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BACKGROUND & AIMS: Autoimmune hepatitis (AIH) is an
uncommon autoimmune liver disease of unknown etiology.
We used a genome-wide approach to identify genetic variants
that predispose individuals to AIH. METHODS: We performed
a genome-wide association study of 649 adults in The
Netherlands with AIH type 1 and 13,436 controls. Initial
*Authors share co-first authorship; §Authors share co-senior authorship.

Abbreviations used in this paper: AIH, autoimmune hepatitis; ALT,
alanine aminotransferase; GWAS, genome-wide association studies;
LD, linkage disequilibrium; LKM-1, liver kidney microsomal 1 anti-
bodies; MHC, major histocompatibility complex; OR, odds ratio; PBC,
associations were further analyzed in an independent repli-
cation panel comprising 451 patients with AIH type 1 in
Germany and 4103 controls. We also performed an associa-
tion analysis in the discovery cohort using imputed genotypes
of the major histocompatibility complex region. RESULTS: We
associated AIH with a variant in the major histocompatibility
complex region at rs2187668 (P ¼ 1.5 � 10�78). Analysis of
this variant in the discovery cohort identified HLA-
DRB1*0301 (P ¼ 5.3 � 10�49) as a primary susceptibility
genotype and HLA-DRB1*0401 (P ¼ 2.8 � 10�18) as a sec-
ondary susceptibility genotype. We also associated AIH with
primary biliary cirrhosis; PSC, primary sclerosing cholangitis; SNP,
single-nucleotide polymorphisms.
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variants of SH2B3 (rs3184504, 12q24; P ¼ 7.7 � 10�8) and
CARD10 (rs6000782, 22q13.1; P ¼ 3.0 � 10�6). In addition,
strong inflation of association signal was found with
single-nucleotide polymorphisms associated with other
immune-mediated diseases, including primary sclerosing
cholangitis and primary biliary cirrhosis, but not with single-
nucleotide polymorphisms associated with other genetic
traits. CONCLUSIONS: In a genome-wide association study, we
associated AIH type 1 with variants in the major histocom-
patibility complex region, and identified variants of SH2B3and
CARD10 as likely risk factors. These findings support a com-
plex genetic basis for AIH pathogenesis and indicate that part
of the genetic susceptibility overlaps with that for other
immune-mediated liver diseases.

Keywords: Autoimmunity; Genetics; GWAS; SH2B Adaptor
Protein 3.

utoimmune hepatitis (AIH) is an uncommon auto-
1–3
Aimmune liver disease of unknown aetiology. The

disease has a prevalence of approximately 17 per 100,000
and is characterized by chronic destructive inflammation
within the liver parenchyma, elevated serum IgG levels,
and the presence of serum autoantibodies.1–4 AIH type 1
is associated with antinuclear antibodies, smooth muscle
antibodies, and soluble liver antigen/liver pancreas anti-
bodies, and occurs predominantly in adult women; the
rare AIH type 2 occurs predominantly in children and is
associated with liver kidney microsomal 1 antibodies
(LKM-1).1,2 In up to 10% of patients, a clinical overlap is
seen with primary biliary cirrhosis (PBC) or primary
sclerosing cholangitis (PSC).5,6 The manifestations of
these respective traits in a subgroup of AIH patients
might, in fact, indicate that AIH is part of a spectrum of
autoimmune liver diseases with shared genetic risk fac-
tors.5,6 Recent genome-wide association studies (GWAS)
in PBC and PSC have identified several genetic risk factors
underlying these traits.7–14 So far, there have not been
such genome-wide approaches in AIH. The only described
and confirmed genetic association with AIH relates to HLA
class II genotypes that have been distilled from candidate
gene approaches in small study populations.3,15–19 No
independent and reproducible associations outside the
major histocompatibility complex (MHC) have been
identified.20–28 Because GWAS has emerged as a powerful
and unbiased approach for the identification of new ge-
netic susceptibility loci in autoimmune diseases,29 we
applied this methodology in a large cohort of AIH patients
and controls and replicated the identified loci in an in-
dependent set of patients and controls.
Patients and Methods
The cases for the discovery set were identified by the Dutch

AIH Study Group consortium (http://www.autoimmuunhepatitis.
nl), which involved the gastroenterology and hepatology de-
partments from 8 academic and 23 general hospitals in The
Netherlands. AIH patients were identified by treating physicians
and by searching the database for International Classification of
Diseases codes. The search was performed in local diagnostic
registers in the departments of gastroenterology and hepatology
as well as internal medicine. In all patients, available clinical and
biochemical parameters were assessed to characterize the pa-
tients and exclude other etiologies, such as alcohol, drugs, and
metabolic disorders. Viral hepatitis was excluded by serological
testing. If performed, liver biopsy was used to establish diagnosis
and the presence of fibrosis and cirrhosis. We recorded mani-
festations of overlap syndromes with PBC and PSC in the pres-
ence of AIH if these had been assessed. For PBC, these criteria
consisted of anti-mitochondrial antibody titers >1:80 and typical
histologic findings, and manifestations of PSC were recorded in
case of typical histologic and radiologic findings. The presence of
other concomitant autoimmune disorders, including type 1 dia-
betes mellitus, celiac disease, Hashimoto’s disease, Sjögren syn-
drome, colitis ulcerosa, and Crohn’s disease, was separately
ascertained if noted in the medical records. Diagnostic scores
were determined according to the revised original International
Autoimmune Hepatitis Group criteria.4 Between 2008 and 2012,
we recruited 743 patients with a clinical diagnosis of AIH in the
discovery set. Twenty-four AIH patients (3%) with positive LKM-
1 antibodies (AIH type 2) were excluded. After quality control
(see Genotyping and Quality Control section), a total of 649 AIH
type 1 cases were available for analysis. All 15,638 control sub-
jects for the discovery set were included from LifeLines, a large
population-based cohort study conducted in the northern part of
The Netherlands.30 The replication cohort consisted of 466 pa-
tients with a clinical AIH diagnosis that had been identified and
included in 6 centers in Germany and 1 center in Switzerland.
After exclusion of patients with positive LKM-1 antibodies (AIH
type 2), 451 cases were available for the replication analysis. The
4103 controls for the replication cohort were drawn from the
German population-based Study of Health in Pomerania, which
had previously been genotyped at the University Medicine
Greifswald using the genome-wide Human Affymetrix SNP 6.0
platform.31 Before the start of the study, Institutional Review
Board approval to carry out the study was obtained in all
participating centers. All participants provided written informed
consent.

Genotyping and Quality Control
Genotyping of all cases and controls in the Dutch set

(discovery) was performed on the Illumina CytoSNP 12.0
platform (containing 300,739 single-nucleotide poly-
morphisms [SNPs]) at the University Medical Center Gronin-
gen, The Netherlands. Twenty-three AIH cases with a call rate
of <99% were excluded. We used multidimensional scaling
analysis to identify population ancestry and exclude ethnic
outliers (n ¼ 34), as well as duplicates and relatives (n ¼ 3)
among AIH cases study population.32 We performed a sex
check and excluded 10 AIH samples in which recorded sex did
not correspond to the genotype-inferred sex. A total of 15,638
samples of LifeLines control subjects had previously been
genotyped and subjected to quality-control criteria. Of these,
2202 samples did not pass quality control due to call rates
<95% (n ¼ 129), ethnic outliers (n ¼ 486), duplicates and
relatives (n ¼ 1372) and samples in which recorded sex did
not correspond to the genotype-inferred sex (n ¼ 215). We
applied stringent quality control to SNP data and excluded a
total of 46,733 SNPs due to a minor allele frequency of <1%,
call rates <95%, or deviation from the Hardy-Weinberg

http://www.autoimmuunhepatitis.nl
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equilibrium (P < .0001). The genotype clusters of the indi-
vidual SNPs with a GWAS P value �5.0 � 10�5 were manually
inspected before they were selected for replication. Genotyp-
ing of all 4103 German replication controls from the Study of
Health in Pomerania cohort was performed on the Human
Affymetrix 6.0 platform at the University Medicine Greifswald,
Germany. If our target SNP was not present on this platform, a
suitable tagging SNP in high linkage disequilibrium (LD: r2 >
0.95) with our SNP of interest was identified with the SNAP
tool (http://www.broadinstitute.org/mpg/snap/ldsearch.php).
The target SNPs rs3184504, rs6000782, and rs550167 were not
present on the Human Affymetrix 6.0 platform and, therefore,
the near-perfect proxies rs653178, rs1079982, and rs628334
were included. We could not identify suitable tagging SNPs for
rs17016449 and rs2192201 on the Human Affymetrix 6.0 plat-
form. Findings at 3 other loci (rs10819195, rs6551933,
rs7171939) could not be replicated due to unsuccessful geno-
typing in the replication control cohort (SNP call rate: <0.95).
Genotyping of the remaining 5 SNPs in the German set (repli-
cation) was performed in the 466 AIH cases using Taqman
Assay-by-Design genotyping assays ( C__26835139_10,
C___2708963_10, C___2978544_20, C__58662585_10,
C__11557218_10; Applied Biosystems, Europe BV, Nieuwerkerk
a/d IJssel, The Netherlands) at the VU University Medical
Center, Amsterdam, The Netherlands. As a control measure, we
also genotyped the Dutch AIH samples with these assays and
checked for correlation or LD (r2 >0.97) of the genotype fre-
quencies as assessed by the Illumina CytoSNP 12.0 platform in
these samples.

Statistical Analysis
Primary allelic association analysis was performed with

PLINK v1.07 software package (http://pngu.mgh.harvard.
edu/wpurcell/plink/index.shtml). We ascertained whether
genomic inflation (l > 1.0), indicative of false-positive as-
sociation results, was present as a result of population
stratification between cases and controls. Principal compo-
nent analysis with EIGENSTRAT (http://genepath.med.
harvard.edu/wreich/Software.htm) was applied to
generate principal components, which were used as cova-
riates in the logistic regression analysis to control for this
population stratification (Supplementary Figure 1).33 To
prevent further false-positive association results, we applied
genomic control using the remaining inflation factor to
generate adjusted P values.34 A P value of <5.0 � 10�8 was
considered genome-wide significant. Manhattan and quanti-
le–quantile plots were generated using the R software
package (http://www.r-project.org/).

In the replication cohort, we performed c2 analysis on the
allelic frequencies of the selected SNPs in cases and controls to
test for association using the R software package. A P value of
<.05 after Holm-Bonferroni correction for multiple testing
(PHolm-corr) was considered statistically significant for replica-
tion.35 Meta-analysis of discovery and replication results was
performed with a P value–based, weighted method using
METAL (http://www.sph.umich.edu/csg/abecasis/Metal/).36

Proportional weights of the discovery and replication panels
were adjusted for the unequal size of cases and controls using
the formula Neff ¼ 4 / (1 / Ncases þ 1 / Nctrls). We used
Cochran’s Q-test to determine heterogeneity between discovery
and replication results. AIH-associated markers were tested for
association with clinical traits in the Dutch AIH samples, with
available data using linear or logistic regression analysis. A P
value of <.05 was considered statistically significant. We sub-
sequently assessed whether SNPs, previously found associated
with autoimmune or immune-related disorders, showed a trend
of association in the AIH discovery cohort. Metabolic dis-
order–associated SNPs were selected as a reference for com-
parison. We selected established (auto)immune (n ¼ 344) and
other (metabolic) (n ¼ 603) associated SNPs or representative
markers (LD: r2 � 0.8) that were available in our cohort from
the GWAS catalog (http://www.genome.gov/admin/
gwascatalog.txt) (Supplementary Table 1). Inflation of signal
factors (l) for both the (auto)immune and other (metabolic)
associated markers were calculated.34 To correct for potential
overestimation of effect due to known HLA involvement in
(auto)immunity, this analysis was repeated after exclusion of
markers that map in the MHC region (chromosome 6: 20–40
mb). The risk alleles of (auto)immune associated SNPs with P <
5.0 � 10�3 were compared with the risk alleles for AIH.
Probability for similar risk alleles was estimated using an exact
binomial test. A P value of <.05 was considered statistically
significant.
Major Histocompatibility Complex Imputation
Imputation of the HLA genotype and amino acid poly-

morphism frequencies in the GWAS set was performed with the
SNP2HLA imputation tool (http://www.broadinstitute.org/
mpg/snp2hla/) on SNPs in the MHC region (20–40 mb on
chromosome 6). The 5225 individuals of the Type 1 Diabetes
Genetic Consortium were used as a reference panel.37 Mean
estimated r2 value of all 8961 predicted markers with true
genotypes was 0.98 (SD 0.08).
Results
Genome-Wide Association Data and
Replication Results

The initial discovery cohort consisted of 743 Dutch adult
AIH patients and 15,638 Dutch control subjects. Twenty-four
AIH cases (3%) had positive LKM-1 antibodies and were
excluded. Seventy cases and 2202 controls were excluded
due to stringent quality-control criteria (see Patients and
Methods section) resulting in a total of 649 cases and 13,436
controls that were available for further analysis. The AIH
cases consisted of 148 males and 501 females with a mean
age of 48 years (�17 SD) at diagnosis. Median International
Autoimmune Hepatitis Group diagnostic score was 18 points
(interquartile range, 15–18). Evidence for a clinical overlap
syndrome with PBC (AIH-PBC) was found in in 57 (9%) pa-
tients and with PSC (AIH-PSC) in 44 (7%) patients (Table 1).
The initial replication cohort consisted of 466 AIH cases and
4103 German control subjects. Fifteen AIH cases (3%) were
excluded due to positive LKM-1 antibodies. A total of 451 AIH
patients, 121 males and 330 females, with a mean age of 49
years (�17 SD) were included for the replication analysis.
Manifestations of AIH overlap syndromes with PBC or PSC
were seen in 65 (14%) and 8 (2%) AIH cases, respectively.

The initial association analysis in the discovery cohort
revealed that there was genomic inflation of association

http://www.broadinstitute.org/mpg/snap/ldsearch.php
http://pngu.mgh.harvard.edu/%7Epurcell/plink/index.shtml
http://pngu.mgh.harvard.edu/%7Epurcell/plink/index.shtml
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http://genepath.med.harvard.edu/%7Ereich/Software.htm
http://genepath.med.harvard.edu/%7Ereich/Software.htm
http://www.r-project.org/
http://www.sph.umich.edu/csg/abecasis/Metal/
http://www.genome.gov/admin/gwascatalog.txt
http://www.genome.gov/admin/gwascatalog.txt
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Table 1.Baseline Characteristics of 649 Dutch AIH Type 1
Patients

Characteristics

Female, n/total (%) 501/649 (77)
Age, y, mean � SD 48 � 18
Biochemistry

ALT, U/L, median (IQR) 328 (132–835)
AP, U/L, median (IQR) 145 (101–226)
IgG, g/L, median (IQR) 21 (16.0–29.5)

Serology
ANA �1:40, n/total (%) 365/540 (68)
SMA �1:40, n/total (%) 298/508 (59)
AMA �1:40, n/total (%) 41/552 (7)

Histology
Fibrosis, n/total (%) 274/530 (52)
Cirrhosis, n/total (%) 62/530 (12)

Concomitant AI disease, n/total (%) 149/612 (24)
IAIHG criteriaa

Score, median (IQR) 18 (15–20)
Probable AIH,b n/total (%) 203/649 (31)
Definite AIH,b n/total (%) 344/649 (53)

Overlap syndromes
AIH-PBC, n/total (%) 57/649 (9)
AIH-PSC, n/total (%) 44/649 (7)

AMA, antimitochondrial antibodies; ANA, antinuclear anti-
bodies; AP, alkaline phosphatase; IQR, interquartile range;
SMA, smooth muscle antibodies.
aAccording to the International Autoimmune Hepatitis Group
(IAIHG) pretreatment diagnostic score.
bIAIHG score: 10–14 ¼ probable, �15 ¼ definite AIH.
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results (l ¼ 1.46) as a result of population stratification be-
tween cases and controls. This can be attributed to the fact
that patients were selected nationwide, and the control
cohort was mainly recruited from the northern part of The
Netherlands. To correct for this heterogeneity, principal
component analysis was performed (Supplementary
Figure 1).33 We used the first 10 principal components in
the logistic regression analysis, which resulted in a reduction
of genomic inflation (lgc ¼ 1.10). We then generated adjusted
P values with genomic control to further reduce the possi-
bility of false-positive associations.34 A quantile–quantile plot
Figure 1. Quantile–quantile plot (A) and Manhattan plot (B) th
quantile–quantile plot represents concurrence of the expected a
are marked purple in the Manhattan plot.
shows the distribution of the observed vs the expected P
values with (Figure 1A) and without (Supplementary
Figure 2A) the MHC region.

The association analysis in the discovery cohort identi-
fied a total of 127 SNPs in the MHC region (20–40 mb) that
reached genome-wide significance (P < 5.0 � 10�8). The
strongest association was found at rs2187668 (odds ratio
[OR] ¼ 2.9; PGWAS ¼ 1.3 � 10�48) (Figure 1B), which maps
to the intronic region of the HLA-DQA1 gene at 6p21.3 and is
an efficient tagging SNP (LD: r2 > 0.97) for the HLA-
DRB1*0301-DQB1*0201 haplotype (Supplementary
Table 2).38 Nine independent loci (LD: r2 < 0.1) outside
the MHC region were marked by individual SNPs with P
values �5.0 � 10�5 (Supplementary Table 2,
Supplementary Figure 2B). The strongest non-HLA suscep-
tibility markers were rs3184504 at 12q24 (OR ¼ 1.4;
PGWAS ¼ 5.0 � 10�7) and rs6000782 at 22q13.1 (OR ¼ 1.7,
PGWAS ¼ 1.8 � 10�5).

A subgroup of AIH patients displayed overlap with PBC
(n ¼ 57) or PSC (n ¼ 46). Both disorders have an estab-
lished genetic basis and, consequently, the inclusion of these
patients in the AIH cohort may, in theory, have influenced
the outcomes of the AIH GWAS. We therefore performed a
separate association analysis after exclusion of 103 AIH
patients with overlap manifestations with PBC or PSC. This
revealed consistent results for rs2187668 (OR ¼ 3.0;
PGWAS ¼ 8.0 � 10�44), rs3184504 (OR ¼ 1.4; PGWAS ¼ 3.2 �
10�7), and rs6000782 (OR ¼ 1.8; PGWAS ¼ 4.5 � 10�6)
(Supplementary Table 3) after genomic control (lgc ¼ 1.08).
The 2 overlap groups were too small for separate associa-
tion analyses.

After manual inspection of genotype calls and identifica-
tion of available near-perfect proxy SNPs (LD: r2 > 0.95) at
the German Human Affymetrix 6.0 replication platform (see
Patients and Methods section), we were able to perform
replication analysis for 5 selected SNPs in 451 German AIH
cases and 4103 controls. The replication analysis showed
similar results at rs2187668 (OR ¼ 2.5; PHolm-corr ¼ 5.0 �
10�31), rs3184504 (OR¼ 1.2; PHolm-corr¼ .08), and rs6000782
(OR ¼ 1.4; PHolm-corr ¼ .09) after correction for multiple
testing (Table 2). Weighted meta-analysis of the discovery
and replication association results revealed a consistent
e GWAS analysis after genomic control. The red line in the
nd the observed P values. SNPs with a P value <5.0 � 10�8



Table 2.Association Results and Meta-Analysis of the GWAS and Replication Cohort for 5 Top Loci

Location

SNP
(candidate

gene)

GWAS Replication Meta analysis

Ncasesþcontrols
a

RAFb
OR

(95% CI)c PGWAS Ncasesþcontrols
d

RAFe
OR

(95% CI)c PRepl PHolm-corr
f PGWASþRepl

g PHet
hCases Controls Cases Controls

6p21.3 rs2187668
(HLA-DQA1)

14079 0.32 0.15 2.9 (2.6–3.4) 1.2 � 10�48 4552 0.27 0.13 2.5 (2.2–3.0) 1.0 � 10�31 5.0 � 10�31 1.5 � 10�78 .9

12q24 rs3184504
(SH2B3)

14075 0.53 0.43 1.4 (1.2–1.6) 5.0 � 10�7 4552 0.55 0.51 1.2 (1.0–1.4) .02 .08 7.7 � 10�8 .2

22q13.1 rs6000782
(CARD10)

14082 0.08 0.04 1.7 (1.4–2.1) 1.8 � 10�5 4530 0.06 0.05 1.4 (1.0–1.8) .03 .09 3.0 � 10�6 .3

4q25 rs11943338
(DKK2)

14080 0.86 0.82 1.5 (1.2–1.7) 4.6 � 10�5 4519 0.82 0.81 1.0 (0.9–1.3) .6 .8 4.3 � 10�4 .03

5p15.3 rs550167 14084 0.22 0.19 1.4 (1.2–1.6) 5.6 � 10�5 4537 0.17 0.18 0.9 (0.8–1.1) .4 .8 9.2 � 10�3 1.4 � 10�3

NOTE. Association results of 5 top SNPs with a P value <5.0 � 10�5 in the GWAS analysis and available allele frequencies in the replication control cohort.
RAF, risk allele frequency.
aNumber of successfully genotyped individuals in the AIH-GWAS cohort consisting of 649 AIH patients and 13,436 controls.
bRisk allele frequencies were assessed on Illumina CytoSNP 12.0 platform.
cOdds ratio (OR) and 95% confidence interval (CI).
dNumber of successfully genotyped individuals in replication cohort consisting of 451 AIH patients and 4,103 controls.
eRisk allele frequencies were assessed by Taqman (cases) and Human Affymetrix 6.0 platform (controls).
fAdjusted P value using Holm-Bonferroni correction (a ¼ .05).
gWeighted P value–based meta-analysis of discovery and replication results using METAL.
hP value for heterogeneity.
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outcome at rs2187668 (PGWASþRepl¼ 1.5� 10�78), rs3184504
(PGWASþRepl ¼ 7.7 � 10�8), and rs6000782 (PGWASþRepl ¼
3.0 � 10�6) with similar direction and extent of effect
(Table 2).36
Inflation of Autoimmune- and Immune-
Associated Loci

The sample size and correction for population stratifi-
cation in this study limited the statistical power to reach
genome-wide significance for other loci that displayed a
deviation from the expected frequencies. We next assessed
if SNPs, previously associated with other autoimmune or
immune-related disorders (Supplementary Table 1),
showed a trend of association in our AIH GWAS. We
observed strong deviation from the expected P values for
autoimmune- and immune-related SNPs associated with
other immune-mediated diseases (lAI ¼ 1.60), and no such
deviation was seen for SNPs associated with metabolic
disorders (lMB ¼ 1.08; Supplementary Figure 3), which
were selected as a reference. After exclusion of SNPs from
the MHC region (chromosome 6, 20–40 mb), we observed a
similar inflation of the signal (lAI ¼ 1.46 vs lMB ¼ 1.05;
Figure 2; Supplementary Figure 3). Inspection of all SNPs
with P < 5.0 � 10�3 revealed that 9 of the 10 top SNPs
have risk alleles (binomial test: P�10/11 ¼ 5.9 � 10�3)
similar to those reported for the immune-related traits
(Supplementary Table 4). To specifically compare genetic
Figure 2.Quantile–quantile plot of autoimmune and immune
associated SNPs in AIH after exclusion of the MHC region
(20–40 mb) on chromosome 6. There is marked inflation of
signal (lAI ¼ 1.46). The risk allele and respective associated
autoimmune and immune mediated trait(s) are displayed for
the top 10 SNPs. The red line represents concurrence of the
expected and the observed P values. CeD, celiac disease;
IBD, inflammatory bowel disease; MS, multiple sclerosis;
PBC, primary biliary cirrhosis; PSC, primary sclerosing chol-
angitis; RA, rheumatoid arthritis; SLE, systemic lupus ery-
thematosus; T1DM, type 1 diabetes mellitus; UC, ulcerative
colitis.
association results of AIH with PBC and PSC, available PBC
(n ¼ 12) and PSC (n ¼ 8) risk loci in the nonoverlap AIH
GWAS were selected (Table 3). Subsequent calculation
of inflation factors revealed a marked inflation of AIH
type 1 statistics for both PBC (lPBC ¼ 3.1) and PSC
(lPSC ¼ 3.2).

Major Histocompatibility Complex Imputation in
Autoimmune Hepatitis Genome-Wide
Association Study

To ascertain which specific HLA genotypes determine
the association with AIH, we imputed classical HLA geno-
types and amino acid polymorphisms in the Dutch AIH cases
and controls.37 Subsequent association analysis of HLA ge-
notypes showed strong association with HLA DRB1*0301
(OR ¼ 2.9; P ¼ 5.3 � 10�49). In addition, we identified HLA-
DRB1*0401 (OR ¼ 2.3; P ¼ 2.8 � 10�18) as a secondary AIH
susceptibility genotype in a HLA DRB1*0301-conditioned
analysis. Association analysis on amino acid polymorphisms
showed a primary association with lysine at position 71
(71K) in the binding groove sequence 67 to 72 (LLEQKR) of
the HLA-DR b chain (OR ¼ 2.9; P ¼ 4.8 � 10�55), which is
encoded by both HLA-DRB1*0301 and HLA-DRB1*0401.16,19

Clinical Trait Analysis
To establish the functional implications of the HLA-

DRB1*0301, HLA-DRB1*0401 genotypes, as well as the
rs3184504*A and rs6000782*C alleles, we performed
regression analyses on the following quantitative disease
parameters in the cases of the discovery cohort: serum
alanine aminotransferase (ALT) and IgG levels at presenta-
tion, age of onset, and the presence of 1 or more concomi-
tant autoimmune diseases other than PSC or PBC
(Supplementary Table 5). HLA-DRB1*0301 was associated
with earlier age of onset (b ¼ �3.1 years; P ¼ 4.0 � 10�3)
and higher IgG levels (b ¼ 2.1 g/L; P ¼ 5.9 � 10�3) at
presentation, but was not associated with baseline ALT
levels (b ¼ 24 U/L; P ¼ .6) or concomitant autoimmune
disease (OR ¼ 1.3; P ¼ .05). In contrast, HLA-DRB1*0401
was associated with later onset of disease (b ¼ 5.6 years;
P ¼ 1.2 � 10�4) and was not associated with IgG (b ¼ �.03
g/L; P ¼ .9), ALT levels (b ¼ 79 U/L; P ¼ .2) or concomitant
autoimmune disease (OR ¼ 1.1; P ¼ .5). The presence of the
rs3184504*A allele was associated with concomitant auto-
immune disease (OR ¼ 1.3; P ¼ .04), but not with age of
onset, serum IgG, and ALT levels. The presence of the
rs6000782*C allele was not associated with any of the
investigated clinical traits.
Discussion
The low prevalence (17 per 100,000) and heterogeneous

presentation of AIH have precluded large-scale genetic
studies so far in AIH.1 Here, we studied a substantial dis-
covery cohort and replication cohort of patients from The
Netherlands and Germany/Switzerland, respectively. Despite
the relatively small sample size, we were able to identify
several loci that are associated with the susceptibility to



Table 3.PBC and PSC Markers in AIH GWAS

Trait Locus PBC/PSC-SNP PPBC/PSC AIH-SNP PAIH LD (r2) Candidate gene(s) Reference

PBC and PSC 12q24 rs3184504 5.9E-11 rs3184504 3.2E-07 1 SH2B3, ATXN2 39,40
PBC and PSC 1p36 rs3748816 3.2E-08 rs4310388 .2355 0.93 MMEL1 14,40
PBC 3q25.33 rs2366643 3.9E-22 rs574808 2.7E-03 0.97 IL12A 39
PBC 7q32 rs35188261 6.5E-22 rs10488631 3.8E-03 1 IRF5, TNPO3 39
PBC 3q13.3 rs2293370 6.8E-16 rs12494314 .03078 1 TMEM39A, POGLUT1,

TIMMDC1, CD80
39

PBC 5p13 rs6871748 2.3E-13 rs10214273 .05923 1 IL7R, CAPSL, SPEF2, UGT3A1 39
PBC 11q13 rs538147 2.1E-10 rs538147 .1673 1 RPS6KA4 10
PBC 4q24 rs7665090 8.5E-14 rs1054037 .2549 1 MANBA, NFKB1 39
PBC 3p24.3 rs1372072 2.3E-08 rs6799397 .3579 1 PLCL2 39
PBC 14q24 rs911263 1.0E-10 rs3784099 .582 0.96 RAD51B 39
PBC 12p13.2 rs1800693 1.2E-14 rs4149576 .6377 0.87 TNFRSF1A, LTBR, SCNN1A 39
PBC 16p13.13 rs12708715 2.2E-13 rs2041670 .7534 1 SOCS1, CLEC16A, PRM1,

PRM2
39

PSC 11q23 rs7937682 3.2E-09 rs4936682 .06132 0.96 SIK2 40
PSC 4q27 rs13140464 8.9E-13 rs13151961 .1832 1 IL2, IL21 40
PSC 21q22 rs2836883 3.2E-17 rs2836878 .2154 0.96 PSMG1 40
PSC 3p21 rs3197999 2.5E-26 rs9858542 .3069 1 USP4, MST1 40
PSC 12q13 rs11168249 5.5E-09 rs11168249 .4503 1 HDAC7 40
PSC 18q22 rs1788097 3.1E-08 rs1790588 .6633 1 CD226 40

NOTE. Association results of 12 PBC and 8 PSC associated markers in 546 nonoverlap AIH patients and 13,436 controls.
Calculation of inflation factors showed inflation (l > 1.0) of AIH statistics for both PBC (lPBC ¼ 3.1) and PSC (lPSC ¼ 3.2).
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develop AIH type 1 and define AIH type 1 as a complex ge-
netic disorder.

The most prominent association was found with the
HLA-DRB1*0301 and HLA-DRB1*0401 genotypes, and these
findings confirm and establish previous reports in small
groups of white patients.3,15–19 These observations further
define the role of HLA in AIH disease pathogenesis using a
hypothesis-free approach and show that this region confers
the strongest genetic risk to AIH. MHC class II molecules are
expressed on professional antigen presenting cells and
primarily present exogenous antigens to CD4-positive
T cells. Molecular mimicry, in which exogenous antigens
trigger an immune response that is also directed at similar
but endogenous antigens, has been proposed as a potential
pathologic mechanism in autoimmune disease develop-
ment.3 Some of these potential triggers may only be effec-
tively presented by specific HLA class II molecules.3

HLA-DRB1*0301 and HLA-DRB1*0401 share the 71K amino
acid polymorphism, constituting the LLEQKR amino acid
sequence at positions 67–72, which therefore might be the
responsible AIH-specific epitope binding sequence.16,19

Although both genotypes increase overall AIH susceptibil-
ity risk, we also show a contrast in relation to clinical
characteristics. Although HLA-DRB1*0301 is strongly asso-
ciated with higher serum levels of the adaptive immune-
system serum marker IgG, earlier age of onset and the
presence of 1 or more concomitant autoimmune diseases,
the HLA-DRB1*0401 genotype is associated with lower
serum IgG levels and later age of onset and does not show
associations with the presence of concomitant autoimmune
diseases.

In addition to the MHC locus, we identified an associa-
tion with the rs3184504*A allele in the SH2B3 gene. It
should be noted that this SNP did not exceed the stringent
threshold for genome-wide significance, but it yielded a
consistent result in both the discovery and replication
analysis and most likely represents a true-positive associa-
tion. This SNP then represents the first genetic AIH locus
outside the MHC region. It encodes a missense variant in
exon 3 of the Scr homology 2 adaptor protein 3 (SH2B3)
gene located in the 12q24 region. SH2B3 is a negative
regulator of T-cell activation, tumor necrosis factor, and
Janus kinase 2 and 3 signaling, and plays an essential role in
normal hemapotoesis.41,42 The AIH risk allele rs3184504*A
results in replacement of the basic polar arginine with the
nonpolar tryptophan at position 262 (R262W) in the
pleckstrin homology domain of the SH2B3 protein. Recently,
expression quantitative trait locus analyses in 5311 healthy
individuals established that the AIH risk allele rs3184504*A
is associated with higher expression levels of several genes
involved in interferon-gamma production, suggesting that
the risk allele leads to an increased adaptive immune
response, and the protective rs3184504*C allele is associ-
ated with higher expression of genes involved in toll-like
receptor signaling.43 The associated risk of the
rs3184504*A allele for concomitant autoimmune diseases in
this study is consistent with previous studies that identified
this allele as a risk factor in PSC, PBC, type 1 diabetes
mellitus, hypothyroidism, rheumatoid arthritis, and celiac
disease.39,44–47 The primary associations at HLA-DRB1*0301,
HLA-DRB1*0401, and SH2B3 indicate a genetic overlap of
AIH with other complex immune-mediated diseases. The
marked inflation of autoimmune-and immune-associated
SNPs, specifically with PBC and PSC, found in this study
further supports involvement of pleiotropic loci in AIH and
other autoimmune (liver) diseases.7
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The suggestive association of rs6000782 with AIH in-
dicates possible involvement of the caspase recruitment
domain family member 10 (CARD10) gene, which is posi-
tioned 12,643 base pairs downstream in the 22q13.1 region.
CARD10 (or CARMA3) is a scaffold protein in the CARMA/
Bcl10/MALT1 pathway, which induces proinflammatory
nuclear factor kB activation and is widely expressed in a
wide variety of nonhematopoietic tissues, including hepa-
tocytes.48 CARD10 is activated through stimulation of G
protein–coupled receptors by angiotensin II and lysophos-
phatidic acid, which in turn have been shown to induce the
expression of proinflammatory and fibrogenic cytokines, as
well as extracellular matrix proteins in hepatic cell culture
and animal models.48–50 Also, CARD10 is overexpressed in
several types of cancer and CARD10 deficiency has been
shown to affect cancer cell proliferation, survival, migration,
and invasion.51–55 The suggestive association in AIH
reported here is the first described association in an
immune-related trait and might therefore indicate specific
involvement of CARD10 in AIH.

Despite the small size of The Netherlands, we observed
substantial heterogeneity between the Dutch AIH cases,
which were collected nationwide, vs controls, which were
mainly collected in the northern part of The Netherlands. As
a consequence, the relatively small sample size for GWAS
and correction for this population stratification limited the
statistical power to identify disease susceptibility loci. Direct
testing for association with loci that have been identified for
other immune-mediated diseases revealed strong inflation
of signal, which indicates that these loci are most likely also
involved in the susceptibility to AIH. In this study, selected
SNP genotypes of cases and controls in the replication
cohort were ascertained with different assessment methods
(Taqman assays vs Human Affymetrix 6.0). Although both
methods are standardized and genotype clusters were
checked manually, different clustering that, in theory, could
have affected the outcomes, cannot be ruled out completely.
Additional studies in larger AIH cohorts and denser geno-
typing techniques are mandatory to improve statistical po-
wer, and meta-analyses and combination analyses with
clinically and genetically overlapping autoimmune traits will
likely result in the identification of more AIH susceptibility
loci.39,40,56,57

In summary, we have performed the first GWAS in AIH
and unequivocally established AIH type 1 as complex ge-
netic disorder with strong involvement of the MHC region.
We were able to refine the MHC association to amino acid
lysine 71 in the HLA-DR b chain and identified SH2B3 as the
first non-HLA genetic risk factor for AIH. Our findings sup-
port that part of the genetic susceptibility for AIH type 1
overlaps with other immune-mediated diseases, including
PBC and PSC.

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at http://dx.doi.org/10.1053/j.
gastro.2014.04.022.
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Supplementary Table 1.Selected Autoimmune and Metabolic Traits for Inflation Analysis

Autoimmune and immune-related traits Metabolic traits

Multiple sclerosis (OCB status) Obesity
Systemic lupus erythematosus Triglycerides
Crohn’s disease Height
Ulcerative colitis Metabolite levels
Atopic dermatitis Coronary heart disease
Asthma Type 2 diabetes
Primary biliary cirrhosis Obesity-related traits
IgG levels Birth weight
Crohn’s disease and psoriasis Lipoprotein-associated phospholipase A2 activity and mass
Hypothyroidism Body mass (lean)
Ankylosing spondylitis Stroke (ischemic)
Multiple sclerosis Fasting glucose-related traits (interaction with BMI)
Type 1 diabetes autoantibodies Bone mineral density
Celiac disease and Rheumatoid arthritis Adiponectin levels
Crohn’s disease and celiac disease Metabolic syndrome
Psoriasis Body mass index
Celiac disease Lipid metabolism phenotypes
Type 1 diabetes Diabetes (gestational)
Asthma (childhood onset) Obesity and blood pressure
Psoriatic arthritis Cardiovascular disease risk factors
Arthritis (juvenile idiopathic) Diastolic blood pressure
Type 1 diabetes nephropathy Hypertension
Primary sclerosing cholangitis Systolic blood pressure
IgM levels HDL cholesterol
Inflammatory bowel disease Blood pressure
Inflammatory biomarkers Metabolic traits
IgA nephropathy Proinsulin levels
Inflammatory bowel disease (early onset) Response to metformin
IgE levels Vascular endothelial growth factor levels
Immunoglobulin A Adiposity
IgE grass sensitization Sudden cardiac arrest
Graves’ disease D-dimer levels

HDL-C–triglycerides
Metabolic syndrome (bivariate traits)
Triglycerides–blood pressure
Waist circumference–triglycerides
Drinking behavior
Vascular dementia
Diabetic retinopathy
Alcohol consumption
Body mass in chronic obstructive pulmonary disease
Waist-hip ratio
LDL-C
Glycated hemoglobin levels
Cholesterol, total
Resting heart rate
Fasting glucose-related traits
2-hour glucose challenge
Bone mineral density (hip)
Bone mineral density (spine)
Type 2 diabetes and other traits
Myocardial infarction (early onset)
Weight
Fasting plasma glucose
Response to statin therapy
Waist circumference and related phenotypes
LDL (oxidized)
Insulin-related traits
Fasting insulin-related traits (interaction with BMI)
Insulin-like growth factors
Hypertriglyceridemia
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Supplementary Table 1.Continued

Autoimmune and immune-related traits Metabolic traits

Cholesterol
Obesity (extreme)
Waist circumference
Fasting insulin-related traits
Head circumference (infant)
Coronary artery calcification
Nicotine dependence
Myocardial infarction
Dietary macronutrient intake
Hypertension risk in short sleep duration
Lipoprotein-associated phospholipase A2 activity

change in response to statin therapy
Response to statin therapy (LDL-C)
Stroke
Heart failure
Lipid traits

NOTE. Traits selected from the GWAS catalog (http://www.genome.gov/admin/gwascatalog.txt).
BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; OCB,
oligoclonal band.

Supplementary Table 2.Association Results for 10 Top SNPs in the AIH-GWAS Cohort

Location Marker OR (95% CI) PGWAS Candidate gene Abbreviation

6p21.3 rs2187668 2.9 (2.6–3.4) 1.2 � 10�48 Human leukocyte antigen-DQA1 HLA-DQA1
12q24 rs3184504 1.4 (1.2–1.6) 5.0 � 10�7 Scr homology 2 adaptor protein 3 SH2B3
22q13.1 rs6000782 1.7 (1.4–2.1) 1.8 � 10�5 Caspase recruitment domain family, member 10 CARD10
2p22 rs17016449 1.4 (1.2–1.5) 2.4 � 10�5 Intergenic region —

4q13.1 rs6551933 1.3 (1.2–1.5) 3.0 � 10�5 EPH receptor A5 EPHA5
4q28 rs2192201 1.6 (1.3–1.9) 3.5 � 10�5 Telomeric repeat binding factor 1 pseudogene 3 TERF1P3
9q33.3 rs10819195 1.3 (1.2–1.5) 4.1 � 10�5 LIM homeobox transcription factor 1 beta LMX1B
4q25 rs11943338 1.5 (1.2–1.7) 4.6 � 10�5 Dickkopf WNT signaling pathway inhibitor 2 DKK2
15q14 rs7171939 1.4 (1.2–1.6) 5.2 � 10�5 Fibrous sheath interacting protein 1 FSIP1
5p15.3 rs550167 1.4 (1.2–1.6) 5.6 � 10�5 Intergenic region —

NOTE. Association results of top 10 MHC SNP and 9 independent non-MHC SNPs of the GWAS.
CI, confidence interval; OR, odds ratio.
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Supplementary Table 3.AIH GWAS Results After Exclusion of Patients With PBC and PSC Overlap Syndromes

CHR SNP OR MAF Cases MAF controls P value

12 rs3184504 1.4 0.54 0.43 3.23E-07
12 rs2071272 1.8 0.08 0.05 2.59E-06
22 rs6000782 1.8 0.08 0.04 4.53E-06
15 rs2631695 0.6 0.08 0.11 1.28E-05
5 rs906629 0.7 0.44 0.50 2.48E-05
4 rs2192201 1.6 0.10 0.07 3.81E-05
11 rs608585 1.4 0.21 0.16 4.15E-05
9 rs10819195 0.7 0.37 0.45 4.67E-05
14 rs11160594 1.4 0.30 0.25 4.75E-05

NOTE. Top non-MHC association results of separate GWAS analysis in 546 nonoverlap AIH patients and 13,436 controls.
CHR, chromosome; MAF, minor allele frequency; OR, odds ratio.

Supplementary Table 4.Top Autoimmune- and Immune-Associated SNPs in AIH

CHR AIH SNP OR
Risk

allele AIH
P value

GWAS AIH (Auto)immune trait
(Auto)immune

SNP

Risk allele
(auto)immune

trait LD (r2)

12 rs3184504 1.4 A 5.0E-07 Hypothyroidism rs3184504 A 1
Type 1 diabetes autoantibodies rs3184504 A 1
Celiac disease and rheumatoid

arthritis
rs3184504 A 1

Celiac disease rs3184504 A 1
Type 1 diabetes rs3184504 A 1
Primary sclerosing cholangitis rs3184504 A 1
Primary biliary cirrhosis rs11065979 A 0.81

12 rs17630235 1.3 A 6.3E-05 Type 1 diabetes rs17696736 G 0.93
2 rs7574865 1.3 A 6.9E-04 Systemic lupus erythematosus rs3821236 A 0.85
5 rs1295686 1.3 G 1.1E-03 Psoriasis rs20541 G 1

IgE levels rs20541 A 1
19 rs2302209 1.3 G 1.6E-03 Multiple sclerosis rs874628 A 0.94
3 rs564799 1.2 G 2.2E-03 Primary biliary cirrhosis rs485499 T 1
1 rs11209050 1.3 A 2.2E-03 Primary biliary cirrhosis rs17129789 C 0.91
6 rs6933404 1.2 G 3.2E-03 Ulcerative colitis rs6920220 A 1

Inflammatory bowel disease rs6920220 A 1
Rheumatoid arthritis rs6920220 A 1
Celiac disease rs2327832 G 1

2 rs4325730 1.2 G 3.7E-03 Celiac disease rs4675374 A 1
7 rs10488631 1.3 G 4.8E-03 Primary biliary cirrhosis rs10488631 G 1

Systemic lupus erythematosus rs10488631 G 1
6 rs11757155 1.2 A 5.3E-03 Inflammatory bowel disease rs1847472 G 1

Crohn’s disease rs1847472 G 1

NOTE. Top results of autoimmune- and immune-associated SNPs and the risk alleles outside the MHC region with a P value
<5.0 � 10�3 in the AIH GWAS (discovery set). Bold marks SNPs with common risk alleles between AIH and the mentioned
autoimmune and immune-related traits, and italic marks the opposite allele.
CHR, chromosome; OR, odds ratio; LD, linkage disequilibrium.
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Supplementary Table 5.Clinical Traits and AIH-Associated Markers

Chromosome Markera Clinical trait b OR P value

6 HLA-DRB1*0301 Age (y) �3.1 .004
ALT (U/L) 24.0 .6
IgG (g/L) 2.1 .006
Concomitant AI disease 1.3 .05

6 HLA-DRB1*0401 Age (y) 5.7 1.2E-04
ALT (U/L) 78.6 .2
IgG (g/L) .0 1.0
Concomitant AI disease 1.1 .5

12 rs3184504*A Age (y) �1.9 .07
ALT (U/L) 21.4 .6
IgG (g/L) �0.7 .3
Concomitant AI disease 1.3 .04

22 rs6000782*C Age (y) 1.1 .6
ALT (U/L) �14.3 .9
IgG (g/L) �.2 .9
Concomitant AI disease 1.0 .9

AI, autoimmune; OR, odds ratio.
aMHC genotype or SNP risk allele.

Supplementary
Figure 1. The first and
second principal stratifi-
cation components of
cases (blue) and controls
(orange) in the GWAS.
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Supplementary Figure 2.Quantile–quantile plot (A) and Manhattan plot (B) the GWAS analysis after genomic control without
the MHC region (20–40 mb) at chromosome 6. The red line in the quantile–quantile plot (A) represents concurrence of the
expected and the observed P values. SNPs with a P value <5.0 � 10�8 are marked green in the Manhattan plot (B).

Supplementary
Figure 3.Quantile–quan-
tile plots and inflation fac-
tors (l) of SNPs associated
with autoimmune- and
immune-mediated traits
(top) and metabolic traits
(bottom) with and without
the MHC region (20–40
mb) on chromosome 6.
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