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ABSTRACT
To improve the diagnostic value of fine-needle aspiration
(FNA)-derived material, we perform targeted next-
generation sequencing (NGS) in patients with a suspect
lesion of the pancreas. The NGS analysis can lead to a
change in the treatment plan or supports inconclusive or
uncertain cytology results. We describe the advantages
of NGS using one particular patient with a recurrent
pancreatic lesion 7 years after resection of a pancreatic
ductal adenocarcinoma (PDAC). Our NGS analysis
revealed the presence of a presumed second primary
cancer in the pancreatic remnant, which led to a change
in treatment: resection with curative intend instead of
palliation. Additionally, NGS identified an unexpected
germline CDKN2A 19-base pair deletion, which
predisposed the patient to developing PDAC.
Preoperative NGS analysis of FNA-derived DNA can help
identify patients at risk for developing PDAC and define
future therapeutic options.

BACKGROUND
Cancer-causing genetic variations in human cells
often cluster in predictable gene ‘hotspots’. In lung
cancer and pancreaticobiliary tract cancer, single-
gene analysis of endoscopic ultrasound-guided fine-
needle aspiration (FNA)-derived DNA samples has
yielded valuable diagnostic information.1 2

Moreover, performing targeted next-generation
sequencing (NGS) on these samples can identify
multiple-gene variants in a limited quantity of
material.3 NGS can indeed be reliably performed
on FNAs from pulmonary and pancreatic tumours,
as the gene variants identified correlated well with
matched resected pancreatic tumours.4 5 The
advantage of using a NGS panel that specifically
targets hotspot mutations in 50 cancer genes is that
robust ultra-deep sequencing results can be
obtained from samples containing extremely low
numbers of cancer cells, including DNA obtained
from formalin-fixed paraffin-embedded tissue
samples of neoplasms of the pancreas.6

In the past decade, the mutational landscape of
pancreatic ductal adenocarcinoma (PDAC) has been
well characterised.7 Activated pathogenic variants
in the proto-oncogene Kirsten RAS (KRAS) are
present in 90% of patients with PDAC. Inactivated
variants in the tumour-suppressor genes TP53,
CDKN2A and SMAD4 have been frequently identi-
fied. Recently, published whole-exome and whole-
genome sequencing data revealed additional
somatic and germline variants in ARID1A, ROBO2,

BRCA1, BRCA2 and PALB1, some of which can
direct the optimal choice of adjuvant therapy.
Moreover, focal gene amplifications of actionable
oncogenes have been identified, including ERBB2,
MET, FGFR1, CDK6, PIK3R3 and PIK3CA.7 8

As part of an ongoing study, the NGS analysis is
performed in preoperative FNA-derived DNA
samples obtained from patients with a suspicion of
PDAC at our centre. Here, we describe a case of
one such patient in which the NGS analysis
revealed the presence of a second primary PDAC
drastically changing the treatment plan.

CASE REPORT
A male patient aged 54 years underwent a pancrea-
ticoduodenectomy with en bloc right hemicolect-
omy 7 years ago, followed by adjuvant gemcitabine
therapy. Pathological evaluation revealed a 5 cm
PDAC with negative surgical resection margins and
6 out of 21 positive peripancreatic lymph nodes.
After 5 years without recurrence of the disease, the
patient was discharged from follow-up. Recently,
the patient presented with vague abdominal pain. A
CT scan revealed a poorly defined mass in the pan-
creatic remnant close to the pancreatic-jejunal anas-
tomosis suggestive of a local recurrence (figure 1A).
An endoscopic ultrasound-guided FNA was per-
formed. Cytological evaluation was not conclusive
for carcinoma and was interpreted as ‘reactive
changes’ with a low number of atypical ductal cells
(figure 1B). Given the clinical suspicion of recur-
rent malignancy, palliative chemotherapy was con-
sidered as the first therapeutic option during the
multidisciplinary team meeting. However, in light
of the long interval between the current lesion and
the original primary tumour, and despite the
limited number of morphologically atypical cells in
the FNA sample (estimated at <10% of the cells),
we opted to analyse the FNA-derived DNA using
targeted NGS with the AmpliSeqCancer Hotspot
Panel V.2 (Thermo Fisher Scientific, Cambridge,
Massachusetts, USA). The patient provided
informed consent for molecular testing.
We also analysed the primary PDAC using NGS.

Our analysis revealed that the mutational profiles
differed between the original lesion and the new
lesion. Furthermore, we found a germline patho-
genic CDKN2A/P16 gene variant that predisposed
the patient for developing PDAC. The patient had
no documented personal history of atypical moles
or melanoma. No family history of breast-ovarian
carcinoma syndrome or atypical multiple mole
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melanoma syndrome was reported. Only after consulting the
clinical genetics in a later phase, the patient turned out to have
an aunt and nephew who died of melanoma and PDAC, respect-
ively at relatively young ages. At the molecular level, a second
primary tumour was considered to be plausible. Based on the
NGS data, the treatment plan changed drastically from provid-
ing palliative chemotherapy to curative-intended surgical resec-
tion of the residual pancreas.

METHODS
Selection of tumour cells, DNA isolation and targeted NGS
FNA slides were generated using methanol fixation and Giemsa
staining. In general, there are two approaches for molecular ana-
lysis of cytology smears, either with or without tumour cell
enrichment. The enrichment step is chosen if tumour cells can
clearly be distinguished from non-tumour cells. In the case
described here, no enrichment step for the FNA sample could
be performed. A single FNA slide was used, which was photo-
graphed and attached to the patient files. Subsequently, the
cover slip was removed by incubation in xylene at room tem-
perature in a separate 50 ml tube to avoid contamination. The
incubation period was until the moment the cover slip got
loose. Next, the slide was washed in alcohol three times for
rehydration of the tissue, once in 100%, once in 70% and once
in 50%. The FNA material was scraped from the slide and col-
lected in a microtube for DNA isolation. Because there was no
enrichment step, which resulted in a low percentage of atypical
cells, bioinformatics thresholds were adopted accordingly. The
PDAC resection specimens were examined for regions with the
highest tumour percentages. After examination, five 10 μm add-
itional sections were prepared for microdissection and stained
with haematoxylin (eosin staining was omitted to preserve the
integrity of the DNA). Slides were visualised with an inverted
microscope and manually microdissected with a sharp, pointed
knife.

After scraping, DNA was isolated from FNA-derived material
and formalin-fixed, paraffin-embedded PDAC tissue using a
fully automated DNA extraction procedure.9 The concentration
of DNA was measured using a fluorometer (Qubit dsDNA HS,
Life Technologies, Carlsbad, California, USA). The AmpliSeq
Cancer Hotspot Panel V.2 consists of a single primer pool and is
designed to detect somatic cancer hotspot mutations in 200
amplicons covering 50 genes, including genes that are often
altered in PDAC (eg, KRAS, TP53, SMAD4 and CDNK2A).
Libraries were prepared with 10 ng of genomic DNA, and each
sample was uniquely barcoded using IonXpress barcodes (Life
Technologies). Ion PGM 318 or Proton P1 chips were prepared
using the Ion Chef System and sequenced using the Personal

Genome Machine or Proton system, respectively (all from Life
Technologies). Variants were analysed using the Geneticist
Assistant NGS Interpretative Workbench (V.1.1.8, SoftGenetics,
State College, Pennsylvania, USA). The identified variants were
classified into five classes, and only class 4 (likely pathogenic)
and class 5 (pathogenic) variants were reported.10

Evaluation of genetic variants in the context of morphology
Genetic variations in the KRAS or GNAS gene can occur in pre-
cursor lesions of PDAC, including low-grade or high-grade pan-
creatic intraepithelial neoplasia, intraductal papillary mucinous
neoplasm and mucinous cystic neoplasms.6 Because a stepwise
increase in genetic variations occurs during the development of
PDAC, we developed a clinical decision scheme in which con-
firmed genetic variants were placed in the context of the
observed morphology and tumour percentage. The sole finding
of a pathogenic KRAS variant is molecularly scored as a ‘prolif-
erative lesion, at least low-grade dysplasia’, keeping in mind that
KRAS variants are also present in a low percentage of cases with
pancreatitis.11 A combination of two or more pathogenic var-
iants (eg, a KRAS variant in combination with TP53, SMAD4,
CDKN2A and/or other variants) is scored as ‘at least high-grade
dysplasia’. If genetic variants are absent, it is scored as ‘no
molecular support of a proliferative lesion’. In the multidiscip-
linary team meeting, the molecular findings are discussed in the
context of the clinical and radiological findings.

RESULTS
NGS of FNA-derived DNA
The obtained FNA sample of the suspected recurrent PDAC was
morphologically scored as atypia with no clear dysplasia or
malignancy present. However, the NGS analysis revealed the
presence of a class 5 KRAS:c.35G>A p.Gly12Asp pathogenic
variant and a class 4 TP53 (intron, splice-site) c.376-1G>T
variant in 3.2% and 3.8% of all reads, respectively. The variant
calling in our analysis pipeline was confirmed by manual inspec-
tion and revealed that the variants were present in both direc-
tions. The finding of these gene variants prompted us to change
our initial morphological evaluation of atypia to a molecular
evaluation of at least high-grade dysplasia. Surprisingly, we also
identified a 19-base pair (bp) deletion in the CDKN2A gene
(exon 2; c.225_243del19, p.Ala76fs*64) in 47% of all DNA
reads. The difference in frequency between this CDKN2A
variant and the KRAS and TP53 variants suggested that the
CDKN2A deletion was germline in origin. This particular
CDKN2A deletion variant is a known germline variant present
in Dutch familial atypical multiple mole melanoma families and
is known as the p16-Leiden variant.

Figure 1 CT scan and cytological
findings in a patient with a suspicion
of recurrent pancreatic ductal
adenocarcinoma (PDAC). (A) Axial CT
scan of the abdomen showed the
suspect recurrent tumour (arrow) in the
duodenal anastomosis with the
remnant pancreatic tail (arrowhead).
(B) Giemsa stain of fine-needle
aspiration (FNA)-derived cells obtained
from the pancreatic lesion. A low
number of atypical ductular cells were
visible in the complete slide; based on
their morphology, these cells were not
judged to be unequivocally dysplastic.
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A similar NGS analysis of the primary PDAC revealed the
same KRAS:c.35G>A pathogenic variant, but not the TP53
variant with an on target depth of coverage of 2000 DNA
reads. Furthermore, a class 5 SMAD4 c.1242_1245del4bp

(p.Asp415fs) pathogenic variant was found in 30% of all DNA
reads in the original PDAC sample, but not in the recent FNA
sample with a depth of coverage of 303 DNA reads. Lastly, the
presumed CDKN2A germline deletion variant was also found in

Figure 2 Overview of the next-generation sequencing (NGS) results. The NGS analysis of DNA obtained from the endoscopic ultrasound-guided
fine-needle aspiration (FNA) of the suspect pancreatic cancer recurrence (A) and the primary lesion obtained 7 years ago (B). The analysis revealed
the following variants in the suspect recurrent cancer: a class 5 KRAS: c.35G>A p.Gly12Asp pathogenic variation was present in 3.2% of DNA reads;
a class 4 TP53 (intron, splice-site) c.376-1G>T mutation was present in 3.8% of DNA reads and a 19-bp deletion (c.225_243del19, p.Ala76fs*64) in
CDKN2A (also known as the p16-Leiden mutation) was present in 47% of DNA reads. The following variants were identified in the primary lesion:
the KRAS c.35G>A variant was present in 24% of the DNA reads; a class 5 SMAD4 c.1242_1245del4bp p.Asp415fs pathogenic variant was present
in 30% of DNA reads and the 19-bp CDKN2A deletion was present in 53% of DNA reads.
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the original PDAC sample (figure 2). The patient was referred
to the department of clinical genetics for analysis of leucocyte
DNA, which confirmed the germline origin of the CDKN2A
deletion.

Although a second primary tumour is a possibility, clonal het-
erogeneity of the first tumour is an important alternative. The
KRAS c.35G>A variant, which was identified in both lesions
would support this option, although it is the most commonly
found KRAS variant in PDAC. However, due to the long interval
between the two lesions (7 years), the patient’s genetic predis-
position and the different mutation patterns between the two
lesions, we concluded that a second primary PDAC was more
likely than recurrence of the original primary PDAC with
molecular clonal divergence.

As a result of our analysis, the patient underwent surgical
resection instead of palliative chemotherapy. Postoperative
examination of the lesion revealed a 2 cm sized PDAC without
lymph node metastases, extensive inflammation of the residual
pancreas and focally a tumour-positive resection margin at the
pancreatic-jejunal anastomosis. The presence of all gene variants
in KRAS, TP53 and CDKN2A identified in the FNA sample was
later confirmed in the resected material. Again, the class 5
SMAD4 c.1242_1245del4bp (p.Asp415fs) pathogenic variant
that was identified in the primary PDAC was not found in this
sample (on target depth of coverage of 534 DNA reads).

DISCUSSION
This report illustrates that the application of an NGS panel
designed for use in somatic tumour variant analysis can also
identify unexpected germline variants. In the described case, a
germline CDKN2A deletion variant (the p16-Leiden mutation)
was detected by our NGS analysis. CDKN2A encoding for p16
is completely inactivated in PDAC by a variety of mechanisms.12

Carriers of a germline variant in CDKN2A (ie, p16-Leiden)
have an increased risk of developing multiple tumour types at a
young age, and a cumulative lifetime risk of developing pancre-
atic cancer of 15%–20%.13 Therefore, carriers of the
p16-Leiden mutation are offered the opportunity to participate
in a screening programme that includes annual MRI.14 An
increased prevalence of second primary tumours has been
described among patients with a genetic predisposition for
PDAC.15 Therefore, total pancreatectomy should be considered
in PDAC patients with a known germline variant in the BRCA2,
PALB2, CDKN2A, STK11, ATM or PRSS1 gene, given the signifi-
cantly increased risk of developing PDAC.15

It has to be discussed whether and how patients should be
informed about potential results of tumour NGS, because some
of these findings can be beneficial for families of these patients,
for example, by enrolling in effective surveillance programmes.
On the other hand, identification and reporting of germline
defects, such as TP53 pathogenic variants associated with the
Li-Fraumeni syndrome, is not always considered to be beneficial
for patients and families involved. Molecular tumour boards
and independent institutional expert review panels are currently
installed in institutions worldwide to discuss such medical
ethical and legal dilemmas.16

In an ongoing study at our institution, the NGS analysis is
performed successfully in all consecutive patients with a suspi-
cion of PDAC. Similar to the described case, this analysis can
lead to a change in the treatment plan in some patients. In other
patients, clinicians choose to wait for the NGS results due to
inconclusive cytology and/or imaging results. In a large majority
of patients, the NGS results support the cytology and imaging
results (data not shown). We performed the NGS analysis using

a focused gene panel targeting the mutation hotspot regions of
50 genes. For other diagnostic or therapeutic purposes, this
panel could be expanded to include additional informative gene
targets. However, the ability of such an expanded panel to iden-
tify low frequency gene variants in limited amounts of material
is questionable. Therefore, the use of tumour cell enrichment
techniques, such as microfluidic cell sorting, may increase the
ability to identify gene variants and to stratify focal gene ampli-
fications and/or deletions.17

Multiple pre-analytical factors may influence the success of
the NGS analysis of FNA-derived DNA.18 In our institute, the
use of automated nucleic acid extraction decreased the failure
rate extensively.9

Despite its clear advantages, the current NGS methods are
time-consuming and delay the diagnostic process by at least
5 days. However, future advances in the technology will likely
decrease this delay considerably. Moreover, NGS-based diagnos-
tics are currently not covered by health insurance in many coun-
tries, making the approach potentially impractical from a strictly
financial perspective.

In conclusion, we believe that FNA NGS shows great poten-
tial to detect germline pathogenic variants in addition to
somatic variants in solid tumours. Furthermore, this case shows
that the genomic profile of abnormalities might help in distin-
guishing ‘de novo’ tumours from metastases or recurrences.
Future studies should include large patient series and additional
testing of other gene panels.
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