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ARTICLE

DNA Methylation Analysis Identifies Loci
for Blood Pressure Regulation
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Michael M. Mendelson,2,3,23 André G. Uitterlinden,24 Joyce B. van Meurs,24 BIOS Consortium,
Oscar H. Franco,4 Guosheng Zhang,25,26,27 Yun Li,25,28 James D. Stewart,5,29 Joshua C. Bis,7

Bruce M. Psaty,30 Yii-Der Ida Chen,15 Sharon L.R. Kardia,6 Wei Zhao,6 Stephen T. Turner,31

(Author list continued on next page)

Genome-wide association studies have identified hundreds of genetic variants associated with blood pressure (BP), but sequence varia-

tion accounts for a small fraction of the phenotypic variance. Epigenetic changes may alter the expression of genes involved in BP regu-

lation and explain part of the missing heritability. We therefore conducted a two-stage meta-analysis of the cross-sectional associations

of systolic and diastolic BP with blood-derived genome-wide DNA methylation measured on the Infinium HumanMethylation450

BeadChip in 17,010 individuals of European, African American, and Hispanic ancestry. Of 31 discovery-stage cytosine-phosphate-gua-

nine (CpG) dinucleotides, 13 replicated after Bonferroni correction (discovery: N ¼ 9,828, p < 1.0 3 10�7; replication: N ¼ 7,182,

p < 1.6 3 10�3). The replicated methylation sites are heritable (h2 > 30%) and independent of known BP genetic variants, explaining

an additional 1.4% and 2.0% of the interindividual variation in systolic and diastolic BP, respectively. Bidirectional Mendelian random-

ization among up to 4,513 individuals of European ancestry from 4 cohorts suggested thatmethylation at cg08035323 (TAF1B-YWHAQ)

influences BP, while BP influences methylation at cg00533891 (ZMIZ1), cg00574958 (CPT1A), and cg02711608 (SLC1A5). Gene expres-

sion analyses further identified six genes (TSPAN2, SLC7A11, UNC93B1, CPT1A, PTMS, and LPCAT3) with evidence of triangular asso-

ciations between methylation, gene expression, and BP. Additional integrative Mendelian randomization analyses of gene expression

and DNA methylation suggested that the expression of TSPAN2 is a putative mediator of association between DNA methylation at

cg23999170 and BP. These findings suggest that heritable DNA methylation plays a role in regulating BP independently of previously

known genetic variants.
Introduction

Elevated blood pressure (BP) confers a higher risk of heart

disease, stroke, diabetes, dementia, renal failure, and preg-

nancy-related complications and is a leading risk factor for
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death worldwide.1 BP is a highly heritable trait2 and recent

genetic studies have revealed part of its complex genetic

architecture,3–11 yet the genetic variants identified to

date account for only a small fraction of its phenotypic

variance.3,6,8,12 Complex phenotypes, such as BP, often
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result from the interplay between genetic and environ-

mental influences. DNA methylation, the covalent

binding of a methyl group to the 50 carbon of cytosine-

phosphate-guanine (CpG) dinucleotide sequences in the

genome, plays a critical role in the regulation of gene

expression and may reflect a link between genes, environ-

ment, and complex phenotypes such as BP. Evidence is

beginning to emerge that epigenetic modifications in

genes relevant to BP may account for part of its regula-

tion.13 Variation in DNA methylation may thus explain

additional phenotypic variation in BP and provide new

clues to the biological processes influencing its regulation.

We conducted genome-wide DNAmethylation meta-an-

alyses for systolic and diastolic BP with a discovery phase

and independent replication among 17,010 individuals

of European (EA), African American (AA), and Hispanic an-

cestries in the Cohorts for Heart and Aging Research in

Genomic Epidemiology (CHARGE) consortium. DNA

methylation was measured in peripheral blood samples.

We further sought to identify transcriptional changes for

the replicated CpG sites and used Mendelian randomiza-

tion techniques to explore the causal relationship between

DNAmethylation and BP. We report that the effect of DNA

methylation on BP is likely independent of previously

known genetic variants, representing new insights into

the biological mechanisms underlying BP regulation.
Material and Methods

Study Populations
The discovery and replication studies were conducted in the

framework of the Cohorts for Heart and Aging Research in

Genomic Epidemiology (CHARGE) consortium, which comprises

multiple population-based cohort studies.14 Cohorts participating

at the discovery stage included 9,828 individuals of EA and AA
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ancestries in the Atherosclerosis Risk in Communities (ARIC)

study, Cardiovascular Health Study (CHS), Framingham Heart

Study (FHS), Genetic Epidemiology Network of Arteriopathy

(GENOA) study, Genetics of Lipid Lowering Drugs and Diet

Network (GOLDN) study, Lothian Birth Cohort 1936 (LBC1936),

Normative Aging Study (NAS), Rotterdam Study (RS), and

TwinsUK registry. Cohorts participating at the replication stage

consisted of 7,182 additional individuals of EA, AA, and Hispanic

ancestries in the Amish Complex Disease Research Studies

(Amish), ARIC, the Multi-Ethnic Study of Atherosclerosis

(MESA), RS, adults in the Saguenay Youth Study (SYS), and the

Women’s Health Initiative (WHI). Details for each cohort are pro-

vided in the Supplemental Data. All studies obtained written

informed consent from participants and were approved by local

institutional review boards and ethics committees.
Blood Pressure Measurements
Epigenome-wide association studies (EWASs) were conducted for

systolic and diastolic BP, in mmHg. In each cohort, BP was

measured in a sitting position after a period of rest and an average

of sequential readings was used as the phenotype for each analysis.

For most cohorts, BP was measured concurrently at the time of

tissue collection for DNA methylation profiling, or in as close

proximity as available for TwinsUK (0.8 years) and SYS adults

(3.1 years). To adjust for the use of antihypertensive medication,

we used the standard adjustment of adding 15 mmHg and

10 mmHg to measured systolic and diastolic BPs, respectively,

when the use of any antihypertensive medications were self-

reported.
DNA Methylation Profiling
DNAmethylation wasmeasured on the InfiniumHumanMethyla-

tion450 (450k) BeadChip (Illumina) in all cohorts using whole-

blood samples, excepting that GOLDN measured DNA methyl-

ation in CD4þ T cells. To correct the beta value distributions of

the two types of probes on the 450k array, each cohort normalized

methylation beta values using BMIQ,15 DASEN,16 ComBat,17
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SWAN,18 or quantile normalization. LBC1936 did not normalize

methylation beta values prior to analyses.
Cohort-Level Association Analyses
In each cohort, race-stratified linearmixed effect models were used

to estimate associations adjusting for age, sex (in samples

including men and women), blood cell counts, body mass index,

smoking (current/former/never), and ancestry, as well as fixed

and/or random effects for technical covariates to control for batch

effects. Surrogate variables were calculated and adjusted in the

modeling for ARICAAs and FHS due to batch effects not controlled

by other modeling techniques. The Amish, FHS, GOLDN, and

TwinsUK accounted for sample relatedness in all analyses. Study-

specific modeling details can be found in the Supplemental Data.
Epigenome-wide Meta-Analyses
Effect estimates from all cohorts were combined using inverse vari-

ance fixed effects meta-analysis using GWAMA.19 We assessed het-

erogeneity of effect estimates between strata of races, sexes, and

methylation tissue source among discovery cohorts using a 1 de-

gree of freedom chi-square test for effect differences between

strata; no heterogeneous effects were observed so all cohorts

were included in a single meta-analysis. Meta-analyses were con-

ducted separately for the discovery and replication cohorts to

identify probes associatedwith BP. Statistical significance was Bon-

ferroni corrected for the epigenome-wide discovery meta-analysis

(p< 1.03 10�7) and the number of discovery CpG sites sought for

replication in the second meta-analysis. An overall meta-analysis

was additionally performed to combine effect estimates across

all cohorts. Significant CpG sites were annotated using informa-

tion provided by Illumina, including chromosome, position

(GRCh37/hg19), UCSC gene names, relationship to CpG islands,

location in gene enhancer regions, and DNase I hypersensitivity

sites (DHS). To assess the impact of antihypertensive medication

use on our top findings, we additionally performed an overall

meta-analysis among all individuals reporting no use of antihyper-

tensive medications. For the top findings in the discovery meta-

analysis, we compared effect and standard error estimates to those

estimated in the non-medicated meta-analysis.
Percent Variance Explained
Percent variance explained was calculated in the ARIC AA and EA

samples included in discovery and replication meta-analyses, as

well as validated in a sample from the FHS Third Generation not

included in the meta-analysis (N ¼ 1,516). Methylation profile

scores for BP were calculated as the weighted sum of CpG sites sig-

nificant for either BP trait in the replication and overall meta-ana-

lyses, with weights coming from the magnitude and direction of

effects in the overall meta-analysis. Selection of CpGs from

meta-analyses including the prediction samples could overesti-

mate percent variance explained, so additional meta-analyses

were conducted excluding the ARIC samples to identify CpGs

for their respective methylation profile scores. The probe sets

based on exclusion of the ARIC samples and the probes identified

in the primary replication and overall meta-analyses were used to

generate methylation profile scores in the FHS sample. Race- and

cohort-stratified linear regression models were used to estimate

the percent of age-, sex-, and BMI-adjusted systolic and diastolic

BP variances explained by each methylation profile score; ARIC

models were additionally adjusted for visit and study site, and

ARIC AA and FHS models included surrogate variables. Percent
890 The American Journal of Human Genetics 101, 888–902, Decem
variance explained by the methylation profile scores is reported

as the adjusted R2 from each model and compared to models

without methylation profile scores (covariate-only models). We

additionally assessed genetic risk scores derived using effect

estimates from the UK Biobank for 146 previously reported inde-

pendent variants (r2 < 0.2) and 115 validated novel variants11

among the FHS Third Generation sample with available genetic

data (N ¼ 1,421).
Heritability
The narrow-sense heritability estimate of a DNA methylation trait

(b score) (denoted as h2
CpG methy) was the proportion of the additive

polygenic genetic variance of the total phenotypic variance of a

DNA methylation trait: h2
CpG methy ¼ s2

A=s
2
CpG methy, where s2

A de-

notes the additive polygenic genetic variance and s2
CpG methy de-

notes the total phenotypic variance of a DNA methylation trait.

Heritability estimation for all DNA methylation traits was per-

formed using the FHS-Offspring participants (N ¼ 2,377).
Functional Tissue and Gene Set Enrichment Analyses
Functional DNA elements regulated by methylation may be tissue

specific, so the set of replicated CpGs was used to identify tissue-

and cell type-specific signals using experimentally derived

Functional element Overlap analysis of ReGions from EWAS

(eFORGE).20 After pruning results for CpG sites within 1 kb

(2 probes removed), we matched the top 11 EWAS signals for over-

lap with DNase I hypersensitive sites using data from ENCODE

and Roadmap Epigenomics. 1,000 matched sets were used with

the 450k array as the background set. FDR correction was applied

to the results.

Gene Set Enrichment Analysis (GSEA)21 was conducted on the

results of the overall meta-analyses for systolic and diastolic BP.

For each gene annotated to DNA methylation measured on the

450k array, a composite ranking for BP was generated based on

the CpG site with the minimum p value for either trait. All gene

ontology biological process categories (c5.bp.v5.1) were assessed

for enrichment at FDR Q < 0.05.
Methylation Quantitative Trait Loci
To determine methylation levels at CpG sites that may be influ-

enced by nearby DNA sequence, methylation quantitative trait

loci (meQTL) analyses were performed for the 13 replicated BP

CpGs in EA individuals from ARIC (N ¼ 948), FHS (N ¼ 2,357),

and RS (N ¼ 731) and AA individuals from ARIC (N ¼ 2,173)

and GENOA (N ¼ 422). Residuals were obtained from regressing

inverse-normal transformed methylation beta values on the first

ten methylation principal components (PCs) and up to the first

ten genetic PCs. The residuals were then regressed on 1000 Ge-

nomes Phase I imputed SNPs within 50 kb of the probe (CpG po-

sition5 25 kb, GRCh37/hg19). SNPs with low imputation quality

(r2 < 0.3), low frequency variants (MAF < 0.05), and SNPs present

in only one cohort were removed from analyses. Results for each

probe were combined using race-stratified p value-based meta-

analysis weighted by sample size and direction of effects using

METAL.22 SignificantmeQTLs were determined using a Bonferroni

correction for all meQTLs tested in each race (EA: 0.05/1,447 ¼
3.5 3 10�5; AA: 0.05/1,952 ¼ 2.6 3 10�5). To maximize statistical

power for identifying meQTLs associated with BP, we then

searched the largest genome-wide association studies (GWASs)

for BP in each race for suggestive association of meQTL regions

with BP.
ber 7, 2017



To assess the association of SNPs reported by Kato et al.23 whose

association may be mediated by DNA methylation, we addition-

ally performed meQTL analyses for 35 sentinel SNPs and addi-

tional GWAS loci in high linkage disequilibrium (LD) with these

regions.3–5,23–30 We assessed the association of DNA methylation

within 1 Mb (CpG position 5 500 kb) of GWAS SNPs among

ARIC EAs (N ¼ 790) using the previously described methodology.

SNPs associated with methylation after Bonferroni correction for

the 28meQTLs reported by Kato et al.23 (p< 0.0018) were then as-

sessed for association with BP before and after adjustment for

methylation at the CpG site. We additionally assessed the associa-

tion of these CpG sites with BP in our overall meta-analysis.
Bidirectional Mendelian Randomization
To assess the directional association of DNA methylation and BP,

we conducted bidirectional Mendelian randomization (MR) using

1000 Genomes imputed SNPs among EA individuals in ARIC, FHS,

RS, and WHI-EMPC (N ¼ 4,513). Forward MR was used to identify

replicated CpG sites whichmay have an effect on BP. Instrumental

variables (IVs) for DNAmethylation were drawn from themeQTLs

estimated among EAs and pruned for independence (r2< 0.2). For-

ward MR was conducted for the six sentinel CpG sites with at least

three independentmeQTLs, which is theminimumnumber of IVs

needed to perform multi-instrument MR. Reverse MR was used to

identify DNAmethylation at the 11 sentinel CpG sites thatmay be

caused by BP. The 29 independent loci reported as associated with

BP by the International Consortium for Blood Pressure (ICBP)

were selected as IVs. The SNP rs805303 was not imputed in

1000 Genomes and rs805301 was used as a proxy when available

(r2 ¼ 1.0 in HapMap).

Each cohort estimated the associations of IVs with systolic BP,

diastolic BP, and DNA methylation at the respective CpG sites.

Cohort-level effect estimates for each IV were combined using in-

verse variance-weighted meta-analyses in METAL.22 For each CpG

in forward and reverse MR, causation was formally tested based on

the inverse variance-weighted effects across all IV-BP and IV-CpG

estimates using the R package MendelianRandomization.31 Tests for

causation with p value < 0.05 were considered significant. To

ensure the validity of the inverse-variance weighted approach,

the IVs were assessed for pleiotropy using the MR-Egger test.

Inverse-variance weighted MR is invalid in the presence of pleio-

tropic effects of IVs, so Egger regression estimates of causality

were assessed only when pleiotropy was indicated at a particular

CpG site.
Associations of DNA Methylation and Gene Expression
Association tests of BP-associated CpGs with transcripts that were

located within 51 Mb distance of the corresponding CpGs were

performed in 2,216 FHS-Offspring samples and 730 RS samples

whose DNA methylation and gene expression data were both

available. In FHS, linear mixed effect regression models were

used with DNA methylation b scores as the dependent variable,

gene expression as independent variables, age, sex, and technical

covariates as fixed effects, and family structure as a random effect.

In RS, we first created residuals for both DNA methylation and

mRNA expression after regressing out age, sex, blood cell counts

(fixed effect), and technical covariates (random effect). We then

examined the association between the residuals of DNA methyl-

ation (independent variable) and mRNA expression (dependent

variable) using a linear regression model. Estimates of the gene

expression-methylation associations in RS and FHS were com-
The American
bined using sample size weighted fixed effects meta-analysis based

on p values and direction of effects using GWAMA.19
Associations of Gene Expression and BP
Differential gene expression analysis of the transcripts assessed for

association with DNAmethylation were performed for systolic BP,

diastolic BP, and hypertension in 3,679 FHS Offspring and 3rd-Gen

participants who were not receiving anti-hypertensive treatments.

Hypertension was defined as systolic BPR 140 mmHg or diastolic

BP R 90 mmHg. See details in Huan et al.32
Two-Step Mendelian Randomization for Relationship of

DNA Methylation, Gene Expression, and BP
To identify gene transcription that functionally mediates the rela-

tionship of DNAmethylation and BP, we performed a two-stepMR

technique for genes with expression associated with both DNA

methylation and BP (FDR Q < 0.05). The first step was to establish

a directional relationship between DNA methylation and gene

transcription. IVs for DNA methylation were drawn from esti-

mated meQTLs pruned to be independent (r2 < 0.2). Using

whole-blood eQTLs estimated in the Genotype-Tissue Expression

(GTEx) project, we verified the association of each IV with the

implicated gene expression. In the second step, IVs for each impli-

cated gene were selected from the GTEx whole-blood dataset in

order to establish a directional relationship between gene expres-

sion and BP. The top eQTL also present in the ICBP results was

selected as the IV for each gene and assessed for association with

systolic and diastolic BP in ICBP published GWAS results. Genes

with p < 0.05 at both steps were considered to mediate a direc-

tional relationship of the respective CpG and BP; correction for

multiple testing is not used because strong associations of IVs

with an outcome would violate the assumptions of Mendelian

randomization.
Results

Cohort Characteristics

Characteristics of the 14 studies participating in discovery

and replication meta-analyses are presented in Table 1.

Each cohort included middle-aged and older adults with

a wide range of BP values. Mean systolic BP ranged from

116 mmHg in GOLDN to 152 mmHg among CHS AAs.

Mean diastolic BP ranged from 68 mmHg in GOLDN to

89 mmHg in the RS replication sample. Prevalence of anti-

hypertensive medication use varied with cohort age and

health, with no use among the Amish to more than 62%

among the CHS AA sample.
Identification of Epigenome-wide CpG Sites Associated

with Blood Pressure

In the discovery stage, we conducted genome-wide associ-

ations of DNA methylation with systolic and diastolic BP

in nine cohort studies (N ¼ 9,828). Multiethnic meta-ana-

lyses identified methylation at 31 CpG sites associated

with BP after Bonferroni correction for the number of

DNA methylation CpG sites measured on the Illumina

450K array (p < 1.0 3 10�7; Table S1, Figures S1 and S2).

Replication of the 31 discovery CpG sites was sought in
Journal of Human Genetics 101, 888–902, December 7, 2017 891



Table 1. Characteristics of the Discovery and Replication Cohorts

Cohort Race n Cohort Type Tissue Normalization

Age, years SBP, mmHg DBP, mmHg HTN AHT

Mean SD Mean SD Mean SD % %

Discovery (N ¼ 9,828)

ARIC AA 2,743 unrelated blood BMIQ 56.6 5.9 135.0 23.4 80.2 12.4 65.5 48.9

CHS AA 196 unrelated blood SWAN 73.0 5.4 151.5 23.9 83.2 12.5 78.6 62.2

CHS EA 189 unrelated blood SWAN 76.0 5.1 142.8 23.9 76.7 10.9 65.6 49.2

FHS EA 2,645 family blood DASEN 66.4 8.9 128.6 17.2 73.4 10.0 59.0 49.0

GENOA AA 239 unrelated blood SWAN 60.1 8.4 146.1 25.6 82.5 12.4 72.0 58.2

GOLDN EA 822 family CD4þ T cells ComBat 48.8 15.9 115.7 16.3 68.4 9.4 25.7 21.0

LBC1936 EA 903 unrelated blood – 69.5 0.8 149.4 19.0 81.3 10.1 40.7 43.0

NAS EA 674 unrelated blood BMIQ 72.5 6.8 139.5 18.9 81.9 10.3 71.0 58.2

RS-III EA 727 unrelated blood DASEN 59.7 8.2 138.9 22.0 85.8 12.5 53.2 30.1

TwinsUK EA 690 twins blood BMIQ 58.4 9.3 126.0 16.6 77.2 9.8 25.7 21.5

Replication (N ¼ 7,182)

Amish EA 192 family blood quantile 46.3 13.6 117.8 12.7 72.4 8.1 2.0 0.0

ARIC EA 1,058 unrelated blood BMIQ 59.8 5.4 121.2 20.5 70.1 11.1 29.7 17.6

MESA AA 236 unrelated blood quantile 60.6 9.2 127.5 19.6 73.3 9.5 55.2 48.0

MESA EA 566 unrelated blood quantile 60.8 9.6 121.0 18.5 70.1 9.6 36.8 31.7

MESA HL 381 unrelated blood quantile 59.0 9.5 122.6 18.4 72.0 9.3 37.8 31.3

RS-III EA 711 unrelated blood DASEN 67.5 6.0 151.3 24.0 88.7 13.0 71.5 43.3

SYS adults EA 111 unrelated blood SWAN 47.2 4.9 131.5 15.3 79.5 8.4 29.7 8.1

WHI-BAA23 AA 666 unrelated blood ComBat 62.8 6.7 140.9 21.1 83.3 10.9 65.0 54.7

WHI-BAA23 EA 965 unrelated blood ComBat 68.4 6.2 136.5 21.1 78.2 11.1 48.5 34.6

WHI-BAA23 HL 333 unrelated blood ComBat 62.3 6.8 133.3 20.7 78.6 10.8 47.3 35.2

WHI-EPMC AA 556 unrelated blood BMIQ 62.8 7.0 131.5 18.1 77.4 9.6 60.4 55.2

WHI-EMPC EA 1,092 unrelated blood BMIQ 64.7 7.1 127.5 17.7 74.5 9.4 42.9 30.5

WHI-EMPC HL 315 unrelated blood BMIQ 61.6 6.2 127.2 18.2 74.8 9.5 41.9 29.5

Hypertension is defined as systolic BPR 140mmHg or diastolic BPR 90 mmHg or the use of antihypertensive treatment. Antihypertensive treatment is defined as
the self-reported use of any antihypertensive medication. WHI-EMPC normalized DNA methylation data using BMIQ and plate-adjusted using ComBat. The dis-
covery and replication samples from RS-III do not include overlapping or related individuals. Abbreviations: AA, African American; AHT, antihypertensive treat-
ment; BMIQ, Beta Mixture Quantile dilation; ComBat, combatting batch effects when COMbining BATches of microarray data; DASEN, background-adjusted
(D) between-array (S) without dye bias correction (N); DBP, diastolic blood pressure; EA, European ancestry; HL, Hispanic/Latino; HTN, hypertension; SBP, systolic
blood pressure; SD, standard deviation; SWAN, Subset-quantile Within Array Normalization.
multiethnic meta-analyses of an additional six cohort

studies (N ¼ 7,182). Methylation at 13 of the 31 discovery

CpG sites was associated with BP at p< 0.0016 in the repli-

cation meta-analysis (0.05/31; Table 2). A schematic of the

overall study design, including subsequent integrative

analyses, is found in Figure S3.

The top two CpG sites for both systolic and diastolic BP

were at the PHGDH locus, cg14476101 (systolic BP: coeffi-

cient ¼ 0.03% decrease in DNA methylation per 1 mmHg

increase in BP, p ¼ 2.7 3 10�34; diastolic BP: coefficient ¼
0.04% decrease in DNA methylation per 1 mmHg increase

in BP, p ¼ 2.1 3 10�21), and the SLC7A11 locus,

cg06690548 (systolic BP: coefficient ¼ 0.02% decrease in

DNA methylation per 1 mmHg increase in BP, p ¼ 1.6 3
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10�32; diastolic BP: coefficient ¼ 0.03% decrease in

DNA methylation per 1 mmHg increase in BP, p ¼ 7.9 3

10�26). cg14476101 is located on chromosome 1p12 in

the first intron of PHGDH, which encodes a phosphoglyc-

erate dehydrogenase that catalyzes the rate-limiting step of

serine biosynthesis. Located on chromosome 4q28.3,

cg06690548 is in the first intron of SLC7A11, which en-

codes a sodium-independent cysteine/glutamate anti-

porter. All replicated CpG sites demonstrated associations

of decreased DNA methylation with increases in BP (Table

S1 and Figure S4). None of the replicated CpG sites cross-

hybridize with sequence variation on the sex chromo-

somes, and one CpG, SLC1A5 cg02711608, is polymor-

phic.33 An additional CpG site in SLC1A5, cg22304262,
ber 7, 2017



Table 2. Results of Discovery, Replication, and Overall Meta-analyses for CpG Sites Replicated for Association with BP

CpG site Chr Position UCSC Gene

Systolic BP Diastolic BP

Discovery Replication Overall Discovery Replication Overall

Coeff p Value Coeff p Value Coeff p Value Coeff p Value Coeff p Value Coeff p Value

cg23999170 1 115628111 TSPAN2 �0.0001 2.7 3 10�6 �0.0001 1.6 3 10�5 �0.0001 1.5 3 10�10 �0.0002 6.4 3 10�8 �0.0002 3.4 3 10�7 �0.0002 1.9 3 10�13

cg16246545 1 120255941 PHGDH �0.0002 2.4 3 10�10 �0.0002 3.3 3 10�14 �0.0002 1.2 3 10�22 �0.0002 2.2 3 10�4 �0.0003 4.3 3 10�7 �0.0002 1.1 3 10�9

cg14476101 1 120255992 PHGDH �0.0003 1.5 3 10�16 �0.0004 7.0 3 10�21 �0.0003 2.7 3 10�34 �0.0004 6.0 3 10�11 �0.0005 1.9 3 10�12 �0.0004 2.1 3 10�21

cg19693031 1 145441552 TXNIP �0.0002 7.7 3 10�13 �0.0003 3.8 3 10�19 �0.0002 3.1 3 10�29 �0.0002 6.0 3 10�7 �0.0004 7.5 3 10�10 �0.0003 1.8 3 10�14

cg08035323 2 9843525 – �0.0001 4.2 3 10�5 �0.0001 4.1 3 10�3 �0.0001 9.6 3 10�7 �0.0003 1.4 3 10�8 �0.0002 2.6 3 10�4 �0.0003 2.6 3 10�11

cg06690548 4 139162808 SLC7A11 �0.0001 3.4 3 10�16 �0.0002 8.3 3 10�20 �0.0002 1.6 3 10�32 �0.0002 5.5 3 10�14 �0.0003 9.9 3 10�14 �0.0003 7.9 3 10�26

cg18120259 6 43894639 LOC100132354 �0.0001 1.5 3 10�8 �0.0002 9.4 3 10�15 �0.0002 2.2 3 10�21 �0.0002 1.9 3 10�5 �0.0003 6.9 3 10�10 �0.0002 8.9 3 10�14

cg00533891 10 80919242 ZMIZ1 �0.0001 2.4 3 10�7 �0.0001 3.7 3 10�3 �0.0001 5.5 3 10�9 �0.0003 4.4 3 10�9 �0.0002 8.9 3 10�4 �0.0002 2.0 3 10�11

cg17061862 11 9590431 – �0.0001 6.9 3 10�5 �0.0002 6.6 3 10�9 �0.0001 9.4 3 10�12 �0.0003 5.1 3 10�8 �0.0003 1.2 3 10�6 �0.0003 4.3 3 10�13

cg00574958 11 68607622 CPT1A �0.0001 1.9 3 10�8 �4.8 3 10�5 1.4 3 10�6 �0.0001 1.2 3 10�13 �0.0001 5.9 3 10�7 �0.0001 2.5 3 10�4 �0.0001 3.0 3 10�10

cg10601624 12 6404377 – �0.0001 6.6 3 10�8 �0.0001 1.6 3 10�10 �0.0001 2.4 3 10�16 �0.0001 3.5 3 10�7 �0.0002 1.7 3 10�7 �0.0002 4.3 3 10�13

cg22304262 19 47287778 SLC1A5 �0.0001 5.4 3 10�10 �0.0001 8.7 3 10�9 �0.0001 1.4 3 10�17 �0.0002 6.0 3 10�7 �0.0002 4.9 3 10�5 �0.0002 9.6 3 10�11

cg02711608 19 47287964 SLC1A5 �0.0001 3.0 3 10�11 �0.0001 1.1 3 10�11 �0.0001 2.0 3 10�21 �0.0002 3.2 3 10�5 �0.0002 3.0 3 10�6 �0.0002 4.3 3 10�10

Position is Hg19. Coefficients give the percent change in DNA methylation for every 1 mmHg change in blood pressure. Abbreviations: BP, blood pressure; Chr, chromosome; Coeff, coefficient; CpG, cytosine-phosphate-
guanine; UCSC, University of California Santa Cruz.
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Table 3. Narrow-Sense Heritability Estimated in the FHS for CpG
Sites Replicated for Association with BP

CpG Site Chr Position Gene CpG h2 (95% CI)

cg23999170 1 115628111 TSPAN2 0.45 (0.39, 0.50)

cg16246545 1 120255941 PHGDH 0.47 (0.41, 0.55)

cg14476101 1 120255992 PHGDH 0.53 (0.43, 0.63)

cg19693031 1 145441552 TXNIP 0.55 (0.47, 0.63)

cg08035323 2 9843525 – 0.65 (0.57, 0.73)

cg06690548 4 139162808 SLC7A11 0.35 (0.27, 0.44)

cg18120259 6 43894639 LOC100132354 0.32 (0.26, 0.38)

cg00533891 10 80919242 ZMIZ1 0.54 (0.47, 0.63)

cg17061862 11 9590431 – 0.54 (0.46, 0.62)

cg00574958 11 68607622 CPT1A 1.00 (0.95, 1.05)

cg10601624 12 6404377 – 0.30 (0.27, 0.34)

cg22304262 19 47287778 SLC1A5 0.46 (0.39, 0.52)

cg02711608 19 47287964 SLC1A5 0.31 (0.28, 0.35)

Epigenome-wide average heritability is 0.12. Position is Hg19. Abbreviations:
Chr, chromosome; CpG, cytosine-phosphate-guanine.
was also associated with BP and not polymorphic, so we

did not exclude cg02711608 from our results. Narrow-

sense heritability estimates of the 13 replicated CpG sites

are moderate to high (h2 ¼ 30%–100%) relative to all epi-

genome-wide probes (average h2 ¼ 12%; Table 3). Of the

13 replicated CpG sites, 4 are in DNase I hypersensitivity

sites and enhancer regions (Table S2). In PHGDH and

SLC1A5, we identified two nearby CpG sites in each gene

associated with BP. We regard cg14476101 as the sentinel

CpG site in PHGDH and cg02711608 as the sentinel CpG

site in SLC1A5 due to the strength of association p value

with BP. Methylation levels at the two CpG sites in PHGDH

were strongly correlated (AA and EA r ¼ 0.85), whereas the

two CpG sites in SLC1A5 were only modestly correlated

(AA: r ¼ 0.24, EA: r ¼ 0.37; Figure S5). Heterogeneity (Co-

chran’s Q) that may be attributable to cell type or race was

observed in the discovery panel for SLC7A11 cg06690548

(Table S3); however, estimates in the replication panel for

this CpG site were homogeneous with the same direction

of effect and similar magnitude of association p value as

in the discovery meta-analyses (Table 2). All other reported

CpG sites showed homogeneous effects in discovery and

replication meta-analyses.

We additionally conducted an overall meta-analysis of

the discovery and replication cohorts and identified 126

CpG sites associated with BP after Bonferroni correction

(p < 1.0 3 10�7; Table S4). To assess the effects of antihy-

pertensive medication use, we performed epigenome-

wide meta-analyses among the 9,894 individuals reporting

no concurrent use of antihypertensive medications in the

discovery and replication samples. This combined sample

free from antihypertensive medication use is of compara-

ble size to the discovery meta-analysis. We did not identify
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a large difference in effect estimates among the discovery

CpG sites that met our strict replication standards

(Figure S6). Many replicated CpGs were also epigenome-

wide significant in the non-medicated analysis and three

CpG sites on chromosome 10p15.1 were identified that

were not significant in the discovery stage (Table S5). These

CpG sites map to the first intron of PFKFB3, which encodes

a glycolytic enzyme.

Percent Variance Explained

A methylation profile score based on the replicated CpG

sites explained an additional 1.4% and 2.0% of the interin-

dividual variation in systolic and diastolic BP, respectively,

beyond the traditional BP covariates of age, sex, and BMI in

an additional sample set from the FHS (N ¼ 1,516, Third

Generation Cohort) not included in the discovery or repli-

cation meta-analyses (Figure 1). Expanding the DNA

methylation risk score to include the 126 CpG sites that

were significant in the overall meta-analysis did not

explain additional phenotypic variance in samples of

either ancestry. Up to 261 BP-associated genetic variants

explained minimal variance in the FHS Third Generation

sample set (N ¼ 1,421; PVE ¼ 0.003%–0.1%). We elected

to report only percent variances explained for methylation

risk scores since our estimates are independent of the

distally located known genetic loci.

Functional Tissue and Gene Set Enrichment Analyses

Tissues enriched for DNase I hypersensitive sites in regions

of the replicated CpGs include blood cells, vascular tissues,

brain tissues, and cardiac tissues (Figure S7). Gene set

enrichment analysis (GSEA) was conducted for intragenic

CpG sites identified in the overall meta-analyses for sys-

tolic and diastolic BP. DNA methylation associated with

either BP trait mapped to genes involved in the transport

of neutral amino acids (FDRQ¼ 0.01; Figure S8). The trans-

port of neutral amino acids was also identified as signifi-

cantly enriched in the individual meta-analyses for systolic

and diastolic BP (FDR Q < 0.05). 43 biological processes

reached FDR Q < 0.25 including brain development, he-

matopoietic or lymphoid organ development, and the

transport of amino acids and amines.

Methylation Quantitative Trait Loci

We assessed genetic determinants of DNA methylation at

the 13 replicated CpG sites in 4,036 EA individuals and

2,595 AA individuals in ARIC, FHS, GENOA, and RS. Of

the 13 CpG sites, 9 demonstrated substantial evidence

for methylation quantitative trait loci (meQTLs) in both

ancestries (EA p < 3.5 3 10�5, AA p < 2.6 3 10�5), with

evidence for weak meQTLs at one additional CpG site in

each ancestry (Figure 2). We confirmed our estimated EA

meQTLs in an independent EA dataset published by

ARIES34 and found almost all estimated meQTLs were sig-

nificant or in linkage disequilibrium (r2 > 0.2 or D’ ¼ 1)

with ARIES meQTLs. We assessed the association of

EA meQTLs with BP in 1000 Genomes analysis by the
ber 7, 2017
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Figure 1. Percent Variance Explained by Traditional Covariates and Methylation Profile Scores for Systolic and Diastolic BP
The plot presents adjusted R2 values from covariate-adjusted models including a methylation profile risk score based on methylation
CpG sites identified to be associated with BP in the overall and replication meta-analyses. The number of CpG sites included in the
methylation profile scores is indicated as n. Percent variance explained for the CpG sites identified in the primary replication and overall
meta-analyses was calculated among an independent sample from FHS. The two ARIC samples participating in the discovery and repli-
cation stages were excluded frommeta-analyses used to identify CpGs for their respective methylation risk scores, which caused the sets
of methylation sites to differ. Abbreviations: AA, African American; ARIC, Atherosclerosis Risk in Communities; BP, blood pressure; CpG,
cytosine-phosphate-guanine; EA, European ancestry; FHS, Framingham Heart Study.
International Consortium for Blood Pressure (ICBP)3 that

is yet to be published. Seven of the ten CpGs demonstrated

nominal association with systolic or diastolic BP (0.05 >

p > 1.0 3 10�3; Table S6). The strongest association

with both systolic and diastolic BP was observed at

rs561931 for PHGDH cg14476101 and cg16246545 (sys-

tolic p ¼ 0.007; diastolic p ¼ 0.01). Though phenotypic

association of exposure SNPs can serve as an indication

of causality, we chose to formally test causality using

multi-instrument Mendelian randomization, as follows,

due to the complex genetic architecture of both DNA

methylation and BP.

Bidirectional Mendelian Randomization

DNAmethylation can be the cause or consequence of com-

plex phenotypes. To provide support for causal relation-

ships between DNA methylation and BP, we conducted

bidirectional Mendelian randomization among up to

4,513 EA individuals in ARIC, FHS, RS, and WHI-EMPC.

We used inverse-variance weighted tests to assess both for-

ward causal roles of DNA methylation on BP and reverse

causation where BP influences DNA methylation. For the

six sentinel CpG sites with multiple genetic determinants,

we were able to test forward causality using independent
The American
meQTLs as the instrumental variables. The mean causal

effect estimated across its seven independent meQTLs sug-

gests that methylation at cg08035323 (TAF1B-YWHAQ) in-

fluences BP (causal effect estimate ¼ 20.9 [11.1] change in

systolic BP, p value ¼ 0.009, and 15.1 [6.4] change in dia-

stolic BP, p¼ 0.01, per one-percent change in DNAmethyl-

ation; Table 4). There is also some evidence for reverse

causation at cg08035323 (diastolic BP p ¼ 0.02); however,

the causal p values for both BP traits are smaller for, and

thus favor, forward causation. We performed an additional

Mendelian randomization using BP effect estimates from

ICBP and confirmed a causal relationship of methylation

at cg08035323 with BP (systolic BP p ¼ 0.007; Table S7).

We assessed reverse causation for 11 sentinel CpG sites

using 29 independent GWAS loci as instrumental variables

to estimate the mean causal effect of BP on DNA methyl-

ation. In the absence of pleiotropic effects, inverse-vari-

ance weighted tests suggest that DNA methylation at

cg00533891 (systolic BP p ¼ 0.04, diastolic BP p ¼ 0.001)

and SLC1A5 cg02711608 (systolic BP p ¼ 0.02, diastolic

BP p¼ 0.0495) is influenced by BP (Table 4). Reverse causa-

tion at both cg00533891 and SLC1A5 cg02711608 is also

supported by the lower-powered Egger test for causality

(Table S8). Additionally, tests for causality of the second
Journal of Human Genetics 101, 888–902, December 7, 2017 895



Figure 2. Distribution of Unpruned 1000 Genomes Imputed SNPs Assessed for Association with Methylation Relative to the CpG
Location (525 kb)
SNP position relative to the replicatedmethylation CpGposition (X¼ 0) is plotted against –log10 of the p value formeQTLmeta-analysis
in each race. SNPs above the red line are significant after Bonferroni correction for multiple testing (p < 3.03 10�5). Abbreviations: AA,
African American; bp, base pair; CpG, cytosine-phosphate-guanine; EA, European ancestry; meQTL, methylation quantitative trait
locus; SNP, single-nucleotide polymorphism.
CpG in SLC1A5, cg22304262, support reverse causality at

this locus (diastolic BP p ¼ 0.04; Table S8). The significant

reverse causal effect estimates are consistent in magnitude

and direction with those estimated by our EWAS. We addi-

tionally identified significant pleiotropic effects of the

instrumental variables with methylation at cg10601624

and diastolic BP (p¼ 0.02; Table S8). Pleiotropy overpowers

the inverse-variance weighted test, and we did not identify

a causal effect at cg10601624 using Egger regression

(p¼ 0.9; Table S8). There was a significant test result for for-

ward causation at cg00533891; however, there also was

evidence of pleiotropic effects among the forward instru-

mental variables and both the inverse-variance weighted

and Egger tests favored reverse causality (Table S8). We

also identified an effect of diastolic BP on DNA methyl-

ation at cg00574958 using Egger regression (p ¼ 0.04) in

the presence of pleiotropic instrumental variables (Table

S8). Using Mendelian randomization, we demonstrate

that complex phenotypes can have an effect on DNA

methylation among top EWAS signals and that forward

causality can be assessed when instrumental variables are

available.

Gene Expression Associations with Replicated CpG Sites

and Blood Pressure Traits

In whole-blood gene expression analyses, 4 of the 13 repli-

cated CpG sites were found to have one or more cis-located

genes (TSPAN2, SLC7A11, UNC93B1, CPT1A, PTMS, and

LPCAT3) where transcription levels are associated with

both CpG methylation (FHS and RS, N ¼ 2,946) and sys-

tolic BP, diastolic BP, or hypertension (FHS, N ¼ 3,679;

Tables 5 and S9). The direction of effects for all six gene

transcripts was consistent with the negative associations
896 The American Journal of Human Genetics 101, 888–902, Decem
of BP with DNA methylation at each CpG (Tables 2

and 5). The mRNA expression of TSPAN2 showed the

strongest associations with both CpG methylation

and BP among all transcripts tested. Methylation at

cg23999170, located in the first intron of TSPAN2, was

strongly associated with decreased expression of TSPAN2

in blood (p ¼ 8.63 10�14) and expression levels were asso-

ciated with systolic BP (p ¼ 5.0 3 10�29), diastolic BP

(p ¼ 1.3 3 10�16), and hypertension (p ¼ 2.4 3 10�10).

We identified nominal triangular associations of gene

expression levels with methylation at 11 of the replicated

CpG sites (p < 0.05) and at least 1 BP trait (p < 0.05) and

present estimates of association and correlation in Table

S10. These genes include YWHAQ (cg08035323 and dia-

stolic BP), PPIF (cg00533891 and diastolic BP), and

GRLF1 (cg02711608/cg22304262 and diastolic BP).

Two-Step Mendelian Randomization for Genes

Mediating the BP-DNA Methylation Association

We used two-step Mendelian randomization to charac-

terize causal mediation by gene transcripts significantly

associated with methylation and BP. Using expression

data available from the GTEx project and BP GWAS from

ICBP, we first sought to establish a directional relationship

from DNA methylation to gene expression, then a direc-

tional relationship from gene expression to BP. We showed

that independent SNPs associated with methylation at

cg23999170 are associated with expression of TSPAN2

and that an additional independent variant associated

with TSPAN2 expression in blood is associated with BP (Ta-

ble 6). The instrumental variables used for the exposures in

each step achieved the associations needed to establish

causality without showing strong evidence of association
ber 7, 2017



Table 4. Bidirectional Mendelian Randomization Results Showing the Inverse-Variance Weighted Effects of Multiple SNPs Used as
Instrumental Variables in the Association of DNA Methylation and BP

CpG Trait

Forward Mendelian Randomization CpG / BP Reverse Mendelian Randomization BP / CpG

IV SNPs, n Mean estimate (SE) p Value IV SNPs, n Mean Estimate (SE) p Value

cg00533891 SBP 6 �10.3 (13.5) – 29 �0.0008 (0.0004) 0.0388

cg00533891 DBP 6 �14.9 (7.8) 0.0405 29 �0.0020 (0.0006) 0.0013

cg00574958 SBP – – – – 29 0.0001 (0.0001) 0.2301

cg00574958 DBP – – – – 29 0.0001 (0.0002) –

cg02711608 SBP 3 �31.1 (30.2) 0.2953 29 �0.0006 (0.0002) 0.0204

cg02711608 DBP 3 �30.2 (17.3) – 29 �0.0008 (0.0004) 0.0495

cg06690548 SBP – – – – 29 �0.0004 (0.0003) 0.2267

cg06690548 DBP – – – – 29 �0.0002 (0.0006) 0.7724

cg08035323 SBP 7 20.9 (11.1) 0.0091 29 �0.0004 (0.0003) 0.2206

cg08035323 DBP 7 15.1 (6.4) 0.0111 29 �0.0012 (0.0006) 0.0226

cg10601624 SBP – – – – 29 �0.0004 (0.0002) 0.1069

cg10601624 DBP – – – – 29 �0.0010 (0.0003) –

cg14476101 SBP 7 �2.5 (14.3) 0.8669 29 �0.0001 (0.0005) 0.7977

cg14476101 DBP 7 1 (5.6) 0.8623 29 �0.0002 (0.0008) 0.7757

cg17061862 SBP 10 �8.6 (10.2) 0.4224 29 0.0002 (0.0004) 0.6574

cg17061862 DBP 10 4.8 (5.1) 0.1112 29 0.0000 (0.0006) 0.9844

cg18120259 SBP – – – – 29 0.0001 (0.0003) 0.8084

cg18120259 DBP – – – – 29 �0.0002 (0.0005) 0.6968

cg19693031 SBP – – – – 29 0.0003 (0.0004) 0.3889

cg19693031 DBP – – – – 29 0.0006 (0.0006) 0.3509

cg23999170 SBP 5 5.9 (18.4) 0.7547 29 0.0004 (0.0003) 0.1954

cg23999170 DBP 5 �1.2 (10.6) 0.9151 29 0.0003 (0.0005) 0.6080

Causal mean effect and standard error estimates for the 11 sentinel CpGs are shown and causal p values have been omitted when IVs showed significant pleiotropic
effects (p < 0.05). Mean forward causal estimates are in percent DNA methylation change per mmHg increase in BP; mean reverse causal estimates are mmHg
change in BP per 0.01 percent change in DNA methylation. Abbreviations: BP, blood pressure; CpG, cytosine-phosphate-guanine; DBP, diastolic blood pressure;
IV, instrumental variable; Pos, position; SBP, systolic blood pressure; SE, standard error; SNP, single-nucleotide polymorphism.
with the outcome that would invalidate the causal test

(generally, 0.05> p> 13 10�5). Using two-stepMendelian

randomization, we demonstrated that TSPAN2 expression

in whole blood is influenced by methylation at

cg23999170 and that TSPAN2 expression affects diastolic

BP (Figure 3). Taken together, the direction of causality

and our epigenome-wide estimate of association suggest

that diastolic BP may increase by 5 mmHg for every 0.1%

decrease in DNA methylation at cg23999170.
Discussion

In a two-stage design of discovery and replicationmeta-an-

alyses comprising 17,010 individuals, we identified DNA

methylation at 13 CpG sites located in 8 intragenic regions

and 3 intergenic regions significantly associated with

systolic or diastolic BP. These CpGs are heritable, which

suggests that DNA methylation that is the cause or conse-
The American
quence of BPmay have a transgenerational effect.We iden-

tified substantial cis-located genetic variation associated

with methylation at many of these sites in both EA and

AA populations, and these regions have moderate genetic

associations with BP but are independent of the top

GWAS loci previously reported in either race. Through cis

gene expression analyses, we identified four CpGs signifi-

cantly associated with one or more genes that may func-

tionally connect DNA methylation and BP. Mendelian

randomization techniques characterized the direction of

association for six CpG sites with BP, including the media-

tion of a causal relationship of cg23999170 with BP

through expression of TSPAN2. Through the analysis of

DNA methylation, we have identified genes that provide

insight into the biological mechanisms underlying BP

regulation and target genes possibly affected by BP-

induced DNA methylation.

We identified expression of TSPAN2 to influence BP via

DNA methylation. TSPAN2 encodes the tetraspanin 2
Journal of Human Genetics 101, 888–902, December 7, 2017 897



Table 5. Genes in a cis-Region (51Mb) of Replicated CpG Sites (1) Associated with DNAMethylation inMeta-analyses of FHS and RS at FDR
Q Value < 0.05, and (2) Associated with BP Traits with at Least One FDR Q Value < 0.05

CpG Site Chr Gene

Gene Expression: DNA Methylation

Gene Expression: Blood Pressure TraitsFHS RS Meta-Analysis

Coeff p Value Coeff p Value Z-Score FDR Q Trait Coeff t Test FDR Q

cg23999170 1 TSPAN2 �1.38 2.7 3 10�14 �1.92 0.0062 �7.32 2.8 3 10�12 SBP 0.0048 11.36 5.0 3 10�29

DBP 0.0054 8.43 1.3 3 10�16

HTN 0.1161 6.49 2.4 3 10�10

�1.38 2.7 3 10�14 �2.72 0.0005 �7.86 8.6 3 10�14 SBP 0.0048 11.36 5.0 3 10�29

DBP 0.0054 8.43 1.3 3 10�16

HTN 0.1161 6.49 2.4 3 10�10

cg06690548 4 SLC7A11 �0.62 2.8 3 10�14 NA NA �7.61 2.2 3 10�13 SBP 0.0003 1.00 0.3173

DBP 0.0002 0.32 0.7471

HTN 0.0304 2.12 0.0338

cg00574958 11 UNC93B1 0.46 0.1375 2.84 0.0130 2.81 0.0376 SBP �0.0006 �2.52 0.0472

DBP �0.0008 �2.06 0.0790

HTN �0.0184 �1.69 0.2399

CPT1A �2.95 1.4 3 10�13 �2.36 0.0003 �7.79 2.1 3 10�13 SBP 0.0007 2.03 0.0846

DBP 0.0014 2.65 0.0324

HTN 0.0225 1.56 0.2399

cg10601624 12 PTMS �0.78 0.0002 �4.50 0.0020 �4.83 2.8 3 10�5 SBP 0.0009 2.40 0.0807

DBP 0.0015 2.67 0.0381

HTN 0.0170 1.10 0.8100

LPCAT3 0.58 0.0012 1.18 0.2404 3.13 0.0134 SBP �0.0010 �3.40 0.0069

DBP �0.0012 �2.73 0.0381

HTN �0.0302 �2.48 0.1321

Abbreviations: Chr, chromosome; Coeff, coefficient; CpG, cytosine-phosphate-guanine; DBP diastolic blood pressure; FDR, false discovery rate; FHS, Framingham
Heart Study; HTN, hypertension; RS, Rotterdam Study; SBP, systolic blood pressure.
protein that is involved in signal transduction. TSPAN2

is highly expressed in vascular tissues and implicated in

the contractile ability and differentiation of vascular

smooth muscle cells.35 Sequence variation mapped to

TSPAN2 has previously been associated with large artery

atherosclerosis-related stroke36 and migraine37,38 and

TSPAN2 suppresses inflammation in the central nervous

system.39 We additionally identified DNA methylation at

cg08035323 to affect BP and the transcription of YWHAQ

has a suggestive triangular relationship. YWHAQ encodes a

14-3-3 theta protein involved in signal transduction by

binding to phosphoserine-containing proteins. YWHAQ

has been implicated in phenotypes related to vascular

response through transcriptional and DNA methylation

changes in human preeclamptic placental tissues,40 DNA

sequence variation associated with exercise heart rate

response,41 and an effect on cardiomyocyte survival in

animal models.42

We identified an effect of BP on DNAmethylation at 4 of

the 13 replicated CpG sites: ZMIZ1 cg00533891, CPT1A

cg00574958, and SLC5A1 cg02711608/cg22304262. Previ-
898 The American Journal of Human Genetics 101, 888–902, Decem
ous epigenome-wide association studies have identi-

fied relationships of CPT1A cg00574958 and SLC5A1

cg02711608/cg22304262 with other metabolic pheno-

types, particularly lipids and adiposity (Table S11). An ef-

fect of triglycerides on methylation at cg00574958 has

previously been identified,43 which supports our hypothe-

sis that an underlying cardiometabolic disease process

related to BP and lipids alters DNA methylation within

CPT1A. Transcriptional changes caused by DNA methyl-

ation at these four CpG sites could affect the risk of down-

stream phenotypes.

A recent GWAS identified 28 of 35 sentinel SNPs to have

methylation-mediated associations with BP using a Men-

delian randomization technique.23 In our overall meta-

analyses, we assessed the association of the 28 CpG sites

reported by Kato et al.,23 but were not able to confirm

the direct association of any of these CpG sites with BP

(p > 1.0 3 10�5; Table S12). We further could not confirm

the association of the sentinel SNPs with the CpG sites re-

ported to mediate the associations with BP. However, we

identified an association of rs12567136 (CLCN6) with
ber 7, 2017



Table 6. Two-Step Mendelian Randomization Results for Genes with Transcription Significantly Associated with DNAMethylation and BP

CpG site Gene

Step One: CpG / GE Step Two: GE / BP

IV: meQTLs GTEx eQTL IV: eQTLs ICBP SBP ICBP DBP

SNP Pos p Value p Value SNP Pos p Value p Value p Value

cg23999170 TSPAN2 rs4240539 115,603,844 5.5 3 10�10 0.0074 rs12143357 115,321,323 9.7 3 10�4 0.0986 0.0003

rs72697925 115,604,454 4.5 3 10�10 0.0254 – – – – –

rs72697930 115,613,073 2.2 3 10�20 0.0512 – – – – –

rs1286366 115,617,856 2.6 3 10�58 0.3148 – – – – –

rs10858064 115,625,696 8.2 3 10�12 0.5198 – – – – –

cg06690548 SLC7A11 NA NA NA NA rs17050398 139,350,368 3.6 3 10�3 0.0745 0.0852

cg00574958 CPT1A NA NA NA NA rs546233 69,311,449 1.7 3 10�3 0.6250 0.8880

UNC93B1 NA NA NA NA rs1793252 67,740,366 1.3 3 10�4 0.2410 0.0747

cg10601624 LPCAT3 rs984337 6,383,525 8.8 3 10�6 0.1149 rs2110073 7,075,882 8.2 3 10�4 0.1920 0.2840

rs4764572 6,417,998 3.1 3 10�5 0.5567 – – – – –

PTMS rs984337 6,383,525 8.8 3 10�6 0.5104 rs9668071 7,123,076 1.9 3 10�3 0.2590 0.6930

rs4764572 6,417,998 3.1 3 10�5 0.5109 – – – – –

Position is Hg19. Abbreviations: BP, blood pressure; CpG, cytosine-phosphate-guanine; DBP diastolic blood pressure; eQTL, expression quantitative trait locus; GE,
gene expression; GTEx, Genotype-Tissue Expression project; ICBP, International Consortium for Blood Pressure Genome-Wide Association Studies; IV, instru-
mental variable; meQTL, methylation quantitative trait locus; Pos, position; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism.
methylation at an upstream CpG, cg20946054 (DRAXIN).

This CpG site has a nominal association with BP (systolic

BP p ¼ 0.0318, diastolic BP p ¼ 0.0015) and adjustment

for methylation at this locus attenuated the association

of rs12567136 with systolic BP but not diastolic BP (Table
increased expression of

TSPAN2

decreased DNAm at

cg23999170
increased

diastolic BP

CpG-GE Q value = 8.6 x 10-14

Step One p value = 0.0074

5 mmHg increase in diastolic BP per 0.1% decrease in DNA methyla on
CpG-BP p value=1.9 x 10-13

GE-DBP Q value=1.3 x 10-16

Step Two p value = 0.0003

Figure 3. Illustration of the Relationship of Methylation at
cg23999170 with Diastolic BP,Mediated by Expression of TSPAN2
Methylation at cg23999170 was identified as associated with dia-
stolic BP in discovery and replication meta-analyses of genome-
wide DNA methylation (N ¼ 17,010). Expression of TSPAN2 was
associated with methylation at cg23999170 in meta-analyses of
FHS and RS and diastolic BP in FHS. The direction of arrows in
the diagram are inferred from significant two-step Mendelian
randomization using data from the Genotype-Tissue Expression
project and International Consortium for Blood Pressure, which
suggests that methylation at cg23999170 influences BP through
the expression of TSPAN2. The epigenome-wide association of
DNA methylation and diastolic BP is interpreted given the evi-
dence of causal direction and based on a 0.1% change in DNA
methylation at cg23999170. Abbreviation: DBP, diastolic blood
pressure.

The American
S13). Diastolic BP was the primary phenotype identified

by Kato et al. Differences between our findings and those

reported by Kato et al.23 may be due to differing linkage

disequilibrium structure in the populations examined in

the two studies.

The strength of this study is our use of multiple data

sources and analytic techniques to characterize functional

relationships of DNA methylation and BP. We used strict

replication standards to identify 13 CpG sites associated

with BP and characterized gene transcriptional changes

that could underlie these associations. However, these

CpG sites were identified through cross-sectional analyses

and we were able to characterize the direction of associa-

tion only for six CpG sites. Mendelian randomization

requires exposure-predictive SNPs to be selected as instru-

mental variables. For three CpG sites, we estimated no

significant cis-meQTLs (cg19693031, cg06690548, and

cg00574958) and an additional two CpG sites had insuffi-

cient independent meQTLs to assess forward causation

using multiple instrumental variables (cg18120259 and

cg10601624), so we lacked the ability to perform causal

tests for select CpG sites. We additionally a priori chose to

examine gene expression 1 Mb up- and downstream of

each CpG site in whole blood, so more distal regulatory ef-

fects, and effects in different tissues, could have been

missed. However, we did identify at least one biologically

plausible gene to have a nominal triangular association

with both methylation and BP for 11 of the replicated

CpG sites, so it may be that larger sample sizes will uncover

the functional and causal relationships of DNA methyl-

ation and BP. Despite these limitations, we discovered

heritable CpG sites associated with BP among 17,010
Journal of Human Genetics 101, 888–902, December 7, 2017 899



individuals and showed that these CpGs explain addi-

tional phenotypic variance in an independent sample in

which up to 261 BP-associated genetic variants explained

minimal trait variance. We characterized the methyl-

ation-BP relationship using gene expression analyses and

Mendelian randomization techniques to understand

both which genes may regulate BP and how BP may affect

gene transcription.

In conclusion, our genome-wide analysis ofDNAmethyl-

ation has uncovered loci influencing BP variation indepen-

dently of underlying genetic variation. We additionally

characterized functional and causal relationships connect-

ing methylation at these loci with BP. In particular, we

have identified TSPAN2 as a candidate gene for BP that is

regulated byheritableDNAmethylation.TSPAN2 andother

methylated regions point to vascular contractility and in-

flammatory processes that functionally and causally con-

nect DNA methylation and BP, and, thus, may represent

new targets for the treatment and prevention of hyperten-

sion.Additional studies areneeded toprovide furthermech-

anistic insights into the environmental exposures and ge-

netic variation that influence DNA methylation and lead

to high blood pressure. Nonetheless, our findings suggest

that informationonDNAmethylation is likely toyield addi-

tional insights into the pathobiology of complex traits.
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