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RESEARCH ARTICLE

Frequency of Nuclear Mutant Huntingtin
Inclusion Formation in Neurons and Glia

is Cell-Type-Specific

Anne H.P. Jansen,1 Maurik van Hal,1 Ilse C. op den Kelder,1 Romy T. Meier,1

Anna-Aster de Ruiter,1 Menno H. Schut,2 Donna L. Smith,3 Corien Grit,4 Nieske Brouwer,4

Willem Kamphuis,5 H.W.G.M. Boddeke,4 Wilfred F.A. den Dunnen,4

Willeke M.C. van Roon,2 Gillian P. Bates,3 Elly M. Hol,5,6,7* and Eric A. Reits1*

Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder that is caused by a CAG expansion
in the Huntingtin (HTT) gene, leading to HTT inclusion formation in the brain. The mutant huntingtin protein (mHTT) is ubiqui-
tously expressed and therefore nuclear inclusions could be present in all brain cells. The effects of nuclear inclusion formation
have been mainly studied in neurons, while the effect on glia has been comparatively disregarded. Astrocytes, microglia, and
oligodendrocytes are glial cells that are essential for normal brain function and are implicated in several neurological diseases.
Here we examined the number of nuclear mHTT inclusions in both neurons and various types of glia in the two brain areas
that are the most affected in HD, frontal cortex, and striatum. We compared nuclear mHTT inclusion body formation in three
HD mouse models that express either full-length HTT or an N-terminal exon1 fragment of mHTT, and we observed nuclear
inclusions in neurons, astrocytes, oligodendrocytes, and microglia. When studying the frequency of cells with nuclear inclu-
sions in mice, we found that half of the population of neurons contained nuclear inclusions at the disease end stage, whereas
the proportion of GFAP-positive astrocytes and oligodendrocytes having a nuclear inclusion was much lower, while microglia
hardly showed any nuclear inclusions. Nuclear inclusions were also present in neurons and all studied glial cell types in human
patient material. This is the first report to compare nuclear mHTT inclusions in glia and neurons in different HD mouse models
and HD patient brains.
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Introduction

Huntington’s disease (HD) is an autosomal dominant

inherited neurodegenerative disorder. Patients suffer from

chorea, random involuntary movements, and several psychiat-

ric and cognitive symptoms such as mood changes, depres-

sion, and dementia. The prevalence of HD is 10.6–13.7

individuals per 100,000 in the Western world (Evans et al.,

2013; Fisher and Hayden, 2014; Morrison et al., 2011). HD

is caused by a CAG expansion in the Huntingtin (HTT) gene

resulting in a polyglutamine-expansion in the mutant HTT

protein (mHTT), and the formation of mHTT inclusions in

the nucleus and the cytoplasm of cells. While the appearance

of inclusions is an important hallmark of the disease, it is

debated whether these structures are toxic because the
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presence of inclusions is inversely correlated with neuronal

cell death in a cell model (Arrasate et al., 2004; Nucifora

et al., 2012).

HD-related research is primarily focusing on alterations

in the brain, and neurons have been studied mostly as they

seem to be the most affected cell type in HD. Glial cells have

been comparatively disregarded despite their critical role in

brain function. Both astrocytes and microglia directly regulate

synaptic communication: astrocytes take up neurotransmitters

from the synaptic cleft and release gliotransmitters that facili-

tate neuronal communication, and both microglia and astro-

cytes are involved in synaptic pruning and are responsive to

neurotransmitters (Chung et al., 2013; Kettenmann et al.,

2013; Pekny et al., 2016; Schafer et al., 2013). In HD

patients, astrocytes and microglia become activated, as shown

by the upregulation of glial fibrillary acidic protein (GFAP)

and thymosin b4, respectively, and the degree of activation

correlates with disease progression (Faideau et al., 2010; Sapp

et al., 2001). In mHTT gene carriers, microglia activation

occurs before the first symptoms become apparent as has

been shown using positron emission tomography (PK PET)

(Tai et al., 2007). Also, increased numbers of oligodendro-

cytes and GFAP-positive astrocytes are observed as early as

the first pathological stages in HD patients become manifest

(Faideau et al., 2010; Myers et al., 1991). Transgenic PLP-

HTT mice, expressing mHTT exclusively in oligodendrocytes,

show a progressive neurological phenotype and a reduced

myelin protein expression, which makes it clear that oligoden-

drocytes can be affected by mHTT expression (Huang et al.,

2015). Also, normal astrocyte functions are disturbed, as

shown by decreases in glutamate transporter levels, functional

glutamate transport, and the secretion of the neurotropic

molecule CCL5/RANTES (Chou et al., 2008; Shin et al.,

2005). In addition, alterations in potassium homeostasis

occur in HD astrocytes due to a decrease in the inward recti-

fier potassium channel Kir4.1 levels (Tong et al., 2014).

Astrocyte dysfunction contributes to HD, as astrocyte-specific

mHTT expression exacerbated the HD phenotype in dro-

sophila and mice (Bradford et al., 2010; Kretzschmar et al.,

2005). Microglia also change from their normal scanning

mode into an immune activated phenotype and start to accu-

mulate ferritin (Simmons et al., 2007). When expressing

mHTT, microglia secrete proinflammatory cytokines and

their migration toward chemotactic stimuli is impaired, prob-

ably because of defective actin remodeling (Kwan et al., 2012;

Silvestroni et al., 2009).

Despite the accumulating evidence that glial cells are

affected in HD mouse models and human HD patients, there

are only a few studies reporting the presence of mHTT inclu-

sions in astrocytes and oligodendrocytes (Huang et al., 2015;

Shin et al., 2005; Tong et al., 2014), and the presence of

inclusions in microglia has so far not been described. Here

we have assessed the proportion of different types of glia and

neurons with nuclear mHTT inclusions in the brain areas

that are most affected in the disease: frontal cortex and stria-

tum. We studied this in three commonly used HD mouse

models that show differences in disease progression. The R6/

2 model (Mangiarini et al., 1996) expresses the N-terminal

mHTT-exon 1 protein, and has a much faster progression of

symptoms and pathology when compared with the HdhQ150

and zQ175 HD mouse models that express full-length

mHTT (Lin et al., 2001; Menalled et al., 2012). Time points

selected for investigations were based on the phenotype seen

in the mice at a given age. Nuclear inclusions were also pre-

sent in neurons and all studied glial cell types in human

patient material. We found that proportion and size of nucle-

ar inclusions differs between the different cell types, with neu-

ronal inclusions being generally larger and more abundant

than nuclear inclusions in glia.

Materials and Methods

Mouse Models
In this study, 4, 9, and 14-week-old R6/2 mice (Mangiarini et al.,

1996), 2-, 16-, and 22-month-old homozygous HdhQ150 mice (Lin

et al., 2001), 3-, 6-, 8-, and 12-month-old heterozygous zQ175

mice (Menalled et al., 2012), and wild-type littermates were used.

The R6/2 mice analyzed had an average CAG expansion of 210 6 4

(SD). The HdhQ150 homozygous mice used in this study had

expanded CAG repeat sizes of 190 6 16 (SD) on the large allele and

169 6 12 (SD) on the smaller allele. For the zQ175 line, we ana-

lyzed tissue with a mean CAG repeat expansion of 193 6 4 (SD).

The end-stage phenotypes for R6/2 mice (�13 weeks) and homozy-

gous HdhQ150 mice (�22 months) are highly comparable (Kuhn

et al., 2007; Labbadia et al., 2011; Mielcarek et al., 2014, 2015;

Moffitt et al., 2009; Woodman et al., 2007), including the gross dis-

tribution of inclusions in the CNS (Woodman et al., 2007) and

periphery (Moffitt et al., 2009). The main difference between the

two lines is the age of phenotype onset and rate of disease progres-

sion (Lin et al., 2001). The zQ175 model originated from a sponta-

neous mutation in the chimeric knock-in model with 140 CAGs

(Menalled et al., 2003). In this model, HTT exon 1 is of human ori-

gin, whereas the rest of the Htt gene is murine. Progression of the

disease occurs more rapidly in both heterozygous and homozygous

zQ175 mice (Menalled et al., 2012) as compared with the

HdhQ150 model, and the end stage of disease occurs at approxi-

mately 20 months in zQ175 heterozygotes.

Isolation of Astrocyte and Microglia
Cell Populations
Wild-type mice—6 and 11 weeks old—were used in this experiment

(n 5 12). The mice were anesthetized by i.p. injection of 100 mL

sodium pentobarbital and perfused with 0.9% NaCl (pH 5.5). All

experiments were performed according to the experimental animal

guidelines of the University Medical Center Groningen. Animals
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were housed under normal conditions in a 12-h light/dark cycle and

fed ad libitum in the central experimental animal facility of the Uni-

versity of Groningen. After dissecting the brains from the skull, the

cortex was isolated and cut into small pieces in ice-cold dissection

medium (Hanks bovine salt serum [HBSS], PAA, Cat.nr. H15-010;

1.3% D-(1)-glucose solution, Sigma, Cat.nr. G8769; 1.5% 4-(2-

hydroxyethyl)21-piperazineethanesulfonic acid [HEPES], PAA, 311-

001). Subsequently, the tissue was incubated in dissection medium

supplemented with papain (8.7 U/mL) and 0.5 mg/mL DNAse1 at

378C for 60 min. Enzyme digestion was stopped by adding fetal

bovine serum (FBS) to an end concentration of 10%. Tissue frag-

ments were triturated and 4 mL percoll (90% percoll, 150 mM

NaCl) was added to a volume of 3 mL dissection medium and cen-

trifuged at 200g with low brake at 48C for 20 min. The top phase

was discarded, and the Percoll layer containing the cells and the

myelin layer were collected and diluted five times using dissection

medium, followed by centrifugation at 200g at 48C for 10 min. To

avoid oligodendrocyte contamination, cell pellets were resuspended

in MACS buffer (2 mM Ethylenediaminetetraacetic acid [EDTA]

and 0.5% bovine serum albumin [BSA] in PBS pH 7.2) and incu-

bated with myelin removal beads (Miltenyi Biotec; 130-096-733) at

48C for 15 min. Subsequently, the samples were centrifuged at 200g

at 48C for 5 min, supernatant was discarded and cells were resus-

pended in MACS buffer. Cells were then loaded on MACS columns,

which were washed thrice with MACS buffer to elute the cells for

FACS sorting.

FACS Procedure
The obtained cell suspension was incubated with CD16/CD32

(1:100, eBioscience) to block Fc gamma receptors and prevent

monocyte isolation. After washing, cells were resuspended and incu-

bated with anti-GLT-1 (1:100, 0.6 mg/mL (Orre et al., 2014b) in

staining medium (HBSS, PAA, 1.3% D-(1)-glucose solution, Sigma,

Cat.nr. G8769; 1.5% HEPES, PAA, 311-001, 0.1 mM EDTA) at

48C for 30 min. After washing, cells were incubated with the sec-

ondary antibody anti-rabbit-Alexa488 (1:200) and the conjugated

antibodies CD45-PeCy7 (1:200 eBioscience) and CD11B-PE

(1:150, eBioscience) for 30 min at 48C. Cells were washed with

staining medium and 40,6-diamidino-2-fenylindool (DAPI) staining

was used to sort living cells. Using an MoFlo XDP sorter (Beckman

Coulter), GLT1 astrocytes were sorted based on a GLT1/CD11B2

expression and microglia were sorted on CD11B1/CD451 expres-

sion. The sorted cells were subjected to RNA isolation.

RNA Isolation and QPCR
RNA was isolated from the cells by adding TRIzol (400 lL, Thermo

Fisher) to the cell pellets, followed by addition of chloroform

(80 lL). Samples were centrifuged, the top phase was collected and

mixed with an equal volume of isopropanol and 1 lL glycogen

(20 mg/lL, Invitrogen). Samples were stored overnight at 2208C.

The next day, the samples were centrifuged (max. speed for 1 h at

48C) and pellets were washed twice with 75% ethanol. The total

sample was used as template for cDNA synthesis with a mix of oli-

go(dT) and random hexamer primers according to manufacturer’s

instructions (Quantitect-Qiagen). After DNAse treatment, the RNA

was incubated with reverse transcriptase for 30 min at 428C. The

samples were diluted 1:20 to serve as a template for real-time quan-

titative polymerase chain reaction (QPCR) analysis. QPCR was used

for the quantification of expression of endogenous Htt levels using

the primers 50-ATCTCAGCCAGTCTGGTGCT-30 and 50-

CCCACTGTTCTGGAGGTGTT-30. Hprt, Gapdh, Actg1, and

Acta1 were used for normalization.

Volcano plot analysis of proteomics data
of Sharma et al. 2015
The Volcano plots (Supp. Info., Fig. 1B) were generated by using

data of Sharma et al. (2015). In this study, neurons, microglia, astro-

cytes, and oligodendrocytes were isolated from 9-week-old C57BL/6

mice, which were used for proteomics analysis to determine cell-

type-specific expression patterns. The data were used to plot HTT

expression in each cell type in relation to their specific markers. In

the Volcano plot, Log2 protein intensity per cell type was plotted

against the median abundance of all cell types together.

Mouse Tissue Preparation for Immunofluorescence
Microscopy
All experimental procedures performed on mice were conducted under

a project license from the Home Office and approved by the King’s

College London Ethical Review Process Committee in the UK. Hemi-

zygous R6/2 mice were bred by backcrossing R6/2 males to (CBA 3

C57BL/6) F1 females (B6CBAF1/OlaHsd, Harlan Olac, Bicester,

UK). HdhQ150 homozygous mice on a (CBA 3 C57BL/6) F1 back-

ground were obtained by intercrossing HdhQ150 heterozygous CBA/

Ca and C57BL/6J congenic lines as described previously (Woodman

et al., 2007). zQ175 heterozygous mice were maintained by backcross-

ing to C57BL/6J females (Stock 000664, Charles River). All animals

were fed ad libitum (Special Diet Services, Witham, UK) and mice

were subjected to a 12-h light/dark cycle.

The mice were anesthetized by i.p. injection of 100 mL sodi-

um pentobarbital (juvenile mice< 5 weeks 50 mL) and perfused with

4% paraformaldehyde (PFA) in 0.1 M sodium phosphate buffer

(NaH2PO4, pH 7.4). After dissecting the brains from the skull, the

brains were postfixed in 4% PFA at 48C overnight. Brains were

stored in 0.1 M NaH2PO4/0.5% PFA until further use. Brains were

washed with phosphate-buffered saline (PBS, 154 mM NaCl,

1.1 mM KH2PO, 5.6 mM Na2HPO4, pH 7.4 Lonza) and incubated

in 20% sucrose in PBS overnight. Subsequently, brains were frozen

on dry ice and stored at 2808C. Brains were cut coronally in 10-

mm-thick sections that were mounted on Starfrost microscope slides

and stored at 2208C until further use. Two mice brains were ana-

lyzed for each time point, and the immunostaining experiments were

replicated at least once for each mouse.

Immunofluorescent Staining of Mouse
Tissue Sections
Sections were postfixed with 4% PFA for 15 min and washed with

PBS. Afterwards, the sections were heated for antigen retrieval in

10 mM sodium citrate 1 0.05% tween-20 at 85–958C for 10 min.

Subsequently, sections were rinsed in PBS, blocked and permeabi-

lized with 1% BSA, 2% FBS, and 0.4% Triton X-100 in PBS for
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1 h, and incubated overnight with primary antibodies within the

same buffer. Antibodies used are listed in Table 1. Sections were sub-

sequently washed with PBS and incubated with fluorescent second-

ary antibodies donkey-anti-mouse, -rabbit, or -goat with Alexa488,

Cy3, or Cy5 tags to visualize immunostaining (1:700 Jackson Immu-

noResearch Laboratories). Finally, sections were washed in PBS and

embedded in Vectashield, including DAPI to stain nuclei (Vector

Laboratories). All procedures were performed at room temperature.

Human HD Patient Material and
Immunofluorescent Staining
Frontal cortex and striatum of 6 human HD patient cases were used

for analysis. Details are presented in Table 2 (Donor 1-6). Brain tissue

was formalin fixed and paraffin embedded. Sections of 6 mm were

used for immunostaining. Sections were deparaffinized and washed

with PBS. The staining procedure was similar as described for the

mouse tissue immunostaining using the same antibodies (Table 1).

TABLE 1: Antibodies

Company Species Dilution (mouse) Dilution (human) FACS dilution

NeuN Millipore (MAB377) Mouse monoclonal 1:500 1:500

S100B DAKO (Z0311) Rabbit polyclonal 1:4,500 1:600

GFAP DAKO (Z0334) Rabbit polyclonal 1:2,000 1:1,000

IBA1 Wako (019-19471) Rabbit polyclonal 1:4,000 1:1,000

OLIG2 Chemicon (Ab9610) Rabbit polyclonal 1:500 1:200

S829 (Sathasivam et al., 2001) Sheep polyclonal 1:800 1:500

GLT-1 (Orre et al., 2014b) Rabbit polyclonal 1:100

CD11B-PE eBioscience Rat monoclonal 1:150

CD45-PECy7 eBioscience Mouse monoclonal 1:200

TABLE 2: Clinopathological Table

Donor
ID Gender

Age of
onset

Age CAG
repeats

VS
grade Brain area Source

1 m >61 68 19/40 3 Frontal cortex W. den Dunnen (UMCG)

2 m >33 51 25/49 4 Frontal cortex W. den Dunnen (UMCG)

3 m >55 64 17/41 2 Frontal cortex W. den Dunnen (UMCG)

4 f �10 11 (JHD) 22/84 n.d. Caudate1 accumbens/frontal cortex W. van Roon (LUMC)

5 f �6 20 (JHD) 17/86 3 Caudate putamen/frontal cortex W. van Roon (LUMC)

6 m n.d. 37 (JHD) 15/68 3 Caudate putamen/frontal cortex W. van Roon (LUMC)

7 m Control 51 n.d. – Caudate1 accumbens/frontal cortex W. van Roon (LUMC)

8 m Control 54 n.d. – Striatum/frontal cortex W. van Roon (LUMC)

9 f Control 61 n.d. – Striatum/frontal cortex W. van Roon (LUMC)

10 f n.d. 57 23/43 4 Striatum/cortex W. van Roon (LUMC)

11 f 47 67 15/42 1 Cortex W. van Roon (LUMC)

12 m >70 80 17/42 2 Cortex W. van Roon (LUMC)

13 m 44 68 9/44 3 Cortex W. van Roon (LUMC)

14 m 15 40 (JHD) 18/53 3 Cortex W. van Roon (LUMC)

M 5 male; f 5 female; VS grade 5 Vonsattel grade; n.d. 5 no data available.
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Image Analysis
To determine the nuclear inclusion proportion per cell type, images

were taken with a Leica SP8 confocal microscope using a 633 oil

objective and Leica LAS X imaging software. A minimum of five

images was taken from each sample, the number of cells differed per

cell type ranging from 3 to 50 cells per field. Per image, the total

number of cell-marker-positive cells and the number of cells with

inclusions were counted. Per cell type a minimum of 200 cells were

included.

To quantify the number of cells in HD mice and their wild-

type littermates, images were acquired using a Leica DM RA micro-

scope equipped with a Plan Apo 253 1.40 oil objective (Carl Zeiss),

a cooled charge-coupled device camera (KX1400; Apogee Instru-

ments, Logan, UT, USA), and Image-Pro Plus software. DAPI-

stained nuclei were counted by a custom-made Matlab script. With

this script, the total nuclear surface area was measured and the num-

ber of distinct objects was counted. The number of positive cells was

counted manually by persons that were unaware of the mouse

genotypes.

Preparation of Insoluble Protein Fractions
Postmortem human brain tissue slides were homogenized with a bul-

let blender (Next Advance, strength 8, 3 min) in a buffer containing

150 mM sucrose, 15 mM HEPES pH7.9, 60 mM KCl, 0.5 mM

EDTA pH8, and 0.1 mM ethylene glycol-bis(b-aminoethyl ether)-

N,N,N0,N0-tetraacetic acid pH8 using a 1:5 weight-to-volume ratio.

After addition of Triton X-100 to a final concentration of 1%, sam-

ples were kept on ice for 1 h. Insoluble protein pellets were prepared

by centrifugation (max. speed for 10 min), and washed thrice with

60 mM Tris. Pellets were resuspended in 15% SDS and incubated

overnight at 958C. Protein concentration of resuspended pellets was

determined with the bicinchoninic (BCA) assay kit (Thermo Fisher

Scientific, Waltham, USA).

Filter-Trap Assay
One hundred micrograms of protein suspension in 300 mL of 15%

SDS was blotted onto a cellulose acetate membrane using a vacuum

applicator. Blots were washed twice with 0.2% SDS and fixed in

0.5% glutaraldehyde. Blots were blocked with 4% nonfat milk

(Nutricia, Schiphol, The Netherlands) in Tris-buffered saline with

Tween-20 and probed with primary anti huntingtin antibody 3702-1

(Epitomics, Burlinggame CA, USA), and secondary antibody horse

radish peroxidase conjugated goat-anti-rabbit (Santa Cruz). Blots

were visualized with enhanced chemoluminescence (ECL, #32106,

ThermoFisher) and Hyperfilm ECL (#28906837, GE healthcare,

Little Chalfond, United Kingdom). Signal intensity was quantified

with imageJ-software.

Statistics
Two-tailed unpaired Student’s t-test was used to assess differences in

RNA expression levels, P< 0.05 was accepted as significant. One-

way ANOVA with a Student–Newman–Keuls post hoc test was used

to assess differences in inclusion diameters in the various cell types.

The Marascuillo procedure was used to compare proportions of

inclusions in different cell types and to assess the number of cells in

wild-type and HD mice, for all tests significance level was set at

0.05. Supporting Information, Tables 1–4 display the results of all

statistical tests in detail.

Results

Huntingtin is Expressed in Neurons and Glia
Before quantifying the frequency of nuclear mHTT inclusions

in neuronal and glial cells, we examined the expression levels

of huntingtin in the various cell types of the mouse brain. By

data analysis of published transcriptomics and proteomics

studies, huntingtin mRNA and protein levels in neurons,

astrocytes, oligodendrocytes, and microglia could be deter-

mined (Supp. Info., Fig. 1). Whereas mRNA levels were

slightly higher in neurons compared with glia in both human

and mice (Supp. Info., Fig. 1A, data obtained from (Zhang

et al., 2016)), HTT protein levels were similar in oligoden-

drocytes, astrocytes, neurons, and microglia in mice (Sharma

et al., 2015). Compared with the median protein expression

levels of all these cell types combined (Log2 fold change, x-

axis), cell-specific markers were differentially expressed,

whereas HTT protein levels (Log2 protein expression intensi-

ties, y-axis) were comparable in all cell types (Supp. Info.,

Fig. 1B, analyzed data published by Sharma et al., 2015). Htt

mRNA expression in astrocytes and microglia was confirmed

by QPCR from cells isolated from wild-type mice using a

protocol developed earlier in our lab (Orre et al., 2014b) by

dissecting out the cortex and isolating dissociated GLT1

astrocytes and CD11B1/CD451 microglia by FACS. Htt is

expressed in astrocytes and microglia in young mice of 6 and

11 weeks old (Supp. Info., Fig. 1C). These results confirm

earlier data on Htt RNA expression in isolated astrocytes and

microglia in adult (3 months) and aged (15 months) mice

(Orre et al., 2014b).

Differences in Nuclear mHTT Inclusion Formation
between Neurons and Glial Cells in R6/2 Mice
While both cytoplasmic and nuclear inclusions were present

in R6/2 mice, we deliberately quantified only the nuclear

inclusions in neurons, astrocytes, oligodendrocytes, and

microglia as it is often difficult to determine whether cyto-

plasmic inclusions were present in particular cells due to the

complexity of brain tissue, and cell-specific markers do not

always label the entire cytoplasm. To determine whether the

frequency of nuclear mHTT inclusions differs between neu-

rons and the various glial cell types, we performed immuno-

fluorescent stainings on brain sections from R6/2 mice

(Mangiarini et al., 1996). The pathogenesis in R6/2 mice

progresses rapidly; inclusions have been observed at postnatal

day 0 (P0) and their number increases with age, with the first

phenotypes being present as early as P30 and the disease

reaching its end stage within 4 months (Stack et al., 2005).
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To visualize nuclear mHTT inclusions, we used the S829

antibody that was raised against the N-terminus of polyQ-

expanded HTT exon 1 (Sathasivam et al., 2001), in combina-

tion with at least one cell-type-specific marker. As GFAP

mainly labels reactive astrocytes, we also used S100B as a glial

marker to visualize also nonreactive astrocytes.

We analyzed the number of nuclear inclusions in neu-

rons, astrocytes, oligodendrocytes, and microglia in the frontal

cortex and striatum of mice aged 4, 9, and 14 weeks. Nuclear

inclusions were found in neurons, S100B-positive glial cells,

GFAP-positive astrocytes, oligodendrocytes, and microglia

(Fig. 1A), yet the proportion of these inclusions differed

between cell types. While the number of nuclear inclusions

increased with age in all cell types in both the frontal cortex

and the striatum, neurons contained the highest proportion

of nuclear inclusions (around 45% of neurons) at 14 weeks

in the frontal cortex. In the striatum, the fraction of S100B-

positive glial cells with nuclear inclusions was lower compared

with neurons (around 35%), whereas GFAP-positive astro-

cytes and oligodendrocytes showed an even lower percentage

(5–10% at 14 weeks). Strikingly, IBA1-positive microglia

hardly showed any nuclear inclusions at all, with 14-week-old

mice showing only nuclear inclusions in about 1% of the cells

(Fig. 1B and Supp. Info., Table 1). In general, nuclear inclu-

sions had a diameter of 1 mm in the cortex and 1–1.5 mm in

the striatum in the different types of glial cells. The nuclear

inclusions were significantly larger in neurons compared with

glia: about 2 mm at 14 weeks (Fig. 1C). In the striatum, neu-

ronal nuclear inclusions were also larger than those in glia at

14 weeks (Fig. 1C). The differences in the proportion of

nuclear inclusions between the different cell types was not

due to cell death as no differences were observed in the num-

ber of cells in wild-type brains and R6/2 brains (Fig. 1D and

Supp. Info., Table 2). Together, these data show that in the

R6/2 HD model, nuclear mHTT inclusions are more abun-

dant and larger in neurons compared with glia, with S100B-

FIGURE 1: Nuclear mHTT inclusions in R6/2 striatum and cortex. (A) Exemplary images of mHTT inclusions (S829, red) were present in
the nuclei (DAPI, blue) of neurons (NeuN, green, striatum), S100B-positive glia (green, striatum), GFAP-positive astrocytes (green, frontal
cortex), oligodendrocytes (OLIG2, green, striatum), and microglia (IBA1, green, frontal cortex). Representative pictures of each cell, mor-
phology similar in cortex and striatum. Scale bar is 3 mm. (B) The percentage of cells with a nuclear inclusion in the cortex and striatum.
(C) The change in the diameter of nuclear inclusions with disease progression in the various cell types. Different letters represent signifi-
cantly different groups as determined by one-way ANOVA with Student–Newman–Keuls post hoc test. (D) The percentage of nuclei co-
staining for various cell type markers. Cell numbers were similar between wild-type and R6/2 mice (N 5 11,943–27,037). WT 5 wild-type.
[Color figure can be viewed at wileyonlinelibrary.com]
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positive glial cells showing a higher proportion of nuclear

inclusions than GFAP-positive astrocytes or oligodendrocytes,

and that microglia hardly show any nuclear inclusion

formation.

Differences in Nuclear mHTT Inclusions
Between Neurons and Glial Cells in Knock-In
HD Mouse Models
We also examined the proportion of nuclear inclusions in the

various cell types in two knock-in HD mouse models that

express the full-length mHTT protein. The first was the

HdhQ150 model, where approximately 150 CAGs were

knocked into the mouse Htt gene (Lin et al., 2001). The sec-

ond full-length mHTT model was the zQ175 model, which

is chimeric for human HTT exon 1, with approximately 175

CAGs, and the remainder of the mouse Htt gene (Menalled

et al., 2012). Similar to the R6/2 model, nuclear inclusions

were found in all cell types studied in HdhQ150 mice (Fig.

2A), and the percentage of cells that had nuclear inclusions

was comparable to the R6/2 model. Neurons contained the

highest frequency of nuclear inclusions, closely followed by

S100B-positive glial cells. Around 10% of GFAP-positive

astrocytes and oligodendrocytes contained nuclear inclusions,

while microglia only incidentally contained nuclear inclusions

(Fig. 2B and Supp. Info., Table 1). Average nuclear inclusion

diameter in the HdhQ150 model was 1.3 mm in S100B-

positive glial cells, 1 mm in GFAP-positive astrocytes and oli-

godendrocytes, and 2 mm in neurons at the disease end stage

(Fig. 2C). We observed a significant 50% increase in GFAP

expression in the striatum (2, 16, and 22 months) and a 75%

increase in the frontal cortex (16 and 22 months) (Fig. 2D

and Supp. Info., Table 3), consistent with what was described

before (Lin et al., 2001). In addition, the number of S100B-

positive glial cells in both frontal cortex (16 months: 133%;

FIGURE 2: Nuclear mHTT inclusions in the homozygous HdhQ150 mouse striatum and cortex. (A) Exemplary images of mHTT inclusions
(S829, red) were present in nuclei (DAPI, blue) of neurons (NeuN, green, striatum), S100B-positive glia (green, striatum), GFAP-positive
astrocytes (green, striatum), oligodendrocytes (OLIG2, green, striatum), and microglia (IBA1, green, frontal cortex). Representative pic-
tures of each cell, morphology similar in cortex and striatum. Scale bar is 3 mm. (B) The percentage of cells with a nuclear inclusion in
the cortex and striatum. (C) The change in diameter of nuclear inclusions with disease progression in the various cell types. Different let-
ters represent significantly different groups as determined by one-way ANOVA with Student–Newman–Keuls post hoc test. (D) The per-
centage of nuclei co-staining for various cell type markers. Quantification of total cell numbers showed an increase in S100B-postive glia
and GFAP-positive astrocytes in HdhQ150 brains as compared with wild-type (minimum N 5 10,005–20,879). WT 5 wild-type. [Color
figure can be viewed at wileyonlinelibrary.com]
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22 months: 150%) and striatum (22 months: 193%) and

the number of microglia in the frontal cortex (22 months:

130%) were significantly increased at end-stage disease in

HdhQ150 mice.

Consistent with our R6/2 and HdhQ150 data, we

observed nuclear inclusions in the zQ175 sections in neurons

and all types of glia analyzed (Fig. 3A). The proportion of

cells containing a nuclear inclusion increased with disease

progression in both frontal cortex and striatum, and was com-

parable to the proportions observed in the other HD mouse

models (Fig. 3B and Supp. Info., Table 1). Neurons and

S100B-positive glial cells contained the highest proportion of

nuclear inclusions (around 35% of all cells) in both frontal

cortex and striatum, followed by the GFAP-positive astrocytes

and oligodendrocytes (around 5% of all cells), whereas nucle-

ar inclusions were hardly present in microglia. Although the

abundance of zQ175 nuclear mHTT inclusions was similar

to R6/2 and HdhQ150, all nuclear inclusions were slightly

smaller in this model (Fig. 3C), most likely reflecting the fact

that tissue from end-stage disease was not available. We

observed significantly lower numbers of neuronal cells in

both frontal cortex and striatum in 12-month-old zQ175

mice (frontal cortex: 227%; striatum: 241%); however, in

glia no major decrease in numbers were detected. So, similar

to R6/2 and HdhQ150, also in zQ175 mice the lower pro-

portion of nuclear inclusions in glial cells compared to neu-

rons is not due to glial cell death (Fig. 3D and Supp. Info.,

Table 4).

Comparison of HD Mouse Models with Human
HD Patient Material
Next to the three HD mouse models, we performed also dou-

ble labeling of HTT and cell-specific markers in the frontal

cortex and striatum from HD postmortem brains. The per-

centage of cells containing a nuclear inclusion (max. 0.3% in

neurons) was much lower in human patients compared with

FIGURE 3: Nuclear mHTT inclusions in the zQ175 model. (A) Exemplary images of HTT inclusions (S829, red) were present in the nuclei
(DAPI, blue) of neurons (NeuN, green, frontal cortex), S100B-positive glia (green, striatum), GFAP-positive astrocytes (green, frontal cor-
tex), oligodendrocytes (OLIG2, green, striatum), and microglia (IBA1, green, frontal cortex). Representative pictures of each cell, mor-
phology similar in cortex and striatum. Scale bar is 3 mm. (B) The percentage of cells with a nuclear inclusion in the cortex and striatum.
(C) The change in diameter of nuclear inclusions with disease progression in the various cell types. Different letters represent significant-
ly different groups as determined by one-way ANOVA with Student–Newman–Keuls post hoc test. (D) The percentage of nuclei co-
staining for various cell type markers. Quantification of cell numbers in wild-type mice and zQ175 mice (minimum N 5 9,629–17,518).
WT 5 wild-type. [Color figure can be viewed at wileyonlinelibrary.com]
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the HD mouse models (max 40–50% in neurons) (Fig. 4B).

In juvenile HD (JHD) patient brains, we found nuclear

inclusions in all cell types (Fig. 4A), and in a higher percent-

age of cells than in the adult onset HD brains (Fig. 4C).

This is consistent with increased insoluble HTT protein due

to the increase in Q length (Supp. Info., Fig. 2), although

filter-trap analysis showed that JHD 86Q sample produced

less aggregates than the 55Q sample. This could be related to

subject-to-subject variations or to the young age of the Juve-

nile HD patient with 86Q who died at the age of 11, where-

as the other patients were adults with the average age of 60.

Also in JHD, more nuclear inclusions were found in the frontal

cortex than in the striatum (Fig. 4C and Supp. Info., Fig. 2).

Discussion

While mHTT aggregation has been mainly observed and

studied in neurons, we investigated nuclear mHTT inclusions

in glial and neuronal cells in three commonly used HD

mouse models, the R6/2 transgenic model and the HdhQ150

and zQ175 knock-in models, and in adult and juvenile HD

patient postmortem brains. We showed that nuclear inclu-

sions are present in neurons, astrocytes, oligodendrocytes, and

microglia but with very different frequencies. Interestingly,

the three mouse models showed a similar percentage of nucle-

ar mHTT inclusion bearing cells in the cortex and striatum,

despite the expression of full-length mHTT or only mHTT

exon1. At late stages of the disease, nuclear inclusions were

found in 30–50% of the neurons, 30% of the S100B-positive

glial cells, 4–10% of the GFAP-positive astrocytes, 3–10% of

the oligodendrocytes, and 0–2% of the microglia. Both the

proportion of cells containing nuclear inclusions and the

nuclear inclusion size was lower in glial cells compared with

neurons. In neurons, nuclear inclusions were on average 2

mm in diameter, whereas glial nuclear inclusions measured

only 1 mm on average. Interestingly, only neuronal nuclear

inclusions changed in size with disease progression, increasing

from 0.6 mm to a maximum of 2 mm at the end stage. This

is in agreement with earlier findings in R6/2 mice, zQ175

mice, and human patients (Carty et al., 2015; Gutekunst

et al., 1999; Li et al., 1999). This suggests that nuclear inclu-

sions persist for a long period of time and increase in size,

most likely due to sequestration of newly synthesized mHTT

but also the sequestering of other proteins. As the nuclear

inclusions in all cell types were also positively immunostained

for ubiquitin (data not shown), this indicates that the used

S829 antibody against mHtt recognizes nuclear inclusions in

all cell types with similar efficiency. Interestingly, an increase

in nuclear inclusion size with disease progression was not

observed in glia, suggesting a better capability of these cells to

constrain mHTT inclusion size. As we did not find indica-

tions of cell death in glia, the stable nuclear inclusion size

and lower nuclear inclusion proportion in glia suggests that

the various glial cell types are better capable to slow down

mHTT aggregation. In addition, it has been suggested that

the cellular compartment influences inclusion structure due to

interaction with chaperones and other factors, so the compo-

sition of nuclear inclusions may be different in glia. Indeed,

it has been recently shown that brain material derived from

FIGURE 4: Nuclear mHTT inclusions in Huntington’s disease postmortem human brain. (A) Exemplary images of nuclear mHTT inclusions
(S829, red) were present in the nuclei (DAPI, blue) of neurons (NeuN, green, frontal cortex), S100B-positive glia (green, frontal cortex),
GFAP-positive astrocytes (green, striatum, frontal cortex), and microglia (IBA1, green, frontal cortex) oligodendrocytes (OLIG2, green,
frontal cortex). Representative pictures of each cell, morphology similar in cortex and striatum. Scale bar is 3 mm. (B) The proportion of
the various cell types that contain a nuclear inclusion in the frontal cortex of adult-onset patients. (C) The proportion of the various cell
types that contain a nuclear inclusion in the frontal cortex and striatum of juvenile-onset patients. [Color figure can be viewed at
wileyonlinelibrary.com]
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HD patients contains a number of structurally different types

of inclusions, and that amorphous inclusions are less toxic

than fibrillary inclusions (Andr�e et al., 2013; Hoffner and

Djian, 2015). We deliberately quantified only the nuclear

inclusions in the studied cell types as the used markers for

co-staining did not label the entire cytoplasm, making it too

difficult to determine whether cytoplasmic inclusions were

indeed present in particular cells that were immunostained

for GFAP, NeuN, S100B, OLIG2, or IBA1.

Nuclear mHTT Inclusions in Astrocytes
Interestingly, there is a large diversion in the occurrence of

nuclear inclusions in S100B-positive glial cells (20–35%) com-

pared with GFAP-positive astrocytes (2–10%). S100B is not

exclusively expressed in astrocytes, but also in oligodendrocytes,

NG2 cells, and neurons (Vives et al., 2003). Immunostaining

experiments combining S100B with astrocyte markers GS and

ALdh1L1 showed that 50% of both GS and ALdh1L1 cells

were positive for S100B cells and vice versa. Co-staining S100B

with NeuN showed no co-staining of S100B with NeuN,

excluding neuronal staining by S100B (data not shown).

S100B and GFAP may represent different cell populations, as

GFAP is an astrocyte-specific protein but it is not expressed by

every astrocyte in mouse brains. GFAP is a marker for astroglio-

sis, a process where astrocytes become activated in response to

brain damage as a result of trauma, stroke, or in neurodegenera-

tive diseases (Hol and Pekny, 2015; Middeldorp and Hol,

2011; Pekny et al., 2016). Reactive astrocytes change their gene

expression profile toward a more proinflammatory phenotype,

including potential changes in protein homeostasis. Upregula-

tion of immunoproteasome components (catalytic subunits and

proteasome activator PA28ab) and several heat-shock proteins

(HSP70, HSPB1, and HSPB3) has been observed in reactive

astrocytes in the cortex of a mouse model for Alzheimer’s Dis-

ease (Orre et al., 2014a). As reactive astrocytes have an

increased proteasome activity, which correlates with GFAP

upregulation, this could explain the reduced proportion of

nuclear mHTT inclusions in GFAP-positive astrocytes (Mid-

deldorp et al., 2009; Orre et al., 2013). As the number of

GFAP-positive cells were not increased, it is unclear whether in

our models true reactive gliosis is observed.

Mechanisms behind Lower Number of Nuclear
Inclusions in Microglia
The number of inclusions is most likely related to mHtt pro-

tein levels, which is regulated by both mHTT synthesis and

degradation. mHTT expression has been determined at the

mRNA level in astrocytes, neurons, oligodendrocytes, and

microglia for both human and mice (Supp. Info., Fig. S1A).

The two studied full-length mHTT mouse models

(HdhQ150, zQ175) have the mouse Htt promotor/enhancer

region, resulting in similar levels of Htt expression compared

with endogenous Htt expression in wild-type mice. As the

expression level of mHTT is similar in neurons and glia, this

study is indicative of a cell-type-specific sensitivity for inclu-

sion formation with microglia being the least sensitive, while

neurons are most vulnerable. The surprisingly low proportion

of nuclear mHTT inclusions in microglia suggests that these

cells may be able to prevent the aggregation process. One

explanation could be that microglia are able to proliferate

under neurodegenerative conditions, in contrast to neurons

and astrocytes, as was demonstrated in both Alzheimer’s dis-

ease and HD (Kamphuis et al., 2012; Kraft et al., 2012).

This would result in reduced mHTT levels in their progeny,

thereby reducing the likelihood of inclusion formation. The

observed asymmetrical diversion of inclusions to one of the

daughter cells (Rujano et al., 2006) could also result in higher

number of daughter cells without inclusions. However, cell

proliferation cannot fully explain the discrepancy in the inclu-

sion proportion because we only observed major increases in

the number of astrocytes and microglia in the HdhQ150

model but not the other models used, and astrocytes only

proliferate in the adult brain to a limited extend (Kamphuis

et al., 2012). Besides, no clear microglia activation could be

observed in the mouse models. Next to the possibility that

microglia containing nuclear inclusions die and are replaced

by new cells, differences in protein degradation pathways may

underlie the observed dissimilarities in inclusion frequency in

mice. In HD patients, we observed activation of astrocytes

and microglia (data not shown), which is consistent with pre-

vious findings (Faideau et al., 2010; Sapp et al., 2001).

Immune activation is in AD associated with higher levels and

increased activity of immunoproteasome subunits in astro-

cytes and microglia (Orre et al., 2013) and autophagosomes

in microglia (Su et al., 2016). These changes can lead to a

more efficient degradation of aggregation-prone proteins and

thus might underlie the lower proportion of nuclear inclu-

sions in glia. In human HD patients, the number of inclu-

sions was much lower compared with mice, as previously

described (Seidel et al., 2016). However, in HD patients,

HTT is also present as neuropil inclusions/granular cytoplas-

mic structures (DiFiglia et al., 1997; Seidel et al., 2016). In

juvenile HD cases (JHD), more nuclear inclusions were pre-

sent (Fig. 4C) as previously described (DiFiglia et al., 1997),

whereas the used mouse models have even longer polyglut-

amine repeats compared with human patients. So, while these

HD mouse models may not be representative for the human

situation in terms of the absolute number of nuclear inclu-

sions, these models provide a valuable insight in the relative

differences between multiple cell types in relation to inclusion

formation.
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