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Understanding how decidual CD8+ T cell (CD8+ dT) cytotoxicity is
regulated and how these cells integrate the competing needs for
maternal–fetal tolerance and immunity to infection is an important
research and clinical goal. Gene-expression analysis of effector-
memory CD8+ dT demonstrated a mixed transcriptional signature
of T cell dysfunction, activation, and effector function. High protein
expression of coinhibitory molecules PD1, CTLA4, and LAG3, accom-
panied by low expression of cytolytic molecules suggests that the
decidual microenvironment reduces CD8+ dT effector responses to
maintain tolerance to fetal antigens. However, CD8+ dT degranu-
lated, proliferated, and produced IFN-γ, TNF-α, perforin, and gran-
zymes upon in vitro stimulation, demonstrating that CD8+ dT are
not permanently suppressed and retain the capacity to respond to
proinflammatory events, such as infections. The balance between
transient dysfunction of CD8+ dT that are permissive of placental
and fetal development, and reversal of this dysfunctional state, is
crucial in understanding the etiology of pregnancy complications
and prevention of congenital infections.

pregnancy | T cell exhaustion | trophoblast | cytotoxicity | placenta

To establish a successful pregnancy, maternal decidual CD8+

T cells (CD8+ dT) at the maternal–fetal interface must in-
tegrate the antithetical demands of maternal–fetal tolerance and
antiviral immunity (1). The key question is whether CD8+ dT have
the ability to elicit cytolytic responses to placental, fetal, or viral
antigens or are rendered permanently dysfunctional and exhibit
impaired effector functions. Among dysfunctional T cells are
exhausted CD8+ T cells that initially obtain effector functions and
become dysfunctional during chronic exposure to antigen (2). Other
dysfunctional cells include anergic T cells that fail to gain effector
functions due to priming without costimulation and suppressed
T cells that may be temporarily inhibited in their effector function
after interaction with immune suppressive cells, such as regulatory
T cells (Tregs) (2). T cell dysfunction is characterized by loss of IL-2,
IFN-γ, and TNF-α production, diminished proliferative capacity, and
low T cell cytotoxicity. A variety of markers have been implicated to
identify dysfunctional T cells but expression of these coinhibitory
molecules [e.g., programmed cell death-1 (PD1), T cell Ig mucin-3
(TIM3), and cytotoxic T-lymphocyte–associated protein 4 (CTLA4)]
is not exclusive to dysfunctional T cells and is also observed in
activated T cells (3–6). The significant overlap of gene-expression
profiles and cell-surface markers between dysfunctional and ac-
tivated T cells makes functional assessment (e.g., proliferation,
cytokine secretion, cytotoxicity) necessary to separate these cell
types.
T cell dysfunction was first described in chronic lymphocytic

choriomeningitis virus (LCMV) infection in mice where LCMV-
specific CD8+ T cells were unable to control the infection (7, 8).
However, infected mice retained antiviral CTL responses and ap-
plied selection pressure on the persisting virus (9). In both HIV and

hepatitis-C virus infection, the emergence of viral escape mutants
highlights the fact that T cell effector responses are retained re-
gardless of the presence of phenotypically dysfunctional T cells (10,
11). Human cytomegalovirus (HCMV)-specific CD8+ T cells have
low proliferative capacity, low production of IL-2, and express PD1.
Despite these signs of dysfunction, they are capable of producing
ample amounts of IFN-γ and granzyme B (GZMB) when stimu-
lated (12). In humans, T cell dysfunction has been demonstrated in
a wide variety of cancers, including melanoma and colorectal
cancer patients (6, 13) and during chronic infections (5). Fur-
thermore, blockade of CTLA4 and PD1 pathways has been
associated with improved effector T cell responses in these
patients (14, 15). A recent study described gene signatures in
dysfunctional tumor infiltrating T cells that can be uncoupled
from activation signatures at the single-cell level. This study
identified metallothionein-1 (MT1) and MT2 as specific markers
for dysfunctional CD8+ tumor infiltrating T cells (16). MTs are
cysteine-rich zinc chaperones that are involved in zinc regulation
and protection against oxidative stress (17). Deletion of MT1
resulted in increased T cell proliferation, loss of T cell dysfunc-
tion, and thus reduced tumor growth (16). These clinical and
experimental observations provide evidence that immune surveillance
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remains active in chronic infections and cancer and that T cell
dysfunction is incomplete.
Previous studies have shown that CD8+ dT in first trimester

pregnancy have an increased ability to produce cytokines, in-
cluding IFN-γ (18, 19). Furthermore, a subset of first trimester
PD1+TIM3+ CD8+ dT showed increased proliferation potential
and Th2 cytokine production (20). Despite this evidence suggesting
increased activation, CD8+ dT were also hypothesized to be dys-
functional/exhausted because of the high expression of the coin-
hibitory molecule PD1 and the ability of PDL1 to modify cytokine
secretion (21), as well as the low expression levels of perforin
(PRF) and GZMB in term pregnancy CD8+ dT (22). Thus far, no
comprehensive data has been presented on CD8+ dT function
throughout gestation and whether these cells are rendered dys-
functional or maintain the ability to generate proinflammatory
responses. CD8+ dT are exposed to allogeneic fetal minor and
major histocompatibility antigens (mHag and MHC) expressed by
fetal HLA-G+ HLA-C+ extravillous trophoblasts (EVT) through-
out gestation (23, 24). CD8+ dT make up 2–7% of leukocytes in
first trimester decidua and their proportion increases to ∼30% at
term pregnancy (25). CD8+ dT are differentiated effector-memory
(EM) cells that express reduced levels of PRF and GZMB (22). In
mice, maternal CD8+ T cells responded to viral and bacterial an-
tigens, but were unable to completely clear the pathogens during
pregnancy (26, 27). Activation and expansion of fetus-specific
CD4+ and CD8+ T cells by seminal fluid in mice resulted in high
levels of CD4+CD25+ (Treg) and activation of fetus-specific CD8+
T cells did not have an influence on pregnancy outcome (28).
In humans, antibody and CTL responses to MHC and mHag

(e.g., HY) were detected in maternal blood during and as a result
of pregnancy (29, 30). While induction of HLA-A– and HLA-B–
specific antibodies did not negatively impact pregnancy outcome,
the presence of HLA-C–specific antibodies in women with re-
current miscarriage suggested that antibody-mediated rejection
may be involved in the origin of unexplained recurrent miscar-
riages (31). HCMV seropositivity profoundly influenced the T
cell repertoire during pregnancy and led to the accumulation of
highly differentiated memory T cells (32). HLA-A– and HLA-B–
restricted virus-specific CD8+ T cells, as well as CD8+ T cells spe-
cific for the HY antigen, are present in human decidual tissue (1,
33). Thus, both murine and human studies clearly demonstrate that
maternal CD8+ T cells respond to viral, fetal, and placental anti-
gens during pregnancy. However, regulation of CD8+ dT effector
function prevents detrimental cytolytic responses to invading fetal
EVT and maintains maternal–fetal immune tolerance. In this study,
CD8+ T cell function was investigated by transcriptome analysis of
CD8+ dT from human first trimester and term pregnancy. More-
over, gene-expression profiles were combined with phenotypic
characterization and assessment of CD8+ dT effector functions.

Results
CD8+ EM dT Have a Mixed Gene-Expression Profile. A significantly
increased percentage of CCR7−CD45RA− EM CD8+ T cells and a
decrease in CCR7+CD45RA+ naïve CD8+ T cells was observed in
first trimester (6–12 wk) and term (>37 wk) pregnancy decidual
tissue when compared with peripheral blood CD8+ T cells (CD8+

pT), confirming previous studies (Fig. S1 A–D) (22, 34). Within the
EM subsets, TEM1 cells, defined as CD28+CD27+ EM cells, were
significantly increased in the first trimester compared with term
pregnancy decidua (Fig. S1E). Furthermore, a small but not sig-
nificant increase in CD28−CD27+ TEM2 and CD28−CD27− TEM3
cells was detected in term compared with first trimester pregnancy
decidua. Analysis of the cytolytic molecule PRF also showed re-
duced expression in first trimester decidual CD8+ effector (Eff) and
TEM3 cells compared with the same populations in blood, as has
previously been described for term CD8+ dT (Fig. S1F) (22). Gene-
expression profiles were generated from RNA purified from
CD8+CCR7−CD45RA− EM T cells in blood (CD8+ EM pT)
and decidua (CD8+ EM dT; 6–12 wk and >37 wk). Unsupervised
principle component analysis (PCA) separated CD8+ EM dT
from CD8+ EM pT along the first principal component (35.9% of

variance). PC2 separated first trimester from term pregnancy CD8+
EM dT (18.0% of variance) (Fig. 1A). A transcriptional signature
that uniquely defined CD8+ EM dT and EM pT was identified
(Fig. S2A and Dataset S1). Genes up-regulated in CD8+ EM dT
compared with EM pT included genes involved in chemotaxis
(CCL3, CCL4, IL-8, XCL1), T cell activation (IFN-γ, TNF, FOS,
ICOS, NFKB1), and coinhibitory receptors (FASLG, CTLA4, LAG3,
TIGIT, CRTAM, and TIM3). An increase in mRNA for gran-
zymes, but not the other cytolytic molecules PRF and granulysin,
was observed in term CD8+ EM dT (Fig. S3A).

CD8+ EM dT Have a Mixed Profile of Dysfunction, Activation, and
Effector Function. To further identify transcriptional differences
between first trimester CD8+ EM dT and EM pT, gene-set en-
richment analysis (GSEA) was performed by comparing the CD8+
EM dT gene set to existing immunological gene sets in the
ImmSigDB database (35, 36). GSEA demonstrated a significant
enrichment of effector vs. naïve, effector vs. memory, exhausted vs.
naïve, and exhausted vs. effector gene sets in CD8+ EM dT relative
to CD8+ EM pT (Fig. 1B). GSEA also revealed that expression of
genes associated with both dysfunction and activation states of
CD8+ T cells are increased in first trimester CD8+ EM dT compared
with CD8+ EM pT. For this analysis, our data were compared with
a recently published gene signature where dysfunction and acti-
vation gene modules were uncoupled (Fig. 1C) (16). Flow cytometric
analysis detecting protein expression of selected activation markers
(CD69, HLA-DR, GITR, and CD25) and coinhibitory molecules
(PD1, CTLA4, LAG3, and TIGIT) confirmed that expression of
markers associated with both activation and dysfunction are
increased on CD8+ dT compared with pT (Fig. S3 C–J).

Term CD8+ EM dT Express Methallothioneins, a Signature for Dysfunctional
T Cells. No significantly different gene sets were identified when
gene-expression profiles of first trimester and term CD8+ EM dT
were compared. However, a striking enrichment of MT1 and
MT2 genes, which have recently been associated with dysfunctional
T cells, was observed in term CD8+ EM dT (Fig. S2B and Dataset
S2) (16). The presence of MT genes in term CD8+ EM dT and not
in first trimester suggests that antigenic stimulation throughout the
9 months of pregnancy may gradually increase CD8+ EM dT dys-
function. Other differences between first trimester and term CD8+
EM dT included increased expression of galectin-8 (LGALS8) and
galectin-9 (LGALS9) in term CD8+ EM dT. Galectins have a
broad variety of functions including mediation of cell–cell interac-
tions, apoptosis, and facilitating the differentiation of regulatory
T cells (37). Thus, toward the end of pregnancy CD8+ EM dT have
also acquired gene signatures associated with immune suppression.

CD8+ EM dT Can Acquire Signatures of T Cell Activation.To investigate
if and how CD8+ EM dT respond to T cell receptor stimulation,
gene-expression profiles were generated from first trimester CD8+
EM dT stimulated with anti-CD3/28 for 0, 12, and 72 h. Ap-
proximately 2,000 immunologically relevant genes were pre-
selected based on the Immune System Process Gene Ontology
(GO) terms (36). A MaSigPro time-course identified 470 genes
that changed significantly over time (Fig. 2A and Dataset S3).
K-cluster analysis divided these temporally sensitive genes into
five clusters (Fig. 2). While gene clusters 1 and 2 identified genes
rapidly decreasing upon stimulation (ICOS, FOS, CXCL16, CD28,
PD1, TGF-β), cluster 3 identified genes with a slower decline in
expression. Cluster 3 included genes involved in T cell activation
(IL-7R) and signaling (IL-6ST, CXCL3), as well as IL-11 that is known
to play a function in placentation and to some extent deciduali-
zation (38). Subsequently, genes regulating T cell receptor signaling
(IL-2RA), cell cycle (CDK6), T cell differentiation and activation
(BATF), IFN-β expression (PRDMI), and antiviral activity (PRDX1)
were induced within 12 h after stimulation (Fig. 2B, cluster 4).
Stimulation of 72 h resulted in up-regulation of genes involved in
activation and maturation (GZMB, IL-9, RUNX1), regulation of
T cell activation and antiinflammatory activity (IL-13, IL-10RB,
TGFBR1), and inhibition (LAG3) (Fig. 2B, cluster 5). DROSHA,
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a player in microRNA biogenesis, was induced after 72 h of stim-
ulation. The proinflammatory cytokines IFN-γ and TNF revealed
higher expression levels within 12 h after stimulation, whereas
expression of the cytolytic molecules PRF, GZMA, GZMB,
GZMH, and GNLY were induced within 72 h of stimulation (Fig.
S3B). Taken together, stimulation of first trimester CD8+ EM dT
resulted in up-regulation of genes involved in T cell activation and
cytotoxicity.

CD8+ dT Are Functional Upon Activation. T cell dysfunction is asso-
ciated with a limited capacity to degranulate, proliferate, and se-
crete cytokines upon stimulation (5, 11). Although, previous studies
have shown increased proliferation and cytokine production of first
trimester CD8+ dT (18–20), no comprehensive study has compared
functional aspects of CD8+ dT throughout gestation from first tri-
mester to term. To determine whether activation of CD8+ dT elicits
these effector responses, total CD8+ dT and pT were stimulated
in vitro. A significantly increased percentage of first trimester CD8+
dT degranulated upon PMA/Ionomycin stimulation compared with
CD8+ pT (Fig. 3A). Degranulation was predominantly observed in
CD8+ dTEFF (CD45RA+CCR7−) and dTEM (CCR7−CD45RA−).
Term CD8+ dT degranulated significantly less than first trimester
CD8+ dT, but at a level similar to CD8+ pT (Fig. 3A).
Carboxyfluorescein diacetate succinimidyl ester (CFSE) -labeled

CD8+ pT and dT were stimulated with anti-CD3/28 and analyzed
at days 3, 4, 5, and 6 for their capacity to proliferate. At day 3,
significantly fewer CD8+ dT had proliferated compared with CD8+
pT. However, by days 5 and 6 virtually all first trimester CD8+ dT
and pT had lost CFSE expression (Fig. 3B). While the pro-
liferation index for term CD8+ dT was similar to CD8+ pT on day
6 (Fig. S4A), there was a significantly lower percentage of term
CD8+ dT that had divided compared with CD8+ pT (median of
65% vs. 89%) (Fig. 3B). No significant differences between the
proliferation index of CD8+ pT and dT were observed (Fig. S4A).
These data demonstrated that CD8+ dT required more time to
initiate proliferation, yet once they started dividing, first trimester
CD8+ dT proliferated at a similar rate to CD8+ pT.
The percentage of CD8+ dT expressing IFN-γ, TNF-α, and

IL-2 upon stimulation with PMA/Ionomycin was comparable to
CD8+ pT (Fig. 3C). All effector and EM CD8+ pT and dT
produced IFN-γ and TNF-α, whereas the production of these
cytokines was in effect absent in naïve CD8+ T cells. Among the
EM subsets, EM-1 CD8+ T cells were the main producers of
IFN-γ and TNF-α (Fig. S4 B and C). No production of IL-10 and
IL-17a was observed in CD8+ pT or dT.
Next, the expression of PRF and GZMB in activated CD8+ dT

was analyzed to determine whether the reduced levels of PRF in
CD8+ dT is reversible or permanently suppressed. Activation
with IL-12 or anti-CD3/28 was sufficient to increase PRF ex-
pression in first trimester and term pregnancy CD8+CD28− and
CD8+CD28+ dT by approximately twofold (Fig. 4A and Fig. S5).
However, activation of CD8+ dT did not increase the PRF
content to levels observed in CD8+ pT. Moreover, treatment of
CD8+ dT with either anti-CD3/28 or the combination of IL-12
and anti-CD3/28 increased GZMB in CD8+ dT to levels com-
parable or higher than CD8+ pT (Fig. 4B and Fig. S6). Thus, the
majority of CD8+ dT in both first trimester and term pregnancy
degranulate, proliferate, secrete proinflammatory cytokines, and
increase cytolytic molecules upon activation and do not reside in
a permanently dysfunctional state.

PRF, but Not GZMB, Is Suppressed in HCMV-Specific CD8+ dT. Next,
the question whether virus-specific CD8+ dT have suppressed
expression of cytolytic molecules that could impair or delay their
ability to respond to infections in the placenta was addressed.
HCMV is the most common congenital infection andHCMV-specific
CD8+ dT are present at the maternal–fetal interface (33). First
trimester CD8+CD28− dT and pT were stained with HCMV-
specific tetramers and analyzed for expression of PRF and GZMB
(Fig. 5 and Fig. S7A). PRF expression was about twofold lower in
HCMV-specific CD8+ dT compared with HCMV-specific CD8+
pT (Fig. 5 A and B). In contrast, HCMV-specific CD8+ dT had
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Fig. 1. Transcriptional signatures of CD8+ EM dT dysfunction, activation, and
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EM dT and EM pT. (B) GSEA performed with assorted immunological signa-
tures, showing positive correlation for an in vitro CD8+ activation signature,
an effector signature, and a CD8+ viral exhaustion signature (MSigDB). (C)
GSEA comparing first trimester CD8+ EM dT to gene modules of dysfunction,
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comparable GZMB levels to CD8+ pT (Fig. 5 C andD). A ratio of
PRF and GZMB expression of each individual donor revealed a
significant difference between HCMV-specific CD8+ dT and
pT (Fig. S7B). HCMV-specific CD8+ dT and pT were expanded
and PRF levels in the expanded CD8+ dT did not increase,
while PRF significantly decreased in CD8+ pT after expansion
(Fig. 5B and Fig. S7C). Expansion of HCMV-specific cells
significantly increased GZMB content in both CD8+ dT and
pT, although GZMB levels in CD8+ dT did not reach the same
levels as in CD8+ pT (Fig. 5D). Thus, suppression of cytolytic
proteins in virus-specific CD8+ dT can be partially overcome by
T cell activation as may occur during a viral infection in placental
tissues.

CD8+ dT Do Not Degranulate in Response to EVT. The antigen-
specificity of CD8+ dT and their ability to recognize and respond
to fetal antigens expressed by EVT is a key question that is yet to
be answered. The potential of CD8+ T cells to degranulate in
response to EVT was determined by culturing CD8+ T cells alone,
or in the presence of EVT or anti-CD3/28 beads for 12 h. Co-
culture of EVT with CD8+ dT from the same pregnancy sample
(dT sample-matched), a different pregnancy sample (dT nonmatched),
or from unrelated blood donors (pT nonmatched) did not induce
degranulation by any of the CD8+ T cells (Fig. S8). Addition of
anti-CD3/28 increased degranulation by all CD8+ T cells, dem-
onstrating T cell viability. Thus, similar to EVT and decidual NK

cell (dNK) cocultures (39), EVT do not directly elicit degranula-
tion by CD8+ T cells.

Discussion
Numerous gaps remain in our understanding of how pregnancy
affects adaptive immunity and, in particular, how CD8+ dT in-
tegrate protective immunity against pathogens with immune
tolerance to invading EVT. In this study, expression analysis of
decidual CD8+ EM T cells demonstrated a mixed transcriptional
signature of T cell dysfunction, activation, and effector function.
The enriched gene signature for T cell dysfunction in CD8+ dT
together with the increased expression of coinhibitory molecules
PD1, CTLA4, and LAG3, and low expression of the cytolytic
molecule PRF suggests that the decidual microenvironment re-
duces CD8+ dT effector responses, possibly to maintain immune
tolerance to fetal antigens. However, the ability of CD8+ dT to
up-regulate PRF and GZMB expression, degranulate, proliferate,
and secrete proinflammatory cytokines upon activation suggests
that CD8+ dT are not permanently suppressed and retain the
capacity to respond to proinflammatory events, such as infections.
This also confirms the uncoupling of coinhibitory receptors from
the dysfunctional T cell phenotype (16).
RNA sequencing on single cells or small population level of

CD8+ dT combined with functional assessment of the CD8+

T cell subpopulations will determine whether gene modules for
activation and dysfunction are intertwined or uncoupled. It is of
high clinical relevance to determine whether there are CD8+ EM
dT populations responsible for maternal immune tolerance that
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are distinct from a subset of activated CD8+ EM dT with effector
functions ready to confront incoming pathogens. A major challenge
here is to connect gene-expression analysis at the single-cell level
with accurate functional assessment of T cell function. This is par-
ticularly challenging for human T cell subtypes that proliferate
in vivo but not in vitro. Further identification and validation of
markers that can separate dysfunctional T cells from activated
T cells such as the recently proposed MT1 and MT2 genes is re-
quired (16). Consistent with prolonged antigen stimulation of CD8+

dT at term pregnancy, enrichment of MT1 and MT2 genes was
observed in term CD8+ EM dT compared with first trimester CD8+

EM dT. However, phenotypic and functional assessment of first
trimester and term CD8+ EM dT revealed only minor differences.
The reduced capacity of CD8+ dT to initiate proliferation and the
failure of term CD8+ dT to fully degranulate and proliferate at day
6 suggests that a subset of CD8+ dT gradually becomes dysfunc-
tional through exhaustion or suppression over the course of preg-
nancy, while the majority retains the capacity to respond. A recent
study in mice observed that the priming of maternal naïve T cells by
fetal antigens resulted in the differentiation of long-lived PD1+

CD8+ T cells with selective silencing of effector function in a sub-
sequent pregnancy. This dysfunction was reversed during skin trans-
plantation (40). In the same manner, the integration of the competing
needs for maternal immune tolerance in concert with immunity to
placental infections may be achieved by the proficiency of the de-
cidual microenvironment to dampen the activation state of CD8+

dT while not exclusively inducing their dysfunctional state.
dNK biology and interactions with MHC molecules expressed

by EVT has been a major focus of research for over two decades.

Despite their abundance of cytolytic granules, dNK degranulate
significantly less than blood NK cells in response to classic target
cells (41, 42). However, when activated with a low dose of IL-15,
dNK degranulate and produce proinflammatory cytokines to
HCMV-infected decidual stromal cells (41, 43), yet are unable
to respond to HCMV-infected EVT (39). The inability of dNK
to kill infected EVT may make placental tissue more dependent
on CD8+ dT responses to clear infections. Activation of CD8+ dT
increased both PRF and GZMB mRNA and protein expression.
The high levels of PRF mRNA in the absence of PRF protein in
term CD8+ dT (22) and the induction of DROSHA, as presented
here, suggests that posttranscriptional regulation mediated by
miRNAs may allow for a rapid increase in cytolytic proteins and
cytolytic capacity upon stimulation (44). Thus, although dNK and
CD8+ dT both require additional activation by cytokines or receptor-
ligand interactions to display their full cytotoxicity, the mechanisms
that inhibit or delay their cytotoxic response are inherently different.
HLA-A– and HLA-B–restricted virus-specific CD8+ T cells

are enriched in decidual tissue at term pregnancy (33). Here, we
demonstrated that HCMV-specific CD8+ dT in first trimester
pregnancy have reduced levels of PRF protein compared with
HCMV-specific CD8+ pT, whereas their GZMB protein levels are
comparable. After expansion of HCMV-specific CD8+ dT, PRF
levels remained the same and GZMB levels significantly increased,
although levels remained lower than in CD8+ pT. HCMV-specific
CD8+ dT and pT are capable of cytotoxicity regardless of low PRF
levels (33). Our data imply a general suppression of PRF trans-
lation in all CD8+ dT, including virus-specific CD8+ dT. However,
this suppression can be overcome by T cell activation as might be
the case during viral infections of the placenta. HLA-A and HLA-
B are not expressed by EVT, and further investigation is needed to
determine whether HLA-C–restricted pathogen-specific responses
by CD8+ dT can provide immunity when EVT are infected. In-
vestigation into whether HLA-C–restricted T cells with specificity
for placental or fetal antigens cause detrimental immune responses
and contribute to the development of pregnancy complications is
required. Here, we demonstrated that CD8+ dT do not degranu-
late during coculture with healthy EVT. Additional research should
determine whether the failure of CD8+ dT to respond to EVT is
due to their dysfunction or to a lack of antigen specificity to EVT
antigens. Furthermore, investigation into how the interactions of
EVT and other immune modulatory placental cells (e.g., decidual
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Treg and decidual macrophages) with CD8+ dT changes CD8+ dT
function is needed to determine if CD8+ dT are rendered dys-
functional through exhaustion or suppression and what molecular
pathways are involved. Another key question is to determine if
immune tolerance by CD8+ dT in response to EVT is maintained
during placental infections as was recently shown for dNK (39).
Coordinated interaction between many different cell types

present at the maternal–fetal interface establishes immune tol-
erance and allows allogeneic fetal trophoblasts to invade maternal
tissues. How infections or other inflammatory responses destabi-
lize the tolerogenic placental environment, increase dNK and
CD8+ dT cytotoxicity, and contribute to placental pathology is central
to understanding the development of pregnancy complications,
such as miscarriages and preterm birth.

Materials and Methods
Decidua parietalis was obtained from healthy women after uncomplicated
pregnancy at term (gestational age > 37 wk) delivered by elective cesarean
section or uncomplicated spontaneous vaginal delivery at Tufts Medical
Center. Discarded first trimester human placental and decidual materials
(gestational age 6–12 wk) were obtained from women undergoing elective
pregnancy termination at a local reproductive health clinic. Peripheral blood
leukocytes were isolated from leuko packs from unrelated healthy blood
donors at Massachusetts General Hospital in Boston. All human tissue used for
this research was de-identified, discarded clinical material. The committee on
the use of human subjects (Harvard Institutional Review Board) determined
that this use of placental and decidual material is not human subject’s re-
search. Term placental tissue was collected under a protocol approved by
Tufts Health Sciences Institutional Review Board. Decidual lymphocytes and

peripheral blood leukocytes were isolated as previously described (19). In
short, first trimester, villous, and decidual tissues were macroscopically iden-
tified and separated. Decidua parietalis from term pregnancy was collected by
removing the amnion and delicately scraping the decidua parietalis from the
chorion. Collected decidual tissues were washed, minced, and digested with
0.1% collagenase type IV and 0.01% DNase I (Sigma-Aldrich) for 60–75 min at
37 °C. After digestion, cells were washed and filtered through 100-, 70-, and
40-μm sieves (BD, Labware). Lymphocytes were dissolved in 20 mL 1.023 g/mL
Percoll (GE Healthcare) and layered on a Percoll gradient (10 mL 1.080 g/mL;
15 mL 1.053 g/mL) for density gradient centrifugation (30 min, 800 × g).
Lymphocytes were isolated from the 1.080–1.053 g/mL interface, washed
twice, and directly stained for sorting on a BD FACS ARIA-II (Fig. 1). Peripheral
CD8+ T cells were isolated using RosetteSep (StemCell Technologies) followed
by Ficoll (GE Healthcare) gradient centrifugation (20 min, 800 × g). Additional
details on methods for RNA preparation and microarray hybridization; com-
putational analysis; isolation of EVT; flow cytometry; cell culture; pro-
liferation, degranulation, and cytokine assays; generation of HCMV-specific
CD8+ T cell lines and clones; and statistical analyses used are described in SI
Materials and Methods.
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