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Abstract

Purpose—CHEK2*1100delC is a founder variant in European populations conferring a 2–3 fold 

increased risk of breast cancer (BC). Epidemiologic and family studies have suggested that the risk 

associated with CHEK2*1100delC is modified by other genetic factors in a multiplicative fashion. 

We have investigated this empirically using data from the Breast Cancer Association Consortium 

(BCAC).

Methods—With genotype data of 39,139 (624 1100delC carriers) BC patients and 40,063 (224) 

healthy controls from 32 BCAC studies, we analyzed the combined risk effects of 

CHEK2*1100delC and 77 common variants in terms of a polygenic risk score (PRS) and pairwise 

interaction.

Results—The PRS conferred an odds ratio (OR) of 1.59 [95% CI 1.21–2.09] per standard 

deviation for BC for CHEK2*1100delC carriers and 1.58 [1.55–1.62] for non-carriers. No 

evidence for deviation from the multiplicative model was found. The OR for the highest quintile of 

the PRS was 2.03 [0.86–4.78] for CHEK2*1100delC carriers placing them to the high risk 

category according to UK NICE guidelines. OR for the lowest quintile was 0.52 [0.16–1.74], 

indicating life-time risk close to population average.

Conclusion—Our results confirm the multiplicative nature of risk effects conferred by 

CHEK2*1100delC and the common susceptibility variants. Furthermore, the PRS could identify 

the carriers at a high life-time risk for clinical actions.
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INTRODUCTION

The protein truncating mutation CHEK2*1100delC (checkpoint kinase 2) is a moderate 

penetrance breast cancer risk variant with relative risk estimate of 2–3 fold.1, 2 However, 

several studies have shown that the cumulative life-time risk of breast cancer in 

CHEK2*1100delC carriers is markedly higher in women with a family history than 

without,3–5 and that CHEK2*1100delC carriers have a higher probability of developing 

bilateral breast cancer.6 These observations are quantitatively consistent with a simple 

polygenic model suggesting that CHEK2*1100delC combines multiplicatively with other 

genetic loci. However, this has not yet been established empirically.

Genome wide association studies have identified common genetic variants that are 

associated with increased risk of breast cancer. A polygenic risk score (PRS), based on 77 

low penetrance variants has been estimated to explain approximately 12–14% of the excess 

familial risk and shown to identify individuals at high risk at the population level.7, 8 Some 

of these variants predominantly predispose to either estrogen receptor positive (ER+) or 

estrogen receptor negative (ER−) disease, which represent the two main etiological 

subclasses of breast cancer.9 CHEK2*1100delC carriers are more strongly predisposed to 

ER+ disease: about 90% of carrier tumors are ER+ in comparison to 77–78% of non-carrier 

tumours.10

Here, we investigate the synergistic risk effects attributable to CHEK2*1100delC and the 

common breast cancer susceptibility variants both individually and summarized in terms of 

the PRS.7, 8

PATIENTS AND METHODS

Study participants

Female invasive breast cancer patients and healthy controls of European ancestry were 

included from studies participating in the Breast Cancer Association Consortium (BCAC)

(Table S1). Data from a study were included if the study provided genotype data of the 

common variants from at least one breast cancer patient carrying the 1100delC variant. This 

selection yielded data from 32 studies and a total of 79,202 study subjects, including 848 

CHEK2*1100delC carriers (Table S2) for pairwise interaction analyses. Complete quality 

controlled7, 10 genotype data for all common variants and CHEK2*1100delC were available 

from 33,624 study subjects (369 CHEK2*1100delC carriers, Table S2). This data were used 

in the analyses involving the PRS.

All participating studies were approved by their institutional review committees. Each study 

followed national guidelines for participant inclusion and informed consent procedures.

Genotyping

All variants except CHEK2*1100delC were genotyped centrally using a custom Illumina 

iSelect genotyping array (iCOGS, Illumina, Inc. San Diego, CA, USA) as part of the COGS 

consortium studies as described earlier.7, 8 CHEK2*1100delC was primarily genotyped 

using a custom made TaqMan assay (Applied Biosystems, Foster City, CA, USA), with a 
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small minority being genotyped using iPLEX.10 In addition to the 38,549 study subjects 

genotyped using the iCOGS array, 40,653 BCAC study subjects were genotyped for up to 25 

of the common risk variants and these data were used in the pairwise interaction analysis 

(Table S2, Table S3). These samples were genotyped by independent studies following 

BCAC genotyping standards as described previously.11, 12

Statistical analyses

Statistical analyses were performed using Stata SE 10 (StataCorp, College Station, Texas, 

USA) and R version 2.15.2.13 For the common variants a log-additive model was assumed; 

i.e. the risk was analyzed in terms of the number of disease-associated alleles [0,1,2] carried. 

CHEK2*1100delC was assumed to follow a dominant inheritance model as the number of 

rare homozygotes was small (n=19). All analyses were adjusted for study and seven 

principal components defined on the basis of the genome-wide data from the iCOGS project 

as described previously.7 All reported tests were two-sided.

Polygenic risk score

In order to investigate the combined effects of common variants and CHEK2*1100delC, a 

polygenic risk score (PRS) based on the main effects of the common variants was calculated 

using the formula:

where n is the number of loci included in the model, a is the number of susceptibility alleles 

in locus i and OR is the per allele odds ratio for breast cancer, estimated separately for each 

variant in the whole data set (Table S4a, column “All”). Results using a PRS based on 

previously reported ORs7, 8 were essentially identical (data not shown). The PRS was 

approximately normally distributed in all study subgroups, and was standardized by mean 

and standard deviation of the PRS among the healthy individuals.8 For pairs of linked 

variants with r2>0.75, we included in the PRS only the lead variant (rs2981579, not 

rs2981582; rs12662670, not rs3757318; rs554219, not rs614367). We excluded two variants 

(rs78540526 and rs75915166) included in the PRS of Mavaddat et al.8, which were not 

genotyped on the iCOGS array, as well as rs17879961, the CHEK2 missense variant I157T, 

because the number of study subjects carrying both 1100delC and I157T was very low 

(n=5). Thus, the resulting PRS included 74 variants. The interaction between PRS and 

CHEK2*1100delC was assessed by comparing nested logistic regression models: a model 

including the PRS and 1100delC genotype and a model supplemented with an interaction 

term, coded as the product of the PRS and 1100delC. In analyses of the PRS and positive 

family history of breast cancer, positive family history was defined as at least one first 

degree relative with breast cancer.

The cumulative life-time breast cancer risk of CHEK2*1100delC carriers in different PRS-

percentiles was derived assuming an average life-time risk of 22% for CHEK2*1100delC 

carriers14 and previously published relative risk estimates associated with the PRS.8
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Pairwise interaction analyses

We tested for pairwise interaction between each common variant and CHEK2*1100delC as 

described above for the interaction between the PRS and 1100delC. P-values were corrected 

for 77 parallel tests using the Benjamini-Hochberg method.15 The OR for breast cancer was 

estimated separately for each of the common variants for the whole dataset and for the 

subgroup of 1100delC carriers. These analyses were also performed separately on a 

subgroup of breast cancer patients with ER+ disease, because 1100delC is associated with 

ER+ breast cancer.10 We tested for heterogeneity in the ORs among different BCAC studies 

by including an interaction term between variant and the study, separately for each variant. 

No significant heterogeneity was found for any variant (data not shown). Statistical power 

was estimated as previously suggested for risk interaction analyses.16

RESULTS

We analyzed the combined effects of CHEK2*1100delC and common low penetrance breast 

cancer risk variants using data from the international Breast Cancer Association Consortium 

(Table S2). The PRS summarizing the individual effects of 74 common variants was strongly 

associated with breast cancer risk among CHEK2*1100delC carriers (OR per unit standard 

deviation 1.59 [1.21–2.09], P=0.0008) and the OR was similar to that in non-carriers (1.58 

[1.55–1.62], Pinteraction 0.93). ORs for the highest and lowest quintiles of the PRS 

distribution were 2.03 [0.86–4.78] and 0.52 [0.16–1.74] for CHEK2*1100delC carriers, 

respectively, when compared to the middle quintile (Table 1). Both estimates were similar to 

those among non-carriers.

The OR associated with CHEK2*1100delC in the analysis data set 2.99 [2.32–3.85] was 

attenuated, when the model was adjusted for positive family history of breast cancer. The 

OR associated with the PRS was also slightly attenuated (Table 2). No significant interaction 

between risk effects associated with 1100delC, PRS and positive family history was found. 

However, in a case-only analysis there was a significant association between the PRS and 

family history of breast cancer, among both CHEK2*1100delC carriers (OR 1.29 [1.01–

1.65], P=0.04) and non-carriers (OR 1.17 [1.12–1.21], P=4E-16) (Figure S1).

When altogether 77 common variants were considered individually, we found nominally 

significant interactions between five variants and CHEK2*1100delC for overall breast 

cancer (rs11249433, rs11780156, rs204247, rs2981582 and rs704010; Table S4a). Two of 

these represented synergistic (more than multiplicative) and three antagonistic interactions 

(the estimated effect in 1100delC carriers being in the opposite direction to that in non-

carriers). However, none of the interactions were significant after correction for multiple 

testing. Nine variants showed a nominally significant interaction for ER-positive breast 

cancer (Table S4b).

DISCUSSION

Our analyses on the synergistic effects of CHEK2*1100delC and 77 common low 

penetrance variants on breast cancer risk give strong support to the predicted multiplicative 

polygenic model.8, 17, 18 While this has previously been shown for combinations of low 
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penetrance variants,8 and for variants in combination with BRCA1 and BRCA2 mutations,19 

this is the first direct demonstration for a “moderate” risk gene and has important 

implications for risk prediction. The PRS was a significant risk factor for CHEK2*1100delC 

carriers, and the estimated OR per unit standard deviation was very similar in 

CHEK2*1100delC carriers and in non-carriers, consistent with the hypothesis that the 

common susceptibility variants combine with the rare CHEK2*1100delC variant in an 

approximately multiplicative fashion. Similarly, the PRS risk estimates for the highest and 

lowest quintiles did not differ between the CHEK2*1100delC carriers and non-carriers. 

These two estimates in the CHEK2*1100delC carriers alone did not reach statistical 

significance (Table 1), possibly reflecting limited statistical power due to the relatively low 

number of healthy variant carriers (Table S2). However, this is the largest study genotyped 

for CHEK2*1100delC and these common variants, and even though some of the point 

estimates are not significant, they are consistent with the previous reports. Most importantly, 

we did not find evidence for deviation from the multiplicative model, suggesting that the 

PRS could be used in risk stratification of 1100delC carriers in a similar manner to non-

carriers.

The unadjusted OR for the CHEK2*110delC variants (Table 2) was higher in our analysis 

data set than in previous reports.2, 14 Adjusting for positive family history markedly 

attenuated the CHEK2*1100delC associated OR, suggestive of some oversampling of 

familial cases. The PRS OR was also slightly attenuated after the adjustment. However, 

CHEK2*1100delC, PRS and family history remained significant risk factors in the 

combined model (Table 2) suggesting that the common variants together explain part of the 

excess familial risk as previously suggested,17 but that the PRS has predictive value also in 

breast cancer families segregating CHEK2*1100delC.

Recently, a large study estimating the risk associated with CHEK2*1100delC in relation to 

age, tumor subtype and family history reported the cumulative life-time risk for 1100delC 

carriers to be about 22%.14 Assuming that the relative effect of the PRS is the same in 

carriers and non-carriers (OR higher than 1.48 [1.39–1.57] or lower than 0.65 [0.60–0.70] 

for percentiles above 80% or lower than 20%, respectively),8 20% of the 1100delC carriers 

with highest PRS would have life-time risk higher than 32.6% [30.6%–34.5%] exceeding the 

threshold for the high-risk category (>30%) according to the UK NICE guidelines for 

familial breast cancer.20 Similarly, for the 20% of 1100delC carriers with lowest PRS, the 

life-time risk would be lower than 14.3% [13.2%–15.4%], i.e. close to the average 

population risk. These observations imply that, if CHEK2*1100delC is to be used in risk 

prediction, it can be made more effective by including the PRS, representing the risk 

modifying effects of common variants, in the prediction.

CHEK2*1100delC carrier cancers do not represent a phenotypically distinct subgroup of 

breast carcinomas. Instead, the phenotypic diversity of CHEK2*1100delC associated 

cancers resembles that of breast tumors in general.10 Thus, it was not surprising that the 

relative risks conferred by the common variants were similar for the CHEK2*1100delC 

carriers and for non-carriers, and no significant pairwise interaction was found. We 

estimated that we had sufficient statistical power (80%, at P<0.05) to detect a pairwise 

interaction between CHEK2*1100delC and any of the common variants, if the interaction 
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OR was 2.5 or greater, but not enough power to detect interactions comparable in magnitude 

to the risk effects associated with the low penetrance variants (OR 1.1–1.5). Thus, it remains 

possible that more modest departures from a multiplicative model may exist. If so, however, 

much larger case-control studies, perhaps combined with pedigree analyses, will be required 

to detect them.

In conclusion, our analyses confirm the predicted multiplicative relationship between 

CHEK2*1100delC and the common low penetrance variants. Hence, the PRS could be 

similarly applied for risk prediction for the variant carriers as for the general population. 

Most importantly, the PRS could help identifying the high risk group of the 

CHEK2*1100delC carriers, who would best benefit from clinical intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Breast cancer risk associated with the polygenic risk score (PRS) for non-carriers and the carriers of 

CHEK2*1100delC.

Non-carriers CHEK2*1100delC carriers

OR [95% CI] P OR [95% CI] P

PRSa 1.58 [1.55 – 1.62] <1.0E-10 1.59 [1.21 – 2.09]b 0.0008

Percentile of PRS, %

< 20 0.52 [0.48 – 0.56] <1.0E-10 0.52 [0.16 – 1.74] 0.29

20–40 0.78 [0.72 – 0.84] 2E-11 0.72 [0.28 – 1.88] 0.51

40–60 referent referent

60–80 1.25 [1.16 – 1.34] 8E-10 0.93 [0.39 – 2.25] 0.88

> 80 1.92 [1.80 – 2.06] <1.0E-10 2.03 [0.86 – 4.78] 0.11

a
Odds ratio (OR) was estimated per unit standard deviation of the PRS.

b
P-value for pairwise interaction between CHEK2*1100delC and PRS: 0.93.
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Table 2

Relative breast cancer risk associated with CHEK2*1100delC, PRS and positive family history of breast 

cancer in the analysis data set.

Risk model Parameters OR [95% CI] P

BC ~ 1100delC + PRS
1100delC 2.99 [2.32 – 3.85] <1.0E-10

PRS 1.58 [1.55 – 1.62] <1.0E-10

BC ~ 1100delC + PRS + family history

1100delC 2.42 [1.71 – 3.47] 9.4E-7

PRS 1.55 [1.50 – 1.60] <1.0E-10

family historya 2.73 [2.48 – 3.47] <1.0E-10

a
No significant interaction between positive family history of breast cancer and either CHEK2*1100delC or PRS was found.

Genet Med. Author manuscript; available in PMC 2017 May 12.


	Abstract
	INTRODUCTION
	PATIENTS AND METHODS
	Study participants
	Genotyping
	Statistical analyses
	Polygenic risk score
	Pairwise interaction analyses

	RESULTS
	DISCUSSION
	References
	Table 1
	Table 2

