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and fat-free mass index and fat mass index using dual-
energy X-ray absorptiometry. Outcomes were standardized 
for age and sex. BMI was used to classify children’s over-
weight status.
Results  After adjustment for sociodemographic and life-
style factors, a higher maternal protein intake was associ-
ated with a higher children’s fat-free mass index [difference 
0.14 standard deviation (95 % CI 0.03, 0.25) for highest vs. 
lowest quartile of protein intake], but not with children’s 
fat mass index or body mass index. Comparable associa-
tions were found for animal protein and vegetable protein. 
Maternal protein intake was not associated with children’s 
overweight.
Conclusions and relevance  This study suggests that higher 
protein intake during pregnancy is associated with a higher 
fat-free mass in children at the age of 6 years, but not with 
their fat mass. Our results do not suggest specific recom-
mendations regarding maternal protein intake during preg-
nancy to prevent overweight in the offspring.

Keywords  Protein intake · Pregnancy · Body 
composition · Obesity · Offspring · Fetal programming

Introduction

The prevalence of childhood overweight is increasing 
worldwide [1]. Many overweight children will stay over-
weight or become obese when reaching adulthood [2], con-
sequently increasing their risk of developing cardiovascular 
disease or type 2 diabetes later in life [3].

Childhood obesity and body mass index (BMI) can be 
influenced by several determinants such as genetic fac-
tors, children’s diet, and sedentary behavior [4–7]. In addi-
tion to this, intra-uterine exposures, such as pre-pregnancy 

Abstract 
Purpose  Intra-uterine exposure to protein may affect body 
composition and may increase the prevalence of childhood 
adiposity. Therefore, we examined whether protein intake 
during pregnancy is associated with offspring body compo-
sition at the age of 6 years and whether associations differ 
for animal protein and vegetable protein.
Methods  We included 2694 Dutch mother–child pairs 
participating in a prospective population-based cohort 
in Rotterdam, the Netherlands. Energy-adjusted pro-
tein was measured in pregnancy using a food-frequency 
questionnaire and analyzed in quartiles. At a mean age of 
6.1 ± 0.4 years, we measured children’s body mass index, 
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BMI and maternal diet, have been suggested to affect body 
composition of the offspring via fetal programming [8, 9]. 
For example, higher maternal protein intake during preg-
nancy has been associated with body composition of the 
child; however, the results of several observational studies 
were inconsistent. Some studies have reported no associa-
tions [10, 11], whereas others found that higher maternal 
protein intake was associated with an increased risk of 
the offspring becoming overweight [12], or with a higher 
offspring lean mass [13]. The exact mechanisms through 
which maternal protein intake might influence children’s 
body composition have not been clarified, but may involve 
changes in the release of growth hormones or prenatal pro-
gramming of child’s appetite [14, 15].

The effect of maternal protein intake on childhood body 
composition might differ depending on the source of pro-
tein. For instance, whether protein is animal-derived or 
vegetable-derived, because they differ in amino acid com-
position [16]. However, studies on the effects of different 
maternal protein sources on childhood body composition 
are scarce. We hypothesized that the association between 
maternal protein intake and offspring body composition 
would depend on the source of protein.

Therefore, the aim of our study was to assess whether 
maternal protein intake during pregnancy was associated 
with children’s body composition at the age of 6  years. 
Additionally, we assessed the differences in effect among 
protein sources (animal versus vegetable protein). Finally, 
we evaluated whether substitution of maternal protein for 
other macronutrients would influence these associations.

Subjects and methods

This study was embedded in the Generation R Study, a 
prospective population-based birth cohort (Rotterdam, the 
Netherlands). Details of the study have been described 
in detail previously [17]. All women provided written 
informed consent at enrollment between April 2002 and 
January 2006. The study was approved by the Medical Eth-
ics Committee of Erasmus Medical Center Rotterdam and 
conducted according to the World Medical Association 
Declaration of Helsinki.

Study population

Out of 8976 women enrolled in the Generation R Study 
while pregnant, we restricted our analysis to women of 
Dutch ancestry (n = 4101). Ancestry was self-reported and 
defined according to the classification of Statistics Neth-
erlands [18]. We excluded women with missing dietary 
information (n  =  542), women with multiple pregnan-
cies (n =  53) or no live childbirth (n =  24), and women 

who were lost-to-follow-up (n =  3). In our population of 
analysis, we included only mother–child pairs with avail-
able childhood body composition information at the age of 
6 years (n = 2694; Supplemental Fig. 1).

Maternal protein intake

Protein intake during pregnancy (i.e., total, animal, and 
vegetable protein) was assessed with a 293-item semi-
quantitative food-frequency questionnaire (FFQ) [19] 
that women received at enrollment at median 13.4 (IQR 
12.2–15.5) weeks of gestation. The FFQ covered the aver-
age dietary intake of a Dutch diet over the previous three 
months. The average daily intake of energy, protein, and 
other nutrients was calculated using the Dutch food compo-
sition table 2006 [20]. Validation of the FFQ against three 
instances of 24-h dietary recall in 71 pregnant women of 
Dutch ancestry living in Rotterdam showed an intra-class 
correlation coefficient of 0.65 for energy-adjusted protein 
intake. There was no indication for systematic measure-
ment error (Supplemental Fig. 2).

Body composition measurements

Children visited the research center at a mean (±SD) age 
of 6.1 ± 0.4 years. We measured height (using a Harpenden 
stadiometer) and weight [using an electronic personal scale 
(Seca®)] to calculate their BMI (kg/m2). This BMI was also 
used to classify overweight status according to age- and 
sex-specific cutoffs [21].

During this visit, body composition was measured by 
dual-energy X-ray absorptiometry (DXA; iDXA; Gen-
eral Electrics-Lunar, 2008, Madison, WI, USA) follow-
ing standardized procedures [22]. The DXA scanner cal-
culated fat, lean, and bone mass of the total body and of 
specific body regions, using enCORE software (version 13; 
GE Healthcare). Fat-free mass index [FFMI (kg/m2); cal-
culated as total fat-free mass divided by height squared] 
and fat mass index [FMI (kg/m2); total fat mass divided by 
height squared] were calculated. Additional outcome meas-
urements were lean mass index (kg/m2, total fat-free mass 
minus total bone mass divided by height squared), total fat 
percentage (total body fat mass divided by total body mass 
times 100 %), and android/gynoid fat mass ratio (android 
fat mass divided by gynoid fat mass). All body composition 
outcomes were standardized for age and sex of the child 
and analyzed continuously.

Covariates

At enrollment, we collected information by questionnaire 
on maternal age, educational level, folic acid supple-
ment use, and parity. Additionally, weight and height were 
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measured at the research center at enrollment to calculate 
BMI, and a fetal ultrasound was performed to establish 
gestational age. Energy, fat, and carbohydrate intake during 
pregnancy were measured using the FFQ described previ-
ously. Smoking and alcohol use were assessed during each 
trimester by questionnaire and categorized into never users, 
stopped when pregnancy was known, and continued use 
during pregnancy. Gestational weight gain (g/week) was 
calculated by subtracting maternal weight at enrollment 
from the weight in early third trimester and divided by the 
follow-up duration (weeks).

At birth, we collected information on gestational age at 
birth, birth weight Z score, sex, and hypertensive pregnancy 
complications (i.e., preeclampsia and pregnancy-induced 
hypertension) from delivery reports [23]. Preterm birth was 
defined as childbirth before 37 weeks of gestation. Breast-
feeding practice at 2  months was assessed by a combina-
tion of delivery reports and questionnaires. Child protein 
and energy intake were measured using an FFQ at a median 
age of 12.9 (IQR 12.6–14.1) months in a subgroup of our 
population (n = 1591). At the age of 6 years, information on 
screen time (<2 vs. ≥2 h/day [24]) and participation in sports 
(yes/no) of the children was collected using a questionnaire.

Statistical methods

Maternal protein intake was adjusted for total energy using 
the nutrient residual method to evaluate the effect of mater-
nal protein intake independent of energy intake and to 
reduce the magnitude of measurement error [25]. We cat-
egorized protein intake into quartiles and used the lowest 
quartile (Q1) as the reference category. Because of skewed 
distributions, total body fat percentage and android/gynoid 
fat mass ratio were natural-log transformed.

We used multivariable linear regression models to assess 
the associations of maternal total, animal, and vegetable 
protein intake with childhood body composition measure-
ments. Multivariable logistic regression models were used 
for childhood overweight.

The analyses were performed with energy-adjusted pro-
tein intake during pregnancy. Analyses with animal protein 
intake were adjusted for vegetable protein intake, and vice 
versa (model 1). Additionally, for the outcomes, total fat 
percentage and android/gynoid fat mass, model 1 included 
also height of the child. The decision to include confound-
ers in the multivariable regression models (model 2) was 
based on previous literature or a >10  % change in the 
effect estimate in model 1. The following confounders were 
considered: maternal age, educational level, parity, smok-
ing and alcohol consumption in pregnancy, folic acid sup-
plementation, maternal BMI at enrollment, energy intake, 
carbohydrate intake, gestational age at birth, breastfeeding, 
childhood sedentary time, and childhood physical activity. 

The confounders included are listed in the footnotes of 
the figures and tables. Potential intermediate factors were 
added to a separate multivariable model (model 3), namely 
gestational weight gain, hypertensive complications during 
pregnancy, and birth weight Z score. Effect modification 
was evaluated for gestational weight gain and child sex. In 
case of significant effect modification (p value for interac-
tion term <0.05), stratified analyses were performed.

To evaluate whether the observed associations were 
due to a higher protein intake rather than a lower intake 
of another macronutrient, we assessed whether substitut-
ing protein with other macronutrients (e.g., carbohydrates 
and fat) had any effect on our results [26]. For example, the 
substitution model for replacing protein by carbohydrates 
included the macronutrients [in energy percent (E%)] pro-
tein, fat, and alcohol, but not the macronutrient carbohy-
drate. As a result, the regression coefficients for protein 
from these models reflect the effect of replacing 1 E% from 
carbohydrates with 1 E% of protein.

To evaluate the robustness of our findings, several sec-
ondary analyses were performed. First, we further adjusted 
our models for protein intake of the children (n =  1591). 
Second, we restricted analyses to women with a child born 
after 37  weeks of gestation, those without hypertensive 
complications in pregnancy, and to children with a nor-
mal birth weight (which we defined as a gestational age- 
and sex-adjusted birth weight between ±2 SD). Also, we 
excluded siblings (n = 185), and finally, we did not include 
the covariate child height in the multivariable model 2 since 
height might also be associated with obesity [27].

To reduce bias due to missing data, missing covariates 
(0–17.7 %) were imputed using multiple imputation which 
includes fully conditioned specification of the imputation. 
Ten imputed datasets were created, and the analyses were 
performed in each dataset before the results were pooled by 
Rubin’s rules [28] taking into account uncertainty with the 
prediction of missing data. Details on the imputation proce-
dure are described in Supplemental Table 1. All statistical 
analyses were performed in SPSS version 21.0 (IBM Corp., 
Armonk, NY, USA).

Results

Subject characteristics

Maternal and child characteristics are presented in Table 1. 
The main sources of protein in our study population were 
dairy products, meat and meat products, and nuts and seeds 
(together explaining 60  % of the variance in total pro-
tein intake). Mothers with a higher protein intake were, 
on average, older, had greater levels of education, more 
often non-smokers, and used more frequently folic acid 
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Table 1   Baseline maternal 
characteristics, pregnancy 
outcomes, and children’s 
characteristics at the age 
of 6 years, the Generation 
R Study: Rotterdam, the 
Netherlands (n = 2694)

Original data Imputed dataa

Maternal characteristics (n = 2694)

Gestational age at enrollment (weeks) 13.4 (12.2–15.5) No missing values

Age (years) 31.7 ± 4.2 No missing values

Maternal education (%)

 Low and midlow (%) 11.9 12.0

 Midhigh (%) 53.0 53.0

 High (%) 35.1 35.1

 Missing (%) 1.3

Nulliparity (%) 61.9 61.8

Missing (%) 0.1

Body mass index at enrollment (kg/m2) 23.4 (21.6–26.0) 23.4 (21.6–26.0)

Missing (%) 0.5

Gestational weight gainb (g/week) 503 ± 196 475 ± 204

Missing (%) 17.6

Smoking during pregnancy

 Never (%) 75.9 76.1

 Until pregnancy was known (%) 9.5 9.5

 Continued (%) 14.6 14.4

 Missing (%) 7.8

Alcohol during pregnancy

 Never (%) 31.4 31.2

 Until pregnancy was known (%) 16.7 16.7

 Continued (%) 51.8 52.0

 Missing (%) 8.5

Alcohol consumption (g/day) 0.0 (0.0–0.7) No missing values

Folic acid supplementation

 No (%) 9.2 9.5

 Started <10 weeks of gestation (%) 90.8 90.5

 Missing (%) 17.7

Energy intake (kcal/day) 2153 ± 503 No missing values

Protein intake (g/day)

 Total protein 80 ± 19 No missing values

 Animal protein 49 ± 14 No missing values

 Vegetable protein 31 ± 9 No missing values

Protein intake (E%)

 Total protein 15 ± 2 No missing values

 Animal protein 9 ± 2 No missing values

 Vegetable protein 6 ± 1 No missing values

Pregnancy outcomes

 Hypertensive complications (%) 7.3 Not imputed

 Missing (%) 3.2 Not imputed

 Gender, boy (%) 50.1 No missing values

 Birth weight (g) 3503 ± 541 3503 ± 540

 Missing (%) 0.1

 Gestational age at birth (weeks) 40.0 ± 1.7 No missing values

 Preterm birth (%) 4.2 No missing values

 Breastfeeding at 2 months (%) 69.8 68.0

 Missing (%) 15.0

Dietary intake of the children at 13 months of age

Energy intake (kcal/day) 1300 ± 342 Not imputed
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supplementation than those with a lower protein intake 
(Supplemental Table 2).

Protein intake during pregnancy and body composition 
in childhood

Children of mothers in the highest quartile (Q4) of pro-
tein intake did not have a statistically significant higher 
BMI than children of mothers in the lowest quartile (Q1; 
Table 2). Both animal protein and vegetable protein intake 
were not associated with a higher childhood BMI in model 
1, whereas higher animal protein as well as higher vege-
table protein intake was associated with higher childhood 
BMI after adjustment for confounders (model 2, Table 2).

Total maternal protein intake was not associated with 
childhood overweight at the age of 6 years [OR 1.13 (95 % 
CI 0.80, 1.59) Q4 vs. Q1], after adjusting for educational 
level, maternal alcohol, and folic acid supplementation dur-
ing pregnancy (p value for trend = 0.31) and neither was 
the source of maternal protein intake associated with child-
hood overweight.

Higher total protein intake during pregnancy was asso-
ciated with a higher FFMI in children aged 6 years in the 
unadjusted model (model 1) as well as in the multivari-
able adjusted model (model 2, Table  2). The effect esti-
mates were comparable for animal and vegetable pro-
tein (Table  2). Maternal total protein intake remained 
significantly associated with childhood FFMI [difference 
0.15 SD (95 % CI 0.04, 0.25) for Q4 vs. Q1, p value for 
trend =  0.01] after additional adjustment of the potential 
intermediate factors gestational weight gain, hypertensive 
complications, and birth weight (model 3). Total maternal 
protein intake was not associated with childhood FMI and 
neither was the intake of animal protein during pregnancy 
(Table  2). Vegetable protein intake was associated with 
lower FMI in model 1, but this association did not remain 
after adjustment for lifestyle factors and sociodemographic 
background (model 2, Table 2).

In Supplemental Table  3, we added the results from 
the main analyses that were performed in a non-imputed 
dataset. The magnitude of the effects was stronger in the 
imputed data, which was mainly seen in the analysis for 

Table 1   continued Original data Imputed dataa

Missing (%) 40.9

Protein intake (g/day) 41 ± 11 Not imputed

Protein intake (E%) 13 ± 2 Not imputed

Missing (%) 40.9

Children’s characteristics at 6 years of age

Age (years) 6.1 ± 0.4 No missing values

Playing sports (%) 50.0 49.9

Missing (%) 6.3

≥2 h/day screen time (%) 19.9 20.8

Missing (%) 15.2

Height of the children (cm) 120 ± 6 No missing values

Overweight/obese (%) 11.3 Not Imputed

Missing (%) 0.2

Body mass index (kg/m2) 15.7 (15.0–16.6) No missing values

Fat mass index (kg/m2) 3.6 (3.1–4.2) Not imputed

Missing (%) 2.6

Fat-free mass index (kg/m2) 11.9 ± 0.8 Not imputed

Missing (%) 2.6

Total fat percentage (%) 23 (21–27) Not imputed

Missing (%) 2.6

Android/gynoid fat mass ratio 0.24 (0.21–0.27) Not imputed

Missing (%) 2.6

Values represent % for categorical variables and for continuous variables mean ± SD or median (interquar-
tile range)
a  Percentages may not add up to 100 % because of pooling of the imputed datasets
b  Weekly gestational weight gain (g/week) between enrollment around 13 weeks of pregnancy and early 
third trimester (around 30 weeks)
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vegetable protein intake. Nonetheless, the 95 % confidence 
intervals from the imputed and non-imputed data largely 
overlapped and were not statistically significantly different.

Total protein and vegetable protein intake, but not intake 
of animal protein, were associated with lower childhood 
total fat percentage in the unadjusted analysis (model 1), 
but after adjustment for confounders (model 2), these asso-
ciations did not remain (Supplemental Table 4). Vegetable 
protein intake was associated with a lower android/gynoid 
fat mass ratio in the unadjusted model only, and no associa-
tion was found with total protein or animal protein intake 
and android/gynoid fat mass ratio (Supplemental Table 4).

Secondary analyses

We did not observe specific substitution effects when pro-
tein (E%) was exchanged for different types of macronu-
trients in the association with FFMI (Table 3). Additional 
adjustment for protein intake of the child at 14 months of 
age (n =  1558; 59 %) slightly attenuated the results with 
FFMI (Supplemental Table 5).

The association between maternal protein intake and 
childhood lean mass index was similar to those for FFMI 
(Supplemental Table 6). When we restricted the analyses to 
a healthy population (i.e., term birth, normal birth weight, 
and mothers without hypertensive complications), there 
were no large differences in effect estimates (Supplemental 
Table 7). Excluding siblings from our population or exclud-
ing current height of the children from the analyses did not 
change the effect estimates (data not shown).

Discussion

The results of this observational study indicate that higher 
protein intake during pregnancy is associated with higher 
fat-free mass in the offspring at the age of 6 years, but not 
with fat mass. These associations were similar for ani-
mal and vegetable protein, and we did not observe any 
specific substitution effect of maternal protein for other 
macronutrients.

Our results suggest that the higher BMI in children of 
mothers with a higher animal or vegetable protein intake 
was driven by a higher fat-free mass in the offspring rather 
than a higher fat mass. This implies that BMI, a method 
frequently used to assess adiposity, is an inaccurate meas-
urement of excess fat mass in children, a finding which has 
been addressed by Freedman et  al. [29]. In addition, we 
found that maternal protein intake was not associated with 
childhood fat mass after taking into account differences in 
maternal lifestyle and sociodemographic factors, a find-
ing in line with results from previous cohort studies [11, 
13]. We also observed that adjustment for differences in 

lifestyle factors and sociodemographic variables changed 
some effect estimates considerably. This implies that the 
association between maternal protein intake during preg-
nancy and offspring body composition is complex and is 
influenced by socioeconomic and lifestyle factors.

Our finding that children of mothers with a higher 
protein intake had a higher fat-free mass could not be 
explained by maternal lifestyle and socioeconomic char-
acteristics, nor could it be explained by gestational weight 
gain, hypertensive complications, birth weight, or by infant 

Table 3   Substitution of maternal protein intake with other macronu-
trients and its association with childhood fat-free mass index at the 
age of 6 years (n = 2624)

The effect estimates can be interpreted as difference in fat-free mass 
index per exchange of 1 E% from protein or sources of protein with 
an isocaloric amount of another macronutrient, while keeping the 
other macronutrients constant. Analyses were adjusted for maternal 
age, educational level, smoking and alcohol use and folic acid sup-
plementation during pregnancy, maternal body mass index at enroll-
ment, gestational age at birth, breastfeeding 2  months postpartum, 
and screen time of the children at 6 years of age

Bold values indicate significant associations (p-value < 0.05)

CI confidence interval, E% energy percent, SDS standard deviation 
score

Fat-free mass index (SDS, n = 2624) β (95 % CI)

Protein (E%)

 Substitution for carbohydrate 0.03 (0.01, 0.04)

 Substitution for monosaccharides and  
disaccharides

0.03 (0.01, 0.04)

 Substitution for polysaccharides 0.02 (−0.00, 0.04)

 Substitution for fat 0.03 (0.02, 0.05)

 Substitution for saturated fat 0.02 (−0.00, 0.05)

 Substitution for unsaturated fat 0.04 (0.02, 0.05)

 Substitution for alcohol 0.03 (−0.03, 0.10)

Animal protein (E%)

 Substitution for carbohydrate 0.03 (0.01, 0.04)

 Substitution for monosaccharides and  
disaccharides

0.02 (0.01, 0.04)

 Substitution for polysaccharides 0.03 (0.01, 0.05)

 Substitution for fat 0.03 (0.01, 0.05)

 Substitution for saturated fat 0.01 (−0.01, 0.04)

 Substitution for unsaturated fat 0.04 (0.02, 0.06)

 Substitution for alcohol 0.02 (−0.04, 0.09)

Vegetable protein (E%)

 Substitution for carbohydrate 0.07 (0.04, 0.11)

 Substitution for monosaccharides and  
disaccharides

0.10 (0.05, 0.15)

 Substitution for polysaccharides 0.10 (0.04, 0.16)

 Substitution for fat 0.08 (0.04, 0.12)

 Substitution for saturated fat 0.09 (0.04, 0.14)

 Substitution for unsaturated fat 0.11 (0.06, 0.17)

 Substitution for alcohol 0.07 (−0.00, 0.14)
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protein intake. Furthermore, the association was not dif-
ferent when excluding bone mass from the analyses (lean 
mass index). These results are in line with those of Brion 
et  al. [13] who performed an observational study in 5534 
mother–child pairs, which found that higher maternal pro-
tein intake was associated with higher lean mass, but not 
with fat mass, in the offspring at the age of 10 years. Fur-
thermore, this study showed that maternal but not paternal 
protein intake was associated with children’s lean mass, 
suggesting intrauterine effects. Conversely, another smaller 
study (n =  264) reported no association of maternal pro-
tein intake with fat-free mass in the offspring at the age of 
16 years [11].

We did not observe consistent differential effects for 
maternal animal or vegetable protein intake. A previous 
study that investigated the association between different 
sources of maternal protein intake and body composition in 
the offspring reported that animal, but not vegetable, protein 
intake during pregnancy was associated with higher BMI 
in the offspring [12]. However, this association was only 
found in female offspring [12]. Whether specific sources 
of maternal protein do in fact influence body composition 
differently requires further study. We did not observe any 
specific macronutrient substitution effect, which indicates 
that it does not matter whether maternal protein intake is 
increased at the expense of fat or carbohydrate.

Maternal protein intake might influence childhood body 
composition through several mechanisms. Protein intake 
is needed for the regulation and accretion of muscle mass, 
which is a major component of fat-free mass [30]. In line 
with our results, a study in pigs showed that a higher mater-
nal protein intake during pregnancy led to a higher lean 
but not fat mass in the offspring [31]. Further analyses of 
skeletal muscle of the piglets revealed that the effect on 
muscle mass may be due to both increased myogenesis and 
muscular differentiation. Further potential mechanisms that 
could influence child growth may be changes in secretion 
of growth hormones [14] or prenatal programming of chil-
dren’s appetite [15].

Strengths and limitations

Strengths of this study are the prospective population-based 
design, the large sample size, the postnatal follow-up of 
the offspring through 6 years of age, and the collection of 
numerous confounding factors. A further strength is the 
detailed information we collected with regard to body com-
position measurements, since DXA has a high accuracy of 
measuring fat mass and other soft-tissue body composition 
components [32, 33].

However, some limitations should be considered when 
interpreting our results. A limitation of our study is the 
measurement of protein intake using an FFQ, which is 

not very precise. However, FFQs have been shown to be 
accurate in ranking participants according to their intake 
[34], and energy adjustment may have reduced the mag-
nitude of measurement error [25]. Also, there might be 
measurement error of the anthropometric measurements 
(i.e. BMI during pregnancy) and other covariates. How-
ever, since these are measured before the objective out-
come measurement (i.e., body composition of the child), 
this measurement error is most likely non-differential and 
not lead to differential associations between dietary pro-
tein intake during pregnancy and body composition of the 
child. Since we had no data on maternal physical activity 
during pregnancy, residual confounding due to maternal 
physical activity levels could influence our results. A third 
limitation is the restriction to women of Dutch ancestry 
in our analyses within this multi-ethnic prospective cohort 
study. While the inclusion of other ethnicities could have 
led to differential misclassification of dietary intake [35], 
the restriction with regard to ethnicity may reduce the 
external validity of our results. Also, the Generation R 
Study consisted of a higher percentage of women with 
higher socioeconomic status than those that were eligi-
ble to participate [17]. However, such a selection bias has 
not been found to influence exposure–outcome associa-
tions [36]. Finally, we did not have complete data on all 
included covariates; the percentage of missing covariates 
ranged between 0.0 and 17.7 %. We used multiple impu-
tation procedure to impute these missing covariates since 
complete case analysis would result in a considerable loss 
of information and may lead to biased estimates [37].

Conclusion

In conclusion, we found that higher protein intake dur-
ing pregnancy is associated with higher childhood fat-free 
mass, but not with childhood fat mass. The associations 
did not differ for vegetable versus animal protein, and the 
associations were not explained by maternal lifestyle or 
sociodemographic factors. Also, it did not matter whether 
protein intake was substituted for maternal fat or carbohy-
drate intake. Our results do not implicate specific recom-
mendations on maternal protein intake during pregnancy to 
prevent overweight in children; however, it may be relevant 
for discussions on the influence of healthy diet during preg-
nancy on offspring lean mass. Further research is needed to 
identify the underlying mechanisms related to the observed 
associations (i.e., potential pathways related to different 
amino acids).
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