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A B S T R A C T

With the widespread application of immune checkpoint blocking antibodies (ICBs) for the treatment of
advanced cancer, immunotherapy has proven to be capable of yielding unparalleled clinical results.
However, despite the initial success of ICB-treatment, still a minority of patients experience durable
responses to ICB therapy. A plethora of mechanisms underlie ICB resistance ranging from low
immunogenicity, inadequate generation or recruitment of tumor-specific T cells or local suppression by
stromal cells to acquired genetic alterations leading to immune escape. Increasing the response rates to
ICBs requires insight into the mechanisms underlying resistance and the subsequent design of rational
therapeutic combinations on a per patient basis. In this review, we aim to establish order into the
mechanisms governing primary and secondary ICB resistance, offer therapeutic options to circumvent
different modes of resistance and plea for a personalized medicine approach to maximize
immunotherapeutic benefit for all cancer patients.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

For many years, directing our immune system to target cancer
was minimally effective in generating durable clinical responses. T-
cell responses induced by often inferiorly formulated and designed
vaccines were not powerful enough to overcome the many barriers
posed by advanced solid tumors [1,2]. However, following the
unprecedented results of ‘re-invigorating’ T cells in a proportion of
metastatic cancer patients by blocking immune inhibitory
checkpoints, tumor immunotherapy has regained its position at
the forefront of cancer treatment today [3]. To this date, the most
studied and manipulated immune checkpoints on T cells are the
receptors T lymphocyte associated antigen 4 (CTLA-4) and
programmed cell death protein 1 (PD-1). Targeting CTLA-4 and
the PD-1-PD-L1-axis with antagonistic antibodies has proven to be
highly efficacious in a proportion of cancer patients (Fig. 1). The
finding that a subgroup of patients has a pre-existing but
dysfunctional anti-tumor immune response that can be therapeu-
tically restored, prompts further investigation into what con-
stitutes tumor immunity and precludes response to
immunotherapy.

2. Current state of immune checkpoint blockade (ICB) in
advanced cancer

Immune checkpoints are receptors expressed by T cells that
upon ligation by their respective ligands regulate immune cell
effector functions and proliferation thereby maintaining tolerance
to self-antigens and ensure immune homeostasis [4,5]. Blocking
inhibitory checkpoints using antagonistic antibodies may ‘release
the brakes’ on T cells, including those cells specific for tumor
antigens.
Fig. 1. Progression-free survival curves for chemotherapy, anti-PD-1- and anti-CTLA-4
blockade (ICB) therapy precludes patients from achieving durable responses and long-t
treatment they experience primary immune resistance. When patients do respond init
PFS-curves have been derived from the following clinical trials investigating ICB-efficcacy
CTLA-4 is upregulated by T cells following recognition of
cognate antigen by antigen presenting cells (APCs) in the lymph
node [6]. The structure of CTLA-4 is nearly identical to the
costimulatory receptor CD28 but interacts with much higher
affinity for its ligands CD80/CD86 (B7-1/B7-2) expressed by the
APC [7]. In contrast to CD28 stimulation, CTLA-4 has an inhibitory
effect on effector T cells by causing cell cycle arrest [6,7].
Additionally, regulatory T cells (Tregs) constitutively express high
levels of CTLA-4 on their cell surface, further facilitating their
immune suppressive potential [8]. Antibodies directed towards
CTLA-4 may therefore also act by decreasing Treg frequencies in
blood and tumor via antibody dependent cytotoxicity (ADCC)
[9,10].

Besides CTLA4, activated T cells express PD-1, and the coupling
of PD-1 to programed cell death ligand 1 (PD-L1, also called B7-H1)
or PD-L2 (B7-DC) restrains T-cell effector function and prolifera-
tion [11]. PD-L1 is expressed on tumor cells (constitutively due to
oncogenic signaling or in response to interferons), myeloid cells
including APCs, and PD-L2 is solely expressed by APCs [12]. It has
recently been shown that both PD-L1 on host myeloid cells and on
tumor cells is a prerequisite for anti-PD-1-therapy efficacy [13].
PD-1 was previously thought to attenuate T-cell receptor (TCR)
-signaling but recent insights have firmly established the
inhibitory role of PD-1 on downstream CD28-signalling in T-cells,
further emphasizing the importance of proper (local) co-stimula-
tion for T-cell function [14,15].

Thus far, four ICBs are FDA approved; anti-CTLA-4 (ipilimumab),
anti-PD-1 (pembrolizumab and nivolumab) and anti-PD-L1
monoclonal antibodies (atezolizumab). Response rates vary
between 11 and 40% depending on tumor type with PD-1 blockade
yielding superior responses at a more favorable toxicity profile
compared to CTLA-4 inhibition [16–20]. It has been suggested that
the discrepancy in toxicities between ICBs can be explained by the
- checkpoint blockers; primary and secondary resistance to immune checkpoint
erm survival. When patients do not respond to ICBs immediately following start of
ially but relapse over time, secondary resistance to ICB-treatment has developed.
 in metastatic melanoma: Robert et al. NEJM 2011, Schachter et al. ASCO #9504 2016.
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time of checkpoint engagement in the T-cell response. The PD-1/
PD-L1 axis has been proposed to operate later during the effector
phase of a T cell, resulting in a more confined response whereas
CTLA-4 acts on the lymph node during T-cell priming [21]. These
temperospatial differences between ICBs are being exploited by
combining anti-CTLA-4 and anti PD-1/PD-L1 in the clinic.
Combining ipilimumab (anti-CTLA4) and nivolumab (anti-PD-1)
in BRAF wild-type melanoma patients was efficacious in reaching
its primary endpoint of progression free survival [22]. Although
primary analysis showed a significant advantage of combination
therapy over both monotherapies, recent follow-up data report a
2-year survival rate of 64% in the combination treated group
compared to 59% survival in aPD-1 monotherapy treated patients.
Notably, the difference in serious adverse event rate was
considerable (58% vs 21%) suggesting limited clinical value of this
immunotherapy combination [23]. In other solid tumors including
non-small-cell lung cancer (NSCLC) and renal cell carcinoma,
response rates of ICB monotherapy are more modest ranging from
15 to 20% [24–29]. Reasons underlying this heterogeneity in
response rates shall be further addressed in the following sections.

Despite the significant progress that has been made with ICB
across multiple tumor types, still much remains to be gained.
Recent insights into tumors from initial and durable responders
and non-responders to ICB have offered novel insights into tumor-
immune interactions and the prerequisites for establishing
effective and durable anti-tumor immunity. A complete under-
standing of these processes is still lacking but with knowledge of
basic (tumor-)immunological principles and the implementation
of innovative diagnostics, rational therapeutic combinations can be
designed to improve ICB response rates in advanced cancer
patients.

3. Mechanisms underlying primary and secondary resistance to
ICB

Despite the success of ICBs, only a minority of patients
experience durable responses to ICB therapy. The remainder of
patients do not respond at all (primary resistance) or initially
respond but relapse over time (secondary resistance) (Fig. 1). A
plethora of mechanisms underlie ICB resistance. Primary as well as
secondary resistance to ICB results from an intricate interplay
between immune cells, other stromal cells (e.g. cancer associated
fibroblasts (CAF), endothelial cells) and tumor cells, all together
composing the tumor microenvironment (TME). In general,
primary resistance occurs when tumors lack an endogenous
adaptive and functional immune infiltrate (this includes the pre-
existence of an irreversibly ‘hyper-exhausted’ T-cell response
incapable of responding to ICB). Secondary resistance recapitulates
all the adaptive mechanisms which takes place subsequently to
therapeutic pressure resulting in the failure to maintain an
effective anti-tumor response. It has to be noted that the proposed
distinction between primary and secondary immune resistance is
pragmatic and useful in most causes of resistance but in reality,
multiple opposing phenomena may be at play and some (such as
an immune suppressive TME) may act throughout the course of ICB
treatment.

3.1. Primary resistance to ICB

Primary resistance to ICB can result from the absence of a
functional immune response to poorly immunogenic tumor
(Fig. 2). Tumors with a high non-synonymous mutational load
are more likely to display neo-antigens that could be considered
foreign to the immune system and thus possibly immunogenic
[30,31]. Therefore, it is not surprising that cancer types with the
highest mutational loads generally have high response rates to ICB
(melanoma, NSCLC) [32]. Also, subtypes of tumors characterized
by deficiencies in mismatch repair genes, as is the case for
microsatellite instable colon cancers, respond markedly better to
ICB compared to their microsatellite stable counterparts [33].
However, even within the same tumor type, high mutational load
in tumors was shown to at least partially predict response to both
anti-PD1- and CTLA4-inhibition further supporting the importance
of tumor mutational landscape and concomitant immunogenicity
in determining ICB efficacy [31,34,35]. But does an increased neo-
antigen load also necessarily lead to enhanced cytolytic T-cell
responses in tumors? A seminal study by Rooney et al. shows that
increased neo-antigen load, and in some tumors the presence of
viral genes, was indeed associated with enhanced cytotoxic T-cell
activity [36]. In line with these findings positive correlations
between anti-CTLA-4 therapy efficacy and the presence of a pre-
existing immune response together with a high mutational- and
neo-antigen load in melanoma have been found [35]. A similar
prerequisite for ICB-efficacy was found in melanoma patients
where a pre-existing CD8+ PD1+ T-cell infiltrate in the invasive
tumor margin and center predicted response to pembrolizumab
(anti-PD-1 antibody) treatment [37]. High mutational load and/or
expression of neo-antigens alone does not seem to fully predict
response to ICB, and others have shown that expression of other
antigens such as cancer tests antigens and tumor associated
(overexpressed) antigens may also contribute to tumor immuno-
genicity [38]. These data demonstrate that endogenous immune
reactivity characterized by cytolytic T cells in the tumor constitutes
a basic requirement for ICB efficacy.

Another major reason for primary ICB resistance is the
immune-privileged tumor micro-environment, characterized by
the paucity of infiltrating tumor-specific T cells. The existence of
this so-called ‘non-inflamed’ tumor derives from the inadequate
generation or recruitment of tumor-specific T cells, or the physical
inability of immune cells to reach the tumor. In order to induce a
functional immune response, innate immune recognition and
subsequent priming of tumor-antigen specific T cells in the lymph
node is imperative [39,40]. Interrogation of the the TCGA database
by Gajewski and colleagues to identify factors associated with a T-
cell inflamed tumor phenotype failed to detect an association
between a T-cell inflamed tumor and mutational burden [41].
However, they did find strong positive correlations between T-cell
infiltration and presence of DC-related genes emphasizing the
importance of DC-mediated anti-tumor immunity over solely
tumor antigenicity. In accordance with these data, others have
found intratumoral DCs to be critical for establishing tumor
immunity, with tumors being capable of actively subverting DC-
accumulation or function in vivo [42]. One such cause of immune
ignorance that could be at play is a mutated b-catenin/Wnt-
signaling pathway in tumor cells, which causes a decrease in
chemokines known to be crucial for DC-homing to the tumor [43].
Such mutations could present a significant downside to having a
high mutational burden, and could provide an explanation for the
heterogeneity observed in ICB efficacy in high mutation tumors
[41]. Interestingly, other mutations in key oncogenic pathways are
currently being identified that impede immune cell-infiltration
and/or function in the tumor (e.g. mutations in PTEN, MYC etc.)
[44,45]. Re-establishing immune surveillance by skewing myeloid
precursors to the DC-fate, targeting oncogenic pathways or
promoting DC-function may be essential in sensitizing patients
to ICB.

Moreover, the amount of intratumoral T effector cells could
determine the potential of ICB therapy to induce robust anti-tumor
response. T effector cells can be mechanically excluded by a
psychical barrier consisting of thick extracellular matrix produced
by stromal cells (e.g. CAFs) [46]. CAFs can also exclude T cells
through coating of cancer cells with CXC chemokine ligand-12



Fig. 2. Different processes underlying primary and/or secondary resistance to checkpoint blocking antibodies in solid tumors; Primary resistance can result from the absence
of a functional immune response to a poorly immunogenic tumor. The magnitude of resistance is influenced by differences in: (1) non-synonymous mutational load and neo-
antigen expression, (2) the presence of intratumoral dendritic cells capable of antigen trafficking and presentation, (3) the generation or recruitment of tumor-specific T cells
and (4) immune inhibition by inhibitory immune cell populations in the TME. Continuous therapeutic pressure may result in the development of secondary (acquired)
resistance. Mechanisms include (5) upregulation of other co-inhibitory molecules and (6) loss of tumor (neo)antigen expression.
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(CXCL12) [47]. Furthermore, the abnormal vasculature in the TME
expressing high endothelial Fas-ligand promotes intravascular T
cell apoptosis [48]. In addition, effector T cells will need to express
the proper integrins in order to bind to the tumor endothelium,
egress and exert their function. Changing the route of vaccination
was shown to modulate integrin expression on T-cells and improve
homing to the tumor tissue [49].

Finally, immune resistance can also be achieved by the
preferred attraction of immune inhibitory cells to the TME. Tregs,
tumor associated macrophages (TAMs) and myeloid derived
suppressor cells (MDSCs) often populate the TME where they
exert several immune inhibitory properties, making it difficult for
T-cells to sustain their anti-tumor effector responses, especially in
the setting of ICB [50].

Tumors can recruit, induce and expand Tregs capable of
suppressing (ICB-induced) anti-tumor T cells via competition for
key survival factors (CD80/86 co-stimulatory signals, IL-2) and
suppressive cytokines (e.g. IL-10, TGF-b, IL-35). As Tregs are much
more potent in binding these survival factors by means of
constitutive CTLA-4 and IL-2-receptor (CD25) expression, CD8+
T cells are shortly outcompeted. Tregs were found to be involved in
limiting aPD-1-efficacy as depletion of these cells improved
responses to therapy in several solid tumor mouse models [51].

TAMs contribute to a majority cancer hallmarks including neo-
angiogenesis, metastasis, chronic inflammation and immune
suppression [52]. Skewing or depleting TAMs could therefore
affect multiple critical steps in oncogenesis and abrogate different
modes of immune resistance [53]. TAMs display an alternatively
activated ‘M2’-phenotype known to be critical in controlling tissue
homeostasis and wound healing [52]. In the tumor, however, this
phenotype is undesirable as it enables potent T-cell inhibition via
cytokines (e.g. IL-10), depletion of key metabolites (expression of
arginase, IDO) or by contact inhibition (e.g. via PD-L1) [52]. This
TAM-phenotype is also critical in determining ICB efficacy as an
innate ‘wound healing’ and immune suppressive gene signature
was found to optimally predict non-responders prior to aPD-1
treatment [54]. Recently, Arlauckas et al. identified another
mechanism whereby TAMs can limit aPD-1 therapy efficacy. They
found TAMs to capture PD-1 targeting antibodies on the T-cell
surface thereby considerably limiting the duration of drug efficacy
[55].

Similar to TAMs, MDSCs can potently inhibit T-cell function but
they can also indirectly contribute to an immune suppressive TME
by differentiating into TAMs or skewing them to an M2-phenotype
[56]. MDSCs are the epitome of chronic and systemic immune
modulation by a tumor that secretes numerous molecules capable
of skewing myelopoiesis (e.g. GM-CSF, IL-6, VEGF etc.) [56].

The presence of these immune inhibitory cells in most patients
tumors suggests that a balance exists whereby ICB-responsive
anti-tumor T cells are in equilibrium with immune suppressive
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cells in the TME [57]. In line with this hypothesis is data from aPD-
1- and aCTLA-4-treated patients tumors showing increased
presence of memory T cell- and (activated) DC gene signatures
in ICB responders, in contrast to MDSC, Treg and monocyte
signatures in the non-responding patients [58]. Findings ways to
shift this balance preferably from both sides will be key in
improving ICB responsiveness.

3.2. Secondary ICB resistance

Over time, relapse will occur in a majority of patients initially
responsive to ICB therapy. A possible phenomenon underlying
secondary resistance are new mutations acquired by tumor cells
that have expanded under continuous therapeutic pressure
(immune editing) and have eventually grown out (immune
evasion) (Fig. 2).

Tumor intrinsic mutations that have evolved over the course of
ICB-treatment can have highly variable consequences to tumor-
immune interactions. It has been known for several years that loss
of antigen display by tumor cells due to mutations in the antigen-
processing machinery (e.g. TAP) or proteins involved in antigen
presentation (b2-microglobulin, HLA) can cause lack of recogni-
tion by CD8+ T-cells following immunotherapy [59]. Recently,
similar mutations were detected in patients who relapsed
following aPD-1 ICB [60]. Another pathway that can be silenced
by mutations following ICB is the interferon-gamma receptor
(IFNGR) pathway, consisting of the IFNGR, JAK1/JAK2 and STAT1
which promotes transcription of interferon-induced genes [61].
The cytokine IFN-g is known to have dichotomous immunological
properties by inducing apoptosis of tumor cells, blood vessel
Fig. 3. Therapeutic options to target immune resistance; sensitizing tumors to checkpoin
TME to remove immune suppression, combining antibodies to co-inhibitory/stimula
immunogenicity.
disruption and upregulation of MHC-expression on the one hand,
but expression of IDO, PD-L1 and other co-inhibitory markers on
the other hand [61–64]. These co-inhibitory molecules including
LAG-3 and TIM-3 synergize with CTLA-4 and PD-1 in promoting T-
cell exhaustion [65,66] and are known to be upregulated following
initiation of ICB therapy [67]. Inactivating mutations in the IFNGR-
pathway have been documented in patients and are hypothesized
to occur in settings of checkpoint blockade which leaves tumors
cells exposed only to the anti-tumor properties of IFN-g, causing
selective pressure [60,63]. Paradoxically, chronic exposure to
interferons including IFN-g was found to also induce immune
resistance due to PD-L1-dependent and -independent mechanisms
[64]. This may occur in settings of chronic (ICB-induced)
inflammation where the pro-tumor functions of IFNs prevail over
the anti-tumor ones, leading to immune resistance.

Besides specific mutations in immune-related pathways,
tumors may lose neo-antigens and thereby escape immune
control. In two melanoma patients, immunogenic neo-antigens
were lost during tumor progression indicating immune-editing
[68]. Immune editing was also reported in NSCLC patients whose
lesion(s) initially responded to PD-1-inhibition but later pro-
gressed. The relapsed tumors were devoid of several mutations
encoding for neo-antigens that were present prior to treatment
[69].

4. Therapeutic interventions aimed at (re-)sensitizing tumors to
ICB

Increasing the response rates to ICB will require rational
combinations of conventional anti-cancer therapies and other
t blockade therapy can be achieved by increasing immune recognition, targeting the
tory molecules on T cells, increasing effector T cells and by increasing tumor
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immunotherapies on a per patient basis to optimally prime the
tumor for ICBs to have effect. As many of these therapies act by
alleviating both primary and secondary forms of immune
resistance they shall be addressed per individual class of therapy
(Fig. 3).

4.1. Modulating the T-cell: novel immune checkpoints involving co-
inhibition/co-stimulation

Following the discovery of PD-1 and CTLA-4, numerous other
co-inhibitory molecules on the T-cell surface have been character-
ized and shown to contribute to T-cell exhaustion [5]. It could
therefore be beneficial or even necessary to target multiple
inhibitory molecules at the same time to attempt reversal of
exhaustion [70]. It should be noted, however, that T-cell
dysfunction in cancer is a multifactorial process depending on
many factors besides co-inhibitory receptor signaling [5]. More-
over, co-expression of multiple inhibitory molecules besides PD-1,
including LAG-3 and TIM-3 indicates a state of ‘hyperexhaustion’
that is not recoverable by ICB-treatment [71]. Upregulation of co-
inhibitory molecules has been shown to occur in mice and humans
following PD-1-inhibition (TIM-3, LAG-3") [67] and in case of anti-
CTLA-4-treatment (VISTA, PD-L1") [72]. These findings provide a
clinical incentive to combine different ICB-therapies to potentially
sensitize tumors previously thought to be ICB-resistant (e.g.
prostate cancer).

Paradoxically, dysfunctional T cells in the TME are known to
express co-stimulatory receptors simultaneously with co-inhibi-
tory molecules such as 4-1BB (CD137), ICOS and OX40, suggesting a
possible balance that can be therapeutically exploited [72,73].
Preliminary data from pre-clinical mouse models indeed show
benefit of combining agonistic antibodies to co-stimulatory
molecules with antagonistic antibodies targeting co-inhibitory
molecules [73,74]. It may therefore be beneficial to ‘push the pedal’
by targeting co-stimulatory molecules on the hand, and ‘release
the brakes’ using co-inhibitory checkpoint blocking antibodies on
the other hand to fully exploit T-cell effector function.

4.2. Chemotherapy, radiotherapy and oncolytic viruses: aiming to re-
establish anti-tumor immunity

Many conventional anti-cancer therapies such as chemo- and
radiotherapy, including oncolytic viral therapy was previously
thought to principally act by arresting tumor cell proliferation and
causing cell death. However, novel insights have led to a change in
paradigm where many of these ‘traditional’ anti-cancer treatment
strategies are now appreciated to function at least partially by
modulating the immune system [75,76]. As mentioned before, a
major contributor to primary ICB-resistance is lack of functional
DCs in the tumor capable of priming T cells in lymphoid organs.
Both radiotherapy and certain classes of chemotherapy, but also
several oncolytic viruses are capable of causing immunogenic cell
death (ICD) which increases antigen availability to dendritic cells
in the TME [76]. Besides releasing antigens, tumors cells release
damage associated molecular patterns (DAMPs) that are capable of
attracting and stimulating innate immune cells to subsequently
phagocytose cellular debris and present antigen to tumor-specific
T cells [75–78]. A thorough appraisal of the various immune
modulating functions of the different classes of chemotherapy, and
to a lesser extend radiotherapies, is beyond the scope of this
review. However, it is important to note that even drugs within the
same class of chemotherapies e.g. oxaliplatin and cisplatin, may
have different effects on the immune system, be it ICD or enhanced
expression of co-stimulatory markers on APCs, respectively
[77,79].
Chemo- and radiotherapy have also been shown to upregulate
type I interferons in the tumor microenvironment, thereby
attracting T cells by increased chemokine production in case of
anthracyclines [80], or by activating dendritic cells critical for
adaptive immune induction [81]. Therapy elicited type I interfer-
ons can also improve responses in the setting of secondary ICB
resistance where MHC-molecules on the tumor cell surface are
downregulated, but can be potently re-expressed when exposed to
type I interferon [82]. Reinstating immunity following primary or
secondary immune resistance by conventional therapies has been
shown to (re-)sensitize tumors to ICB therapy [83,84]. In a study by
Twyman-Saint Victor et al., melanoma patients received radiation
on one index lesion followed by systemic CTLA-4-blocking
antibodies. Besides a few responses including one patient with
abscopal responses (regression of unirradiated distant tumors), the
majority of patients progressed [10]. They went on further to show
that upregulation of PD-L1 on the tumor following radio-
immunotherapy significantly abrogated effective immune
responses, which could be reversed by administering PD-1-
inhibiting antibodies. Similar phenomena also occur in the setting
of oncolytic viral therapy where virus treatment is able toinflame
immunologically silent tumors and upregulate immune check-
points that could be targeted by ICB [85,86]. It has to be noted that
several studies have also reported negative effects of radiotherapy
on anti-tumor immunity including the increase of immune
suppressing cells in the TME (Tregs, MDSCs and TAMs) [75]. Also
in patients receiving radiotherapy, immune monitoring of blood
showed increased myeloid cell and decreased lymphoid cell counts
and immune reactivity following radiotherapy in contrast to
standard chemotherapy [87,88]. Some of these discrepancies may
be caused by opposing biological pathways underlying different
radiation regimens as was recently reported by Demaria et al.,
showing that multiple low-dose irradiation cycles synergized with
aCTLA-4 antibodies in contrast to one single higher dose of
radiotherapy in pre-clinical tumor models. Lower doses of
radiation induced local type I IFN-production and concomitant
recruitment of DCs, whereas high dose irradiation activated a
cytosolic DNA-degradation pathway, preventing immune induc-
tion [89]. Novel mechanisms underlying these divergent effects of
radiotherapy will have to be addressed and may involve
modification of thetreatment schedule and dose (fractionated or
high dose) and the requirement for future combination strategies
(e.g. TME targeted depletion, ICB).

4.3. Cytoreduction by surgery: an (neo-)adjuvant role for ICB in
treating locally advanced disease?

The addition of immunotherapy to conventional cytoreductive
surgery may improve patient survival by extending recurrence free
survival following (incomplete) tumor resection. From an immu-
nological perspective, the major advantage of surgery is the
reduction of tumor- and associated antigen load. Chronic antigen
exposure is known to be a main contributor to exhaustion of
effector T cells and occurs already early in tumorigenesis [90]. The
persistence of T cell exhaustion could eventually lead to the
irreversibility to reinvigorate T cell function with ICB therapy
[71,90]. Moreover, increased tumor size correlates with extended
immune suppression [91], suggesting that manually reducing
tumor size could alleviate immune inhibition and T-cell exhaus-
tion. Whether ICB should be administered in an adjuvant or neo-
adjuvant setting has been recently investigated in murine breast
cancer models. In these models Liu et al. showed superiority of
neo-adjuvant anti-PD-1 therapy over adjuvant treatment in the
context of surgery [92]. Mice treated with neo-adjuvant ICB had
significantly longer recurrence free survival due to higher
frequencies of circulating tumor specific memory T cells capable
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of surveying the body for micro-metastasis [92]. The reported
immune response kinetics resemble what is observed in the
setting of acute infection, where a decrease in antigen load
following clearance of the pathogen supports induction of a proper
memory T-cell pool [93]. Furthermore, recent insights into
biomarkers associated with response to aPD-1 therapy have
implicated elevated CD8+ PD1+ T-cell proliferation in a setting of
low tumor load to be predictive of response [94]. It is possible that
in the future, surgery may fulfil a pivotal role in establishing such a
setting in the case of extensive tumor burden. However, it should
be noted that surgery may also induce the influx of immunosup-
pressive cells abrogating T-cell function as part of a systemic
‘wound healing response’ [95] (De Goeje, Aerts, unpublished
results).

4.4. Immunotherapy: passive and active immunization approaches to
induce novel immune responses

Primary immune resistance to ICB can result from the inability
or lack of endogenous DCs capable of priming anti-tumor T cells
(non-inflamed tumor) or the presence of tumor infiltrating T cells
that are either irreversibly exhausted or not specific for tumor-
antigens [21,71]. In these cases, novel immune responses need to
be induced that in time can be further enhanced by checkpoint
blockade.

Tumor vaccines enable induction of novel immune responses
or reinstate pre-existing immune responses towards a specific or
wide array of tumor antigens formulated in the vaccine [1].
Although cancer vaccines offer significant advantages including
high specificity, a favorable safety profile, of-the-shelf applicabil-
ity and the premise of life-long anti-tumor immunity, clinical
efficacy is often limited in overt cancer [2]. Several studies have
highlighted the importance and power of neo-antigen specific
immune responses in establishing tumor control [30,96].
Exploiting novel tools from the field of cancer immunogenomics
enables the characterization of immunogenic neo-antigens that
can be subsequently produced and incorporated into personal-
ized vaccines [97,98]. Several trials are underway investigating
the safety and clinical efficacy of these personalized vaccines [97].

Besides peptide vaccines, it is possible to circumvent endoge-
nous antigen presentation and expose in vitro cultured autolo-
gous dendritic cells to tumor antigens and stimuli [99]. This form
of immunotherapy called DC-therapy was found to be safe,
capable of inducing anti-tumor immune responses and effective
in a subgroup of advanced cancer patients [2,100]. Additionally,
DC-immunotherapy was shown to induce epitope spreading,
eliciting novel T-cell responses specific to antigens not formulat-
ed in the vaccine, and capable of inducing both CD8+ and CD4+ T-
cell responses in vivo [101]. Both forms of active immunization
were found to synergize with checkpoint blockade therapy in pre-
clinical tumor models, possibly by eliciting a new pool of T cells
that is susceptible to re-invigoration in a (PD-L1 high) tumor
[102,103]. In case of tumors lacking a functional antigen-
presentation pathway (mutations in TAP, low MHC-I; secondary
immune resistance), it may be possible in the future to vaccinate
with TEIPPs (T cell epitopes associated with impaired peptide
processing), as these antigens are selectively presented in settings
of abnormal antigen processing such as cancer [104].

Instead of actively inducing endogenous anti-tumor T-cell
responses using (DC-)vaccines, one can directly infuse large
numbers of tumor antigen-specific T-cells derived from resected
tumor tissue (TIL-therapy) or from PBMCs following genetic
modification TCR-engineered or chimeric antigen receptor (CAR) T-
cell therapy [105]. These forms of therapy are currently revolu-
tionizing the field of hemato-oncology with the implementation of
CD19-specific T cells, and have yielded anecdotal results in solid
tumors [106]. However, as the majority of cancer patients are not
eligible for TIL-therapy, and safe and effective targets for
engineered T cells are still lacking as well as the challenges in T-
cell penetration and persistence for most solid tumors, T-cell
therapy still has a long road ahead.

4.5. Targeting key players of the tumor microenvironment – making
an example of TAMs

We recently identified TAMs to be critically involved in
determining the exhaustion status of vaccine-induced T-cells, as
tumor infiltrating T cells expressed lower levels of the co-
inhibitory molecules PD-1, LAG-3 and TIM-3 following M-CSFRi-
mediated TAM-depletion [127]. As this PD-1 low/intermediate
expressing phenotype is particularly sensitive to re-invigoration by
PD-1-blocking antibodies [71], M-CSFR-inhibition enhanced the
efficacy of ICB in mouse of models of pancreatic cancer [107].

Besides depleting TAMs (e.g. by targeting the M-CSF-receptor or
homing receptors such as CCR2), skewing of TAMs to a more pro-
inflammatory ‘M1’ phenotype may be even more efficacious in
inducing tumor regression. Skewing of TAMs by CD40-agonistic
antibodies was shown to result in loss of desmoplasia and
induction of tumor regression in combination with gemcitabine
in pancreatic cancer patients and pre-clinical models of PDAC
[108,109]. Similar observations were made following pharmaco-
logical inhibition of PI3Kg in multiple tumor models, where PI3Kg
was identified as a key molecular switch governing the M2
macrophage phenotype [110,111]. Skewing of TAMs could therefore
ameliorate primary immune resistance caused by mechanical
obstruction of T-cell infiltration by the collagen-rich stroma [112].
In support of this are the markedly increased T-cell numbers in
tumors treated with PI3Ky-inhibition or CD40-agonistic antibodies
[111,113]. Importantly, resistance to ICB in pre-clinical models
could be overcome by combination with both TAM-skewing
compounds, highlighting the role of myeloid cells in perturbing
anti-tumor immunity and ICB-efficacy [114,115]. As PD-1 is
thought to act primarily on T-cells at the effector site, it is
tempting to speculate whether skewing of TAMs to a M1-
phenotype could provide B7-costimulatory molecules capable of
binding CD28 on T-cells in the tumor. As PD-1-blockade could
enable proper signaling through the CD28-B7-axis, this could
provide another explanation for the observed synergy between
these different forms of immunotherapy.

The composition of the TME varies extensively between
different tumor types, requiring tailored approaches to target
specific immune populations [116]. Besides TAMs, other myeloid
cells such as neutrophils, MDSCs and tolerogenic DCs but also
regulatory T cells can pose significant obstacles to the generation of
effective anti-tumor immunity. In line with TAM-targeting
therapies, strategies aimed at depleting MDSCs (e.g. anti-CXCR2
or �CCR2 antibodies, multikinase inhibitors e.g. cabozantinib)
[117–119] or Tregs (Fc-optimized aCD25-antibodies) [120] all
synergize with ICB-therapies.

5. A personalized medicine approach to optimally stratify and
treat cancer patients with ICB

At present, the identification of predictive factors determining
the response to ICB treatment has remained difficult. Extensively
reviewed biomarkers such as PD-L1 on tumor- and myeloid cells
have failed to deliver robust results across multiple cancers [121].
Similar to PD-L1, tumor mutational load has been found to
contribute to ICB-response but its discriminative value remains
insufficient [41]. A more holistic and complete characterization of
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the tumor and its TME will likely improve the accuracy of current
predictive markers [58]. This may include assessing the presence of
a CD8+ T-cell infiltrate in combination with the PD-L1 status of a
tumor to further delineate whether a tumor might be sensitive to
ICB or that other therapies are required to prime the immune
system first [122].

Assessing primary immune resistance can be achieved by
employing novel tools in immunogenomics including next-
generation sequencing on baseline tumor samples [98]. Using
genome-wide approaches or eventually specified sets of genes
corresponding to specific resistance modules, it will be possible to
determine both the tumor antigen- and immunological landscape
of tumors [36]. Recently discovered multiplex immunohistochem-
istry tools will offer localization of certain cell types on often
already available paraffin embedded tissue to further aid patient
stratification [123]. Elegantly, optimized pipelines designed to
predict neo-epitopes using the aforementioned techniques offer
the opportunity for personalized immunotherapy using vaccines
and TCR-modified/CAR-T-cell approaches [97].

In contrast to primary tumor tissue which is readily available
upon disease diagnosis, samples acquired during and after ICB
treatment are often difficult to obtain, thereby limiting monitoring
of treatment over time. As several groups have demonstrated the
predictive value of tumor tissue early during course of treatment
[124,125] it will be challenging to find more non-invasive
biomarkers that can guide immunotherapy. Attempts have been
made to define such markers in peripheral blood of patients
yielding promising results by characterizing proliferating PD-1+
CD8+ T-cells following aPD-1 treatment [94,126]. Extending the
scope to other circulating immune cells such as myeloid cells could
further improve the sensitivity of these analysis.

6. Conclusion

A recent appreciation of the role our immune system plays in
tumors has led to the widespread implementation of immune
modulating drugs such as ICBs for the treatment of advanced
cancer; with unprecedented clinical success. However, as the
majority of patients fails to demonstrate durable responses,
rational combinations of conventional- and novel anti-cancer
therapies will need to be employed on an individualized basis to
ensure the best possible responses.
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