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Small nucleoli are a cellular hallmark of longevity
Varnesh Tiku1,2, Chirag Jain1, Yotam Raz3, Shuhei Nakamura4, Bree Heestand5, Wei Liu6, Martin Späth2,

H. Eka. D. Suchiman3, Roman-Ulrich Müller2,7, P. Eline Slagboom3, Linda Partridge1,2 & Adam Antebi1,2

Animal lifespan is regulated by conserved metabolic signalling pathways and specific

transcription factors, but whether these pathways affect common downstream mechanisms

remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends

lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a

convergent mechanism focused on the nucleolus. Long-lived animals representing distinct

longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal

proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin

also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual

nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit

flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do

long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies

from individuals who underwent modest dietary restriction coupled with exercise also display

small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and

metabolic health conserved across taxa.
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O
ver the last several decades, studies in model genetic
organisms have revealed that animal lifespan is plastic and
regulated by evolutionarily conserved signalling pathways.

These pathways include reduced insulin/IGF and mTOR signalling,
reduced mitochondrial function, dietary restriction mediated
longevity, and signals from the reproductive system, which act
through specific constellations of transcription factors to extend
life1. Whether they converge on common regulators or shared
downstream processes, however, has remained largely an open
question. One process universally required across the major
longevity pathways is autophagy, the turnover of cellular
components through lysosomal degradation2,3. Accordingly, a key
transcriptional regulator of autophagy, HLH-30/TFEB has been
shown to be responsible to extend life in various C. elegans
longevity pathways4. More recently, we and others have shown the
Mondo complexes to also do so, as part of an extensive HLH
transcriptional network together with HLH-30/TFEB5,6. However,
the full extent of this regulatory tier and the precise relationship to
downstream processes remain poorly understood.

A related question is whether there are common causal
biomarkers of aging. Considerable efforts have been invested to
identify biomarkers predictive of biological age, including
physiologic readouts, metabolic parameters, glycomic profiles
and others7. Nevertheless, markers with strong predictive power,
and those proximal to the process of aging have remained elusive.
More recently, the discovery of a DNA methylation clock, which
monitors changes in hundreds of sites across the genome, has
been used to robustly predict human chronological age, as well as
aspects of biological age, but the functional and physiologic
significance of this marker still remains obscure8.

The nucleolus is a nuclear subcompartment where ribosomal
RNA is synthesized and assembled into ribosomal subunits9. It is
a dynamic organelle subject to inputs from growth signalling
pathways, nutrients, and stress, whose size correlates with rRNA
synthesis10. The nucleolus is also a production site for other
ribonucleoprotein particles, including various splicing factors, the
signal recognition particle, stress granules and the siRNA
machinery. It thus can be thought of as a central hub of
protein and RNA quality control and assembly.

Here we report the discovery of the nucleolus as a convergent
point of regulation of major longevity pathways across species.
Our studies reveal that several C. elegans longevity pathways
impinge on regulators of nucleolar function, including NCL-1,
a homologue of BRAT/TRIM2, which inhibits production of
FIB-1/fibrillarin, a nucleolar protein involved in the regulation
and maturation of rRNA. Our work suggests that small nucleoli
are a visible cellular hallmark of longevity and metabolic health,
and that molecules associated with nucleolar function might serve
as predictive, causal biomarkers of life expectancy.

Results
ncl-1 mediates DR and other forms of longevity. We identified
the conserved B-box protein NCL-1 in genetic screens for
novel mediators of DR induced longevity11. NCL-1 is an ortholog
of the TRIM2/BRAT tumour suppressor, which inhibits
rRNA transcription and protein synthesis12. Consistent with a
role in ribosome biogenesis, NCL-1 regulates nucleolar size and
ncl-1 mutants have larger nucleoli especially in neuronal, muscle
and hypodermal cells13. We found that whereas ncl-1 loss had
little effect on wildtype lifespan, it potently suppressed the
longevity of eat-2 mutants, a genetic model of DR (Fig. 1a and
Supplementary Fig. 1a). ncl-1 mutation also abrogated longevity
across a wide range of bacterial food dilutions, revealing a
function in the nutrient response to dietary restriction (Fig. 1b
and Supplementary Fig. 1b).

We next asked if ncl-1 also modulates longevity in other known
longevity models. Reduced TOR signalling is partly responsible
for lifespan extension under DR conditions14. Accordingly, ncl-1
mutation abrogated longevity induced by let-363/TOR RNAi
knockdown (Fig. 1c and Supplementary Fig. 1c), suggesting that
ncl-1 mediates lifespan extension on TOR down-regulation.
Reduced insulin/IGF signalling potently promotes longevity
across taxa, and knockdown of daf-2, the C. elegans insulin/IGF
receptor, doubles the lifespan15; ncl-1 mutation partially
suppressed daf-2 longevity as well (Fig. 1d and Supplementary
Fig. 1d). Furthermore, ncl-1 loss abolished lifespan extension in
long-lived germlineless glp-1 mutants16 (Fig. 1e) and partially
suppressed longevity triggered by mutation of the iron sulfur
protein isp-1, which reduces mitochondrial function17 (Fig. 1f).
A modest reduction in translation is known to extend lifespan in
different organisms18. C. elegans harbouring loss-of-function
mutations in ife-2 or ifg-1, which encode translation initiation
factors, have reduced translation and extended lifespan14,19,20.
Similarly rsks-1 codes for the ribosomal protein S6 kinase (S6K),
which is a known downstream target of the TOR kinase whose
deficiency reduces protein synthesis and extends lifespan in
multiple species21. Loss of ncl-1 by RNAi largely abolished the
longevity phenotype of ife-2, ifg-1 and rsks-1 mutant worms
(Fig. 1g and Supplementary Fig. 1e,f). Altogether these findings
reveal that ncl-1 works in major longevity pathways to affect
lifespan, as part of a convergent mechanism.

To investigate the role of ncl-1 further, we generated
extra-chromosomal transgenic lines expressing wildtype ncl-1
fused to gfp. Arrays restored normal nucleolar size and extended
lifespan in eat-2;ncl-1 double mutants, demonstrating that the
transgene is functional (Supplementary Fig. 1g–j). The fusion
protein was found to reside in multiple tissues including neurons,
body wall muscle, pharynx, seam cells and vulva (Supplementary
Fig. 1k). Consistent with an instructive role, ncl-1 over-expression
in the wildtype background was sufficient to reduce nucleolar
size (Supplementary Fig. 1g,h) and increase lifespan in two
independent transgenic lines (Fig. 1h). No further increase of
lifespan of eat-2 on ncl-1 over-expression was seen, indicating
an overlapping mechanism (Supplementary Fig. 1l).

Nucleolar size inversely correlates with longevity. Since ncl-1
affects both longevity and nucleolar size, we wondered if nucleolar
size also changes in long-lived genotypes. To address this issue, we
measured the nucleolar size of superficial hypodermal cells on the
first day of adulthood. As previously shown, ncl-1 mutants had
enlarged nucleoli compared to wildtype (Fig. 2a and Supplementary
Fig. 2a). We further observed that eat-2 mutants had smaller nucleoli
(Fig. 2a,c), and accordingly found that reducing nutrient levels
through bacterial dilution diminished nucleolar size (Fig. 2b).
Nucleolar size was enlarged in eat-2;ncl-1 double mutants, revealing
that ncl-1 is epistatic to eat-2 for both nucleolar size and longevity
(Fig. 2a and Supplementary Fig. 2b). These intriguing observations
led us to ask whether other longevity pathways more generally
affect nucleolar size. Surprisingly, reduced insulin/IGF signalling
(daf-2), reduced mTOR (let-363), reduced mitochondrial function
(isp-1), reduced translation (rsks-1, ife-2, ifg-1), and germlineless
animals (glp-1) all displayed smaller nucleoli in several tissues
(Fig. 2c,d and Supplementary Fig. 2d,e). ncl-1 mutation variously
suppressed nucleolar size in these backgrounds (Supplementary
Fig. 2b–d). The FOXO homolog daf-16, which promotes daf-2
longevity, was also required for small nucleolar size of daf-2 mutants,
supporting the notion that these signalling pathways impinge on the
nucleolus to regulate longevity (Fig. 2c,d and Supplementary Fig. 2e).

Isogenic wildtype worms show considerable variability in life
expectancy, with some animals dying as early as day 10 and
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others as late as day 30, despite culture in a uniform environment.
The basis of this variability however has remained elusive. We
also found that wild-type animals showed variability in nucleolar
size, and therefore wondered if these differences associate with
lifespan in wild-type populations. To address this question, we
imaged the nucleoli of age-matched worms on the first day of
adulthood, recovered them on single plates and monitored their
lifespan individually (Fig. 2e). We found a striking inverse
correlation (Pearson correlation coefficient, 0.61–0.93) between
nucleolar size and longevity, where animals with smaller nucleoli
lived considerably longer than the ones with larger nucleoli
(Fig. 2f). Thus nucleolar size could be a source of variability in
longevity and may predict C. elegans life expectancy.

Longevity mutants have reduced ribosome biogenesis. To
unravel molecular mechanisms, we examined how ncl-1 and
various longevity mutants affected nucleolar functions. Loss of

ncl-1 has been previously shown to up-regulate the nucleolar
protein FIB-1/fibrillarin22,23, which serves as a methyltransferase
for pre-rRNA processing and modification, and regulates histone
modification9,24. In accord with this, we also observed increased
levels of FIB-1::GFP as well as endogenous FIB-1 in ncl-1 mutants
(Fig. 3a,c and Supplementary Fig. 3a,b). Conversely ncl-1 over-
expression down-regulated FIB-1 (Supplementary Fig. 3b). We
next asked if FIB-1 expression was affected in various longevity
mutants. Indeed both FIB-1::GFP and endogenous FIB-1 were
significantly reduced in eat-2, daf-2, glp-1, isp-1 mutants and on
TOR knockdown, and loss of ncl-1 reversed this effect (Fig. 3a,c,d
and Supplementary Fig. 3a,c), revealing that these pathways
converge on FIB-1 expression. We further asked if FIB-1 is a
passive marker or a causal factor for longevity. Consistent with
the latter, fib-1 RNAi knockdown reduced nucleolar size and
extended lifespan of wild-type worms (Fig. 3e,f). RNAi
knockdown of another gene involved in nucleolar function, rrn-
3, which encodes TIF1A that assists in rRNA transcription
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mediated by RNA Polymerase I9, had little observable effect on
longevity, perhaps because achieving a balance where benefits
outweigh deleterious effects is difficult (Supplementary Fig. 3j).

Nucleoli are the cellular site of ribosome biogenesis. We
therefore examined the expression levels of rRNA and ribosomal
proteins. Mutation of ncl-1 increased rRNA and ribosomal
protein levels (Fig. 3b,c and Supplementary Fig. 3f–h). These
molecules were also reduced in worms over-expressing ncl-1
(Supplementary Fig. 3d,e). Notably long-lived eat-2, daf-2, glp-1,
isp-1 and TOR RNAi knockdown worms exhibited reduced levels
of rRNA and ribosomal proteins RPS6 and RPS15, suggesting
down-regulated ribosome biogenesis associates with longevity
(Fig. 3b,c and Supplementary Fig. 3f–h). Loss of ncl-1 variously
suppressed these phenotypes in double mutant backgrounds
(Fig. 3b,c and Supplementary Fig. 3f–h). Similarly, daf-16
mutation restored the reduced rRNA and ribosomal proteins
levels seen in daf-2 mutants back to wild-type levels (Fig. 3b and
Supplementary Fig. 3f,i). Taken together, these results suggest

that smaller nucleoli, reduced fibrillarin and ribosome biogenesis,
are signatures of long life.

Smaller nucleoli associate with longevity in higher organisms.
Given our results in C. elegans, we wondered if these findings
hold true in long-lived models in other species. Remarkably we
found that long-lived Drosophila melanogaster undergoing DR,
exposed to the mTOR inhibitor rapamycin, or harbouring dele-
tion of the insulin-like peptides ilp-2-3,5, all had smaller nucleoli
in the fat body and intestine (Fig. 4a,b). Furthermore, they
showed reduced levels of fibrillarin and ribosomal proteins,
although RPS6 and RPS15 levels did not significantly change on
Rapamycin treatment in flies unlike worms (Supplementary
Fig. 4a–d). Age-matched mice undergoing DR and long-lived
IRS1 knockout mice also exhibited smaller nucleoli in kidney,
liver and whole brain sections compared to controls (Fig. 4c,d and
Supplementary Fig. 4e–g). Finally, we also observed an overall
trend towards reduction of nucleolar size in muscle biopsies of
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elderly human volunteers who underwent a regime reducing
caloric intake by 12.5% combined with moderate increase in
exercise by 12.5% (Fig. 4e,f).

Discussion
Altogether our studies reveal that multiple longevity pathways
strikingly reduce nucleolar size, and diminish expression of the
nucleolar protein FIB-1, ribosomal RNA, and ribosomal proteins
across different species. A trend towards nucleolar size reduction
is also seen with interventions that improve metabolic health in
humans, thus revealing a reversible process linking metabolic
state to a simple cellular readout. Conversely a parallel study
reported that fibroblasts derived from Hutchinson-Gilford
progeria syndrome patients show enlarged nucleolar size and
elevated ribosome biogenesis and protein synthesis25. These
markers are not simply molecular correlates, however, but likely
responsible in part for prolonged life. Notably, C. elegans FIB-1 is
regulated by multiple molecular pathways, and its down-
regulation is sufficient to extend lifespan. Although knockdown

of the nucleolar RRN-3/TIF1A had little effect on lifespan,
conceivably other nucleolar functions could play a role. Evidently
NCL-1 is critical to regulating nucleolar size and inhibiting FIB-1
expression, thereby affecting lifespan in multiple pathways. How
cytosolic NCL-1 impacts nucleolar function remains unclear,
although evidence hints that it regulates FIB-1 in part via its
30 UTR23. NCL-1 itself is not visibly regulated by longevity
pathways (V. Tiku, personal communication); further studies
should help unravel the mechanism of NCL-1 and FIB-1 action.

Our studies are among the first to reveal that nucleolar functions
work pervasively across many longevity pathways. If small nucleoli
are a hallmark for longevity, what are the proximal mechanisms
responsible for extended life? Reduced ribosome biogenesis
and protein synthesis are the most obvious candidates: These
energetically costly processes consume considerable resources, and
a modest reduction of ribosomal proteins or translational
regulators in model organisms prolongs life14,20,26,27. Notably,
transcriptomic analyses typically exclude ribosomal RNA, thus
overlooking the very molecules that could well affect longevity. If
protein synthesis alone were rate limiting, then knockdown of this
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lifespan of N2 (P¼0.0004, log-rank test, three independent biological replicates) (f) fib-1 RNAi reduces the nucleolar size of N2 (Error bars represent

mean±s.d.). Scale bar represents 20mm. *Po0.05, **Po0.01, ****Po0.0001, unpaired t-test.
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process should restore longevity to ncl-1 mutants. Surprisingly, it
did not. Our genetic analysis reveals that mutants that reduce
protein synthesis, namely rsks-1, ife-2, and ifg-1, prolong life in a
ncl-1 dependent manner, suggesting that NCL-1 works largely
downstream or parallel to protein synthesis. This raises the
interesting prospect that NCL-1 perturbs protein synthesis
independently of these other factors, or that other cellular
processes might be involved. Reduced protein synthesis per se
may represent only one aspect of longevity, since lifespan extension

by ribosomal inhibition triggers various aspects of the stress
response28,29. In yeast recombination at rDNA repeats has been
implicated in aging30. The nucleolus is also the site for assembly of
other ribonucleoprotein particles including splicing complexes,
telomerase, the signal recognition particle, stress granules and
microRNA machinery, and regulates processes involved in genome
integrity, nuclear architecture, stress signalling, cell cycle, and
growth9. Conceivably these other nucleolar processes could also
contribute.

wDah 
2x Food

wDah
0.5x food

dilp2–3,5wDah

FIBRILLARIN/DAPI

FIBRILLARIN/DAPI

a

b c

d

Ad libitum DR

N
uc

le
ol

ar
 /n

uc
le

ar
 a

re
a

ra
tio

****

wDah 
EtOH control

wDah 
 200μM rapamycin

N
uc

le
ol

ar
 /n

uc
le

ar
 a

re
a

ra
tio

wDah
 0

.5
x f

oo
d

0.0

0.2

0.4

0.6

Intestine Fat body

Wildtype IRS1 KO

****

0.0

0.1

0.2

0.3

0.4

Kidney

Kidney

Intestine Intestine Intestine

0.00

0.05

0.10

0.15

N
uc

le
ol

ar
 /n

uc
le

ar
 a

re
a

ra
tio

e

Baseline After
intervention

*

Baseline After intervention

fFIBRILLARIN/DAPI

wDah
 2

x f
oo

d

wDah
 0

.5
x f

oo
d

wDah

dil
p2

–3
,5

wDah
 E

tO
H co

nt
ro

l

wDah
 ra

pa
m

yc
in

wDah
 2

x f
oo

d
wDah

dil
p2

–3
,5

wDah
 E

tO
H co

nt
ro

l

wDah
 ra

pa
m

yc
in

 A
d 

lib
itu

m DR

W
ild

typ
e

IR
S1 

KO

**** **** **** **** **** ****

Figure 4 | Smaller nucleoli associate with longevity in higher organisms. (a,b) DR, dilp2-3,5 and Rapamycin treated D. melanogaster possess small

nucleoli in intestine and fat body (Error bars represent mean±s.d.). (c,d) DR and IRS1 knockout mice show reduced nucleolar size in kidney tissue

compared to ad libitum fed mice and wildtype (Error bars represent mean±s.d.). (e,f) Muscle biopsies from humans undergoing DR and exercise exhibit

small nucleoli. Scale bars represent 10mm (a,c) and 20mm (e). *Po0.05 paired t-test, ****Po0.0001 unpaired t-test.
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Our work suggests that nucleolar size is a highly predictive
marker for wild-type C. elegans longevity. Other markers that can
approximate life expectancy and health status have been reported
in C. elegans31,32. Our study opens up the exciting prospect that
nucleolar size can predict life expectancy in higher organisms. If
so, quantification of nucleolar size could be used as a single-cell
readout of metabolic changes to study biological heterogeneity in
aging and longevity, or to assess how various environmental and
pharmacologic interventions impact health. We also imagine that
there may well be exceptions or conditions, in which downstream
processes uncouple nucleolar size from lifespan; ncl-1 mutants
themselves have enlarged nucleoli but near normal lifespan.
In the future it will be fascinating to dissect the mechanisms
underlying NCL-1 and FIB-1 action, the proximal nucleolar
functions critical for longevity, and to further explore nucleolar
functions as biomarkers of health and lifespan.

Methods
C. elegans strains. All the worm strains were grown using standard procedures at
20 �C unless otherwise noted33. Strains carrying glp-1(e2141) mutation were
maintained at 15 �C and shifted to 25 �C for inducing germlineless phenotype. The
strains used for the experiments were: N2 (wild type), eat-2(ad465), ncl-1(e1865),
ncl-1(e1942), eat-2(ad465);ncl-1(e1865), eat-2(ad465);ncl-1(e1942), isp-1(qm150),
isp-1(qm150);ncl-1(e1942), glp-1(e2141), glp-1(e2141);ncl-1(e1942), daf-2(e1370),
daf-2(e1370);daf-16(mu86), cguIs001 (FIB-1::GFP)34, eat-2(ad465)þ cguIs001,
ncl-1(e1942)þ cguIs001 and eat-2(ad465);ncl-1(e1942)þ cguIs001, ife-2(ok306),
ifg-1(cxTi9279) and rsks-1(sv31). dhEx1007 and dhEx1008 ncl-1 extra-chromosomal
transgenic strains were generated by injecting fosmid DNA WRM0611AC10
(ncl-1::TY1 EGFP) (30 ngml� 1) and a co-injectable marker (myo-2::mcherry at
10 ngml� 1) in N2 strain and further crossed into eat-2(ad465), eat-2(ad465);
ncl-1(e1865) and eat-2(ad465);ncl-1(e1942) backgrounds. The transgenic worms were
maintained by selecting the worms showing the expression of the co-injected marker.

Lifespan analyses. All the lifespan analyses experiments were performed in at
least three independent biological replicates at 20 �C. Animals that crawled off the
plates, burst due to a ruptured vulva or had internal hatching of the eggs were
censored from the experiment. RNAi lifespan analysis experiments were carried
out following previously described protocol35. All RNAi treatments were
performed throughout development and adulthood except let-363/TOR and fib-1,
which were initiated on the first day of adulthood. For BDR lifespan analyses, the
method followed was the same as described previously36. 90 worms were used for
each bacterial concentration to be tested and the worms were scored every 3–4
days. The worms were transferred to freshly prepared bacterial conditions on each
day of scoring. BDR medium containing FUdR (1 mg ml� l) was used for the first
two weeks of the experiment to prevent progeny production. All the lifespan
experiments were performed in a blinded manner and repeated at least three times
except for ife-2(ok306) (performed twice), rsks-1(sv31) (performed twice),
ifg-1(cxTi9279) (performed once) and rrn-3 RNAi (performed once). Mantel-Cox
Log Rank method was used for statistical analysis (Supplementary Table 1).

rRNA analysis. Age-matched day 1 adult worms were collected in TRIzol
(Invitrogen) and snap-frozen in liquid nitrogen. RNA extraction was performed
using RNeasy Mini kit (QIAGEN). Levels of rRNA were analysed by running total
RNA, extracted from the same number of worms on Agilent 4200 TapeStation
System following High Sensitivity RNA ScreenTape System protocol (Agilent).
rRNA levels were also examined by running total RNA extracted from the same
number of worms on agarose gels. NorthernMax Kit protocol was followed for
running RNA gels. The gels were imaged with Alpha Innotech MultiImage II.

(For RNA extraction: n¼ 100 worms/replicate, 3 independent replicates)

Western blotting. Day 1 adult worms (50) were collected in Laemmli lysis
buffer and snap-frozen in liquid nitrogen. The samples were then boiled at
95 �C for 5 min, ultrasonicated for 10 cycles and loaded on 4–15% Mini-PROTEAN
TGX Precast Protein Gels. After separation, proteins were blotted on a
nitrocellulose membrane and probed with the following antibodies against:
RPS-6 (Abcam ab70227, 1:1,000), RPS-15 (antibodies-online.com ABIN503870,
1:1,000), Fibrillarin (Novus Biologicals NB300-269, 1:1,000) and b-Actin
(Abcam ab8224, 1:5,000). The uncropped western blotting images are shown in
Supplementary Fig. 5.

(For all western blots: n¼ 50 worms/replicate, 3 independent replicates)
For Drosophila western blots, 5 females were homogenized in 100 ml of RIPA

lysis buffer carrying 1X Complete mini protease inhibitor (EDTA free) (Roche).
Extracts were cleared by centrifugation and protein content determined with
BCA assay. 30mg of total protein was loaded on precast gels (Bio-Rad Any KD,
Mini-PROTEAN TGX). The proteins were transferred to nitrocellulose membranes

and probed with the same antibodies as above. The uncropped western
blotting images are shown in Supplementary Fig. 5. (For all western blots:
n¼ 5 flies/replicate, 3 independent replicates).

Immunofluorescence. Immunofluorescence was performed on 10 mm thick
cryo-sections of mouse tissues derived from kidney, liver and brain. The samples
were fixed with 4% Paraformaldehyde (PFA) for 15 min at room temperature (RT)
followed by three washes with PBS at RT. The samples were then blocked with 5%
Normal Donkey Serum in PBS with 0.1% Triton-X for 30 min at RT followed by an
over-night incubation at 4 �C with the primary antibody against Fibrillarin
(Abcam ab166630, 1:200). After three subsequent washes with PBS, the samples
were then probed with the secondary anti-rabbit antibody at RT for one hour
followed by three more washes with PBS. The samples were mounted with
ProLong Gold Mounting Medium (ThermoFisher Scientific). Immunofluorescence
quantification represents three independent biological replicates with each replicate
representing 3 mice (DR) and 2 mice (IRS1 KO). Imaging and quantification of the
experiments were performed in a blinded manner.

Drosophila guts and fat bodies were dissected out in PBS followed by immediate
fixation with 4% PFA in PBS and permeabilization for 10 min at RT with 0.3%
Triton X-100 in PBS (PBST). Blocking, primary and secondary antibody incubation
were done in 5% BSA in PBST using Fibrillarin (Novus Biologicals NB300-269,
1:250) as the primary antibody and goat anti-mouse conjugated to Alexa Fluor 488
(Invitrogen, Inc., 1:1,000) as the secondary antibody. Hoechst 33342 was applied at
1:1,000 for staining nuclei. Tissues were extensively washed with PBST after
antibody treatments and finally mounted on glass slides with 80% glycerol in PBS.
The quantification represents three independent biological replicates with each
replicate representing 5 dissected flies. Imaging and quantification of the
experiments were performed in a blinded manner.

For staining human muscle biopsies, samples were thawed at RT. Then
the samples were blocked with 5% milk in PBS with 0.05% Tween (PBST) for
30 min at RT, followed by three washes with PBST. The primary antibody,
Rabbit-anti-Fibrillarin (Abcam ab166630, 1:600 in PBST), was incubated overnight
at 4 �C. After three washes with PBST, samples were incubated with the secondary
goat-anti-rabbit-conjugated-Alexa647 antibody (Molecular Probes, 1:1,000 in
PBST) for 1 h at RT, followed by three washes in PBST and one wash in PBS
containing DAPI (0.5 mg ml� l, Sigma-Aldrich, Saint Louis, Missouri, USA). Slides
were mounted with Aqua Poly-Mount (Polysciences Inc, Niles, Illinois, USA).
All samples were stained on the same day with the same antibody mixes.

Imaging and quantification. DIC microscopy was used to perform all the
nucleolar imaging. Hypodermal, germ cell and pharyngeal muscle nucleoli of
age-matched day 1 adults were imaged using 100X magnification with Axio Imager
Z1 (Zeiss). Nucleolar area was quantified manually with the freehand tool using Fiji
software. Details of the nucleolar size analysis are given in Supplementary Table 2.
Worms carrying FIB-1::GFP and NCL-1::GFP transgenes were imaged using 63X
magnification with Axio Imager Z1 (Zeiss). Immunofluorescent images were
acquired using a laser-scanning confocal microscope (TCS SP5-X; Leica), equipped
with a white light laser, a 405- diode UV laser, and a 100� objective lens
(HCX Plan-Apochromat CS 100� oil, 1.46 NA). For human muscle biopsies, a
total 15 representative fields with a 63X objective from each muscle sample were
obtained, using the DM5500 fluorescent microscope (Leica) and the LAS AF
software (version 2.3.6, Leica). Anti-Fibrillarin was detected with the Y5 cube, and
nuclei were detected with the A4 cube. The area of the nucleolar and nuclear
regions was quantified manually with the freehand tool, and subsequently the ratio
of nucleolar/nuclear area was calculated. For the human samples, the average ratio
of nucleolar/nuclear area (from an average of 100.4 (±28.9) nuclei) per sample was
used for the analyses.

Drosophila melanogaster experiments. DR in Drosophila melanogaster was
performed by feeding a total of 50 hatched flies with 0.5x SYA food compared to ad
libitum food supply of 2� SYA for 10 days37. Rapamycin treatment was
performed by dissolving Rapamycin in absolute ethanol and mixing it with SYA
food at a final concentration of 200 mM and fed to a total of 50 age-matched flies.
For control food, ethanol alone was added. Both DR and Rapamycin treatment
were performed for 10 days before harvesting the flies for experiments. The
treatments were performed separately in 3 different vials serving as 3 independent
biological replicates. Long-lived dilp2-3,5 (ref. 38) and control wDah flies were
harvested on day 1 of adulthood. The flies were dissected and immunofluorescence
was performed on the dissected tissues as described above.

DR and IRS1 KO mice. Mouse experiments were performed according to the
guidelines and approval of LANUV [Landesamt für Natur, Umwelt und Ver-
braucherschutz Nordrhein-Westfalen (State Agency for Nature, Environment and
Consumer Protection North Rhine-Westphalia), VSG 84-02.04.2013.A158].
C57BL/6 male mice, obtained from Charles River Laboratories (Sulzfeld, Germany)
were maintained under 12 h light:12 h dark schedule and were fed standard chow
diet (SC)—4.5 g SC/animal/24 h (ssniff Spezialdiäten GmbH) until 10 weeks of age
and then subjected to DR at 75% food intake (3 g SC per animal/24 h) compared to
ad libitum fed control mice. The DR regimen was continued for 1 month and the
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mice were killed at the age of 14 weeks along with the ad libitum fed controls to
perform cryo-sectioning for the analysis of nucleoli. The tissues sampled with
sectioning were kidney and liver.

C57BL/6 IRS1 KO male39 and WT control male mice were maintained
similarly on SC diet. The animals were killed at the age of 12 months to perform
cryo-sectioning for the analysis of nucleoli. The tissues sampled with sectioning
were kidney and brain. C57BL/6 IRS1 KO mice were originally obtained from
Prof. Dominic Withers’ lab (Imperial College, London) and were bred on-site at the
mouse facility in Max Planck Institute for Biology of Ageing, Cologne.

For both the experiments cryo-sectioning was performed horizontally across the
entire tissue. This nature of processing aided in observing the effect of the
treatments across different cell types in each tissue.

Dietary restriction and exercise intervention in human volunteers. Samples for
nucleolar staining were obtained from the biomaterial collected in the Growing Old
Together Study, a 13-weeks lifestyle intervention in older adults, consisting of
12.5% caloric restriction and 12.5% increase in physical activity, resulting in an
average weight loss of 3.3 kg. The study design, inclusion and exclusion criteria, and
changes in metabolic parameters have been described previously40. For the current
study we used samples from 5 men and 5 women selected based on the greatest
weight loss due to the intervention and the availability of muscle tissue from before
and after the lifestyle intervention. This subgroup had an average age of 62.4 years
(±4.1) and lost an average of 6.8 kg (±1.3) due to the intervention. Characteristics
of this subgroup are detailed in Supplementary Table 3.

All participants signed a written informed consent for participating in this
study. All experiments were performed in accordance with the relevant regulations
and guidelines. The medical ethical committee of the Leiden University Medical
Center approved this study. This trial (NTR3499) was registered at the Dutch Trial
Register (www.trialregister.nl).

Muscle biopsies and sectioning. Muscle biopsies were collected from the vastus
lateralis muscle before and after the lifestyle intervention. Biopsies were collected
40–45 min following a standardized liquid meal (Nutridrink, Nutricia Advanced
Medical Nutricion, Zoetermeer, The Netherlands) in the morning after at least 10 h
of fasting. Under local anaesthesia, an incision was made 10 cm cranial of the
patella on the lateral side of the upper leg. A biopsy needle (3 mm thick) was
inserted to obtain the muscle biopsy. The muscle biopsy was immediately frozen in
liquid nitrogen and stored at � 80 �C before cryosectioning. Cryosections of 16mm
were made with the CM3050-S cryostat (Leica, Wetzlar, Germany), pasted on
SuperFrost Plus slides (Menzel-Gläser, Braunschweig, Germany) and stored at
� 20 �C before staining.

Blinding of experiments. All the lifespan analysis experiments were performed in
a blinded manner. For blinding, the strain names were concealed during scoring,
analysing and plotting the data. Nucleolar imaging and quantification were also
performed with concealed strain names.

Drosophila nucleolar size analysis was performed in a blinded manner. Two
different people were involved in performing the experiment. One individual
carried out fly feeding and mutant strain maintenance and the samples were passed
on blinded for imaging and quantification to the second experimenter.

Mouse nucleolar size analysis was also carried out blinded. Three different
people were involved in performing the experiments. One experimenter
maintained the mice while carrying out the feeding/treatments and killed the mice
for sectioning. The experiment was blinded henceforth. The sectioning was carried
out blinded by the second experimenter. The blinded sections were stained, imaged
and quantified by the third experimenter.

Two different experimenters performed human muscle biopsy staining. The
whole experiment including staining, imaging and image quantification were
performed completely blinded.

Data availability. The authors declare that all the data and the methods used in
this study are available within this article, its Supplementary Information files, the
peer-review file, or are available from the corresponding author on request.
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