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SUMMARY

Inflammatory intestinal diseasesare characterizedby
abnormal immune responses and affect distinct loca-
tions of the gastrointestinal tract. Although the role of
several immune subsets in driving intestinal pathol-
ogy has been studied, a system-wide approach that
simultaneously interrogates all major lineages on a
single-cell basis is lacking. We used high-dimen-
sional mass cytometry to generate a system-wide
view of the human mucosal immune system in health
and disease. We distinguished 142 immune sub-
sets and through computational applications found
distinct immunesubsets in peripheral bloodmononu-
clear cells and intestinal biopsies that distinguished
patients fromcontrols. In addition,mucosal lymphoid
malignancieswere readily detected aswell asprecur-
sors from which these likely derived. These findings
indicate that an integrated high-dimensional analysis
of the entire immune system can identify immune
subsets associated with the pathogenesis of com-
plex intestinal disorders. This might have implica-
tions for diagnostic procedures, immune-monitoring,
and treatment of intestinal diseases and mucosal
malignancies.

INTRODUCTION

The intestinal immune system protects us from bacterial, viral,

and parasitic infections. Disruption of intestinal homeostasis,

however, can lead to a variety of autoinflammatory intestinal dis-

eases, including celiac disease (CeD) and Crohn’s disease (CD),

which together have a prevalence of 1,500 per 100,000 adults in

the Western world (Kappelman et al., 2013; Rubio-Tapia et al.,

2012). Both diseases are multifactorial and encompass a broad
spectrum of clinical phenotypes and ages of onset. CeD is a dis-

ease of the small intestine caused by pro-inflammatory CD4+

T cell responses specific for dietary gluten and concomitant

destruction of the epithelium due to activation of intraepithelial

CD8+ T cells. The introduction of a strict gluten-free diet consti-

tutes a highly effective treatment for CeD but nevertheless 2%–

5%of patients develop refractory CeD type II (RCDII) with persis-

tent inflammation. RCDII is characterized by a monoclonal

outgrowth of aberrant intra-epithelial lymphocytes (IELs) from

which an aggressive enteropathy-associated T cell lymphoma

(EATL) evolves in 40% of patients (Al-Toma et al., 2007). In

contrast, CD affects the terminal ileum and/or colon and results

from aberrant immune responses against the microbiota (Pasc-

ual et al., 2014). CD is usually treated with the use of lifelong

pharmacotherapy (Randall et al., 2015), including biologicals

(e.g., anti-TNF) to reduce chronic inflammation and to accom-

plish sustained remission. Despite achieving states of remission,

perianal fistulas occur in 25% of CD patients and this is accom-

panied by multiple relapses and a poor prognosis due to insuffi-

cient healing (Molendijk et al., 2014; Schwartz et al., 2002).

Although the role of several immune subsets in driving intesti-

nal pathology has been studied in CeD (Jabri and Sollid, 2009),

RCDII (Verbeek et al., 2008), andCD (Geremia et al., 2014), a sys-

tem-wide approach that simultaneously interrogates immune

subsets across all major lineages on a single-cell basis is

currently lacking. High-dimensional mass cytometry (cytometry

by time-of-flight; CyTOF) now offers the possibility to analyze

many cellular markers simultaneously, providing an opportunity

to analyze the mucosal immune systemwith unprecedented res-

olution (Bandura et al., 2009). Novel computational tools have

been developed to handle the high-dimensional single-cell data-

sets that originate frommass cytometry (Amir et al., 2013; Bend-

all et al., 2011; Shekhar et al., 2014). In the current study, we

applied mass cytometry to analyze the composition of the im-

mune compartment present in intestinal biopsies and paired

peripheral blood mononuclear cell (PBMC) samples of patients

with inflammatory intestinal diseases and controls. We identified

142 distinct immune cell subsets and through computational
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Figure 1. Collective SPADE Analysis Distinguishes Major Immune Lineages in Peripheral Blood and Intestine
(A) Live single CD45+ absolute cell number acquired for 55 intestinal biopsies.

(B) A SPADE tree of a PBMC sample after analysis of the combined 102 sample dataset containing 5.2 3 106 cells. Size of the nodes is proportional to the

respective number of clustered cells. Color bars represent ArcSinh5-transformed values for CD3 marker expression. The identities of major immune lineages are

annotated on the basis of lineage marker expression.

(C) Color of the PBMC sample represents expression values for each marker as shown.

(legend continued on next page)

1228 Immunity 44, 1227–1239, May 17, 2016



applications we found immune subsets in PBMCs and intestinal

biopsies that distinguished patients with inflammatory diseases

from controls. In addition, mucosal lymphoid malignancies

were readily detected as well as the precursors fromwhich these

likely derived. Thus, mass cytometry unveiled previously unap-

preciated heterogeneity in the immune system and our observa-

tions might help to develop improved diagnostic and therapeutic

approaches for inflammatory bowel diseases.

RESULTS

SPADE Analysis Identifies Major Immune Lineages in
Peripheral Blood and Intestine
We designed a CyTOF panel of 32 metal isotope-tagged mono-

clonal antibodies, which was designed to obtain a global over-

view of the heterogeneity of the innate and adaptive immune sys-

tem (Table S1). For this purpose, the panel contained lineage

markers that distinguish the major adaptive and innate immune

cell populations. In addition, markers were included to distin-

guish naive from memory cells, resting from activated cells,

and to identify homing properties and potential responsiveness

to humoral factors. With this panel, we analyzed single-cell sus-

pensions from biological samples including duodenum biopsies

(N = 36), rectum biopsies (N = 13), perianal fistulas (N = 6), and

peripheral bloodmononuclear cells (PBMC) from control individ-

uals (N = 15) and from patients with inflammatory intestinal

diseases (CeD, N = 13; RCDII, N = 5; EATLII, N = 1 and CD,

N = 10) (Table S2). The large majority (N = 28) of antibodies al-

lowed clear discrimination of antibody-positive and -negative

cells (Figure S1). To monitor the robustness of the measure-

ments, we included a standardized PBMC sample at regular

intervals in the acquisition sessions during the entire 9-month

study period. These consecutive control samples yielded highly

similar results (Figures S2A–S2C), demonstrating the reproduc-

ibility of the data acquisition. We discriminated live, single

CD45+ cells with DNA stains and event length. (Figure S2D).

From the intestinal biopsies we acquired 27,500 duodenal,

17,500 rectal, and 76,500 perianal fistulous CD45+ cells on

average (Figure 1A), and 76,500 CD45+ cells from the PBMC

samples (data not shown). We visualized the global cellular

heterogeneity by pooling all the acquired data on 5.23 106 cells

and applying unsupervised hierarchical clustering with minimum

spanning tree projection (SPADE), grouping the cells into a

pre-defined number of nodes based on phenotypic similarity

(Qiu et al., 2011). A dendrogram displayed the corresponding

higher-order relatedness between those nodes (Figure 1B).

The major branches in this dendrogram corresponded to CD4+

T cells, CD8+ T cells, TCRgd cells, B cells, innate lymphocytes

(referred to as CD3�CD7+ cells hereafter), and myeloid cells

(Figure 1C). The cell frequencies of these major cell lineages

obtained through SPADE were confirmed by traditional gating

procedures using two-parameter dot plots (Figure S3).
(D) Representative SPADE trees showing an individual PBMC sample from a con

expression as described in (B).

(E) Comparisons of cellular frequencies for major immune lineages from 47 PBM

(F) Representative SPADE trees showing an individual intestinal biopsy from a co

(G) Comparisons of cellular frequencies for major immune lineages from 55 intes

individual sample). *p < 0.05; **p < 0.01; ***p < 0.001, using Mann-Whitney U tes
In general, the subset distribution between PBMC samples

from controls and patients was quite similar although a decrease

in numbers of CD4+ T cells in patients with RCDII and some vari-

ability in the numbers of B cells and CD3�CD7+ cells was de-

tected (Figures 1D and 1E). In contrast, substantial differences

were evident between the PBMC and intestinal samples. For

example, duodenal CD4+ T cell, CD8+ T cell, CD3�CD7+ cell,

and rectal myeloid cell subsets were distinct from those in pe-

ripheral blood (Figures 1D–1G). In addition, the SPADE dendro-

grams revealed disease-associated signatures (Figures 1D–1G)

exemplified by the disappearance of CD3�CD7+ cells and an

increase in TCRgd cells in CeD relative to the control duodenal

biopsies. Also, compared to controls and patients with CeD,

an increase in CD3�CD7+ cells in the duodenum of patients

with RCDII was observed. Of note is the dominant presence of

a CD8+ T cell cluster in the duodenum of a patient with enterop-

athy-associated T cell lymphoma type II (EATLII). Finally, a highly

diverse CD4+ T cell compartment was found in rectal biopsies of

patients with CD and a dominant presence of myeloid cells in

perianal fistulas. Thus, this global analysis indicated that there

are immune-system-wide differences in subset composition

between peripheral blood and intestinal samples, and between

duodenal samples from patients and controls.

t-SNE-ACCENCE Analysis Identifies 142 Phenotypically
Distinct Immune Subsets
Although SPADE analysis provides an overview of the heteroge-

neity and the relatedness of subsets within the major immune

lineages it does not allow analysis at the single-cell level and

consequently rare cells are difficult to visualize. Therefore, we

applied t-Distributed Stochastic Neighbor Embedding (t-SNE)

analysis (van der Maaten, 2014; van der Maaten and Hinton,

2008), which generates a two-dimensional map where cells

with similar multidimensional phenotypes are placed close to

each other, while maintaining single-cell resolution (Amir et al.,

2013). To ensure a similar impact of the cells from PBMC and

intestinal samples on the t-SNE analysis the number of cells

incorporated from those two compartments were matched. We

applied the t-SNE approach for every major lineage individually,

here showing the CD4+ T cell compartment where over 440,000

cells were incorporated in the analysis (Figure 2).

The t-SNE analysis revealed expected types of marker distri-

butions on the CD4+ T cells, such as broadly expressed markers

(CD7, IL-7Ra), markers that were expressed by subpopulations

of the cells (CD56, PD-1, CD25) and markers that were co-ex-

pressed (CD45RA and CCR7), but also unanticipated distribu-

tions were revealed, like largely mutually exclusive marker

expression patterns (i.e., CD27 and CD161) (Figure 2A). Next,

we incorporated a kernel density-peak detection algorithm on

the t-SNEmap (ACCENSE) (Shekhar et al., 2014),whichautomat-

ically identified 28 CD4+ T cells subsets (Figure 2B) where each

subset was defined by its marker expression profile (Figure 2C).
trol and three patients with intestinal diseases. Color represents CD3 marker

C samples.

ntrol and five patients with intestinal diseases.

tinal biopsies. Data are plotted as single values (each data point represents an

t. Error bars show means ± SEM.
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To reduce the complexity implied by the ACCENSE analysis,

we merged computationally-derived subsets with highly similar

expression profiles, which resulted in 16 cell clusters that each

express a distinct set of markers (Figure 2D). They fell within

four major CD4+ T cell categories: naive (CD45RA+CCR7+),

CD27+IL-7Ra� effector memory (EM; CD45RA-CCR7�), CD27�

IL-7Ra+ EM, and central memory (CM; CD45RA�CCR7+), and
within those categories additional heterogeneity was present.

For example, the highly similar CD161+CD27�IL-7Ra+ EM cell

subsets 4 and 11 were distinguished from each other by the

expression of CD56 (Figure 2D). We next analyzed the subset

distribution of the CD4+ T cells in the various tissues included

in the analysis by plotting the relative frequencies of the subsets

for all samples analyzed (Figures 2E and 2F). In line with the

SPADE analysis, the CD4+ T cell subsets of the duodenum,

rectum, and PBMC samples clustered to distinct locations in

the cell frequency heatmap, also when examining the 102 sam-

ples individually (Figure S4). Thus, we could effectively delineate

cell populations in a data-driven manner, and this approach

revealed distinct signatures in the cellular composition of the

CD4+ T cells in biopsy material and peripheral blood.

By applying the t-SNE-ACCENSE analysis to all 6 major cell

lineages individually, we identified 142 subsets in the entire im-

mune system (Figure 3A), 23 of which contained rare cells that

did not fulfill lineage phenotypic criteria (data not shown). The

distinct phenotypes of the remaining 119 subsets are summa-

rized in a heatmap (Figure 3B) where the subsets are clustered

according to their phenotypic hierarchy within their lineage and

clustered based on marker expression. The analysis identifies

relatively few subsets within the B cell and myeloid compart-

ments, likely due to the composition of the antibody panel, which

was designed to capture the heterogeneity of the CD7+ lymphoid

cells. In this context, our antibody panel identified many distinct

subsets within the TCRgd andCD3�CD7+ immune lineages, a di-

versity that was even greater than that detected in the CD4+ and

CD8+ T cell lineages despite the fact that the latter were generally

more abundant in the samples included. Collectively, the com-

bined t-SNE-ACCENSE approach on high-dimensional cytome-

try data can effectively identify phenotypic distinct subsets in an

unbiased and data-driven manner, and the analysis indicates

that the heterogeneity of the immune system is far greater than

previously appreciated.

Visualization of Cellular ‘‘Fingerprint’’ Signatures across
Tissues and Disease States
To visualize the distribution of immune cells based on tissue-

origin and disease state, we used the t-SNE maps to deduce

cellular ‘‘fingerprint-like’’ signatures of immune cells in the six

major immune lineages (Figure 4A). The ‘‘fingerprint’’ gives a vi-
Figure 2. t-SNE-ACCENSE Analysis Pipeline Identifies Tissue-Specific

(A) Collective t-SNE dimensionality reduced CD4+ T cell single-cell data (4.73 10

single cell and the color of the cells indicates ArcSinh5-transformed expression

(B) A density map depicting the local probability density of cells as embedded

represents centers of phenotypic subsets and were identified using a peak dete

(C) A heatmap summary of median ArcSinh5-transformed expression values of T

clustering of subsets with description of four categories. Colored subsets were m

(E) A heatmap summary of average subset frequencies across tissues and disea

(F) A 3D heatmap as described in (D). EM = effector memory and CM = central m
sual representation of the position of a collection of cells from

particular (tissue) samples in the t-SNE map of the collective da-

taset. As such, it gives a unified overview of the distinctness of

cells within the samples analyzed stratified for tissues and dis-

ease states. In all six immune lineages, the duodenum, rectum,

and PBMC samples displayed a distinct cellular signature (Fig-

ure 4A). Moreover, on the basis of these signature maps, we

were able to identify phenotypically distinct cell clusters that

were either specifically present or abundant in certain diseases

(highlighted by red boxes and arrows in Figure 4A). For example,

the lineage (Lin)� CD3�CD7+ cells that expanded monoclonally

in patients with RCDII (purple arrow; Figure 4A) were distin-

guished by the expression of CD45RA in six out of seven patients

(Figures 4B and 4C). Moreover, these aberrant Lin� CD3�CD7+

cells were also detectable in PBMC samples of three out of

six patients (Figures 4A and 4D), indicating a systemic spread

of the pre-malignant cells. Similarly, a massive expansion of

CD56+CD161+ CD8+ T cells was observed in a patient with an

established lymphoma of EATL-type 2 (green arrow; Figure 4A).

Rare cells (0.1%–0.2% of CD8+ T cells) displaying an identical

phenotype were detected in 25% of the other duodenum sam-

ples, and these might therefore represent the precursor from

which the lymphoma arose. In addition, two distinct IL-7Ra+

innate lymphoid cell type 3-like (ILC3-like) (Spits and Cupedo,

2012) cell clusters were identified that were either chemokine

receptor CCR6+ or CCR6� (blue arrow; Figures 4A and 4B).

While the CCR6+ ILC3-like cells represented 50% of the

CD3�CD7+ cells in the rectum of CD patients, its CCR6� ILC3-

like counterpart, which is associated with an inflammatory

phenotype in CD (Geremia et al., 2011), was more abundant

in the fistulas (Figure 4C). Also, 94% of the myeloid cells within

the inflammatory perianal fistulas (red arrow; Figure 4A) dis-

played a CD11b+CD11c+ dendritic cell-like phenotype (Fig-

ure 4B) and they comprised 50% of the accumulated immune

infiltrate (Figure 4C).

We next used the Jensen-Shannon (JS) divergence to quantify

similarities and dissimilarities between pairs of t-SNE maps (Fig-

ure 4E). In these plots, the JS divergences between samples

from the intestine and peripheral blood were high for every major

lineage (Figure 4E), indicative of dissimilarity of cellular signa-

tures. In addition, the JS divergences reveal disease-associated

cellular profiles exemplified by similarity of RCDII and CeD

duodenal myeloid cells compared with those in duodenal con-

trols, distinct CD8+ T cells in RCDII patient blood and distinct B

cells, CD3�CD7+ cells, and myeloid cells in CD patient blood

compared with other blood samples.

Furthermore, we visualized the immune composition as

an immune landscape where the distribution of the subsets in

the various tissue and blood samples is shown (Figure 5). A
CD4+ T Cell Subsets
5 cells) derived from 102 samples analyzed are plotted. Every dot represents a

values for a given marker analyzed.

in (A), computed using a kernel based transformation. Numbers in this map

ction algorithm.

cell markers expressed by 28 CD4+ T cell subsets identified and hierarchical

erged together resulting in 16 CD4+ T cell subsets (D).

se states. Mean frequencies obtained from 102 samples analyzed.

emory. A detailed heatmap showing 102 samples is described in Figure S4.
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Figure 3. t-SNE-ACCENSE Analysis Delineates Phenotypic Distinct Immune Subsets in Peripheral Blood and Intestine

(A) Identification of 142 cell subsets within the sixmajor immune lineages through t-SNE-ACCENSE analysis. Cells fromPBMCswere randomly sampled tomatch

cell numbers with those from intestinal biopsies for each immune lineage individually. t-SNE plots are showing 4.7 3 105 CD4+ T cells, 9.3 3 105 CD8+ T cells,

1.8 3 105 B cells, 1.8 3 105 TCRgd cells, 1.9 3 105 CD3-CD7+ cells, and 2.2 3 105 myeloid cells of the combined 102 sample dataset.

(B) Heatmap showing characterization of 119 cell clusters (16 CD4+ T cell subsets, 20 CD8+ T cell subsets, 16 B cell subsets, 28 TCRgd cell subsets,

30 CD3�CD7+ cell subsets and 9 myeloid cell subsets). Shown are median ArcSinh5-transformed values of marker expression (black-to-yellow scale) and

hierarchical clustering of markers and subsets within their major immune lineage
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two-dimensional representation of the immune landscape along

with the phenotypes of the associated immune subsets is shown

in Figure S5, visualizing the distinct cellular phenotypes of the

immune subsets and their occurrence in the various tissues.

Together these findings illustrate that in most of the major im-

mune lineages, cellular subsets could be identified that were

exclusively present or enriched in defined tissue samples only.

In peripheral blood, cells were mainly defined by expression of

interleukin-7 receptor a (IL-7Ra), CCR7, CD27, and CD28 for

CD4+ and CD8+ T cells, CCR6 for B cells, CD56 for CD3�CD7+

cells, and CD14 for myeloid cells. Similarly, many mucosal cells

were defined by expression of CD161 for CD4+ and CD8+ T cells,

CD38 for TCRgd cells, and IL-7Ra for CD3�CD7+ cells.

Together, these analyses demonstrate that by deducing

cellular ‘‘fingerprint’’ signatures of immune cells, we were able

to visualize and quantify the immune subset distribution in the

samples analyzed. In addition, we were able to identify immune

subsets that are associated with disease states.

An Integrated System-Wide View of the Immune System
Reveals Disease-Associated Networks of Immune
Subsets
Finally, we investigated whether the identified immune-system-

wide cellular patterns could be integrated collectively and used

to characterize samples according to tissue location or disease

state by visualizing them in relation to several clinical variables.

For this purpose, we visualized the immune composition of all

identified subsets from all included biological samples in a single

graph by applying the t-SNE algorithm on cell frequency values.

As expected, the PBMC and intestinal biopsy samples formed

two distinct clusters (Figure 6A). In addition, the rectum and

peri-anal fistula biopsies separated from the duodenal biopsies

(Figures 6A and 6B) and the duodenal biopsies from patients

with CeD and RCDII clustered away from the duodenal control

biopsies (Figures 6A and 6B). Also, the duodenal biopsies of

the four RCDII patients with the most severe inflammation (Table

S2) mapped far from the other duodenum samples (Figures 6B

and 6C). Furthermore, three RCDII biopsies, two of which were

from patients in remission, clustered with the other CeD bi-

opsies, suggesting a persisting CeD immune profile. The inflam-

mation state of the biopsies was reflected in the cluster structure

of intestinal samples in general (Figure 6C), while this was not the

case for gender (Figure 6D). Moreover, the age of the patients

and controls from which the samples were derived is reflected

in the clustering of the samples, particularly in peripheral blood

(Figure 6E). The PBMC and intestinal samples from six patients

that were biopsied twice, with a 3- to 6-month time interval, clus-

tered tightly together (Figure 6F) highlighting the reproducibility

and robustness of this unbiased approach.

In order to reveal which cellular subsets were associated with

the disease-associated patterns (Figure 6G), we performed a

second t-SNE analysis on the subsets of the same dataset

(instead of the samples) visualizing networks of cellular subsets

that determine disease-specificity (Figures 6H and 6I) and iden-

tified the top five ranked subsets contributing to these clustering

patterns (Figure 6J). In this context, expected types of health-

and disease-associated subsets were identified in the intestinal

mucosa, such as CD45RA�Lin� CD3�CD7+ cells in control indi-

viduals, CD8a+ and CD8a� TCRgd cells in CeD, CD45RA+Lin�
CD3�CD7+ cells in RCDII, CCR6+ILC3 in CD and CD14�CD11b+

myeloid cells in fistulas. In addition, previously unidentified sub-

set associations were revealed as well, such as CD45RA� cNK

cells and CD56�CD27�EM CD4+ T cells in controls, CD27�EM
CD8+ T cells in CeD, CRTH2+ myeloid cells in RCDII (ranked 6),

CCR6�CM and PD-1+CD27+EM CD4+ T cells in CD, and

CCR6�CCR7+ B cells in the fistulas. Thus, by integrating data-

driven approaches highly specific disease-associated immune

signatures across innate and adaptive major lineages in the

intestine were readily identified. Figure S6 gives an overview

of the developed integrated analysis pipeline developed in the

current study.

DISCUSSION

Mass cytometry offers the opportunity to simultaneously

analyze dozens of single-cell markers on complex cellular sam-

ples resulting in highly complex datasets. Conventional ap-

proaches for flow cytometry data analysis are not suitable for

such datasets, suffer from individual user bias, and require prior

knowledge of the cell type of interest. SPADE (Bendall et al.,

2011) was originally applied to handle mass cytometric data.

More recently, an unbiased analysis pipeline has been devel-

oped combining t-SNE (Amir et al., 2013; van der Maaten

and Hinton, 2008) and ACCENSE (Shekhar et al., 2014) with

mass cytometry to visualize and delineate phenotypically

distinct subsets (Becher et al., 2014). In the current study we

used a 32 antibody panel that was specifically designed

to detect heterogeneity within the major adaptive and innate

cell lineages. We applied this antibody panel to a variety

of PBMC and intestinal biopsy samples and combined this

with the newly available unbiased computational approaches

to unravel the complexity of the human mucosal immune sys-

tem. We used the Barnes-Hut implementation of t-SNE, a

recently developed, computationally efficient t-SNE optimiza-

tion algorithm (van der Maaten, 2014) to accommodate the

large datasets. In addition, we provide novel applications of

the t-SNE-based analysis allowing the visualization of cellular

‘‘fingerprint’’ signatures of immune cells, and by clustering

samples based on their immune composition while visualizing

the cluster-contributing subsets in parallel to highlight tissue-

and disease-associated patterns.

Our results demonstrate that the mass cytometry-based anal-

ysis was robust and reproducible as identical control PBMC

samples that were included during the entire 9-month study

period provided highly similar results. Moreover, we obtained bi-

opsy and PBMC specimens from a number of patients twice with

a time interval between 3 to 6 months and in the final sample

visualization analysis, these specimens clustered close together,

demonstrating a high degree of reproducibility. Also, we readily

observed changes in the composition of the immune compart-

ment that are known to correlate with disease such as the in-

crease in TCRgd cells in CeD (Spencer et al., 1989).

Both the SPADE and the combined t-SNE-ACCENSE analysis

demonstrate that duodenal, rectal, and PBMC samples grouped

into different clusters, to a large extent due to substantial differ-

ences in the CD4+ and CD8+ T cell compartments. In total, 142

subsets in the immune system were defined, of which 119 dis-

played distinct marker expression profiles on the basis of which
Immunity 44, 1227–1239, May 17, 2016 1233
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these subsets were delineated. Compared to the CD4+ and

CD8+ T cell lineages, a larger degree of heterogeneity was de-

tected in the TCRgd and CD3�CD7+ immune lineages. While

we cannot exclude the possibility that by the use of another anti-

body panel additional heterogeneity within the CD4+ and CD8+

lineages might be revealed, the distinct marker expression pro-

files of the TCRgd and CD3�CD7+ subsets might correlate with

distinct and potentially location-specific functional properties.

This will be the subject of future investigations. Thus, on the ba-

sis of 28 markers, mass cytometry visualized system-wide

cellular differences in subset composition in the samples ob-

tained from the various anatomical locations. Further studies

including control rectum samples are required to determine

how these differences relate to the anatomical site and/or dis-

ease state.

Recent studies have described a crucial role for ILCs in CD

(Hazenberg and Spits, 2014). They reside mainly in mucosal

tissues and are functionally specialized cells characterized by

the expression of lineage-defining transcription factors. Even

without these markers in our antibody panel we were able

to distinguish ILC-like subsets on the basis of cell surface

phenotype through machine-learning cell cluster detection ap-

proaches. We identified a CRTH2+ ILC2-like subset in PBMC

samples and in line with previous reports such cells were not

found in intestinal samples (Hazenberg and Spits, 2014). More-

over, we detected an ILC3-like subset that was exclusively

present in rectum biopsies of CD patients in remission. This

subset corresponds with the IL-22-producing anti-inflammatory

CD25�CD56+ ILC subset previously found in the intestine of CD

patients (Geremia et al., 2011; Hazenberg and Spits, 2014).

Moreover, we observed that their CD56� ILC counterpart was

enriched in fistulas, and these cells were previously shown to

produce the inflammatory cytokine IL-17A (Geremia et al.,

2011). The CD56�-ILC3-like cells in fistulas unexpectedly

showed expression of CD11c, a marker that has been used as

‘‘dump channel’’ in the ILC field. Those cells might thus have

been discarded from datasets of previous studies, highlighting

the importance of unbiased data-driven approaches as used

in the current study. In addition, the CD4+ T cell compartment

in the CD biopsies was highly heterogeneous. Further studies

are required to determine a possible relationship with the highly

variable disease symptoms in CD.

Mucosal lymphoid malignancies were readily detected in pa-

tients with RCDII and in a patient with an EATL-type 2 lymphoma,

along with the distinct cellular phenotypes that distinguish these

lymphomas. The latter information could be used to identify the

potential precursor cells in the healthy mucosa from which these
Figure 4. Stratified t-SNE Plots Identify Distinct Cellular ‘‘Fingerprint’’

(A) Collective t-SNE dimensionality reduced single-cell data from all 102 samples

and disease states. Red boxes and arrows indicate t-SNE location of phenotypi

(B) Heatmap summary of median ArcSinh5-transformed expression values of c

Arrows as in (A).

(C) Comparisons of cellular frequencies for subsets from intestinal biopsies.

(D) Comparisons of cellular frequencies for the CD45RA+Lin� CD3�CD7+ subset

(E) Pairwise Jensen-Shannon (JS) divergence plots of the collective t-SNE maps f

divergence value indicates more dissimilarity between a pair of t-SNE maps as

single values. Red lines indicate mean value as percentage of CD45+ cells. (each

****p < 0.0001, using Mann-Whitney U test. Error bars show means ± SEM.
malignancies are likely to originate. In the case of RCDII these

precursors are Lin�CD3�CD7+ cells, confirming previous results

(Schmitz et al., 2013). Moreover, our current analysis indicates

that these precursors can be distinguished from their malignant

counterpart by the lack of expression of CD45RA. Conversion

of this subset to a CD45RA positive phenotype might thus

predict development of RCDII and could constitute a novel

prognostic marker. Also, extremely low numbers of CD56+

CD161+CD8a+CD8b+ T cells were found in mucosal biopsies

of healthy individuals, a phenotype that matches that of the

CD8+ T cell malignancy in a patient with EATLII. Thus, the

t-SNE analysis is highly suitable for the identification of mucosal

malignancies and their likely precursors in healthy individuals, in-

formation that might be used to develop therapeutic approaches

based on cellular characteristics.

Compared to control duodenal samples, we observed the

disappearance of CD3�CD7+ cells and the increase in TCRgd

cells in CeD, both well-described disease hallmarks (Schmitz

et al., 2013; Spencer et al., 1989). In the global analysis of the

entire cell frequency dataset this resulted in the formation of

clusters that distinguish duodenal biopsies derived fromCeDpa-

tients from those of controls. By transposing the cell frequency

dataset, the disease cluster-associated subsets and their rela-

tive contribution to the clustering could be visualized and quan-

tified. This tSNE application thus provided detailed information

on the disease-associated networks of immune subsets. The

identification of mucosal immune signatures that correlated

with health and disease might potentially lead to the develop-

ment of unbiased diagnostic procedures based on a single

mass cytometric analysis.

Perianal fistulas in CD remain a substantial clinical challenge,

causing pain, discharge, and abscess formation (Kamm and

Ng, 2008). Achieving complete fistula healing is difficult and

accompanied by multiple relapses, and despite the best avail-

able therapies durable remission rates of perianal fistulas remain

disappointingly low (Molendijk et al., 2014). In this respect it will

be important to unravel the function of the CD11b+CD11c+

myeloid cells that dominate in the fistula, where the immune

composition is distinct from that in the adjacent rectum biopsies.

This will be addressed in future studies.

In such follow-up studies, our approach can be further refined

as four antibodies included in the original 32 antibody panel

(CD103, IL21-R, CD34, and TCRab) were not informative. In

particular, the inclusion of antibodies specific for lineage-

defining transcription factors and cytokinesmight provide further

insight into the relationship between cell lineages and their func-

tion in the mucosal immune system. Moreover, the inclusion of
Signatures across Tissues and Disease

analyzed are plotted showing six major immune lineages stratified for tissues

cally distinct disease-associated clusters of cells.

ellular markers expressed by gated subsets and annotation for each subset.

from PBMC samples.

rom all 102 samples analyzed showing six major immune lineages. A higher JS

shown in (A). White squares indicate invalid comparisons. Data are plotted as

data point represents an individual sample). *p < 0.05; **p < 0.01; ***p < 0.001;
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Figure 5. Immune System Landscape Visualizes Subset Composition

(A and B) A 3-dimensional heatmap summary showing average frequencies of 119 immune subsets in the 102 biological samples combined with hierarchical

clustering of samples and description of tissue type, disease state, and biological assignment of the subsets. Color scale and z axis indicate percentage of

CD45+ cells. EM = effector memory, CM = central memory, TEMRA = terminally differentiated, Lin = lineage, cNK = conventional NK cells, ILC = innate lymphoid

cells, and pDC = plasmacytoid dendritic cells.
an alternative metal reporter for the CD103-specific antibody in

future studies might allow discrimination between cells derived

from the epithelium and the lamina propria. Also, with regard to

CD and perianal fistula, we could not draw definitive conclusions

regarding disease-specific changes because we lacked healthy

control rectum samples. It would thus be highly valuable to

characterize mucosal biopsies obtained from various intestinal

locations within the same patients and controls, allowing direct

comparisons. Finally, by combining the analysis of the mucosal

immune system with an analysis of the stromal cell compart-

ment, a more integrated view of disease-specific changes might
1236 Immunity 44, 1227–1239, May 17, 2016
be obtained, optimizing opportunities to develop more effective

personalized treatment modalities.

In conclusion, themass cytometric analysis of themucosal im-

mune system revealed heterogeneity that was greater than pre-

viously appreciated. Also, our results indicate that disease-spe-

cific leukocytes residemainly in the affected organ and aremuch

less readily detectable in PBMC. The identification of disease-

associated changes in immune composition offers opportunities

to determine cellular parameters that correlate with disease and

predict response to treatment, an important step toward person-

alized and cost-effective treatment.
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Figure 6. Integrated Analysis of Immune Subset Composition Reveals Tissue- and Disease-Associated Clustering of Biological Samples

(A–F) Collective t-SNE dimensionality reduced cell percentage data (as percentage of CD45+ cells) of 142 subsets for 102 samples analyzed are plotted. Every dot

represents a single sample and the color of the samples shows the corresponding clinical information: (A) tissue, (B) disease, (C) biopsy inflammation, (D) gender,

(E) age in years, and (F) samples from six patients that were sampled twice. The left dashed border represents the PBMC cluster and the right dashed border

represents the intestinal cluster.

(G) Deducing disease-specific signatures in the t-SNE map based on the clustering patterns of the samples.

(H) Collective t-SNE dimensionality reduced cell percentage data (as percentage of CD45+ cells) of 142 subsets for 102 samples analyzed are plotted. Every dot

represents a single immune subset. The closer the subsets are together the more similar the cell frequency values are across the samples.

(I) Disease-specific subset signatures (average subset values per disease cluster in G, encoded with varying dot color and size).

(J) Table showing top five ranked subsets contributing to the disease-specific t-SNE sample signatures (as shown in I) displaying both major lineage subset

number and biological assignation. Lineage (Lin), conventional NK cell (cNK), effector memory (EM), central memory (CM), and innate lymphoid cells (ILC).

Average cell frequency values are shown in Figure 5.
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EXPERIMENTAL PROCEDURES

Human Samples

Sampleswere collected frompatientswhowere undergoing routine diagnostic

endoscopies, and the curettage material of perianal fistulas were obtained at

surgical intervention. The clinical characteristics of the patients are shown in

Table S2. All samples were obtained after informed consent, medical ethical

commission approval, in accordance with the local ethical guidelines of the

VU Medical Center in Amsterdam (adult duodenal biopsies) and the Leiden

University Medical Center (pediatric duodenal biopsies, CD rectum biopsies,

and perianal fistulas), and in accordance with the Declaration of Helsinki.

Isolation of Cells from Intestinal and PBMC Samples

Cells from the epithelium were isolated from two or three intestinal biopsies by

treatment with 10 ml of HBSS (Sigma-Aldrich) containing 1 mM EDTA (Merck)

under rotation for 2 hr at 37�C. To obtain cells from the lamina propria, we

washed the biopsies with PBS containing 0.5% fetal calf serum (FCS) and

incubated with 5 ml of a collagenase mix containing IMDM culture medium

(Lonza) with 20% FCS, 1,000 U/mL collagenase IV (Worthington), and

10 mg/mL DNaseI grade II (Roche Diagnostics) for 2 hr at 37�C. The cell sus-

pension was then filtered through a 70 mm nylon cell strainer and centrifuged

in 0.5% FCS/PBS. Curettage material of perianal fistulas obtained at surgical

intervention were minced with fine scissors and incubated with 10 ml of HBSS

containing 1 mM EDTA under rotation for 2 hr at 37�C. Peripheral blood mono-

nuclear cells (PBMC) were isolated from up to 5 ml of freshly drawn heparin

anticoagulated blood using Ficoll-PaqueTM density-gradient centrifugation.

PBMC samples from CD patients were cryopreserved and stained after

thawing. Cell suspensions were washed with 0.5% FCS/PBS and kept at

4�C until antibody staining.

Antibodies

Antibodies, manufacturers, and concentrations are listed in Table S1. Primary

antibody metal-conjugates were either purchased or conjugated using a

total of 100 mg of carrier-free formulations of purified antibody combined

with the MaxPar X8 antibody labeling kit (Fluidigm Sciences) according to

the manufacturer’s instruction. Following conjugation, antibodies were diluted

to 200 ml in Candor PBS Antibody Stabilization Buffer (Candor Bioscience

GmbH) and stored at 4�C.

Antibody Staining and Data Acquisition

Procedures for mass cytometry antibody staining and data acquisition were

carried out as previously described (Bendall et al., 2011). Briefly, directly after

biopsy processing, we resuspended cells in cell staining buffer (CSM; 13

PBS with 0.5% bovine serum albumin and 0.02% sodium azide, Fluidigm Sci-

ences) and incubated with 1 ml of 1:500 diluted 500 mM rhodium DNA interca-

lator (FluidigmSciences) for 15min to stain dead cells at room temperature (rT).

Cells werewashedwith CSMand surface stained for 45min at rTwith amixture

of metal isotope-conjugated antibodies using predetermined concentrations

(Table S1). Antibody staining reactions were performed in 100 ml final volume.

After staining, cells were washed twice with CSM and then resuspended in

1 ml of 1:1,000 diluted 125 mM iridium DNA intercalator (DVS Sciences) in Fix

and Perm Buffer (PBS with 1.6% paraformaldehyde, Fluidigm Sciences) for

45 min at rT to discriminate single cells. Cells were stored overnight at 4�C.
Finally, cells were washed twice in CSM and once in distilled water at rT. Prior

to data acquisition, cell pellets were diluted in distilled water containing 1:10

diluted EQ Four Element Calibration Beads (Fluidigm Sciences) to the concen-

tration of 0.4 3 106 cells/mL to achieve an acquisition rate of 500 events/s on

the CyTOF 2TM mass cytometer (Fluidigm Sciences) (Ornatsky et al., 2008).

CyTOF data were acquired and analyzed on-the-fly, using dual-count mode

and noise-reduction on. All other settings were either default settings or

optimized with tuning solution, as instructed by Fluidigm Sciences. After data

acquisition, the mass bead signal was used to normalize the short-term signal

fluctuations with the reference EQ passport P13H2302 during the course of

each experiment and the bead events were removed (Finck et al., 2013).

Data Analysis

SPADE analyses were performed as described (Qiu et al., 2011) with 500

target number of nodes and 10% of target down-sampled events using the
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implementation in Cytobank (Kotecha et al., 2010). Data from exported FCS

files of major immune lineages as delineated by SPADE (Figure 1) were trans-

formed using hyperbolic arcsin with a cofactor of 5. Because the number

of cell events varied greatly between PBMC and intestinal biopsies, the

contribution of intestinal and PBMC cells were normalized to a 1:1 ratio for

each immune lineage and up to 10,000 events per sample was used. After

down-sampling, the cumulative dataset per immune lineage was subjected

to t-SNE dimensionality reduction. t-SNE was carried out using the Barnes-

Hut implementation of t-SNE, a recent developed, computationally efficient

t-SNE optimization algorithm (obtained from L.J.P. van der Maaten) (van

der Maaten, 2014) to accommodate the large volumes of our clinical data.

t-SNE was run with a default perplexity of 30. Cellular ‘‘fingerprint’’ signatures

of immune cells and marker expression color overlays of t-SNE maps were

generated with Cyt (Amir et al., 2013). We used the Jensen-Shannon (JS)

divergence to quantify the similarity between t-SNE maps. After converting

t-SNE maps into two-dimensional probability density functions, the similarity

between two maps is quantified as the JS divergence between their corre-

sponding probability density functions. We used the base 2 logarithm in the

JS divergence computation, which results in a continuous range of JS diver-

gence values between 0 (for identical distributions) and 1 (for fully disjoint dis-

tributions). The density-peak detection algorithm to identify phenotypically

distinct subsets was carried out with ACCENSE (Shekhar et al., 2014), using

the two coordinates of the t-SNE map for each cell as input. The density-

based clustering first searches for the optimal bandwidth, followed by esti-

mating the kernel density that allows the detection of density peaks. The

respective amount of subpopulations identified per major lineage was based

on the calculated optimal kernel bandwidth. Two-dimensional gating analysis

was done using Cytobank (Kotecha et al., 2010). Median intensity values of

markers were calculated and visualized via plotting heatmaps. Hierarchical

clustering dendrograms of heatmaps were produced using Pearson Correla-

tion and average linkage clustering with MultiExperiment Viewer (http://www.

tm4.org). Numbers of cells in different immune subsets were counted for each

sample and percentages of each subset were calculated. t-SNE coordinates,

ACCENSE subset number, and sample coding tags were added to FCS files

as additional parameters to allow aggregate data analysis and visualization.

The sample t-SNE map (Figure 6) was computed with the fractions of the total

cell count per subtype (as percentages of CD45+ cells) as input variables.

Standard t-SNE pre-processing was applied: the data matrix was normalized

by centering each variable to zero mean, and scaling to unit vector length. In

the sample map, a reprojection of the data on a reduced set of high-variance

principal components (PCs) was performed. The component scores of the ten

highest variance PCs were used as input to the t-SNE. To reduce sensitivity

to local optima, we repeated map construction 100 times with different

randomly generated initial maps and the map with the minimal t-SNE error

metric (Kullback Leibler divergence per data point) was selected. The subset

t-SNE map in Figures 6H and 6I was computed by transposing the normalized

datamatrix. This switches the role of samples and variables, hence subsets

with similar profiles across the population end up close together in the

map. The t-SNE perplexity parameter was set to 10% of the number of

data points in each map, i.e., 10 for the sample maps in Figures 6A–6F and

15 for the subset map in Figures 6H and 6I. Average subset values were

computed per disease subgroup as identified in the sample t-SNE map in Fig-

ure 6G and displayed per subgroup.
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