
Histo-blood group glycans in the context of personalized medicine
Dotz, V.; Wuhrer, M.

Citation
Dotz, V., & Wuhrer, M. (2016). Histo-blood group glycans in the context of personalized
medicine. Bba - General Subjects, 1860(8), 1596-1607. doi:10.1016/j.bbagen.2015.12.026
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/86240
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/86240


POSTPRINT 
V. Dotz, M. Wuhrer / Biochimica et Biophysica Acta 1860 (2016) 1596–1607 

1 
http://dx.doi.org/10.1016/j.bbagen.2015.12.026 
0304-4165/© 2015 Elsevier B.V. All rights reserved 

Histo-blood group glycans in the context of personalized medicine 

 

Viktoria Dotza,b*, Manfred Wuhrera,b 

 

a Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; 

b Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Nether-

lands; 

 

* Corresponding author: Viktoria Dotz; Tel.: +31-71-5268701; e-mail: v.dotz@lumc.nl or v-dotz@t-

online.de; postal address: Leiden University Medical Center, Postbus 9600, 2300RC Leiden, The 

Netherlands 

 

 

Article history: 

Received 11 November 2015 

Received in revised form 29 December 2015 

Accepted 30 December 2015 

Available online 31 December 2015 

DOI: https://doi.org/10.1016/j.bbagen.2015.12.026 

 

 

Abbreviations:  

BG, blood group; CA, cancer antigen; FORS, Forssman; FUT, fucosyltransferase (gene); GLOB, Glo-

boside; GSL, glycosphingolipid; ISBT, International Society for Blood Transfusion; Le, Lewis; MS, 

mass spectrometry; RBC, red blood cell; Se, Secretor; sICAM-1, soluble Intercellular Adhesion Mole-

cule 1 

 

http://dx.doi.org/10.1016/j.bbagen.2015.12.026
https://doi.org/10.1016/j.bbagen.2015.12.026


POSTPRINT 
V. Dotz, M. Wuhrer / Biochimica et Biophysica Acta 1860 (2016) 1596–1607 

2 
http://dx.doi.org/10.1016/j.bbagen.2015.12.026 
0304-4165/© 2015 Elsevier B.V. All rights reserved 

Abstract 

Background: A subset of histo-blood group antigens including ABO and Lewis are oligosaccharide 

structures which may be conjugated to lipids or proteins. They are known to be important recognition 

motifs not only in the context of blood transfusions, but also in infection and cancer development. 

Scope of review: Current knowledge on the molecular background and the implication of histo-blood 

group glycans in the prevention and therapy of infectious and non-communicable diseases, such as 

cancer and cardiovascular disease, is presented. 

Major conclusions: Glycan-based histo-blood groups are associated with intestinal microbiota compo-

sition, the risk of various diseases as well as therapeutic success of, e.g., vaccination. Their potential 

as prebiotic or anti-microbial agents, as disease biomarkers and vaccine targets should be further 

investigated in future studies. For this, recent and future technological advancements will be of partic-

ular importance, especially with regard to the unambiguous structural characterization of the glycan 

portion in combination with information on the protein and lipid carriers of histo-blood group-active 

glycans in large cohorts. 

General significance: Histo-blood group glycans have a unique linking position in the complex network 

of genes, oncodevelopmental biological processes, and disease mechanisms. Thus, they are highly 

promising targets for novel approaches in the field of personalized medicine. 
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1 Introduction 

More than a century after the discovery of the ABO blood group (BG) by Karl Landsteiner [1], current-

ly, over 30 different BG systems and more than 300 recognized BG antigens are defined by the Inter-

national Society for Blood Transfusion (ISBT) [2]. A recent overview is provided on the society’s web-

site [3]. The different BG antigens evolve from genetic polymorphisms of red blood cell (RBC) surface 

molecules, most of which are peptides, and some are carbohydrates, such as ABO antigens [3]. 

However, BG antigens including ABO are not only expressed on RBCs, but are also present in many 

tissues [4]. Therefore, these histo-BG antigens appear to be relevant not only in transfusion medicine, 

but also in transplantation [5]. Moreover, histo-BG antigens may also occur in glandular secretions. 

For example, ABO and Lewis antigens are found on saliva mucins, and free oligosaccharides are 

found in milk and urine [6–9]. Structurally, these particular histo-BGs are glycans, defined as “any 

sugar or assembly of sugars, in free form or attached to another molecule” [10].  

Glycans in general are known to be “directly involved in the pathophysiology of every major disease”, 

and it has been concluded that “knowledge from glycoscience will be needed to realize the goals of 

personalized medicine and to take advantage of the substantial investments in human genome and 

proteome research and its impact on human health” as stated by a recent report from the US National 

Academies [11].  

Although the lack of expression of BG antigens is not directly resulting in disease, as known so far, 

the presence or absence of certain BG antigens on RBC surfaces or in other tissues or bodily fluids 

has been found to be associated with susceptibility to various diseases, beyond their recognized role 

in incompatibility reactions during transfusion, transplantation or pregnancy. Largest body of evidence 

for the carbohydrate-based histo-BGs ABO, Lewis (Le) and Secretor (Se) is available particularly in 

the context of infectious diseases and cancer (reviewed in [12–16]). Nevertheless, histo-BG glycans 

are far from being exploited for diagnostic or therapeutic applications, apart from the prominent ex-

ception of the cancer antigen (CA) 19-9, i.e. sialyl-Lea [17]. 

Glycan-based BGs, i.e. ABO, P1PK, Le, H and Se, Ii, Globoside (GLOB), Forssman (FORS), and the 

high-incidence antigen Sda, altogether represent more than 20 distinct antigenic structures. An over-

view of the glycan-based BG systems and the associated RBC phenotypes with their distributions 

among populations is given in Table 1. In this review, the potential use of these glycan-based histo-

BGs in the context of personalized medicine will be discussed as well as the technology suitable for 

determining them in a research as well as clinical setting. 

http://dx.doi.org/10.1016/j.bbagen.2015.12.026
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Table 1 Glycan histo-blood groups (BG) and responsible genes with blood type distributions among populations 

BG 1 Gene ² Glycosyltransferase ² Carrier Antigens 3 RBC Type Frequencies of blood types in % 4  

   Caucasians China US blacks Reference 

ABO ABO (Inactive)  (H) O 39  (34) 49 [12,18,19]  

  Histo-blood group ABO system transferase 
(A transferase; alpha 1-3-N-acetylgalactosaminyl-
transferase; A3GALNT) 

 
 
GSL, N-/O-
glycoprotein, free 
glycan 

A; A1; A2 A  42  (29) 27 

  Histo-blood group ABO system transferase 
(B transferase; alpha 1-3-galactosyltransferase; 
A3GALT1) 

B B 13  (28) 20 

  A transferase and B transferase A; A1; A2; B AB 6  (9) 4 

LE FUT3 (Inactive)   Le(a-b-) 6 9 22 [12,20]  

  Galactoside 3(4)-L-fucosyltransferase (Lewis FT; 
fucosyltransferase 3; CD174); Le-FUT 

GSL, N-/O-
glycoprotein, free 
glycan 

Lea Le(a+b-) 22 0 23 

  Leb; (Lea) Le(a-b+) 5 72 71 55 

  Lea; (Leb) Le(a+b+) 0 20 0  

Se 6 FUT2 (Inactive)   (not applica-
ble) 6 

(20)   [21,22]  

  Galactoside 2-alpha-L-fucosyltransferase 2 (Al-
pha(1,2)FT 2; Secretor factor); Se-FUT 

GSL, N-/O-
glycoprotein, free 
glycan 

Se (Type 1 
H) 

(80)   

H FUT1 (Inactive)   Bombay or 
para-Bombay 

rare [12]  

Galactoside 2-alpha-L-fucosyltransferase 1 (fucosyl-
transferase 1); H-FUT 

GSL, N-/O-
glycoprotein 

H H almost 100% [12] 

I GCNT2 (Inactive)  i i  rare (adults) [23]  

  N-acetyllactosaminide beta-1,6-N-
acetylglucosaminyl-transferase, isoform A (I-
branching enzyme) 

I; i I almost 100% (adults)  

1 According to [3]  
² According to the HUGO Gene Nomenclature Committee at the European Bioinformatics Institute (genenames.org) in case of gene names and/or the recommendations in UniProtKB with a 
selection of alternative names in parentheses in case of glycosyltransferase names. Short names as used in this article are in bold. 
3 Antigens on red blood cells (RBC), tissues, or in secretions markedly elevated or specific to a certain blood type as compared to the other phenotypes within a BG. List is not extensive, i.e. not 
including various combinations/extensions of the respective antigens. 
4 Both genotypic and red blood cell phenotypic determinations were included here and genotyping data are shown in parentheses. 
5 Le(a-b+) phenotype only in combination with active FUT2 gene. 
6 Se-gene encoded FUT2 is not expressed in RBCs, and therefore does not represent a classic blood group, but provides Type 1 H antigens as precursors for BG antigens in secretions and tissues.  
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P1PK A4GALT (Inactive)  PX2 p rare [12]  

  Lactosylceramide 4-alpha-galactosyltransferase 
(Gb3 synthase; P1/Pk synthase) 

GSL P1; Pk; 
(NOR) 7 

P1 79 27 94  

    Pk; (NOR) 7 P2 21 73 6 

GLOB B3GALNT1 (Inactive)   Pk rare [12,24]  

  UDP-GalNAc:beta-1,3-N-
acetylgalactosaminyltransferase 1 (globoside syn-
thase) 

GSL P  high incidence  

FORS GBGT1 (Inactive)    almost 100% [12,24] 

  Globoside-3-alpha-N-acetyl-D-
galactosaminyltransferase (Fs synthase) 8 

GSL FORS1 Apae rare  

Sid B4GALNT2 9 (Inactive)   Sda- <10% [25]  

  Beta-1,4 N-acetylgalactosaminyltransferase 2 N-glycoprotein Sda Sda+ high incidence [26]  

(no. 209) ST3GAL2  9 CMP-N-acetylneuraminate-beta-galactosamide-
alpha-2,3-sialyltransferase 2 

GSL LKE LKE almost 100% [12,24] 

7 NOR antigens expressed if a rare variant of A4GALT gene is present 
8 Due to its novelty no UniProt entry exists for a human GBGT1-encoded Fs synthase. Nomenclature was used according to [27].  
9 Genetic background not yet completely understood. 
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2 Structural basis of glycan histo-blood groups 

Glycan histo-BG antigens can occur in various types of glycoconjugates, i.e. on glycosphingolipids 

(GSLs), N- and O-glycans of cell membrane-bound or secreted glycoproteins and mucins, or on free 

oligosaccharides from milk or urine (Table 1, Fig. 1, [23,28]). As an example, ABO activity on erythro-

cytes was found to originate from glycoproteins (65–75%), polyglycosylceramides (10–15%) and from 

other glycoconjugates (10%) [29].  

 

Fig. 1 Examples of human histo-blood group glycans and their carriers on cell surfaces and in body flu-
ids. Histo-blood group glycans decorate various core glycans attached to lipids (black waves) and pro-
teins (blue lines) anchored in the cell membrane, or to secreted glycoproteins/mucins or free oligosac-
charides as found in large quantities in human milk. Blood group antigens are found on both N- and O-
glycans of proteins. Microbial receptors can recognize various histo-blood group antigens and can 
thereby attach to the host’s epithelial surfaces. Alternatively, soluble glycans can serve as decoy recep-
tors for pathogens. 

Even when regarding the glycan portion only, a diversity of precursor oligosaccharides together with 

the various antigenic determinants potentiates the overall structural diversity of histo-BG-active com-

pounds. For instance, ABO determinants are found on type 1 and 2 chains of N-/O-glycans attached 

to proteins or (neo)lacto-series GSLs (Fig. 2A and 2B). Furthermore, they decorate O-linked type 3 

chains on mucins that are structurally identical to the so-called T antigen (Fig. 2C). Type 4 chains 

bearing ABO epitopes are part of globo- and ganglio-series GSLs (Fig. 2C and Fig. 3; comprehensive 

reviews in [28,30–32]). The expression of histo-BG antigens and their precursors is tissue-specific 

and has been associated with the embryologic origin of a tissue and the degree of differentiation of 

the respective cells within a tissue [4,33–35]. In the following, the minimal structural features of glycan 

histo-BG epitopes are briefly described, and a summary of the relevant genes, enzyme names and 

http://dx.doi.org/10.1016/j.bbagen.2015.12.026
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products is given in Table 2. For a more extensive overview on the genetic, biochemical, epidemiolog-

ical, and historical aspects of those the reader is referred to literature [4,12,23,24,26,28,36–40]. 

 

Fig. 2 Antigenic structural motifs of the histo-blood groups ABO and Lewis (Le) with their precursors. 
The interaction of glycosyltransferases acting on type 1 and type 2 precursors results in ABO and Lewis 
a/b (A) or x/y structures (B), respectively. Mucin-type 3 (T antigen) and glycosphingolipid-based type 4 
structures are also precursors to ABO and Lewis structures (C). The Ii blood group is determined by 
linear (i) or beta6-branched (I) polylactosamine type 2 chains (D). Sda antigenic determinant (E). FUT, 
fucosyltransferase; Se, secretor. Dashed, red-crossed arrows indicate inadmissible reactions. 

2.1 Ii histo-blood group 

Ii epitopes are based on repeating units of either linear or β1,6-branched N-acetyllactosamine chains 

(Fig. 2D) [41–43]. The name of the blood group emerged from an abbreviation of ‘individuality’ and 

thus represents an upper and a lower-case letter ‘i’. Both structures are ubiquitously expressed, with 

the exception of the very rare adult i phenotype lacking branched I structures either on erythrocytes 

only or even tissue-wide, depending on the type of mutation [23,44].  

Similar to other polylactosamines, Ii structures are substrates to various glycosyltransferases, includ-

ing sialyltransferases and ABO and Le BG transferases as described in the following (for review see 

[32,45]). 

http://dx.doi.org/10.1016/j.bbagen.2015.12.026
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2.2 ABO, H and Lewis histo-blood groups 

The biosynthesis of the antigens from ABO and Le histo-BGs is closely related, although the respon-

sible glycosyltransferases are expressed from several independent genes: ABO gene on chromo-

some 9, H-gene (FUT1), Se-gene (FUT2), and Le-gene (FUT3) on chromosome 19 [34,37]. For ab-

breviated as well as full names including linkage specificities and responsible genes of the fucosyl-

transferases (FUT), see Table 1. Starting from type 1 lactosamine residues, Le-FUT and Se-FUT are 

competing to generate an Lea or type 1H epitope (Led), respectively [46,47] (Fig. 2A). Type 1H (or Se 

antigen) is a substrate for the ABO gene-encoded A or B transferase, producing the A or B antigen, if 

one of the active alleles is present. Furthermore, type 1H can be fucosylated by Le-FUT, generating 

the Leb epitope. Lea and Leb structures cannot be further modified, whereas A and B antigens are 

again substrates to Le-FUT, resulting in ALeb and BLeb antigens [6,28,48,49]. This pathway takes 

place in secretory tissues and cells other than erythrocytes, since type 1 structures are highly ex-

pressed in outer epithelial layers with higher degree of differentiation, e.g. in the oral or gut mucosa, 

and are substrates to Se-FUT [4]. Se-FUT is active in about 80% of Caucasians, the so-called secre-

tors (Table 1). If the Le gene is inactive, only the precursor structures Lec (type 1 precursor) and Led 

(type 1H), that are classified as part of the BG collection 210 [3] , are found in plasma or on red blood 

cells of non-secretors and secretors, respectively [28]. Erythrocytes normally have no Se-FUT or Le-

FUT expression [50], and bear ABO antigens mainly on type 2 chains, which are the preferred sub-

strates for H-FUT [4]. 

On type 2 structures Lex antigens (CD15) in alpha1,3-linkage to the subterminal GlcNAc are being 

generated by either the Le-dependent alpha1,3/4-FUT or one of the other alpha1,3-FUTs [28] (Fig. 

2B). In addition to Se-FUT, if expressed in the respective cell type, the H gene-regulated H-FUT will 

primarily synthesize type 2 H structures, which can be further modified by A or B transferases or al-

pha1,3-FUTs, incl. Le-FUT3. The action of this type of FUTs results in Ley epitopes, i.e. type 2 iso-

mers of Leb. In analogy to the above-described pathway for type 1 chains, in type 2 ALey and BLey will 

be the largest end products if all the respective glycosyltransferases are expressed in their active form 

[6, 28]. The terminal Leb/Ley, A- or B-epitopes can usually not be further modified by elongation or 

branching; the same applies to the subterminal Lea or Lex  [6,51]. 

2.3 P1PK, FORS, GLOB and related histo-blood group antigens 

The antigens of the P1PK, FORS, GLOB BGs and related collections are all GSLs (reviewed in [12, 

24]). The classification of these antigens has been changed several times in the past; the current 

state according to the ISBT is listed in Table 1. Structurally, GSLs are composed of a lipophilic part 

containing a long chain fatty acid and a sphingosine anchored in the plasma membrane, and a 

hydrophilic glycan head group (Fig. 1). Starting from lactosylceramide either Pk antigen 

(globotriaosylceramide, CD77) is synthesized via the action of the A4GALT gene-encoded 

galactosyltransferase leading to the globo-series GSL pathway, or P1 antigen is synthesized via the 

action of the same enzyme following two other (non-BG-related) glycosyltransferases generating 

neolacto-series GSL (Fig. 3). For P antigen production an active B3GALNT1-gene is required. The 

http://dx.doi.org/10.1016/j.bbagen.2015.12.026
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structures of the globo- and (neo)lacto-series GSLs act as precursors for GSL-attached ABO, Le and 

H/Se epitopes, as indicated in Fig. 3. If a null-allele of either A4GALT or B3GALNT1 is apparent (in 

very rare cases), globo-GSLs cannot be produced [52]. Furthermore, a rare variant of the A4GALT 

enzyme is linked to the expression of NOR antigens [53]. The FORS1 antigen was found in 

individuals with an activated GBGT gene, which is normally not active in humans, but in some non-

primate animals [27]. Except for P1 antigen, which is RBC-specific, the expression of the other related 

antigens is common to many tissues and cell types, and expression levels can vary during cell cycle 

and differentiation [12]. 

 

Fig. 3 The biosynthetic pathways of the glycosphingolipid-based blood group (BG) antigens. The en-
zymes and resulting antigens linked to the following BGs are depicted: P1PK BG (A4GALT gene, cyan): 
Pk, P1, NOR; GLOB BG (B3GALNT1 gene, red): P, PX2; FORS BG (GBGT1, green): FORS1; GLOB collec-
tion 209: LKE. For full enzyme names see Table 1. *Each of the structures shown carries a beta-linked 
ceramide residue at the reducing end glucose, which is not depicted here for simplicity reasons. The 
links to the synthesis pathways of GSL-based blood group antigens of ABO, Le, and H/Se groups are 
also shown (grey boxes). Solid lines represent common pathways according to common glycosyltrans-
ferase gene alleles, whereas dashed lines symbolize very rare ones. Modified from [12, 24]. 

 

2.4 Other glycan histo-blood group antigens 

In addition to the blood group systems and collections as classified by ISBT, two more glycan histo-

BGs should be mentioned here, i.e. the high incidence antigen Sda and the T/Tn system. Tn antigen 

as part of an O-linked mucin-type glycan is primarily a substrate for T-synthase, a ubiquitously ex-

http://dx.doi.org/10.1016/j.bbagen.2015.12.026
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pressed beta3-galactosyltransferase responsible for T antigen (O-glycan core 1) formation (for review, 

see [54]). T antigen is furthermore identical with type 3 chains, which can be further elongated and/or 

decorated by other BG antigens (Fig. 2C).  

Sda antigen is included in the high incidence 901 series according to ISBT classification due to its high 

prevalence in Caucasians. Similar to the discrepancy of erythrocyte vs. secretions phenotypes in Le 

BG, individuals having an RBC Sda- phenotype may still display Sda antigens in their secretions and 

especially urine (for review, see [26]). The minimal antigenic structure as shown in Fig. 2E is shared 

by both Sda and CAD antigens, which are assumed to be products of the same B4GALNT gene-

encoded beta4-N-acetylgalactosaminyltransferase, however, the latter resulting from a more active 

enzyme variant. Consequently, Sda+ individuals have Sda structures primarily on N-linked glycans, 

whereas CAD-individuals also express these on type 3 O-linked glycans and long-chain sialyl-

paraglobosides [55]. 

3 Histo-blood group phenotype vs. genotype 

The genetically determined repertoire of glycosyltransferases is the basis for an individual’s histo-BG 

phenotype. However, genetic diversity with the ~300 alleles found for the ABO locus and ~50 alleles 

for the H, Se, and Le loci each [25], together with zygosity gives rise to an enormous variation of the 

levels of antigen expression including weak phenotypes leading to blood grouping discrepancies 

[56,57]. Moreover, in pregnant women, individuals with different hematologic disorders, and especially 

in newborns, weak expression of histo-BG antigens on RBCs has been reported [57,58]. The age-

dependency of ABO antigen expression on RBCs is connected to the expression of I antigen, which is 

the major precursor of ABO structures on RBCs [12]. I antigen expression in RBCs is negligible at 

birth and reaches the full adult level by the age of 18 months [59], giving an example of the oncode-

velopmental nature of histo-BG antigen expression [33]. The expression levels of ABO/Se and Le 

antigens can also vary tremendously within an adult individual over time [60]. Regulatory mechanisms 

of histo-BG-related glycogene expression, such as microRNA or transcription factor expression, are 

now being studied [38,61]. 

The vast variability of the actual histo-BG phenotypes furthermore derives from the numerous interre-

lations between the respective biosynthetic pathways. This is demonstrated by the close relation-

ships between ABO/Se and Le BGs as well as P1PK, GLOB and FORS, in addition to their precursor 

chains Ii and T/Tn (Fig. 2A-D). Another important modification, which is, however, not directly related 

to blood groups, is alpha2,3-sialylation of the terminal galactose prior to the action of a FUT on type 1 

or 2 chains producing sialyl-Lea and sialyl-Lex antigens, respectively (Fig. 4). These combined histo-

BG antigens are recognized for their role in the context of cancer as is discussed below. Interestingly, 

sialyltransferases also compete with FUTs for the same substrates, and can therefore have an impact 

on the expression levels of the inter-connected ABO and Le glycan BG antigens [12]. The different 

levels of substrate specificities have an additional impact on the overall complexity of the biosynthetic 

network of histo-BG glycosyltransferases: Some antigens can be synthesized by more than one en-

http://dx.doi.org/10.1016/j.bbagen.2015.12.026
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zyme (see H/Se) and in some instances enzymes are not limited to only one type of acceptors (see 

chain types 1-4 for Se-FUT or the various substrates of Le-FUT), or one type of linkage (s. Le-FUT 

acting as alpha1,3 and alpha1,4-FUT). 

 

Fig. 4 Oncodevelopmental histo-blood group antigens sialyl-Lea (CA19-9) and sialyl-Lex 

 

Taken together, various factors can have an impact on the final phenotype, i.e. the presence of indi-

vidual histo-BG glycans on a cell surface or in a body fluid. Obviously, the various associations found 

between BG glycans and different diseases, disease stages and health-promoting factors are making 

histo-BG glycans an intriguing topic in the field of personalized medicine as discussed in the following 

paragraphs. In Table 2 the major conclusions from selected epidemiological studies reporting on as-

sociations between different diseases and ABO, Le and Se histo-BGs are summarized. 

4 Infectious diseases and glycan histo-blood groups 

For all the common and most rare BG phenotypes on RBCs no direct causative relationship is known 

between the BG null-alleles and inherited diseases [5, 12]. Since glycans are known for their 

predominant role as recognition molecules, in particular, in infection, the association of glycan histo-

BG polymorphisms with various infectious diseases is not surprising. Many vertebrate species have 

maintained a functional AB gene, however, in humans roughly half of the population has O genotype 

resulting in a non-functional A/B enzyme. ABO polymorphism has been linked to evolutionary 

adaptation as defense against inter- and intra-species infections, since individuals produce 

antibodies against the non-self AB antigens after the exposure to these antigens originating from 

e.g. pathogens [62]. Masking of pathogen adhesion glycotopes by other glycans is another 

defense mechanism suggested [63]. Whereas microbial attachment sites on epithelial surfaces can 

support colonization, histo-BG antigens on soluble glycans such as mucins or free oligosaccharides 

from human milk may serve as decoy receptors in pathogen defense [64–66] (Fig. 1). 

http://dx.doi.org/10.1016/j.bbagen.2015.12.026
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Table 2 Glycan histo-blood groups (BG) and selected disease associations 

BG Type Disease susceptibility Reference 

ABO O H. pylori infection [63] 

  E. Coli O157 infection and death [67]  

  Peptic ulcer [68]  

 A S. mansoni infection & disease severity [69]  

  Gastric cancer [68] 

  Overall cancer [70]  

 B Salmonellosis [71]  

  E. Coli infection [71] 

 Non-O Severe malaria 
Exocrine pancreatic cancer  
Cardiovascular disease 

[72]  
[73]  
[74]  

LE Inactive Urinary tract infections 
Invasive ductal breast carcinoma 
Childhood asthma 

[75]  
[76]  
[77]  

Se Inactive  
(non-Se) 

S. pneumonia infection 
N. meningitidis infection 
H. influenza infection 
Urinary tract infections 
Gram-negative sepsis in premature infants 
Necrotizing enterocolitis in premature infants 
Gastric disease 
Crohn’s disease 
Primary sclerosing cholangitis 
Chronic pancreatitis 
Type 1 diabetes 
Breast axillary lymph nodes metastasis 

[78]  
[78] 
[79]  
[75] 
[80]  
[80] 
[81]  
[22,82]  
[82] 
[21] 
[83]  
[76] 

 Active (Se) Norovirus infection 
Rotavirus infection 
Influenza virus A & B infection 
Rhinovirus infection 
Respiratory syncytial virus infection 
Echovirus infection 
HIV infection and disease progression 

[84–87]  
[88]  
[89]  
[89] 
[89] 
[89] 
[90]  

 

Glycan epitopes including histo-BGs have an important role in host-pathogen interactions, since gly-

cans act as recognition sites for bacterial adhesins, and secondly, pathogens express surface 

epitopes to mimic those of the host to evade immune response, as proposed for Helicobacter pylori 

Le antigens [14]. Remarkably, H. pylori is able to bind to the same antigenic structures on the host’s 

epithelial surface [91]. H. pylori is present in half of the world population and chronic infection is linked 

to gastritis, peptic ulcer and gastric cancer with a high degree of heterogeneity in disease phenotypes 

[92]. The bacterium is able to attach only to Leb antigen without additional A or B epitopes, and has 

therefore been proposed to be linked to BG O [91]. However, clinical data on the association of H. 

pylori, gastric cancer and ABO/Le BGs are contradictory (Table 2). A higher incidence of H. pylori in O 

and a lower incidence in A-individuals have been reported in multiple studies [63]. Strikingly, gastric 

cancer risk was higher in A BG (incidence rate ratio 1.20, 95% CI 1.02–1.42), whereas peptic ulcer 

risk was found to be higher in O-individuals in a large population-based study [68]. The link to Le and 

Se phenotype seems to be even more unclear. For instance, Se status and H. pylori infection have 

shown to be independent risk factors for gastric disease, with a higher risk in non-Se [81], although 

Leb (Se) seems to play a crucial role in H. pylori adhesion [12, 91]. On tissue level, H. pylori infected 
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patients with gastric ulcer were shown to have increased Lea and loss of H and Leb expression in their 

inflamed gastric mucosa [7]. The authors claimed ABO and Le antigens to be good indicators for cel-

lular alterations in the gastric epithelium. 

Le- and Se-positive women were found to have lower risk for urinary tract infections as compared to 

Le-negative or non-Se [75]. Since adhesins from uropathogenic Escherichia coli recognize various 

globo-series GSLs including FORS1, P, and especially the sialylated LKE, antigens in vitro [93], a 

masking function of antigens competing with sialylation in secretors, i.e. Leb and AB, has been pro-

posed [94]. B and AB individuals in a pediatric cohort were found to be more susceptible to salmonel-

losis and various E. coli types of infections (meningitis, sepsis, pyelonephritis) as compared to A or O 

individuals [71]. In contrast, Shigella infections were more prevalent in O individuals [71]. This relates 

to the higher susceptibility of O-individuals to infection by another Shiga-toxin related bacterial strain, 

i.e. E. coli O157 [67]. The same study found P-negative individuals to be more likely to develop se-

vere hemolytic uremic syndrome after infection, possibly due to higher induction of TNF-alpha [67]. 

Pk, LKE and FORS1 histo-BG antigens have been associated with other Shiga toxin- and verotoxin-

producing E. coli strains (STEC and EHEC) [24,95]. Moreover, Pk-knockout mice showed no reaction 

to verotoxin administration, whereas basal levels of Pk expression were already lethal to wild-type 

mice [52]. 

Shiga- and verotoxin-binding Pk antigen is further found in human milk, and may act as decoy recep-

tor in breastfed infants, that are at lower risk for diarrheal diseases as compared to formula-fed ones 

[96]. The level of Se-positive free oligosaccharides in human milk has also been positively correlated 

with, e.g., protection against E. coli-induced diarrhea in breastfed infants [97]. Similarly, alpha-1,2-

fucosylated oligosaccharides from human milk were associated with protection against Campylobac-

ter jejuni diarrhea [98], possibly due to their function as decoy receptors [99]. In premature infants, 

non- or low-Se phenotype as well as genotype was furthermore associated with severe outcomes, 

such as necrotizing enterocolitis or gram-negative sepsis [80]. 

Expressing AB antigens on epithelia and in secretions, as is the case in Se-positive individuals, might 

furthermore be protective against pneumonia caused by streptococci [63, 78]. This pathogen secretes 

glycosidases acting on type 2 chain A, B and Ley structures, which are known virulence factors [100]. 

Secretors predominantly express type 1 chains, shielded by A and B epitopes and might therefore be 

protected against pathogen adhesion.  

Non-secretors have also been reported being more susceptible to infections caused by Neisseria 

meningitidis and Haemophilus influenzae [78, 79]. Se, Le, and AB BGs seem to also play a role in 

Vibrio cholerae infection and disease severity [101,102]. 

Pk, P, ABH antigens and 2’- and 3-fucosyllactose, the latter two being milk oligosaccharides generat-

ed by Se- and Le-fucosyltransferases, respectively, may play a role in Pseudomonas aeruginosa ad-

hesion [103,104]. Pk antigen also binds to adhesin P from Streptococcus suis, a pig pathogen that 

can cause meningitis in humans [105]. 
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Various studies have demonstrated the stimulation of antibody titers against BG antigens under dif-

ferent conditions of bacterial exposure, thus, supporting the hypothesis of an immunologic defense 

function of BG antigen (non-)expression [12]. Another indication for the implication of ABO histo-BGs 

in immunological processes was given by the findings that the efficacy and the vibriocidal antibody 

response of cholera vaccines was lower in BG O compared to BG A individuals [106,107]. Therefore, 

exploring the role of anti-BG antibody response and protection following specific vaccinations is of 

great interest, as has been shown in a systems biology approach using glycan microarray analysis of 

immunoglobulin G preparations from different healthy populations [108]. The pooled antibody prepa-

rations bound to various self-antigen ligands including especially GLOB, FORS1, Ley, BG A1 and BG 

B epitopes, but also H2 and sialyl-Lea in some cases. The authors suggested a protective role for 

these self-antibodies by blocking bacterial attachment sites if released on epithelial surfaces.  

 

In the context of viral infections, associations of non-B as well as Se genotype and phenotype with 

norovirus or rotavirus infection and gastroenteritis have been reported in numerous studies (Table 2) 

[84-88]. In addition, a certain rotavirus genotype, P[11] that mainly infects neonates, was found to 

attach specifically to saliva from neonates and infants, but not adults, due to high expression of pol-

ylactosamines, i.e. the i antigen [109]. Different viral proteins from selected rotaviral genotypes were 

found to bind to either i epitopes or their type 1 isomers with or without internal Lex of human milk 

oligosaccharides in a strain- and viral protein-dependent manner [64]. Consequently, infectivity seems 

to be highly dependent on the virus genotype in interaction with the host ancestry/ethnicity and differ-

ent histo-BGs. For norovirus, multivalent virus-like particle vaccines have therefore been proposed 

representing a broad set of viral genotypes and strains [110]. Interestingly, anti-histo-BG, but not im-

munoglobulin G or total antibody titers prior to the challenge with norovirus were positively correlated 

with protection against infection in placebo-recipients, while in vaccinees the frequency of severe 

disease was lower with higher pre-challenge anti-histo-BG antibody titers [111]. For the development 

of efficient vaccines against norovirus and rotavirus, individualized approaches addressing all the 

relevant factors such as virus genotype, the specific particles and adjuvants used in the vaccine, and 

their interaction with the histo-BG antigens and anti-histo-BG antibodies of the recipients will be of 

particular interest in the future. 

O-BG was associated with resistance towards severe acute respiratory syndrome caused by corona-

virus [112]. Se phenotype has been linked to other respiratory virus diseases, including influenza, 

rhinovirus, respiratory syncytial virus, and echovirus [89]. Non-secretor genotype and phenotype are 

also associated with protective aspects in HIV, such as reduced infection risk (p = .029) [90] and 

slower disease progression (p < .001) [113]. Likewise, Pk expression has been shown protective 

against HIV-1 infection in vitro as compared to p phenotype [114]. The role of the P1Pk BG in HIV 

infection is reviewed in [115]. In contrast, P antigen might be implicated in parvovirus B19 infection, 

shown as its primary receptor [116]. 
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BGs have also been associated with parasitic diseases (Table 2), in particular, BG-O is a recognized 

genetic factor for a lower risk of severe malaria [72]. The high percentage of O-individuals in malaria-

endemic regions supports the hypothesis for a selective advantage of having BG O [13]. Furthermore, 

the incidence of schistosome infection and disease severity has been linked to A-BG [69]. 

5 Non-communicable diseases and glycan histo-blood groups 

Since histo-BG glycans are recognized for their role as oncodevelopmental antigens [33] and are 

moreover linked to tissue differentiation stage [4], it is not surprising that changes in their expression 

in the context of malignancies have been described [30,117] – and more recently also other glyco-

sylation changes in cancer (for extensive reviews, see [15,118,119]). Moreover, epidemiological stud-

ies found a decreased risk of various types of cancers in BG O and an increased risk in BG A, as 

found in a meta-analysis [70] (Table 2). However, in another meta-analysis no significant association 

was found when comparing O vs. non-O BGs, except for exocrine pancreatic cancer (OR=0.53 and 

95% CI 0.33–0.83 for BG-O vs. non-O) [73]. Further associations were found for Le and Se genotypes 

with breast cancer susceptibility and axillary lymph nodes metastasis, respectively [76]. 

In clinical samples, an increase of either incomplete/truncated precursor structures (T, Tn, Pk, H, Ii, 

type 1 chain) or de novo expressed cancer antigens, i.e. increased sialyl-Lea/x (Fig. 4), or FORS1, P, 

Leb (Se) and A antigens in otherwise null-allelic individuals, is observed in various cancer types de-

pending on the cancer stage [15,120,121]. Accordingly, sialyl-Tn is a recognized tumor marker and 

has been proposed as a target for the design of anticancer vaccines [122], however, with limited suc-

cess to date [123]. Sialyl-Lea/x appear to play a role in later tumor stages and especially in metastasis 

[15]. Notably, FUT3 (Le) and alpha2,3-sialyltransferase transcription and sialyl-Lea/x antigen expres-

sion was shown to be upregulated in H. pylori infected patients with early onset gastric carcinoma 

[124]. Moreover, sialyl-Lea (CA19-9) is elevated in various types of gastrointestinal carcinomas and is 

an approved prognostic marker for pancreatic cancer therapy, however, in Le-positive patients only. 

Since Le-negative individuals do not express an active alpha1,4-FUT, sialyl-Lea/CA19-9 serum levels 

are significantly lower or even non-detectable in pancreatic cancer patients with null-allelic Le-gene 

[17].  

Another significant glycomic BG antigen change in cancer is a loss of A and B antigens in premalig-

nant or malignant and metastatic tissue of otherwise A- or B-positive individuals [120,125–127]. This 

switch has furthermore been linked to enhanced cellular motility and poor prognosis [117]. The A/B 

expression loss goes along with a higher abundance of the precursor structure I antigen in carcino-

mas from secretors, whereas cancerous tissue from non-secretors experiences a lower I antigen ex-

pression [121]. Moreover, an increased distribution of H antigen throughout all the layers of malignant 

tissue as compared to a more restricted pattern in normal mucosa has been found [126,128]. Analo-

gously, alpha1,2-FUT activity from both Se- and H-gene encoded enzymes were higher in rectal car-

cinomas than in normal tissue [129]. Interestingly, Se/H-antigens were found in cecal tumors from Se- 

as well as non-Se patients, while being absent in normal tissues of non-secretors. A very recent in-
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vestigation of cyst fluid and tissue from ovarian tumors has shown remarkable differences in ABO BG 

antigen expression between different tumor stages and subtypes [130]. By using mass spectrometry 

average compositions of fucosylation (ABO and Le antigens) and sialylation of mucin-type glycans, 

the authors were able to distinguish three groups of samples: i) low-grade, low malignant potential 

carcinomas and benign mucinous, ii) all serous epithelial ovarian carcinomas, and iii) serous benign 

samples. Again, non-secretor samples were exceptions due to a genetically determined lower expres-

sion of BG epitopes on epithelia.  

The described glycomic changes in cancer have a potential as therapeutic vaccine targets, including 

histo-BG antigens [16,131]. Moreover, ABO BG was demonstrated as a possible parameter for de-

tecting responders to a therapeutic prostate cancer vaccine [132]. Compared to BG A/AB participants, 

BG O and B patients experienced enhanced survival after vaccination, especially if they developed an 

antibody response against the FORS1 antigen. This was explained by the authors by the presence of 

FORS1 in the poxviral vector used for the vaccine, showing structural similarity to the A-antigen. If 

verified, the conclusions drawn from this and similar studies could open an invaluable opportunity for 

an effective immunization strategy in a blood-group specific manner by designing vaccines with BG 

epitopes complementary to the BG of the recipients who would thereby develop an enhanced immune 

response.  

In summary, malignancy-associated changes of histo-BG glycans can be different in individuals with 

different genetic histo-BG backgrounds and may even be tumor stage- and subtype-specific, reveal-

ing them as promising biomarkers for (early) cancer diagnostics, as vaccine targets, and as relevant 

factors to include in personalized oncotherapeutic approaches.  

 

Associations between ABO and especially the non-Se phenotype or genotype with inflammatory and 

autoimmune diseases such as Crohn’s disease, primary sclerosing cholangitis, chronic pancreatitis, 

and type 1 diabetes have been reported [21, 22, 82, 83]. In addition, childhood asthma was found to 

have a higher incidence in secretors with BG O and/or Le-negative phenotype [77]. A possible expla-

nation for the higher susceptibility to Crohn’s disease in non-secretors is the link via gut microbiota. 

Intestinal microbiome composition differs between healthy Se and non-Se individuals as well as be-

tween different ABO phenotypes among secretors [133,134]. Moreover, perturbations in gut microbio-

ta metabolism and other factors of the host-microbial environment in non-secretors and FUT2 hetero-

zygous individuals with Crohn’s disease have been reported [135]. Fucosylation in the gut, which is 

primarily mediated by FUT2 and can be induced by certain gut bacteria via yet unknown mechanisms, 

has a central role in the host-microbe symbiosys and can suppress pathogens [136]. Interestingly, 

host fucose utilization by specific microbes is only down-regulated in non-Se mice if fed a glucose-

rich, polysaccharide-deficient diet, demonstrating an intense interaction between host genetics, diet 

and gut microbiome [137]. Notably, gastrointestinal malignancies, in particular colorectal cancer, have 

also been linked to gut microbiota composition [138].  
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Intriguingly, a previously unrecognized regulatory role of histo-BG antigens in inflammatory adhesion 

processes has been proposed due to a strong correlation of the ABO locus with plasma concentra-

tions of the soluble Intercellular Adhesion Molecule 1 (sICAM-1) [139]. Moreover, the ABO locus was 

associated with diabetes type 2 and E-selectin levels, besides sICAM-1 levels [140]. In addition, a 

lower risk of cardiovascular and associated diseases has been found for BG O individuals and 

linked to BG antigens on platelet glycoconjugates, as recently reviewed [74]. Interestingly, BG O indi-

viduals have lower levels of the blood clotting factors von Willebrand and FVIII due to their shorter 

plasma half-life [141].  

In addition to cancer-related changes in Ii antigen expression mentioned above, a rare disease asso-

ciation has been reported for the adult i phenotype. A correlation was found with congenital cataracts 

in certain kindreds [44]. This has been putatively explained by a direct effect of the lack of branched 

type 2 polylactosamines resulting from a certain null-allelic gene variant of the I-antigen producing 

enzyme in the human lens epithelial cells [23, 38, 44].  

Some indications do exist that variants of the T-synthase gene generating T antigen are associated 

with susceptibility to IgA nephropathy [142]. 

A downregulation of the B4GALNT2 gene resulting in strong reduction of Sda antigen expression in 

the colon and a concomitant increase of sialyl-Lex expression is observed in colon cancer and might 

offer a promising opportunity in cancer therapy in the future [143]. 

6 Conclusions and future perspectives 

As defined by the US Food and Drugs Administration, personalized medicine is the “tailoring of medi-

cal treatment to the individual characteristics, needs, and preferences of a patient during all stages of 

care, including prevention, diagnosis, treatment, and follow-up” [144]. As briefly demonstrated by the 

example of the interaction of an individual’s Se status and gut microbiota, histo-BGs might play a sig-

nificant role already at the early stage of disease prevention. Another example is the various histo-BG 

glycans in human milk, which are suggested to provide double protection to the breastfed child via 

their prebiotic and their antimicrobial activity in the gut [145]. The decoy function of milk glycans, in 

particular the highly abundant free oligosaccharides and mucin glycans, offers a yet underexamined 

possibility for a novel preventive and also therapeutic antibiotic strategy. Emerging high-throughput 

analytical technologies such as glycan microarrays, multiplexed capillary electrophoresis, or matrix-

assisted laser desorption/ionization (MALDI) mass spectrometry (MS) will pave the way for the dis-

covery of such novel bioactive compounds [64,65,146,147]. 

Traditionally, BG phenotyping is performed via targeted immunological assays using antisera, lectins, 

or monoclonal antibodies with or without staining on body fluids or tissues to determine the specific 

antigenicities [41,121,130,148,149]. An immunoassay is also used for the determination of CA19-9 

(sialyl-Lea) levels in clinics [17]. Genotyping, glycosyltransferase transcript analysis as well as stand-

ard proteomic techniques are currently being increasingly used also in the context of BG-typing [27, 
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130], and do therefore comply with the requirements of modern personalized medicine. Furthermore, 

they might be useful for patient stratification in settings where the genetic histo-BG background in 

combination with the natural anti-BG antigen antibodies plays a role, such as vaccine efficacy studies. 

The reverse ABO-typing method developed by Muthana and colleagues by using only 4 µL of serum 

with glycan arrays was proven as particularly useful since it enabled retrospective BG typing without 

having whole blood samples available [132].  

Our current knowledge on the significance of histo-BGs in the context of disease as summarized in 

sections 4 and 5 is thus far mainly based on observational studies stratifying patients and controls by 

their blood type and showing associations with disease or disease stages (Table 2). Information on 

the underlying mechanisms is very limited to date, possibly due to the extremely reductionistic ap-

proach that emerged from transfusion medicine, i.e. grouping individuals into a few categories de-

duced from their serological phenotype (Table 1 and 2). However, the knowledge of a patient’s RBC 

pheno-/genotype or glycosyltransferase expression is only indicative for the final, complex glycomic 

profile [62], especially if taking into account the vast tissue- and disease-specific variations of the his-

to-BG antigens, their precursors and conjugates, as well as interactions between different BGs, as 

discussed in sections 2 and 3. Thus, simultaneous mapping of glycans from different histo-BGs, next 

to the information on their carriers would provide the increased degree of comprehensiveness that is 

required to investigate the mechanisms behind the BG-to-disease associations presented above.  

Modern glyco-analytical techniques, such as MS and liquid chromatography, are in principle capable 

to provide this type of information on multiple levels:  

1) (semi-)quantitative determination of terminal glycosylation including histo-BG glycans as well 

as sialylation, the levels of which appear to be inter-related;  

2) mapping of the overall glycome by furthermore providing information on the core glycan struc-

tures bearing the terminal BG glycans, i.e. N- or O-glycans, or the glycan portion of the GSL-

based BG structures; 

3) determination of the protein/peptide or lipid carrier.  

Thus, instead of just assigning samples to a limited set of categories as based on traditional or genet-

ic BG typing, advanced glyco-analytics will enable an unprecedented insight into the vast complexity 

and variety of structures (Fig. 1) reflecting the underlying complex biological processes. Therefore, 

glycomic, together with glycoproteomic and glycolipidomic technologies should be further refined to 

allow unambiguous (isomer-specific) structural characterization and optimally quantitation of histo-BG 

glycans that have high potential as diagnostic or prognostic biomarkers in the context of both infec-

tious and communicable diseases. Currently applied glyco-analytical techniques in the field of bi-

omarker discovery from cancer tissues are presented in [150]. Major progress in glycomic approaches 

distinguishing linkages and/or different monosaccharide species has been made recently in the field 

of N- and O-glycomics [151,152]. However, glycomics of histo-BGs has been neglected in the last 

years except for some few, rather targeted approaches [153–155]. In a very recent study traditional, 

targeted techniques in combination with liquid-chromatography-MS/MS were successfully applied 

showing great potential of mucin-type histo-BG glycans for ovarian tumor staging and classification 
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not only from tissues, but also from cystic fluid [130]. Glycomic approaches on only minute amounts of 

preferably non-invasively acquired patient samples, such as saliva, tears, milk, urine, or feces 

[66,156–159], will be of particular use in the context of early diagnosis and population-wide screening.  

The discovery of novel functions of histo-BGs by applying high-end technologies is warranted. Inter-

estingly, the spatial organization of ABO antigen patches on RBCs from A, B, and O individuals was 

shown to differ in BG-specific manner resulting in higher or lower binding of sialic acid-binding pro-

teins (Siglecs) to sialic acid-rich clusters that are co-expressed nearby the ABH regions [160]. The 

authors claimed having found a novel function of ABH antigens, i.e. as indirect stabilizers of other 

glycan-protein interactions. Further research is warranted to reveal the function relevance of such 

multi-compound complexes involving the concerted binding of glycans in a multivalent manner. 

Finally, a combination of the different OMICs techniques including glycomics will likely enhance the 

performance of the diagnostic and prognostic approaches [15] and pave the way for a successful 

translation into clinics. As a first example, in a pioneering combined genomics-glycomics study poten-

tial epigenetic regulatory factors of Le-FUT (FUT3), next to other FUTs, were proposed on the basis of 

plasma protein N-glycome [161]. Studies combining genomic, proteomic, metabolomic and glycomic 

data containing histo-BG antigen information of different body fluids and/or tissues could help reveal-

ing the mechanisms behind the above described disease associations and may provide improved 

disease biomarkers as well as therapeutic targets in the future. 
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