 11%, p=0.038), CDKN2A (1% vs. 11%, 204 

p=0.017), and NRAS (1% vs. 11%, p=0.017).  205 

Comparing by histological subtype, we detected a significantly higher overall mutation frequency 206 

in SCC compared to AC (55% vs. 33%, p=0.040), and a higher PIK3CA mutation frequency in 207 

SCC compared to AC (29% vs. 10%, p=0.039). No significant differences were seen comparing 208 

SCC with ASC, or comparing AC with ASC, taking into account the small number of the ASCs 209 

(n=16) in this study. Combining AC and ASC as one subgroup and comparing this with SCC, 210 

revealed that CTNNB1 gene mutations occurred solely in SCC samples (N=8 (9%), p=0.038).  211 

A correlation analysis was performed to detect associations between age and overall mutation 212 

status or gene specific mutation status. No association was found between age an any mutation, 213 

nor between age and a PIK3CA mutation. However, CTNNB1 mutations were associated with a 214 

significantly higher age at time of diagnosis, with a mean age of 60,3 years in patients with 215 

CTNNB1 mutated tumors, and a mean age of 47,7 years in patients with non-CTNNB1 mutated 216 

tumors (p=0.001). 217 

The correlation analysis was repeated for FIGO stage (International Federation of Gynecology 218 

and Obstetrics). However, FIGO stages were only known for 66/82 (80%) Javanese tumors (23% 219 

stage 1b, 12% 2a, 35% 2b, 30% ≥3a), so this concerns a sub analysis for Javanese samples 220 

only. No correlation was found between FIGO stage and a positive mutation status or with 221 

multiple mutations. However, PIK3CA mutated tumors had significantly higher FIGO stages, with 222 

18/43 FIGO ≥2b tumors mutated (42%) vs. 3/23 FIGO ≤2a tumors mutated (13%) (p=0.025). For 223 
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all other genes, the mutation rates were too low to perform meaningful statistical analysis, 224 

however, within the subgroup of 66 tumors, all mutations in FBXW7, CTNNB1, and KRAS were 225 

seen in FIGO 3b tumors (N= 4, 2, and 2, respectively), with no mutations in lower stage tumors.  226 

Subsequently, univariate analyses were performed for overall mutation status (having any 227 

somatic mutation) or gene specific mutation status, and HPV overall positivity (for any type) or 228 

HPV type specific positivity. Results are summarized in table 3. There was a significant 229 

correlation between a positive mutation status and a multiple HPV infection (16/21 (76%) vs. 5/21 230 

(24%), p=0.006). Furthermore, having any somatic mutation was significantly associated with 231 

HPV 16 positivity (36/61 (59%) vs. 25/61 (41%), p=0.023), and HPV 52 positivity (12/17 (71%), 232 

vs. 5/17 (29%), p=0.048). PTEN mutations were associated with HPV negativity (4/17 (23%) vs. 233 

4/120 (3), p=0.009). KRAS mutations were associated with an infection with multiple HPV types 234 

(3/21 (14%) vs. 1/99 (1%), p=0.017). PIK3CA mutations were associated with HPV 16 positivity 235 

(23/61 (38%) vs. 10/76 (13%), p=0.001), and inversely associated with HPV 18 positivity (5/40 236 

(12%) vs. 28/97 (29%), p=0.042). CDKN2A mutations correlated with HPV 52 positivity (3/17 237 

(18%) vs. 4/120 (3%), p=0.041). 238 

 239 

Multivariate analysis 240 

 241 

Multivariate logistic regression analyses revealed that having any somatic mutation was 242 

associated with HPV 16 (OR 2.5, 95% CI 1.1-5.5), and HPV 52 (OR 4.4, 95% CI 1.3-14.7). 243 

Having a PIK3CA mutation was associated with HPV 16 (OR 7.9, 95% CI 2.3-27.1) and HPV 45 244 

(OR 12.0, 95% CI 1.6-89.1), not with histological subtype or age. Having a CTNNB1 mutation 245 

was associated with age (OR 1.1, 95% CI 1.0-1.2), not with histopathology, nor with Balinese 246 

origin. Having a CDKN2A mutation was associated with HPV 52 (OR 30.8, 95% CI 1.9-489.3),  247 

with a concomitant HRAS mutation (OR 38.7, 95% CI 1.3-1157.8), and AC subtype (OR 27, 95% 248 

CI 1.1-674.4), but not with Balinese origin (OR 13.3, 95% CI 0.68-258.8). However, having a 249 

NRAS mutation was associated with Balinese origin (OR 10.7, 95% CI 1.0-113.3), and also with a 250 

concomitant HRAS mutation (OR 15.3, 95% CI 1.5-155.5). The other way around, HRAS 251 
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mutations were associated with a concomitant CDKN2A or NRAS mutation (OR 18.5 and 12.5, 252 

95% CI 1.4-252.2 and 1.2-135.4, respectively).  253 

 254 

Discussion 255 

 256 

In the present study, we have shown that potentially actionable somatic mutations occurred in 257 

48% of Indonesian cervical carcinomas. The landscape of mutations showed similarities as well 258 

as differences between two Indonesian cancer cohorts from Java and Bali, and several 259 

correlations were shown between somatic mutations and HPV (type) positivity.  260 

With the emergence of tumor targeting drugs such as tyrosine kinase inhibitors, targeting the 261 

tumor based on its genomic profile rather than its histological background, it is important to study 262 

the prevalence of targetable oncogenic driver mutations throughout diverse ethnical cancer 263 

populations from diverse geographic areas. The prevalence of somatic mutations in cervical 264 

cancer was investigated previously in other cervical cancer cohorts worldwide from the US 265 

(N=80) [21], Norway/Mexico (N=100/15) [12], China (N=285) [23], the Netherlands (N=301) [20], 266 

France (N=29) [25], Hong Kong (N=15) [22], Guatemala/Venezuela/Mexico (N=280/40/325) [24], 267 

to India (N=10) [26], using varying techniques, from whole genome and/or exome sequencing 268 

[12, 13, 26], direct sequencing [23], to oncopanel analysis [20, 21, 25] or a combination of 269 

techniques [22, 24].  270 

This is the first study to describe the prevalence of driver mutations in an Indonesian cervical 271 

cancer cohort. Indonesia is the world’s largest, and most widely scattered archipelago, populated 272 

by more than 260 million people of more than 300 distinct native ethnic groups, and where 273 

cervical cancer is still the second most common cancer in women [1]. We analyzed a Javanese 274 

cohort, representing the largest ethnical Muslim population derived from the island Java, and 275 

compared this with a Balinese cohort, representing a relatively isolated Hindu population from the 276 

island Bali. We described the similarities and differences of the mutation spectrum for both 277 

cohorts (figure 1), and in multivariate analysis, a significantly higher mutation frequency of NRAS 278 

was seen in Balinese- (11%) compared to Javanese patients (1%). This is the first cervical cancer 279 
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cohort in which a NRAS mutation rate of 11% was described, and this may be of interest for 280 

future targeted therapies. NRAS plays a role in PI3K as well as MAPK signaling and is mutated in 281 

15-20% of melanomas. Studies concerning NRAS mutated melanomas suggested that combined 282 

targeting of both pathways may improve treatment [31].  283 

Recently, we have reported on the mutation spectrum of a Dutch cervical cancer cohort [20], 284 

using the same mutation panel as in the present study [29], and therefore, comparisons between  285 

Indonesia, a high incidence country, and the Netherlands, a low incidence country, could be 286 

performed. A significantly higher overall mutation frequency, as well as a higher rate of multiple 287 

mutations per sample, and significantly more FBXW7, CDKN2A, NRAS, and HRAS mutations 288 

were seen in the Indonesian cohort compared to the Dutch cohort (supplementary table 1). It 289 

remains uncertain whether these differences are attributable to race/ethnicity/geography, or that 290 

they are based on differences in tumor characteristics or stage.  291 

One limitation of the present study is the lack of some relevant clinicopathological characteristics 292 

of the Indonesian samples such as FIGO stage, tumor diameter, lymph node metastasis, and 293 

survival. However, FIGO stage data were known for 66 Javanese patients, and showed 294 

significantly more advanced stage disease compared to the Dutch cohort (Indonesian cohort 295 

20/66 (30%) ≥ FIGO stage 3a, whilst Dutch cohort consisted of only stage 1b-2b tumors, 296 

p<0.001). We presume, this could also be the case for the Balinese patients, as it is known that in 297 

Indonesia, patients often present with advanced stage disease. It is hypothesized that cancer, 298 

including cervical cancer, results from sequential mutations in specific oncogenes and/or tumor 299 

suppressor genes, and that the mutation frequency increases with advanced cancer stage [32]. 300 

However, in the present study, we found no association between increasing FIGO stage and 301 

overall mutation frequency or multiple mutations, which is in line with other reports [12, 13, 21, 23, 302 

24]. Gene specifically, however, we do see that the occurrence of PIK3CA mutations is 303 

associated with higher FIGO stage tumors, which is in line with the Dutch cohort [20] and a 304 

recently published study by Verlaat et al., showing thatPIK3CA mutations are considered a late 305 

event in cervical carcinogenesis, and a rare event in its precursor lesions [33]. 306 



12 

 

PIK3CA was the most frequently mutated gene (24%) in the present Indonesian cervical cancer 307 

cohort, which is in line with previous reported frequencies in cervical cancer from the Netherlands 308 

(20%), France (27%), Latin America (28-33%), the U.S. (31%), and the TCGA data (26%) [13, 20, 309 

21, 24, 25]. However, lower frequencies were also described in Norway (15%) and China (12%) 310 

[12, 23]. And in a recent study from India, whole exome sequencing was performed on 10 FIGO 311 

stage 3b SCCs, with no PIK3CA mutations detected at all [26]. PIK3CA mutations lead to an 312 

altered production of the catalytic subunit p110α of the enzyme phosphatidylinositol 3-kinase 313 

(PI3K), allowing the PI3K pathway to signal without regulation, leading to uncontrolled cell growth, 314 

proliferation and survival. The tumor suppressor PTEN was third most frequently mutated in 315 

Indonesian cervical cancer (6%), comparable with the mutation frequency of Dutch (4%) and 316 

Norwegian (6%) cervical cancer patients, and the TCGA data (8%) [12, 13, 20]. The function of 317 

PTEN is to dephosphorylate PI3K, and mutations lead to uncontrolled cell growth. PIK3CA and 318 

PTEN are the most frequently mutated genes in human cancers, and therapeutics targeting the 319 

PI3K pathway are being developed rapidly, and are today in diverse phases of (pre)clinical trials 320 

[34]. Though, for cervical cancer, therapies targeting the PI3K pathway are still scarce [35].  321 

In the Indonesian cohort, 97% of the PIK3CA mutated tumors were mutated in the helical domain, 322 

dominated by p.E545K, and followed by p.E542K; only 2 mutations in the kinase domain were 323 

detected (p.H1047L and p.H1047Y), which is in line with other studies [13, 24]. This is a 324 

distinctive feature of cervical carcinoma compared to other cancers with high frequencies of 325 

PIK3CA mutations, such as endometrial, ovarian, breast, and colorectal carcinoma, in which 326 

mutations in the kinase domain occur at least as frequent in the helical domain [24]. 327 

Unfortunately, it is the kinase domain H1047R mutation that is explicitly associated with an 328 

increased response rate to PI3K/AKT/mTOR inhibitors [36]. In a study of Wang et al., 15/60 329 

locally advanced cervical SCCs had E542K or E545K mutations (there were no kinase domain 330 

mutations), and these patients showed a significantly worse response to cisplatinum based 331 

chemoradiation [17]. Further research is necessary to develop therapies that can intervene 332 

cancers with specific PIK3CA helical domain mutations.  333 
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The p53-dependent tumor suppressor gene FBXW7 also plays a role in the PI3K/mTOR pathway, 334 

and was the second most frequently mutated gene (6%) in Indonesian cervical cancer, which was 335 

significantly more frequent compared to our Dutch cohort (1%), but less compared to the study of 336 

Ojesina et al. (15%), and the TGCA data (11%) [12, 13, 20]. FBXW7 mutations are hypothesized 337 

to be a late event in cervical cancer, which might explain the higher frequency in the Indonesian 338 

cohort [32]. FBXW7 mutated tumor cell lines have shown to be sensitive to rapamycin treatment, 339 

and we urge for further research concerning FBXW7 mutated cervical carcinomas [37].   340 

Furthermore, in this study we compared the mutation frequencies between histological 341 

subgroups, as we determined some differences between SCC, AC, and ASC in our previous 342 

study concerning Dutch cervical carcinomas [20]. In accordance with our study concerning Dutch 343 

carcinomas, also in Indonesia PIK3CA mutations and CTNNB1 mutations were associated with 344 

the SCC subtype. However, in the TCGA data, CTNNB1 mutations were only detected in three 345 

samples (1,7%) of which two were SCC subtype and one was a AC [13]. Remarkable, KRAS 346 

mutations were not associated with AC in the Indonesian cohort, which is in contrast with many 347 

other studies [12, 13, 20, 21]. 348 

We also investigated the presence of HPV and its correlations with somatic mutations. In 349 

Indonesia, a different HPV type distribution amongst the population as well as in cervical cancer 350 

patients was described, especially with a significantly higher prevalence rate of HPV 52 [5, 6]. In 351 

a recent large, retrospective cohort study from Murdiyarso et al., 11.224 cytology swabs from 352 

Jakarta area were typed for HPV, and HPV 52 was the most prevalent HPV type in normal 353 

cytology (1%), and the second most common type in SCC (26%) [38]. It is unclear why no AC 354 

were included in that study. In the current cohort, again we showed a remarkable high prevalence 355 

of HPV 52 in the Javanese (12%) as well as in the Balinese cohort (13%). This is an important 356 

finding in the light of preventive strategies, because HPV 52 is not included in the available FDA 357 

approved HPV vaccines yet.  358 

Significant associations were identified between the presence of any somatic mutation and HPV 359 

16 positivity, based on the positive correlation between PIK3CA mutations and HPV 16 positivity. 360 

In the Dutch cervical cancer cohort this association was not found. Also Wright et al. investigated 361 
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associations between HPV type and PIK3CA or KRAS mutations in cervical carcinomas, but did 362 

not detect any [21]. Contrary, PTEN mutations were associated with HPV negativity, a feature 363 

that was also seen in the Dutch cohort, and described previously by Minaguchi et al.[39]. 364 

However, the coverage of possible PTEN mutations by the mutation panel used was only 40% 365 

[29]. Therefore, additional techniques such as immunohistochemistry should be performed to 366 

identify the true mutation rate of PTEN in cervical cancer, to clarify its association with HPV. We 367 

also detected an association between any somatic mutation and HPV 52 positivity, based on the 368 

positive correlation between CDKN2A mutations and HPV 52 positivity. CDKN2A was mutated in 369 

11% of the Balinese cervical carcinoma patients, which is the highest frequency described in 370 

cervical cancer compared to other studies [20, 24]. Its correlation with HPV 52 is remarkable, and 371 

has not been described previously. Given the high prevalence rates of HPV 52 in Indonesia this 372 

feature certainly warrants for further investigation.  373 

To conclude, we have presented the landscape of potentially actionable somatic mutations in an 374 

Indonesian cervical cancer cohort, and placed the results in the context of histology and HPV 375 

type. Most noticeable is the predominance of mutations concerning the PI3K pathway, in 376 

concordance with results from other countries. Although we realize that implementation of 377 

expensive targeting therapies in countries like Indonesia remains highly uncertain, we do prompt 378 

for more research to develop therapies that target this PI3K pathway, explicitly for more advanced 379 

stage cervical carcinoma patients. 380 
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Table legends 501 

 502 

Table 1. Baseline characteristics 503 

Baseline characteristics of all 137 included cervical carcinoma patients from Indonesia, and for 504 

the Javanese and Balinese cohorts separately. P values in bold were considered to indicate 505 

statistical significance. Abbreviations: N, number; IQR, interquartile range; SCC, squamous cell 506 

carcinoma; AC, adenocarcinoma; ASC, adenosquamous carcinoma; HPV, human papillomavirus. 507 

* Other, infrequent, HPV types detected were the high risk types HPV 31 (N=2), 33 (N=2), 35 508 

(N=1), 51 (N=1), 56 (N=1), 58 (N=1), 59 (N=2), 66 (N=1), and "X" (N=1), and the low risk types 509 

HPV 11 (N=1), and HPV 54 (N=1). The low risk HPV types occurred concomitantly with HPV 16 510 

and with HPV 33 and 52, respectively.  511 

 512 

Table 2. Mutation frequencies 513 

Mutation frequencies as detected in a cohort of 137 Indonesian cervical cancer samples. In total 514 

174 hot spot mutations in 13 genes were analyzed. Mutations are shown per gene and in order of 515 

frequency, mutations of genes that were not detected in any of the samples are not shown. 516 

BRAF, FGFR2, and FOXL2 genes are not listed because no mutations were detected. N, number 517 

of samples with the mutation;  %,  percentage of mutated samples of 137 cervical cancer 518 

samples. a Three samples contained two PIK3CA mutations (2x E542K with E545K, and 1x 519 

E545K with H1047Y); b One sample contained two CTNNB1 mutations (T41A with G34E); c One 520 

sample contained two PTEN mutations (R130fs*4 with Q214*).  521 

 522 

Table 3. Correlations between human papillomavirus infection and mutations 523 

Correlations between human papillomavirus (HPV) infection (any, multiple, or type specific), and 524 

somatic mutations (any, multiple, gene specific) are shown in number of HPV positive samples 525 

being mutated (percentage between brackets). Numbers and percentages in bold indicate 526 

statistical significant correlations. Two-sided p values were calculated by Chi-squared test or 527 

Fishers’ exact test and only significant p values are annotated in the present table.   528 
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Figure legends 529 

 530 

Figure 1. Mutation spectrum per region  531 

Spectrum of somatic mutations detected in 137 Indonesian cervical cancer specimen (top panel) 532 

and with separate spectra for the Javanese and Balinese cohorts (middle and bottom panel, 533 

respectively) in N, number of mutated samples, and %, percentage of mutated samples within the 534 

cohort. The spectra are visualized from left to right in percentages, with black bars indicating 535 

samples with ≥2 mutations, and grey bars indicating samples with 1 mutation.  536 

 537 

Figure 2. Mutation spectrum per histological subtype 538 

Spectrum of somatic mutations detected in 137 Indonesian cervical cancer specimen (see also 539 

figure 1) separately visualized for squamous cell carcinomas (SCC, top panel), adenocarcinomas 540 

(AC, middle panel), and adenosquamous carcinomas (ASC, bottom panel) in N, number of 541 

mutated samples, and %, percentage of mutated samples within the cohort. The spectra are 542 

visualized from left to right in percentages, with black bars indicating samples with ≥2 mutations, 543 

and grey bars indicating samples with 1 mutation. 544 

 545 

Supplementary Information 546 

 547 

Supplementary Table S1. Comparison of mutation frequencies between Indonesia and the 548 

Netherlands 549 

A cohort of 301 consecutive Dutch cervical carcinomas (166 squamous cell carcinomas, 55 550 

adenocarcinomas, and 80 adenosquamous carcinomas) was  analyzed for somatic mutations 551 

previously using the Gynecarta mutation panel, as described by Spaans et al. [20]. Mutation data 552 

were compared with the current Indonesian cervical cancer cohort of 137 carcinomas.    553 
554 
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Highlights 555 

 556 

• In 48% of 137 Indonesian cervical carcinomas ≥ 1 somatic mutation is present 557 

• Most frequently mutated are PIK3CA (24%), FBXW7 (7%), CTNNB1 (6%), and PTEN (6%) 558 

• Squamous cell carcinomas show more PIK3CA and CTNNB1 mutations than 559 

adenocarcinomas 560 

• PIK3CA mutations correlate with HPV16, CDKN2A – with HPV52, PTEN – with HPV absence 561 

• Prioritize research of PI3K-pathway targeting therapies in advanced cervical cancer 562 

563 
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Table 1. Baseline characteristics 564 

 
 

Total 
N=137 

Java 
N=82 

Bali 
N=55 

p value 
Java vs. Bali 

Age in years, median (IQR) 47 (41-53) 46 (41-52) 49 (41-58) 0.057 

Morphology, N (%) SCC 91 (66) 45 (55) 45 (84) 0.002 

 
AC 30 (22) 25 (31) 5 (9) 

 

 
ASC 16 (12) 12 (15) 4 (7) 

 
HPV positive, N (%) 120 (88) 77 (94) 43 (78) 0.006 

>1 HPV type detected, N (%) 21 (15) 10 (12) 11 (20) 0.006 

HPV type distribution, N (%) HPV 16 61 (45) 33 (40) 28 (51) 0.218 

 
HPV 18 40 (29) 32 (39) 8 (15) 0.002 

 
HPV 52 17 (12) 10 (12) 7 (13) 0.926 

 
HPV 39 10 (7) 1 (1) 9 (16) 0.001 

 
HPV 45 6 (3) 5 (6) 1 (2) 0.401 

 
Other* 14 (10) 8 (7) 6 (11) 

 
 565 

566 
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Table 2. Mutation frequencies 567 

Gene/mutation N % 

PIK3CA a 33 24.1 

p.E545K 27 
 

p.E542K 6 
 

p.E545D 1 
 

p.H1047L 1 
 

p.H1047Y 1 
 

FBXW7 9 6.6 

p.R465H 4 
 

p.R465C 2 
 

p.R479Q 2 
 

p.R479L 1 
 

CTNNB1 b 8 5.8 

p.G34E 5 
 

p.G34R 2 
 

p.S33Y 1 
 

p.T41A 1 
 

PTEN c 8 5.8 

p.R130fs*4 6 
 

p.R173H 1 
 

p.Q214* 1 
 

p.L318fs*2 1 
 

CDKN2A 7 5.1 

p.W110* 3 
 

p.R58* 2 
 

p.P114L 2 
 

NRAS 7 5.1 

p.G12S 2 
 

p.G13D 2 
 

p.G12D 1 
 

p.G12V 1 
 

p.Q61K 1 
 

PPP2R1A 7 5.1 

p.R258H 7 
 

KRAS 5 3.6 

p.G12A 2 
 

p.G12D 2 
 

p.G12V 1 
 

HRAS 5 3.6 

p.G13S 3 
 

p.G12S 1 
 

p.G13D 1 
 

FGFR3 1 0.7 

p.A391E 1 
 

 568 

569 
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Table 3. Correlations between human papillomavirus infection and mutations 570 

HPV positive for: 
Gene mutation: 

any type 
(N=120) 

≥2 types 
(N=21) 

type 16 
(N=61) 

type 18 
(N=40) 

type 52 
(N=17) 

type 39 
(N=10) 

type 45 
(N=6) 

Any mutation (N=66) 59 (49) 16 (76)a 36 (59)b 16 (40) 12 (71)c 6 (60) 3 (50) 

≥2 mutations (N=21) 18 (31) 5 (31) 12 (33) 5 (31) 3 (25) 2 (33) 0 (0) 

PIK3CA (N=33) 32 (27) 7 (33) 23 (38)f 5 (13)g 5 (29) 0 (0) 3 (50) 

FBXW7 (N=9) 7 (6) 2 (10) 4 (7) 2 (5) 1 (6) 1 (10) 0 (0) 

CTNNB1 (N=8) 7 (6) 3 (14) 4 (7) 2 (5) 2 (12) 1 (10) 0 (0) 

PTEN (N=8) 4 (3)d 1 (5) 3 (5) 1 (3) 1 (6) 1 (10) 0 (0) 

CDKN2A (N=7) 7 (6) 2 (10) 2 (3) 3 (8) 3 (18)h 2 (20) 0 (0) 

NRAS (N=7) 7 (6) 1 (5) 5 (8) 2 (5) 1 (6) 1 (10) 0 (0) 

PPP2R1A (N=7) 6 (5) 1 (5) 4 (7) 2 (5) 0 (0) 0 (0) 0 (0) 

KRAS (N=5) 4 (3) 3 (14)e 2 (3) 2 (5) 2 (12) 0 (0) 0 (0) 

HRAS (N=5) 5 (4) 1 (5) 2 (3) 2 (5) 1 (6) 1 (10) 0 (0) 

FGFR3 (N=1) 1 (1) 1 (5) 1 (2) 1 (3) 0 (0) 1 (10) 0 (0) 

p value  a 0.006 b 0.023  c 0.048   

 d 0.009 e 0.017 f 0.001 g 0.042 h 0.041   

 

 571 

572 
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Table S1. Comparison of mutation frequencies between Indonesia and the Netherlands 573 

Gene mutation: 
 

Indonesia 
N=137 

The Netherlands* 
N=301 

p value 
 

Any mutation  66 (48%) 103 (34%) 0.005 

≥2 mutations 21 (15%) 13 (4%) 0.002 

PIK3CA 33 (24%) 61 (20%) ns 

FBXW7 9 (7%) 3 (1%) 0.002 

CTNNB1 8 (6%) 8 (3%) ns 

PTEN 8 (6%) 12 (4%) ns 

CDKN2A 7 (5%) 4 (1%) 0.019 

NRAS 7 (5%) 1 (<1%) 0.001 

PPP2R1A 7 (5%) 9 (3%) ns 

KRAS 5 (4%) 20 (7%) ns 

HRAS 5 (4%) 1 (<1%) 0.012 

FGFR3 1 (1%) 2 (1%) ns 

* Cohort described previously by Spaans et al. (2015) in PLoS ONE 10(7):e013670. 574 

575 
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