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Introduction

In normal cardiovascular physiology, blood flow in the 
heart and great vessels shows complex and dynamic three-
dimensional (3D) flow patterns, leading to efficient ejection 
of the blood into the pulmonary and systemic circulation 
[1]. Congenital or acquired heart disease causes alterations 
in these blood flow patterns resulting in increased energy 
loss [2] and reduction of the efficiency of the heart pump 
by over 10% [1]. Moreover, altered blood flow patterns 
induce changes to the endothelium, which may increase the 
risk for cardiovascular incidents later in life [3, 4]. Knowl-
edge of these flow patterns increases our understanding 
of normal physiology and may help unravel the complex 
pathophysiological mechanisms leading to cardiovascular 
disease [1, 5]. However, these complex 3D flow patterns 
remain challenging to visualize and characterize. Four-
dimensional (4D) flow cardiovascular magnetic resonance 
(CMR) has emerged as a suitable technique for compre-
hensive visualization and quantification of blood flow and 
energy distribution in the heart and great vessels in healthy 
subjects as well as in patients with cardiovascular disease 
[6].

The influence of altered aortic flow patterns on patho-
physiology has been investigated most intensely in patients 
with a bicuspid aortic valve (BAV) [3, 7, 8] and in patients 
with Marfan syndrome [9–13]. For example, in patients 
with Marfan syndrome, flow parameters have been linked 
to an increased aortic size, as shown by 4D flow CMR 
[9–13]. Because of the complexity of the heart’s atria and 
ventricles, assessment of intra-cardiac blood flow charac-
teristics is more challenging, but knowledge of such blood 
flow is of utmost importance in diseases like ischemic heart 
disease, dilated cardiomyopathy, congenital heart defects 
(CHD) and pulmonary hypertension.

Abstract Knowledge of normal and abnormal flow pat-
terns in the human cardiovascular system increases our 
understanding of normal physiology and may help unravel 
the complex pathophysiological mechanisms leading to 
cardiovascular disease. Four-dimensional (4D) flow cardio-
vascular magnetic resonance (CMR) has emerged as a suit-
able technique that enables visualization of in  vivo blood 
flow patterns and quantification of parameters that could 
potentially be of prognostic value in the disease process. 
In this review, current image processing tools that are used 
for comprehensive visualization and quantification of blood 
flow and energy distribution in the heart and great vessels 
will be discussed. Also, imaging biomarkers extracted from 
4D flow CMR will be reviewed that have been shown to 
distinguish between normal and abnormal flow patterns. 
Furthermore, current applications of 4D flow CMR in the 
heart and great vessels will be discussed, showing its poten-
tial as an additional diagnostic modality which could aid in 
disease management and timing of surgical intervention.
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In this review, the challenges in the application of 4D 
flow CMR to study hemodynamics in the cardiovascular 
system are discussed, as well as the visualization and quan-
tification methods. Furthermore, current insights in normal 
flow patterns, flow disturbances due to cardiovascular dis-
ease and its consequences, as assessed with 4D flow CMR, 
will be addressed.

State of the art

Four-dimensional flow CMR, phase-contrast (PC) CMR 
with velocity-encoding in all three spatial directions, 
resolved relative to all dimensions of space and the dimen-
sion of time along the cardiac cycle, represents all direc-
tions and spatial regions of flow within the boundaries of 
the defined volume [14, 15].

Acquisition parameters

Recently, a consensus statement was published, stating the 
clinical and scientific significance of 4D flow CMR and 
providing recommendations for its use [15]. In this consen-
sus statement, a list of acquisition parameter settings as a 
baseline 4D flow CMR protocol is proposed against which 
alternative protocols can be compared. Optimized param-
eter choices are recommended for special populations (e.g. 
children) or analysis of advanced flow parameters [15]. 
An important parameter is the Venc, which represents the 
maximum flow velocity that can be acquired without hav-
ing to correct for phase wrapping. If the Venc is set too 
low, velocity aliasing will occur, however when the Venc 
is set too high, the level of velocity noise will increase [14]. 
A Venc that is set 10% higher than the maximal expected 
velocity is recommended [15].

Evaluation of flow patterns in the cardiac chambers 
requires a spatial resolution of <3.0 × 3.0 × 3.0  mm3 and 
<2.5 × 2.5 × 2.5  mm3 for the aorta or pulmonary artery. 
In order to extract feature information (i.e., stroke vol-
ume, peak velocity, peak flow rate, etc.) of flow (velocity) 
curves from the velocity field, a high temporal resolution 
is required. This resolution is defined by the repetition 
time, the number of velocity encodings and, in case of seg-
mented acquisition, the number of segments. Since 4D flow 
CMR is to be applied to these large anatomical regions in 
the human body with adequate spatial and temporal resolu-
tion and potentially with some form of respiratory motion 
compensation, the acquisition time required to collect all 
this flow information is typically long (i.e., 10–25  min) 
and may be too demanding on patients or on the clinical 
workflow.

Three-directional encoding without any acceleration 
technique would be the most accurate approach, with the 

best signal-to-noise ratio (SNR) and the least amount of 
phase offset errors [15]. However, this is generally not fea-
sible in a clinical setting. Therefore, to make 4D flow CMR 
applicable for clinical use, several methods are available 
to reduce acquisition time. Such accelerating techniques 
include parallel imaging using multi-element phased array 
coils (SENSitivity Encoding, SENSE) [16] or k-t under-
sampling methods like k-t BLAST (Broad-use Linear 
Acquisition Speed-up Technique) [17]. Acquiring read-
outs of multiple k-lines per RF excitation may accelerate 
the acquisition as well, however, at the penalty of reducing 
temporal resolution and/or signal-to-noise. Furthermore, 
different acquisition strategies apart from the standard Car-
tesian k-space read-out, like echo planar imaging (EPI) 
[18], spiral [19] or radial [20] (e.g., PC-VIPR, vastly under-
sampled isotropic projection reconstruction) read-out meth-
ods can further reduce acquisition time.

Another way to accelerate the acquisition is to acquire 
free-breathing 4D flow CMR with sophisticated respira-
tory gating or even without any respiratory motion con-
trol. Compensation of respiratory motion, which is used to 
reduce motion artifacts and improve accuracy, is usually 
difficult to achieve without significantly increasing scan 
duration. The most commonly used method for this motion 
suppression is respiratory gating by a navigator, however 
this increases acquisition duration substantially. Respira-
tory self-gating methods allow sampling of 4D flow data 
over the entire cardiac cycle, usually using center K0 point, 
center K0 profiles or low-resolution images to derive the 
breathing motion and then to adjust the acquisition scheme 
in real-time to reacquire motion-corrupted data, allow-
ing free breathing while acquiring 4D flow data within 
clinically acceptable acquisition time [21, 22]. However, 
recently it was shown that 4D flow CMR without any res-
piratory gating may be performed while preserving accu-
rate quantitative results from stroke volume assessment in 
the great vessels [23] and in whole-heart 4D flow [24].

Sources of error

Several sources of error can affect the 4D flow data and 
should be corrected for. Major sources of error are: eddy 
current effects, concomitant gradient field effects, gradient 
field non-linearity and phase wraps [15]. Inhomogeneities 
in the magnetic field and eddy current effects in the receive 
coil will result in background phase distortion [25]. Con-
comitant gradient fields are a result of Maxwell’s equations 
for the divergence and curl of the magnetic field and lead 
to background offsets [26]. Furthermore, a non-linear gra-
dient field can induce deviations from the nominal gradi-
ent strength and orientation causing deviations in velocity 
quantification [27]. Some of these errors are partially cor-
rected by reconstruction algorithms implemented on the 
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Magnetic Resonance Imaging (MRI) scanner software. 
Background phase offset errors are usually corrected by 
either performing a phantom velocity-encoded scan sim-
ulating static tissue and using this data set as a reference 
for background subtraction, or by the approach of fitting 
a multi-order polynomial through areas identified as static 
tissue, for correcting the local phase signal [28].

Finally, velocity aliasing, or phase-wrapping, will occur 
when blood flow velocities exceed the a priori set Venc 
value. The use of a phase-unwrapping algorithm is recom-
mended prior to image analysis. Identification of abrupt 
phase shifts in the temporal and/or spatial domain is a com-
mon way to identify areas with phase wrapping [29]. Alias-
ing correction should be performed in the original source 
images of each individual encoding direction.

Visualization and quantification

Several tools are developed to help visualize velocity vec-
tor fields of blood flow in the heart and vessels which 
makes qualitative assessment of flow patterns possible. 
Visualization is needed in order to characterize blood flow 
parameters.

Most common visualization types are the vector glyph 
representation, or the use of streamlines or pathlines 
(Fig.  1). A vector glyph represents the magnitude and 
direction of the velocity measured from each voxel. How-
ever, a cine representation of vector data may be difficult to 
interpret, as data may quickly become cluttered.

Streamlines are curves which are tangent to the veloc-
ity direction at a particular point in time, represent-
ing the blood flow direction at an instant of time [30, 
31]. Streamline visualization can be used for visualiza-
tion of inflow and outflow direction, regurgitant jets and 
circulating flow patterns at specific time points in the 
cardiac cycle [32, 33]. In the aorta, streamline visuali-
zation is often used to show helical flow patterns [34]. 
Streamline visualization in combination with retrospec-
tive valve tracking allows for accurate quantification of 
net flow volumes through each of the four heart valves 
(Fig. 2) [35, 36]. Retrospective valve tracking is a method 
in which the scanned 3D volume is retrospectively refor-
matted into two-dimensional (2D) measurement planes 
with through-plane velocity encoding to allow for trans-
valvular flow quantification [35, 36]. Measurement planes 
can be adjusted per individual phase, following the valve 
position, inflow direction and the dynamically changing 

Fig. 1  Visualization of left 
ventricular systolic blood flow 
using 4D flow CMR in a healthy 
volunteer (24-year-old man). 
In a blood flow velocity is 
displayed by color-coded vector 
glyph representation. Direction 
and velocity magnitude are pre-
sented by vector size and color. 
In b a streamline representa-
tion is presented and c shows 
a pathline representation. Iso-
surfaces can be used to display 
flow structures with a common 
property, such as vorticity. In d 
a ring-shape vortex is displayed 
in late diastolic LV filling in 
the same volunteer. Vortex 
extraction is performed using 
Eulerian vortex core analysis. 
The vortex ring is displayed 
with streamlines superimposed. 
LA left atrium, LV left ventricle, 
Ao aorta
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regurgitant jets. Optimized positioning of these planes 
should be based on the direction of the peak velocity vis-
ualized by streamlines [37].

Different from streamlines, pathlines show the path a 
particle (i.e., a voxel) has followed over time [30]. Particle 
paths or pathlines are generated by backward/forward parti-
cle tracing using integration methods to calculate displace-
ment from the velocity data [30]. For intra-cardiac blood 
flow, typically, at end diastole, each voxel inside the LV is 
considered to represent a seed point (i.e., a particle). Path-
lines are then calculated by integration over time: backward 
tracing over the diastole and forward tracing over systole. 
Pathlines are also frequently used to evaluate complex flow 
patterns, such as helical flow patterns in the aorta and pul-
monary artery [34, 38].

Another unique feature of particle tracing in intra-car-
diac blood flow is the possibility to discriminate different 
parts of blood flow with some specific functional property 
based on where the seed points are flowing towards and 
where they came from. Different components in the blood 
flow organization in the left ventricle (LV) [39] and the 
right ventricle (RV) [40] can be discriminated, such as the 
4-component evaluation (Fig.  3) as introduced by Bolger 
et al. [41] for the LV:

1. Direct flow blood that enters the LV through the mitral 
valve during diastole and is ejected from the LV into 
the aorta during the subsequent systole in the analysed 
heartbeat;

2. Retained inflow blood that enters the LV during dias-
tole but is not ejected during the subsequent systole in 
the analysed heartbeat;

3. Delayed ejection flow blood that starts and remains 
inside the LV during diastole but is ejected during the 
subsequent systole;

4. Residual volume blood that remains within the LV for 
at least two subsequent cardiac cycles.

A fifth component can be added, Regurgitation blood 
that leaves the LV through the mitral valve into the atrium 
during systole [42]. It should be taken into account that 
particle tracing analysis requires high temporal resolu-
tion and adequate signal-to-noise, as results coming from 
an integration procedure on noisy data and over large time 
steps may not be reliable.

From the 3D flow velocity field, helical and vortical 
flow patterns can be identified in normal and pathologi-
cal blood flow. An important intra-cardiac flow pattern is 
vortex flow: a group of fluid particles swirling around a 
common axis. Two methods have been used to analyze and 
visualize intra-cardiac vortex flow patterns: Lagrangian 
and Eulerian. Lagrangian coherent structures (LCS) can be 
used to quantify and visualize the total amount of flow that 
entrains into a vortex ring flow structure over a period of 
time [43]. Eulerian vortex core analysis allows quantitative 
characterization of instantaneous 3D vortical flow patterns 
and its intra-cardiac evolution over time [44]. Altered intra-
cardiac 3D vortex flow properties have been identified in 

Fig. 2  Left ventricular (LV) 
inflow assessment from 4D flow 
CMR and retrospective valve 
tracking. Streamline visualiza-
tion with color coding of early 
LV inflow shows central inflow 
in a healthy volunteer (in a 
53-year-old man) and a laterally 
directed inflow in a patient with 
corrected atrioventricular septal 
(AVSD) defect (in b 26-year-
old woman). Positioning of the 
reformat plane is displayed by 
the dashed line. In c eccen-
tric regurgitant jets in both 
atrioventricular valves during 
systole in the same corrected 
AVSD patient are displayed 
(arrows). In d shunt flow in an 
uncorrected AVSD is displayed 
(arrowhead) in a 24-year-old 
male patient. LA left atrium, LV 
left ventricle, RA right atrium, 
RV right ventricle
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the presence of abnormal valvular morphology and were 
associated with adverse blood flow efficiency [2, 44, 45].

Four-dimensional flow CMR is also used for studying 
energetics in the blood flow. The kinetic energy (KE) of 
a moving particle with a certain mass m (particle volume 
multiplied by the blood density) and velocity v, can be cal-
culated with the formula ½mv2. The KE at a specific time 
point can then be calculated by summing the KE of each 
voxel within a specified anatomical region. Viscous energy 
loss (EL) is the kinetic energy that is lost due to frictional 
forces among blood particles and surrounding structures 
in the ventricle, induced by the blood viscosity. EL can be 
calculated from the Navier–Stokes energy equations [2]. 
Turbulent kinetic energy (TKE) is another frequently used 
energy parameter used to quantify the energy lost due to 
turbulent flow and is calculated from dedicated reconstruc-
tions of the intravoxel distribution of spin velocities [46].

Wall shear stress (WSS) is a quantitative value for the 
shear forces of the blood flow acting on the vessel wall 
[47]. It can be used to quantify the impact of flow on the 
vessel wall and it has been shown to correlate with changes 

in the extracellular matrix (ECM) and endothelial cells [3]. 
Higher blood flow velocity will increase WSS [48].

Aortic wall elasticity, an important mechanical property 
of the vascular wall, can be measured with traditional 2D 
one-directional velocity-encoded CMR, [49] but also by 
multi-directional velocity-encoding or 4D flow CMR, [50] 
by measuring the propagation speed of the systolic wave 
front along the course of the aorta. This biomarker for arte-
rial stiffness is called the pulse wave velocity (PWV) [51]. 
A shorter propagation time, thus higher PWV, is indicative 
of a stiffer aorta and presence of atherosclerosis [52].

Applications

In the following section normal and abnormal blood flow 
characteristics as assessed with 4D flow CMR will be 
reviewed. We will describe the use of 4D flow CMR in 
assessing normal intra-cardiac and intravascular flow pat-
terns, as well as applications in acquired and congenital 
cardiovascular disease.

Fig. 3  Multi-component par-
ticle tracing of left ventricular 
(LV) blood flow in a healthy 
volunteer (26-year-old man). 
In a five components of LV are 
schematically presented. Green 
direct flow, Yellow retained 
inflow, Blue delayed ejection 
flow, Red residual volume, 
White regurgitation. Three 
time-points in cardiac cycle are 
represented: diastole in b end 
diastole in c systole in d. LA 
left atrium, LV left ventricle, 
Ao aorta
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Atrial flow patterns

In the normal human heart, blood flow in the left atrium 
(LA) follows specific paths from the pulmonary veins to 
the mitral valve. The occurrence of atrial vortices has 
been shown, which may be beneficial in avoiding atrial 
stasis [53]. In the LA, inflow from the right pulmonary 
veins follows the atrial wall from its inlet near the inter-
atrial septum toward the mitral annulus, while inflow 
from the left pulmonary veins suddenly shifts towards 
the mitral valve after entry through the lateral left atrial 
wall, as was shown with particle tracing analysis [53]. In 
the right atrium (RA), blood flow from the inferior vena 
cava (IVC) and superior vena cava (SVC) turns anterior 
after entering the atrium, which causes a forward rotat-
ing movement of the anterior part of the right atrial blood 
volume towards the inlet of the tricuspid valve [54].

Assessment of atrial flow patterns and blood flow 
velocity is important in patients with atrial fibrillation 
(AF), since AF is associated with an increased risk of 
embolic stroke due to thrombus formation in the LA [55]. 
Patients with AF show global and regional changes in 
atrial flow dynamics, such as decreased blood flow veloc-
ities and increased stasis, which can be evaluated with 4D 
flow CMR and could be a helpful indicator in risk assess-
ment for thrombogenesis in these patients [56–58].

In patients with mitral regurgitation, severely dis-
turbed flow patterns in the LA with elevated values of 
TKE develop, related to the severity of regurgitation [59]. 
These atrial flow effects of mitral regurgitation assessed 
by 4D flow CMR could potentially be used in risk assess-
ment for the onset of decompensated heart failure in 
patients with prior asymptomatic mitral regurgitation 
[59]. The amount and severity of mitral valve regurgita-
tion (i.e., the regurgitant flow volume and the regurgitant 
flow fraction) can accurately be assessed with the use of 
4D flow CMR with retrospective valve tracking [35, 36].

In corrected atrioventricular septal defect (AVSD) 
patients, regurgitation of the left atrioventricular valve 
(LAVV) is common [60]. In these patients, the regurgi-
tant jets are dynamic and eccentric (Fig.  2) and have a 
non-circular cross-sectional shape, which makes them 
challenging to quantify with echocardiography [61]. 
However, the regurgitant fraction and the volume of the 
complex regurgitant jets can be quantified accurately with 
the use of 4D flow CMR with retrospective valve tracking 
[33]. Furthermore, 4D flow CMR can also be applied to 
investigate intra-cardiac baffle constructions for leakage 
and obstruction, for instance after double switch opera-
tion for congenitally corrected transposition of the great 
arteries [62].

Flow patterns in the left ventricle

The complex geometry of the normal left ventricle (LV) 
causes asymmetric blood flow, which promotes efficient 
ejection of blood in the systemic circulation and minimizes 
the energy dissipation [1, 54]. In the normal LV, 30–35% 
of the LV end diastolic volume represents blood flow that 
enters the LV during diastole and is ejected into the aorta 
during systole in the subsequent heartbeat (i.e. direct flow) 
[39, 42]. Using 4D flow CMR, vortical flow patterns have 
been described that form during diastole, with a close rela-
tion to the motion of the anterior mitral leaflet and the 
shape of mitral inflow [43, 44, 63]. During diastole, a pair 
of counter rotating vortices has been consistently reported 
to form distal to the mitral valve. In three-dimensions, this 
pair of vortices extend to form a ring-like vortex shape. 4D 
Flow CMR has enabled the characterization of the instanta-
neous time-evolution of 3D vortex ring flow within the LV 
over the complete diastole [44]. Formation of vortex ring 
flow has been suggested to help efficient MV closure and 
diastolic filling, minimize kinetic energy loss and prevent 
thrombus formation [1, 54, 64, 65]. Vortex flow patterns 
can change due to age, gender, blood pressure, ventricular 
geometry and mitral/atrioventricular valve abnormalities 
[45, 66].

In patients after AVSD correction, the LV inflow over 
the trans-left atrioventricular valve (LAVV) is altered 
(i.e., a more lateral inflow was shown by streamline visu-
alization) (Fig.  2) [32]. 4D flow CMR with particle trac-
ing showed that this altered inflow after AVSD correction 
also affected the intra-cardiac flow organization, which 
presented as reduced direct flow and increased retained 
inflow in the apical and lateral region of the LV cavity [42]. 
Despite that global cardiac function parameters (includ-
ing ejection fraction, end diastolic volume, stroke volume 
and cardiac output) were within the normal range in these 
patients, significantly altered vortex ring flow properties 
were found and associated with a 2–4 fold increase in vis-
cous energy loss levels compared to healthy volunteers [2, 
45]. This might indicate that properties of vortex ring flow 
within LV blood flow could be a subclinical marker of car-
diac (dys)function preceding decline in global functional 
parameters [2].

In patients with systolic or diastolic dysfunction, flow 
disturbances can be evaluated with 4D flow CMR imaging. 
LV diastolic dysfunction in patients with normal systolic 
LV function is a risk factor for mortality [67]. LV diastolic 
function parameters, such as early (E) and late (A) filling 
rates, E/A ratio, and E-peak acceleration and deceleration 
duration, can be assessed accurately with the use of 4D 
flow CMR with retrospective valve tracking [68]. Further-
more, a study using 4D flow CMR with color vector visu-
alization showed that in patients with various stages of 
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diastolic dysfunction, LV diastolic flow only extends a short 
distance in the LV and stops in the middle of the LV cav-
ity due to decreased flow acceleration [69]. Patients with 
dilated cardiomyopathy showed a smaller direct flow vol-
ume and greater end-diastolic KE distribution in the resid-
ual volume, despite normal LV stroke volume, as shown by 
particle tracing analysis with the 4-component model [70]. 
Whereas, in patients with ischemic dilated cardiomyopathy, 
altered flow patterns were related to complex and asymmet-
ric vortex rings and decreased vortex volume [43].

Patients who have had a Fontan operation, a palliative 
treatment for patients with single-ventricle physiology, 
have complex and heterogeneous underlying ventricu-
lar morphologies which makes studying the intra-cardiac 
blood flow in these patients challenging. However, the 
dynamic and 3D nature of the blood flow in these patients 
makes 4D flow CMR particularly suitable for the assess-
ment and quantification of these flow patterns. Recently, 
various blood flow patterns were shown in these patients 
with 4D flow CMR with streamline visualization and 
inflow volumes were quantified with retrospective valve 
tracking [37]. Assessment of the caval blood flow in these 
complex patients will be addressed in the section on intra-
vascular blood flow patterns.

Flow patterns in the right ventricle

Visualization of flow in the right ventricle (RV) remains 
challenging because of the complex 3D shape of this ven-
tricular cavity. In vivo and in vitro studies showed that in 
the normal RV, blood flow rearranges along the converg-
ing outflow tract during systole to form helical circulating 
flow towards the pulmonary orifice [5, 40, 54]. Particle 
tracing analysis in the RV showed that 44% of the blood is 
direct flow, which moves from the RA into the RV during 
diastole and moves towards the RV outflow tract, rounding 
the infundibular septum and contributing to vortical forma-
tion that extends in the outflow tract [40]. Compared to the 
other flow components, this direct flow possesses a larger 
presystolic KE, which may benefit the efficiency of systolic 
ejection [40].

Extensive knowledge of the RV flow and function is 
of interest in many types of heart defects, especially in 
patients with CHD, as lesions affecting the RV are an inde-
pendent risk factor for early attrition [71]. For example, 
patients with Tetralogy of Fallot (ToF) have altered RV 
flow patterns resulting in increased vortical flow patterns in 
the RA and RV during diastole [72]. Accurate assessment 
of forward flow and regurgitation fraction over the tricuspid 
and pulmonary valve in these ToF patients after corrective 
surgery, which is important in the assessment of RV dias-
tolic functional impairment, can be performed using 4D 
flow CMR with retrospective valve tracking [73].

In patients with pulmonary hypertension (PH), RV dias-
tolic dysfunction (RVDD) is an important prognostic factor 
[74]. Recently, it was shown by 4D flow CMR that patients 
with RVDD due to PH have altered vorticity in the RV at 
peak E- and A-diastolic filling. The presence of altered RV 
vorticity could be a valuable marker to evaluate the risk of 
RVDD development, as it was shown to have a clear rela-
tionship [75]. Furthermore, 4D flow CMR showed that PH 
is related to altered KE RV work density (i.e., a measure of 
the amount of work the RV has produce to transport blood 
from RA to the pulmonary artery) and viscous energy loss 
in the blood flow in the pulmonary artery,[76] which is also 
shown to be related to increased vorticity in the blood flow 
in the pulmonary artery [77].

In patients with ischemic heart disease, 4D flow CMR 
could be used to detect impairment of RV function, as 
shown by changes in flow distribution and KE, which could 
potentially have prognostic implications [78].

Flow patterns in the great vessels

Aorta

Normal aortic flow patterns include right-handed heli-
cal outflow and late systolic retrograde flow (blood flow-
ing counter to the main forward stream), as shown by 4D 
flow CMR [34, 79]. This helical and retrograde flow results 
from the curvature of the arch, the pulsatility of the blood 
flow and the compliance of the aortic wall [79]. Aging has 
been shown to influence flow patterns in several ways; 
direction of the helical flow may change from right-handed 
to left-handed, [80, 81] the aortic velocity distribution may 
change, resulting in changing WSS maps [82–84] and PWV 
values along the aorta increase [85, 86]. Therefore, age has 
to be taken into account when evaluating aortic flow pat-
terns in healthy subjects and patients with cardiovascular 
disease.

The application of 4D flow CMR in patients with aor-
tic disease is promising as it can help gain knowledge of 
the disease progression, it can aid the prediction of adverse 
aortic events and can be useful in the optimization of indi-
vidualized management strategies. Most extensive aortic 
4D flow research has been done in patients with BAV [3, 7, 
8] and Marfan syndrome [9–13].

Patients with BAV frequently develop aortic valve dys-
function, ascending aortic aneurysms, and aortic dissec-
tion. For many years, aortic dilatation in these patients has 
been attributed to the genetic susceptibility resulting in a 
concomitant abnormal development of the ascending aorta 
and BAV. 4D flow CMR shed another light on this hypoth-
esis by identifying different abnormal outflow patterns in 
the ascending aorta (Fig.  4) that might predispose to this 
aortopathy [7, 8]. Recently, it has been shown that different 
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fusion patterns of the aortic valve will lead to different 
impingement flow jets on the ascending aortic wall [3, 8]. 
Fusion of right and left leaflets causes right-handed heli-
cal flow and right-anterior flow jets, while right and non-
coronary leaflet fusion causes left-handed helical flow with 
left-posterior flow jets [8]. These regions of altered flow 
patterns show elevated WSS which correlates well with 
extracellular matrix changes in that aortic region [3]. This 
suggests a hemodynamic contribution to the aortopathy.

In patients with Marfan syndrome, an inherited con-
nective tissue disease at risk for thoracic aortic dilatation, 
local helix flow in the ascending aorta as well as abnor-
mal regional WSS has been linked to increased aortic size 
[9–11]. Furthermore, in young patients with Marfan syn-
drome, hemodynamic differences in WSS were found at 
specific regions along the thoracic aorta that correspond 
to the locations where aortic dissection and aortic rupture 
often originate in these patients, i.e., the proximal ascend-
ing aorta and proximal descending aorta [13]. These data, 
together with the report of a single Marfan syndrome case 
in which prior to an aortic dissection type B, formation of 
abnormal flow patterns and altered WSS in the proximal 
descending aorta was observed, suggest that hemodynamic 
factors may play a predictive role in the onset of adverse 
events [12].

In patients with coarctation of the aorta (CoA), a short 
segment of narrowing of the proximal descending aorta 
just beyond the origin of the arteries that supply the head 
and arms, 4D flow CMR is an accurate method for the 

evaluation of collateral flow, which is related to hemody-
namic significant coarctation [87]. Also, altered flow pat-
terns and increased WSS can be found in patients with CoA 
in the entire aorta, before and after repair (Fig.  5) [88]. 
Other promising applications of aortic 4D flow CMR are 
related to noninvasive investigation of trans-stenotic pres-
sure gradients in the presence of stenosis in vascular dis-
eases such as aortic CoA [89, 90]. Today, severity of steno-
sis in CoA is estimated by ultrasonography but the pressure 
gradients are often overestimated compared to the actual 
measurements in  vivo per catheter. This potentially leads 
to unnecessary early interventions, with its risk for the 
need of more complex and increased amount of re-inter-
ventions per patient. Thus, predicting the need and timing 
of intervention for aortic CoA non-invasively can be opti-
mized with 4D flow CMR. Furthermore, energy losses that 
appears in these turbulent flow conditions can be quantified 
and maps for dissipation of kinetic energy can be created 
[91, 92]. These applications make it possible to simulate 
with advanced post-processing software (by virtual inter-
ventions) which intervention preserves the natural thoracic 
aortic function the most, prior to the intervention [93].

Pulmonary artery

In normal pulmonary physiology, two counter-rotating heli-
cal flow structures in the main pulmonary artery (PA) were 
shown with 4D flow CMR, which both contribute mainly to 
the flow in the right pulmonary artery (RPA) [94]. In early 

Fig. 4  Patient with bicuspid aortic valve (BAV, 28-year-old man) and 
mild dilatation of the ascending aorta. a and b show axial views of 
through-plane velocity-encoded phase contrast MRI acquisition of the 
flow velocity through the valve (a magnitude image, b phase image). 

In c a double-oblique lateral view of the aortic outflow tract with 
BAV is presented. d Shows streamline visualization with color cod-
ing of systolic outflow, with abnormal circulating blood flow (arrow-
head) and helical flow in the aortic arch
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systole, blood flow from the right side of the PA is distrib-
uted to the RPA and blood flow from the left side of the 
PA is distributed to the left pulmonary artery (LPA), while 
later in systole blood flow from the left posterior side of 
the PA is distributed to the RPA as shown by streamline 
visualization [94]. Changes in the pulmonary blood flow 
are age dependent, which may be helpful in future studies 
in understanding pathological blood flow in patients with 
pulmonary disease [95].

Patients with pulmonary hypertension (PH) are currently 
diagnosed when mean pulmonary artery pressure (mPAP), 
measured invasively by right heart catheterization, exceeds 
25  mmHg [96]. 4D flow CMR with streamline visualiza-
tion showed abnormal vortical flow in the main PA of these 
patients. The presence, and in particular the duration of 
vortical flow presence, could become a useful noninvasive 
diagnostic marker as it has been shown to correlate well 
with mPAP [77]. Also, a decrease in vorticity in the main 
PA and RPA as assessed by 4D flow CMR was recently 
associated with an increase in pulmonary vascular resist-
ance (PVR) in patients with PH [97].

Altered flow patterns have also been described with 4D 
flow CMR in the PA of patients with repaired ToF [72]. 
The increase of these abnormal flow patterns, specifically 
helical and vortical flow, could be related to the size of the 
pulmonary arteries or increased PVR and elevated PAP 
[72].

In patients with a Fontan circulation, blood flows pas-
sively from the IVC and SVC to the pulmonary arter-
ies without passing through a ventricle. As expected, this 
results in altered pulmonary and caval blood flow patterns 
[38]. As these patients require lifelong follow-up, accurate 
visualization and quantification of flow patterns is crucial. 
Several 4D flow CMR studies have shown that blood flow 
from the SVC favors the right pulmonary artery (RPA), 
while most of the IVC blood flows to the left pulmonary 
artery (LPA), as shown by particle tracing analysis [98, 
99]. Recently it was shown that the cross-sectional area of 
the pulmonary arteries in these patients is related to altered 

flow distribution [99]. The study of caval blood flow dis-
tribution could help to identify the patients at risk for Fon-
tan failure or the development of pulmonary arteriovenous 
malformations, an important complication in these patients 
leading to systemic oxygen desaturation [100].

Conclusions and future application/advances

In the recent years, 4D flow CMR has emerged as a suitable 
technique for research use and several studies have shown 
its clinical value in patients with congenital and acquired 
heart disease. Shorter acquisition duration has made appli-
cation feasible in the clinic. However, dedicated studies 
investigating the reproducibility and reliability of some of 
the 4D flow CMR parameters are still warranted before 4D 
flow CMR can be applied in daily clinical practice. In this 
review, we showed the different advantages and possibili-
ties of 4D flow CMR, intra-cardiac as well as intravascu-
lar. Knowledge of normal and abnormal blood flow has 
increased the understanding of normal physiology and is 
necessary for the distinction between cardiovascular health 
and disease. 4D flow CMR is a promising additional diag-
nostic tool that could aid in management of cardiovascular 
disease and timing of surgical intervention. Furthermore, 
4D flow CMR gives the opportunity to further unravel the 
influence of different surgical reconstruction methods on 
the cardiac and vascular function. However, longitudinal 
follow-up studies are needed to clarify the clinical value 
of 4D flow CMR-derived hemodynamic factors for risk 
stratification. Other future applications include the use of 
4D flow CMR in the assessment of blood flow patterns in 
coronary arteries, which is currently still too challenging 
because of demands regarding the high spatial resolution 
needed for such small vessels and stringent necessity of 
cardiac motion correction. However, this application might 
become feasible when further improvements in hardware 
and imaging at high field strength become available.

Fig. 5  Patient with a coarcta-
tion of the aorta (CoA, 29-year-
old woman). In a a bright blood 
image of the aortic arch and 
proximal descending aorta with 
CoA (arrow) is presented, b 
shows the streamline visualiza-
tion with color coding. Distal 
to the CoA, abnormal flow 
with recirculation is presented 
(arrowhead)
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