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SHORT REPORT

Combined mismatch repair and POLE/POLD1 defects
explain unresolved suspected Lynch syndrome cancers

Anne ML Jansen1,2, Tom van Wezel1, Brendy EWM van den Akker1, Marina Ventayol Garcia1, Dina Ruano1,
Carli MJ Tops3, Anja Wagner4, Tom GW Letteboer5, Encarna B Gómez-García6, Peter Devilee2,
Juul T Wijnen2,3, Frederik J Hes3 and Hans Morreau*,1

Many suspected Lynch Syndrome (sLS) patients who lack mismatch repair (MMR) germline gene variants and MLH1 or MSH2
hypermethylation are currently explained by somatic MMR gene variants or, occasionally, by germline POLE variants. To further

investigate unexplained sLS patients, we analyzed leukocyte and tumor DNA of 62 sLS patients using gene panel sequencing

including the POLE, POLD1 and MMR genes. Forty tumors showed either one, two or more somatic MMR variants predicted to

affect function. Nine sLS tumors showed a likely ultramutated phenotype and were found to carry germline (n=2) or somatic

variants (n=7) in the POLE/POLD1 exonuclease domain (EDM). Six of these POLE/POLD1-EDM mutated tumors also carried

somatic MMR variants. Our findings suggest that faulty proofreading may result in loss of MMR and thereby in microsatellite

instability.
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INTRODUCTION

Inactivation of the mismatch repair (MMR) genes MLH1, MSH2,
MSH6 and PMS2 causes Lynch syndrome (LS), an autosomal
dominant predisposition for colorectal and endometrial cancer.1

Inactivation of the mismatch repair pathway can also occur sporadi-
cally, through somatic MLH1 hypermethylation1 or by acquired
biallelic somatic inactivation (variant affecting function or loss of
heterozygosity (LOH)) of the MMR genes.2,3 Inaccurate DNA repair
leads to a high frequency of somatic variants, with loss of MMR
leading to ‘hypermutated’ tumors with 10–100 variants/Mb.4

LS tumors are characterized by microsatellite instability (MSI) and
immunohistochemical loss of expression of MMR proteins.1 However,
germline variants affecting function cannot be detected in up to 59%
of patients displaying MSI and/or loss of MMR, referred to as
‘suspected LS’ (sLS).5

Recently, germline and somatic variants in the exonuclease domains
(EDMs) of DNA polymerase ɛ (POLE) and polymerase ƌ (POLD1)

were described.6–14 These POLE/POLD1 variants affect proofreading

function and lead to an ultramutated phenotype with a variant

incidence exceeding 100 variants/Mb. Germline POLE-EDM variants

can result in a LS phenotype and microsatellite instable colorectal

cancers (CRCs).6,15 The exact role of somatic POLE/POLD1 variants in

tumors with high microsatellite instability (MSI-H) remains unclear.
The aim of our study was to identify the underlying genetic cause of

disease in a cohort of 64 sLS cases – selected on the basis of MSI, loss
of MMR, young onset and often a family history for LS – by screening
the MMR, POLE and POLD1 genes in both leukocyte and
tumor DNA.

SUBJECTS AND METHODS
This study included 64 patients with Lynch-associated tumors recruited in four
academic centers in the Netherlands between 1997 and 2014: Leiden University
Medical Centre (n= 37), Maastricht University Medical Centre (n= 11),
Erasmus Medical Centre (n=9) and University Medical Centre Utrecht
(n=7). Demographic and clinical data, as well as informed consent, were
obtained at the time of diagnosis. This study was approved by the local medical
ethical committee of the LUMC (P01-019E). Patients were selected based on loss
of MMR (as indicated by immunohistochemical staining) and/or MSI. Unex-
plained tumors with low MSI or tumors with inconclusive IHC results were also
included in this study (see Supplementary Table 1 and Supplementary Methods).
Fifty-eight (91%) patients fulfilled Bethesda criteria,16 and families of 24

(38%) patients also fulfilled Amsterdam II criteria.17 Patients were previously
screened in a diagnostic setting for germline MMR variants. Whereas 57 patients
showed no disease-causing germline variants, 7 patients were found to have a
germline variant of unknown significance (VUS). Of the total cohort, 75% of
patients presented with CRC (n= 48), 14% with endometrial cancer (EC, n= 9)
and 11% with another LS-associated tumor (see Supplementary Table 1).
The average age of onset was 52.1 years. Two patients were excluded from

the analysis because of poor DNA quality. Of the remaining 62 tumors, tumor
and leukocyte DNA was sequenced for variants in the exonic regions of MLH1,
MSH2, MSH6, PMS2, POLE and POLD1 using the Ion PGM System (Life
Technologies, Carlsbad, CA, USA). Raw data analysis, alignments and variant
calling was carried out using the default parameters in Torrent Suite v4.0
(Thermo Fisher Scientific, Waltham, MA, USA; see Supplementary Methods).
Variants were functionally annotated using ANNOVAR.18 The full data set was
filtered and prioritized by variant frequency (410%) and coverage (450× ).
Interesting variants under 10% were manually curated. The in silico prediction
programs were used to predict effect on function (see Supplementary
Methods). All variants (likely) affecting function, including two variants with
a 9% variant frequency, were validated with Sanger sequencing. For all PMS2

1Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands; 2Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands;
3Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands; 4Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The
Netherlands; 5Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands; 6Department of Clinical Genetics, University Hospital Maastricht,
Maastricht, The Netherlands
*Correspondence: Professor H Morreau, Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands. Tel: +31 71 526 6630;
Fax: +31 71 526 8285; E-mail: j.morreau@lumc.nl
Received 26 June 2015; revised 14 October 2015; accepted 14 October 2015

European Journal of Human Genetics (2015), 1–4
& 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15
www.nature.com/ejhg

http://dx.doi.org/10.1038/ejhg.2015.252
mailto:j.morreau@lumc.nl
http://www.nature.com/ejhg


variants, PMS2-specific primers were created to confirm that the variant is
present in PMS2 and not in a PMS2 pseudogene.
LOH was determined for every heterozygous SNP by comparing the ratio of

allele A with allele B in leukocyte and tumor DNA samples. Furthermore, for
every heterozygous SNP, the allelic imbalance factor (AIF)19 was calculated and
Fisher’s exact test was performed to determine whether the difference between
normal and tumor is significant. If all heterozygous SNPs of one gene showed
LOH with an AIF 42 and Fisher’s exact P-value o0.05, LOH was called
(Supplementary Table 1).

RESULTS

Seven patients with a germline MMR VUS (class 3) were included in
this study (see Supplementary Table 1). In all cases, the variant was
detected with NGS in leukocyte and tumor DNA. During the course of
the study, three of these germline variants were reclassified as class 4 or
5 ((probably) affects function) by the International Society for
Gastrointestinal Hereditary Tumors Incorporated (InSiGHT). Four
tumors displayed a second somatic MMR variant predicted to affect
function. One tumor displayed LOH (Supplementary Table 1).
Six cases with somatic MLH1 hypermethylation fulfilling revised
Bethesda criteria (three from families fulfilling Amsterdam II criteria)
were sequenced for underlying hereditary defects explaining the family
history, but no germline variants were found. One of these MLH1
hypermethylated tumors carried a somaticMLH1 variant likely to affect
function and one displayed MLH1 LOH (Supplementary Table 1).
One (n= 27, 44%) or two (n= 13, 21%) somatic aberrations

(variant or LOH) in a MMR gene were found in a total of 62 tumors
(see Supplementary Table 1). Biallelic inactivation was concordant
with IHC. Of the 13 tumors with two somatic aberrations, 12 had
variants in MLH1 or MSH2 and were MSI-H. The thirteenth tumor,
sLS-07, showed expression loss of MSH6 and was MSS.
Although the majority (83%) of tumors showed o10 somatic

variants in the genomic region analyzed, 10 cases displayed a larger
number of somatic variants, ranging from 16 to 375 somatic variants
within the sequenced area of 31 kb. Out of 10 tumors, 9 showed a
POLE or POLD1 variant that (probably) affects function (Table 1).
Of the highly mutated tumors, two carried novel germline hetero-
zygous POLE/POLD1 variants that are predicted to affect proofreading
(Supplementary Table 2). Of these two germline cases, tumor sLS-67
was also found to carry two somatic MLH1 variants, explaining the
tumor phenotype (loss of MLH1 and PMS2 expression and MSI-H).
The second tumor, sLS-16, was MSI-L, showed positive MLH1 and
MSH2 staining (MSH6 and PMS2 were not tested) and had no
somatic MMR variants.
Seven of the highly mutated tumors showed somatic POLE/POLD1

variants likely to affect function. Six tumors carried a somatic
POLE/POLD1-EDM hot spot variant (POLE: c.857C4G, c.856C4T,
c.1231G4T, c.1366G4C, c.1367C4T or c.1376C4T and POLD1
c.1433G4A) that has previously been described to impair
proofreading.4 In the seventh tumor (sLS-105), a novel POLE
c.846_847delinsTT variant was detected. This variant lies close to a
known POLE hot spot site (POLE c.857) and is predicted to affect
function by two out of three prediction programs (Supplementary
Table 2). All POLE variants were heterozygous, in agreement with
previous research.7,9,10,13,15 Four POLE/POLD1-EDM mutated tumors
displayed additional somatic nonsense POLE variants outside the
exonuclease domain (see Supplementary Table 3). Only one of these
was upstream of the exonuclease domain (sLS-16).
Eight of the nine ultramutated tumors with a POLE/POLD1-EDM

variant found in our study showed MSI (3 MSI-H and 5 MSI-L). In
six of these ultramutated tumors, IHC detected loss of at least one of

the MMR proteins and all six tumors displayed somatic variants in the
affected MMR gene likely to affect function. Tumor sLS-19 with two
POLE variants was found to have two somatic MLH1 aberrations, as
well as two somatic PMS2 aberrations, and IHC showed solitary loss of
PMS2 expression. Reanalysis of staining also showed ambiguous
MLH1 staining (cytoplasmic enhancement and vague, focal nuclear
staining). Tumor sLS-09 displayed a nonsense MSH6 variant and
missense MSH2 variant predicted to affect function, and IHC showed
loss of MSH6 expression and weak positive MSH2 expression. In three
POLE/POLD1-EDM mutated tumors with positive or inconclusive
MMR expression and MSI-L phenotype, no somatic MMR variants
(likely) to affect function were found. However, in one of those three
tumors (sLS-05), solitary MLH1 LOH and PMS2 LOH without
variants was found (see Table 1).
In three non-ultramutated tumors, a POLE/POLD1-EDM variant

was found (sLS-80, sLS-87 and sLS-101, see Table 1). These variants
have not been described before, but are predicted to affect function
(see Supplementary Table 2). Two variants co-occur with a germline
MSH6 VUS and a somatic MSH6 variant (sLS-80 and sLS-87),
whereas one (sLS-101) co-occurs with a somatic PMS2 variant. Four
additional non-ultramutated tumors showed POLE (sLS-18, sLS-21)
or POLD1 LOH (sLS-12, sLS-49) in all heterozygous SNPs
(Supplementary Table 1), without germline or somatic POLE variants.

DISCUSSION

POLE-EDM variants are reported to be the mutagenic factor driving
ultramutation in tumors.20 The same report also noted that the
increased mutational load seen in POLE mutated tumors exceeds that
expected because of loss of exonuclease activity.20 The number of
variants detected in the sequenced area in the present study implicates
an ultramutated phenotype, with 4100 variants/Mb in all
POLE/POLD1-EDM mutated tumors in this cohort. As only a limited
region (31 kb) was sequenced, we can only extrapolate the total
number of variants per Mb. In our cohort, the POLE/POLD1 mutated
MMR-deficient tumors display two deficient pathways increasing the
mutational load. Comparing frequencies of the different variants
found in these tumors, it might be concluded that faulty proofreading
may be the initiating event in some of these tumors, possibly resulting
in loss of MMR and thereby in MSI. Interestingly, four tumors show
POLE/POLD1 LOH without germline or somatic POLE/POLD1
variants. These tumors however do not show the typical ultramutated
phenotype, whereas single variants without LOH do show that.
This phenomenon of LOH without variants affecting the exonuclease
domain has not yet been described. Possibly, the remaining allele is
enough to maintain proofreading. Furthermore, three tumors show
somatic POLE/POLD1 variants, without the ultramutated phenotype.
All three variants are missense, but are predicted to affect
function (Supplementary Table 2). As these variants are not found
in ultramutated tumors, evidence of deleterious functional effect
is lacking.
In conclusion, targeted next-generation sequencing of 62 sLS cases

led to the detection of 9 highly mutated tumors with a germline
(n= 2) or somatic (n= 7) POLE/POLD1-EDM variant. Even though
POLE germline variants have previously been shown to co-occur with
somatic MMR variants,11 in this study we found germline and
somatic POLE/POLD1 variants in a cohort selected for sLS character-
istics. Importantly, although current literature mainly addresses
POLE/POLD1 variants in MSS tumors, somatic POLE/POLD1 variants
in sLS patients are likely to be overlooked. However, a very recent
recommendation for genetic testing and surveillance states that MMR
deficiency should not be an exclusion criterion for genetic testing of
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germline POLE/POLD1 variants.21 Our results further emphasize the
importance of POLE/POLD1 germline and somatic screening in
unexplained MSI-H and MMR-deficient tumors.
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