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Key Messages: 27 
What is already known? 28 

• Antibodies targeting different Post-translational Modified proteins have been described for 29 
RA patients. Different classes of these antibodies can be present simultaneously. 30 
Nevertheless, the mechanisms behind the concurrent presence of different Anti-Modified 31 
Protein Antibody classes (AMPA) in RA are unclear. 32 

What does this study add? 33 

• Our data shows that, in mice, a protein expressing one particular post-translational 34 
modification can induce cross-reactive AMPA against other posttranslational modifications 35 
as well. 36 

• Different AMPA from RA patients show similar cross-reactivity. 37 
How might this impact on clinical practice or future developments? 38 

• Our results indicate a ”common” B cell-response from which different AMPA-responses 39 
originate, thereby providing a conceptual framework for the mutual relationship and 40 
simultaneous presence of different AMPA “classes” in RA. 41 

  42 



ABSTRACT 43 
 44 
Objectives: 45 

Autoantibodies against post-translationally modified proteins (Anti-Modified Protein Antibodies or 46 

AMPA) are a hallmark of Rheumatoid Arthritis (RA). A variety of classes of AMPAs against different 47 

modifications on proteins, such as citrullination, carbamylation and acetylation, have now been 48 

described in RA. At present, there is no conceptual framework explaining the concurrent presence or 49 

mutual relationship of different AMPA-responses in RA. Here, we aimed to gain understanding of the 50 

co-occurrence of AMPA by postulating that the AMPA-response shares a common “background” that 51 

can evolve into different classes of AMPAs.  52 

Methods:  53 

Mice were immunized with modified antigens and analysed for AMPA-responses. In addition, 54 

reactivity of AMPA purified from RA-patients towards differently modified antigens was determined. 55 

Results: 56 

Immunisation with carbamylated proteins induced AMPAs not only recognizing carbamylated 57 

proteins, but also acetylated proteins. Similarly, acetylated proteins generated (autoreactive) AMPAs 58 

against other modifications as well. Analysis of Anti-Citrullinated Protein Antibodies from RA-patients 59 

revealed that these also display reactivity to acetylated and carbamylated antigens. Similarly, anti-60 

carbamylated protein antibodies showed cross-reactivity against all three post-translational 61 

modifications. 62 

Conclusions:  63 

Different AMPA-responses can emerge from exposure to only a single type of modified protein. These 64 

findings indicate that different AMPA-responses can originate from a common B-cell response that 65 

diversifies into multiple distinct AMPA-responses and explain the presence of multiple AMPAs in RA, 66 

one of the hallmarks of disease.  67 



Introduction 68 

The presence of Anti-Citrullinated-Protein Antibodies (ACPA) is one of the hallmarks of Rheumatoid 69 

arthritis (RA). ACPAs recognize citrullinated proteins and display an extensive citrulline-dependent 70 

cross-reactivity towards multiple citrullinated antigens [1, 2]. Interestingly, the citrullinated epitope-71 

recognition profile expands before clinical onset of disease, possibly as a consequence of the 72 

activation of new ACPA-expressing B cells and/or progressive somatic hypermutation of individual B 73 

cell clones [3-7]. Also other Post-translationally Modified (PTM)-proteins, in particular carbamylated 74 

and acetylated proteins, have been found to be recognized by RA-autoantibodies [8]. Carbamylation 75 

and acetylation do not modify arginine, the target of citrullination, but lysine into, respectively, 76 

homocitrulline and acetyl-lysine. Homocitrulline is an amino acid resembling citrulline, but containing 77 

an additional methylene group. Anti-Carbamylated protein (anti-CarP)-antibodies are present in 78 

approximately 45% of RA-patients [9]. These antibodies can be cross-reactive to citrullinated antigens, 79 

but can also display a more restricted recognition profile directed against carbamylated proteins only. 80 

Indeed, 10-20% of ACPA-negative RA-patients are positive for anti-CarP-antibodies, indicating that 81 

these antibodies represent a different class of Anti-Modified-Protein-Antibodies [9, 10]. Acetylation, 82 

on the other hand, is mediated by intracellular acetyltransferases. Anti-Acetylated-Protein-Antibodies 83 

(AAPAs) are present in approximately 40% of RA-patients [11] and are mainly found in ACPA-positive 84 

RA, although also ACPA-negative RA-patients can be AAPA-positive. Inhibition experiments showed 85 

limited cross-reactivity between anti-acetylated, anti-carbamylated and anti-citrullinated-protein 86 

antibodies, indicating that also AAPA represent another class of AMPA [11]. 87 

These previous observations are interesting as they indicate that AMPA, due to their concurrent 88 

presence in RA, have a commonality that is currently not understood. Here, we studied the possibility 89 

that the AMPA-response originates from a common “event” by analyzing whether exposure to one 90 

particular class of modified proteins can generate different AMPA-responses.  91 

Materials and Methods 92 

Proteins, modifications and immunizations. 93 

All procedures for protein modification, mass-spectrometry and immunizations are previously 94 

described and further detailed in the supplementary materials [9, 12, 13]. Animal experiments were 95 

approved by the Ethical Committee for Animal Experimentation. All immunized mice were healthy and 96 

showed no signs of arthritis throughout the experiment. 97 

Mass spectrometry 98 

Procedure for the mass spectrometry analysis is described in detail in the supplementary Materials 99 

and Methods.  100 

Detection of Anti-Modified-Protein Antibodies 101 

For the detection of AMPAs in mice, the following Enzyme-Linked ImmunoSorbent Assay (ELISA) was 102 

performed: Modified proteins and their non-modified counterparts were coated at a concentration of 103 

10µg/mL in 0.1M carbonate-bicarbonate buffer (pH 9.6) overnight on Nunc Maxisorp plates (Thermo 104 

Scientific). The plates were blocked with PBS + 1% BSA. The mouse sera were diluted 1:100 in RIA 105 

buffer (10mM TRIS (pH 7.6), 350mM NaCl, 1% TritonX, 0.5% Sodiumdeoxycholate, 0.1% SDS) and 106 



incubated overnight. Binding of mouse IgG was detected with HorseRadish Peroxidase (HRP)-107 

conjugated goat-anti-mouse IgG1 (Cat# 1070-05, Southern Biotech) and subsequently visualized with 108 

ABTS. Washing steps were performed between each incubation with PBS + 0.05% Tween20. All 109 

incubations, aside from the incubations with goat-anti-mouse IgG1 and ABTS, were performed at 4°C, 110 

the final two steps were performed at room temperature (RT). Arbitrary units were calculated using a 111 

reference serum in serial dilution. The reference serum was acquired from CaOVA-immunized or Ac-112 

OVA immunized mice for the carbamylated or acetylated protein ELISA respectively. For the inhibition 113 

experiments, the sera were pre-incubated with 0 – 0.2mg/mL protein for 1 hour before transferring 114 

them to the ELISA plate.  115 

Reactivity of purified ACPA and anti-CarP antibodies, obtained from sera and synovial fluid (SF) of RA 116 

patients, was measured using modified vimentin peptides (plates and reagents were kindly provided 117 

by Orgentec), as previously described [11]. In addition, purified ACPA and anti-CarP-antibodies were 118 

tested on CCP2 and Ca-FCS respectively according to protocols previously described [9, 14, 15].  119 

RA patients 120 

The material of the ACPA-positive RA patients was selected for ACPA purification based on the ACPA 121 

status and levels. The RA-patients fulfilled the EULAR/ACR 2010 classification criteria. Similar to the 122 

material from ACPA-positive patients, the material from anti-CarP-positive patients used for anti-123 

CarP-antibody isolation was derived from patients screened for anti-CarP status and levels.  124 

IgG-AMPA purification 125 

Specific AMPAs are isolated as has been previously described for ACPA in [16]. In short, plasma or 126 

serum samples and SF were acquired from patients. The plasma, serum and SF samples were 127 

subsequently filtered (0.2µM filters, Millipore) before purifying AMPA with affinity chromatography 128 

(ÄKTA, GE Healthcare). Purification was performed using HiTrap streptavidin HP 1ml columns (GE-129 

Healthcare) coupled with biotinylated CCP2-peptides (obtained from J.W. Drijfhout, IHB LUMC) for the 130 

isolation of ACPA [17, 18] or in-house prepared biotinylated (Ca-)FCS for the isolation of anti-CarP 131 

antibodies. PTM-specificity was controlled by attaching a control column coated with the native 132 

version (CCP2 arginine or FCS) before the column coated with the modified version (CCP2 citrulline or 133 

Ca-FCS). Antibodies were eluted using 0.1M glycine hydrogen chloride (HCl) pH 2.5 and neutralized 134 

with 2M Tris. ACPA-IgG1,2,4 was subsequently purified from ACPA with Prot A and Prot G HiTrap-135 

columns. 136 

Statistics 137 

Statistical tests were performed with Prism7 (Graphpad). Significance of AMPA reactivity on proteins 138 

was tested with paired t-test. Differences in titre were tested with Mann-Whitney U tests. Correlations 139 

were assessed with Spearman. A p-value of <0.05 was considered significant.  140 

Results 141 

Cross-reactive AMPA are induced upon vaccination with one defined modified antigen. 142 

To analyze whether AMPA recognizing different classes of PTMs can be induced with an antigen 143 

expressing one defined modification, we immunized mice with either non-modified, carbamylated, 144 



citrullinated or acetylated Ovalbumin (OVA). The presence of either homocitrulline as a result of 145 

carbamylation or acetylated-lysine as a consequence of acetylation was confirmed by mass 146 

spectrometry and commercially available antibodies against either carbamylated or acetylated lysines 147 

in ELISA (Fig S1). Non-modified OVA was found to be acetylated, but not carbamylated, at the N-148 

terminus by mass-spectrometry and therefore the latter antigen was included in all immunization 149 

experiments as additional specificity control. 150 

To discriminate between reactivity against the PTM and protein-backbone used for immunization, we 151 

employed modified fibrinogen (Fib) as read-out. In doing so, antibodies recognizing OVA were not 152 

interfering with the detection of AMPA [13]. To control for possible baseline-reactivity towards 153 

modified proteins, sera from non-immunized mice were taken along in the ELISA experiments. Indeed, 154 

no reactivity was observed to non-modified fibrinogen or its modified counterparts in naïve animals, 155 

indicating that without immunizations, AMPA-responses are not present towards either modified 156 

fibrinogen (Fig 1A) or mouse albumin (Fig 2A)[13, 19]. Likewise, although a strong reaction against 157 

OVA was noted (data not shown), indicating proper immunization, mice immunized with non-modified 158 

OVA did not react to modified Fib (Fig 1B) nor modified mouse albumin (Fig 2B)[13]. These results 159 

indicate that neither non-modified OVA nor the adjuvant used is driving AMPA production. We were 160 

unable to detect reactivity towards citrullinated-Fib (Cit-Fib) in mice immunized with Citrullinated-161 

OVA (Cit-Ova)(Fig 1C). As ACPA have been reported in some murine models [20-23], we additionally 162 

tested the sera on modified Myelin Basic Protein (MBP), but again were unable to detect citrulline-163 

reactivity (Fig S2). Mice immunized with carbamylated-OVA (Ca-OVA), however, displayed a strong 164 

reactivity towards Ca-Fib, but not non-modified-Fib (Fig 1D). Remarkably, sera of mice immunized with 165 

Ca-OVA also reacted to Ac-Fib and to some extend to Cit-Fib. This reactivity was further validated using 166 

modified MBP (Fig S2). Moreover, these sera also reacted to both Ac-mouse Albumin (Ac-mAlb) and 167 

Ca-mAlb (Fig 2C), indicating that exposure to modified foreign proteins is capable of inducing a breach 168 

of tolerance towards self-antigens carrying different classes of modifications. These data are intriguing 169 

as they indicate that antibody responses induced by carbamylated-antigens are able to recognize 170 

multiple modifications, pointing to the generation of cross-reactive (auto-reactive) AMPAs induced by 171 

exposure to only one class of modified antigen.  172 

Next, we wished to determine whether cross-reactive antibodies could also be induced by 173 

immunization with acetylated-OVA. We observed not only reactivity to Ac-Fib as expected, but also 174 

towards Ca-Fib (Fig 1E). Reactivity towards Cit-Fib was only moderately apparent. This could not be 175 

validated using Cit-MBP (Fig S2). Similar reactivity patterns were observed when modified mouse 176 

albumin was used as model auto-antigen (Fig 2D). Together, these results indicate that immunization 177 

with Ac-OVA induces (auto-)antibodies cross-reactive to acetyl-lysine and homocitrulline. 178 

Cross-reactive antibody responses harbor different PTM recognition profiles. 179 

To further investigate the cross-reactive nature of these AMPA-responses in more detail, we next 180 

analyzed the auto-antibody-titer through dilution of sera from immunized animals. A strong 181 

correlation and similar antibody-titers were observed towards Ac-Fib and Ca-Fib in Ca-immunized 182 

mice (Fig 3A). In contrast, the titer of antibodies recognizing Ac-Fib was considerable higher than the 183 

antibody-titer against Ca-Fib in Ac-OVA-immunized mice (Fig 3B). These data indicate that in contrast 184 

to anti-CarP-antibodies in Ca-OVA-immunized mice, the AAPA-response in Ac-OVA-immunized mice is 185 

only partly cross-reactive to both modifications.  186 



The data presented on antibody-titer also predict that the AMPA-response present in Ca-OVA-187 

immunized mice (highly cross-reactive) can be readily inhibited by both acetylated- and carbamylated-188 

proteins, whereas the AMPA-reaction in Ac-OVA-immunized mice can only be fully inhibited by 189 

acetylated-proteins. To confirm this notion, the binding capacity towards Ca-Fib and Ac-Fib was 190 

analyzed by inhibition experiments with modified fibrinogen. Indeed, for Ca-OVA-immunized mice, 191 

antibody-reactivity towards either modified antigen could be inhibited by Ac-Fib (Fig 4A/B), whereas 192 

for Ac-OVA-immunized mice, Ac-Fib-reactivity could not be inhibited by competing with Ca-Fib (Fig 193 

4C/D). These data confirm that the AMPA-response generated by Ca-OVA-immunization is highly 194 

cross-reactive, whereas part of the antibodies induced by Ac-OVA-immunization are cross-reactive 195 

towards both modifications. 196 

Cross-reactive antibodies towards different modifications are present in RA patients. 197 

The data presented above show that exposure of mice to a protein carrying one defined PTM can 198 

induce cross-reactive AMPAs. To address whether also in humans, AMPA are cross-reactive towards 199 

different classes of modified antigens, we next isolated ACPA-IgG from SF or plasma of 7 RA-patients 200 

as previously described [17, 18]. We focused on ACPA as the ACPA-response is the most prominent 201 

AMPA-response in RA. As depicted in figure 5A and B, ACPA-IgG were strongly enriched following 202 

isolation, whereas the flow-through contained low to no levels of ACPA-IgG (Fig S3). Next, the purified 203 

ACPA-IgG were analyzed for their reactivity towards a citrullinated, carbamylated or acetylated 204 

peptide from vimentin. In all cases, purified ACPA also showed a highly enriched reactivity towards 205 

these differently modified peptides. These data indicate that ACPA-IgG from RA patients are not only 206 

cross-reactive towards carbamylated antigens as observed previously [9], but that they can also 207 

recognize acetylated antigens. To analyze whether also anti-CarP antibodies display cross-reactivity 208 

towards different classes of PTMs, we next isolated anti-CarP antibodies from sera of 2 anti-CarP-209 

positive patients. As shown in figure 5C, the isolated antibodies were highly enriched for anti-CarP-210 

reactivity. Likewise, as observed for isolated ACPA, also purified anti-CarP antibodies showed strongly 211 

enriched reactivity towards the three different classes of modified antigen. Together, these data 212 

indicate that different families of human AMPA are cross-reactive towards different classes of 213 

modified antigens, including acetylated antigens.  214 

Discussion  215 

RA is characterized by the presence of autoantibodies against different PTMs, including citrullinated, 216 

carbamylated and acetylated proteins. As different AMPAs target different PTMs and are generally 217 

seen as distinct autoantibody families, it is intriguing that their presence often goes together in RA. At 218 

present, there is no conceptual framework explaining the concurrent presence of different AMPA-219 

responses in RA. Here we show that exposure to a protein carrying one defined PTM can lead to cross-220 

reactive (auto)antibody-responses towards different PTMs. Interestingly, we shown that AMPA from 221 

RA patients purified with antigens carrying one particular PTM can recognise different classes of PTMs 222 

too, indicating a cross-reactive nature of these autoantibodies as well. These findings are important 223 

as they indicate that the different AMPA-responses observed in RA can, potentially, be generated by 224 

antigen(s) carrying only one particular modification. Similarly, they provide a rationale for the 225 

simultaneous manifestation of multiple AMPA-reactivities in RA.  226 



Given the observations that different AMPAs target different antigens and are generally seen as 227 

distinct autoantibody families, it has been intriguing to note that their presence often go together in 228 

RA. In contrast, AMPAs are less frequently present in other rheumatic diseases and their co-229 

occurrence is rarely observed outside RA. The co-occurrence of different AMPA represent an 230 

interesting conundrum as it is unclear why, after activation of a B cell with a receptor for a particular 231 

modified protein, another B cell expressing a receptor recognizing a differently modified protein 232 

would also be activated in the same subject. In general, the activation of a particular B cell will not 233 

directly influence the activation of other B cells directed against other antigens, although it has been 234 

shown in a transgenic mouse model for SLE that epitope-spreading to other antigens can occur once 235 

tolerance is broken for one self-antigen [24]. Our data indicate that exposure to a defined antigen 236 

displaying a particular class of PTM, can lead to a cross-reactive antibody-response recognizing several 237 

classes of modified antigens, conceivably explaining the co-occurrence of multiple AMPA-reactivities 238 

in RA.  239 

It has been shown that ACPA and anti-CarP-antibodies can be cross-reactive towards citrullinated- and 240 

carbamylated antigens [9]. Citrulline and homocitrulline are highly similar in structure as they differ 241 

only one methyl-group, even though they are conversions from different amino acids. We now show 242 

that also acetylated antigens can be recognized by these antibodies. This was unexpected as acetyl-243 

lysine shares less structural homology to citrulline/homocitrulline (Fig S1A). The cross-reactivity 244 

towards acetylated-antigens was even more prominent in mice because AMPA induced by Ca-OVA-245 

immunization did not recognize citrullinated proteins, even though they are able to recognize 246 

acetylated-lysines.  247 

The finding that exposure to e.g. an acetylated protein leads to the formation of autoantibodies 248 

against proteins carrying other classes of PTM as well, is also relevant for considerations on the breach 249 

of tolerance and induction of AMPA-responses. From our findings, it can be postulated that the inciting 250 

antigen responsible for the induction of e.g. ACPA or anti-CarP antibodies does not have to be 251 

citrullinated or carbamylated, but could be represented by, for example, an acetylated protein. 252 

Clearly, at present, we cannot conclude from our data whether a particular PTM antigen initiates 253 

AMPA-induction in RA. Nonetheless, it will be relevant to study in pre-disease samples whether a 254 

breach of tolerance towards e.g. acetylated- or carbamylated proteins precedes ACPA production or 255 

vice versa and whether this is similar in all patients or can vary from patient-to-patient.  256 

An increasing number of studies suggest that mucosal surfaces, specifically the periodontium, the gut 257 

and the lungs, could be sites of disease initiation of RA and indicate the microbiome as an important 258 

driver of the initiation of autoimmunity. In this respect, especially protein–acetylation by bacteria 259 

might now also be incriminated in the induction of autoantibody responses against PTM proteins. 260 

Recent evidence shows that many bacterial species are able to acetylate proteins [25], including 261 

bacteria proposed as link between periodontal infection and RA [26]. Given our observation that 262 

AMPAs recognizing citrullinated and carbamylated proteins can be cross-reactive to acetylated 263 

proteins, these findings together provide a novel and stimulating angle to the notion that the 264 

microbiome contributes to the induction of autoimmunity in RA. Therefore, a logical next step is to 265 

test faecal extracts from RA patients also for the presence of acetylated bacterial proteins to obtain 266 

more insight on the possible link between the microbiome, the presence of acetylated proteins, and 267 

RA. Through the formation of acetylated proteins, disturbances of the microbiome (e.g. through 268 

infection) could lead to the formation of acetylated proteins detected by the immune system and 269 



thereby to the induction of AMPA-responses. In doing so, the origin of the T cell help required for the 270 

B cell to undergo isotype-switching and somatic hypermutation could come from different sources. In 271 

this scenario, it is conceivable that microbe-specific T cells help the B cell initially recognizing the 272 

microbe-derived modified protein. Upon further somatic hypermutation, the B cell response could be 273 

selected/start recognizing other modified proteins explaining the cross-reactive nature of AMPAs and 274 

the observation that different AMPAs often appear together in patients. Likewise, the diversification 275 

of an initial AMPA-response towards other PTMs could, potentially, also explain the observation that 276 

the HLA-Shared-Epitope (SE)-alleles are associated with ACPA-positive RA, whereas the first 277 

appearance of ACPA in healthy subjects is HLA-SE-allele independent [27, 28]. Possibly, by 278 

diversification towards citrulline recognition, an, initially, HLA-SE-independent AMPA-reaction against 279 

e.g. acetylated proteins, could recruit new HLA-SE-restricted T cells required for further broadening of 280 

the AMPA/ACPA-response associated with disease precipitation. Thus, in this scenario, the link to the 281 

microbiome, the cross-reactive nature of AMPAs, the breach of tolerance to modified self-proteins, 282 

the HLA-Shared-Epitope-association with the “second hit”, as well as the concurrent presence of 283 

AMPAs in disease can be explained.  284 

Our study has several limitations as we did not show that also in humans the inciting antigen carrying 285 

a particular PTM will lead to the induction of a cross-reactive AMPA-response. Obviously, studies 286 

immunizing a host with a defined modified antigen, as was performed in mice, is not feasible in 287 

humans and therefore the concepts obtained from such animal-studies will be difficult to demonstrate 288 

in the human system. Nonetheless, the observation that also human AMPAs are cross-reactive to 289 

several different PTM does support such views. Furthermore, we would like to emphasize that, despite 290 

the advantages of using a controlled setting for the immunization of mice, a major pitfall of studying 291 

RA-associated antibodies in mice is the inability to induce detectable production of ACPAs with our 292 

standard immunization protocol, i.e. two subsequent immunizations in aluminium hydroxide. 293 

Consequently, the analysis of antibody cross-reactivity towards citrullinated antigens is limited and 294 

restricted to the human setting. In addition, our antibody experiments are focused on polyclonal 295 

antibody responses. Nevertheless, our inhibition studies do suggest that individual antibodies are 296 

capable of cross-recognizing multiple PTM, though isolation of monoclonal antibodies will be 297 

necessary to validate this notion. Interestingly, recent studies have shown 2 monoclonal ACPA able to 298 

interact with an acetylated histone peptide [29] as well as one able to recognize a carbamylated 299 

vimentin peptide [30].  300 

In conclusion, our data show that induction of cross-reactive AMPA can be achieved by the encounter 301 

with a protein carrying one specific PTM and indicate that the different AMPAs present in RA could 302 

have a common “background”, thereby providing novel insight into the concurrent presence of these 303 

antibodies in RA, an important hallmark of disease.  304 
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Figure Legends 425 

Figure 1:  426 

Caption: Immunization with CaOVA or AcOVA induces antibody responses towards modified 427 

fibrinogen. 428 

Antibody reactivity towards modified fibrinogen in sera derived from non-immunized (A), OVA-429 

immunized (B), CitOVA-immunized (C), CaOVA-immunized (D) or AcOVA-immunized (E) mice was 430 

measured by ELISA. Reactivity is depicted with OD values measured at 415nm. For all groups, n = 6. 431 

Representative data from two experiments is shown. OVA, ovalbumin; Cit, citrullinated; Ca, 432 

carbamylated; Ac, acetylated; Fib, fibrinogen; OD, optical density.  433 

 434 

Figure 2: 435 

Caption: Break of tolerance towards modified self-proteins in CaOVA- and AcOVA-immunized mice. 436 

Reactivity towards carbamylated and acetylated mouse albumin was tested by ELISA (A) with sera 437 

derived from non-immunized (A), OVA- (B), CaOVA- (C) and AcOVA-immunized (D) mice. Results show 438 

representative data from two immunization experiments. p < 0,05 depicts significance. OVA, 439 

ovalbumin; Ca, carbamylated; Ac, acetylated; AU, arbritrary units; p, p-value. 440 

 441 

Figure 3:  442 

Caption: Antibody titers and avidity in sera of CaOVA- and AcOVA-immunized mice. 443 

Antibody titers as measured by ELISA on CaFib and AcFib for CaOVA- (A) and AcOVA-immunized (B) 444 

mice. IC50 depicts the dilution at which half of the max reactivity is present. Representative data from 445 

two experiments is shown. Representative data from two immunization experiments is shown. Ca, 446 

carbamylation; Ac, acetylation; OVA, ovalbumin; Fib, fibrinogen; IC50, inhibitory concentration at 50%; 447 

OD, optical density. 448 

 449 

Figure 4: 450 

Caption: Inhibition of antibody binding by pre-incubation of mouse sera with modified fibrinogen. 451 

Cross-reactivity of antibodies is studied by assessment of the inhibitory capacity of pre-incubating sera 452 

with modified fibrinogen. Sera from CaOVA-immunized mice was pre-incubated with varying 453 

concentrations of modified fibrinogen before testing the antibody reactivity on CaFib (A) or AcFib (B). 454 

Sera from AcOVA-immunized mice was pre-incubated with varying concentrations of modified 455 

fibrinogen before testing the antibody reactivity on CaFib (C) or AcFib (D). Results show representative 456 

data of two experiments. OVA, ovalbumin; Fib, fibrinogen; Ca, carbamylated; Ac, acetylated; OD, 457 

optical density; mg/mL, milligram per milliliter. 458 



Figure 5: 459 

Caption: Cross-reactivity of purified human ACPA or anti-CarP antibodies towards modified 460 

vimentin peptides. 461 

ACPA and anti-CarP antibodies were isolated from RA patients. ACPA from synovial fluid (A, n=4) and 462 

serum (B, n=3) from patients were tested on CCP2 and modified vimentin peptides. Anti-CarP 463 

antibodies from serum of RA patients (C, n=2) were tested on Ca-FCS and modified vimentin peptides. 464 

Reactivity is depicted as arbitrary units per mg IgG and calculated based on standards. CCP2, cyclic 465 

citrullinated peptide; CArgP2, cyclic arginine control peptide; Vim, vimentin peptide; Cit, citrullinated; 466 

Arg, arginine control; AcLys, acetylated lysine; Lys, lysine control; hCit, homocitrulline (carbamylated); 467 

FCS, fecal calf serum; Ca, carbamylated; AU/mg IgG, arbitrary units per milligram immunoglobulin G.  468 
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Supplementary Materials and methods 1 

 2 

Proteins and modifications 3 
Mouse albumin was purchased from Merck Millipore (Cat# 126674), human fibrinogen and chicken 4 

ovalbumin (OVA) were purchased from Sigma Aldrich (Cat# F4883 and Cat# A5503 respectively). 5 

Carbamylation of proteins was achieved by incubating the proteins with potassium cyanate (Cat# 6 

215074, Sigma Aldrich) as has been described before [1]. In short, OVA and mouse albumin were 7 

incubated overnight at 37°C in an end concentration of 1M potassium cyanate at a protein 8 

concentration ranging between 1 and 5mg/mL. Human fibrinogen was incubated in 0.5M potassium 9 

cyanate for 3 days at 4°C. All proteins were subsequently extensively dialysed in PBS for 3 days. 10 

Acetylation was performed as previously described [2]. In short, proteins were diluted to a 11 

concentration of 1mg/mL in 0.1M Na2CO3. Per 20mL of protein solution, 100uL of acetic anhydride 12 

was added and subsequently 400uL of pyridine. Proteins were incubated at 30°C for 5 hours or 13 

overnight whilst shaking. After incubation, the acetylation reaction was stopped by adding 400uL (per 14 

20mL solution) of 1M Tris. Acetylated proteins were purified by exchanging the buffer for PBS through 15 

Zeba Spin Desalting columns (Thermo Scientific). Citrullination of OVA and fibrinogen was performed 16 

by incubation of the proteins with PeptidylArginine Deiminase (PAD) 4 enzyme (Cat# 1584, Sigma 17 

Aldrich) in the presence of 0.1M Tris-HCl (pH 7.6) and 0.15M CaCl2. For OVA, 3 units of PAD were added 18 

per mg of protein for the citrullination process whereas for fibrinogen 5U PAD per mg protein was 19 

used. Both proteins are incubated overnight at 53°C. Modifications were validated by ELISA as 20 

described in the supplementary materials and methods.  21 

ELISA modified antigens 22 

Modification of fibrinogen and OVA were validated by ELISAs using commercial polyclonal rabbit anti-23 

carbamyl-lysine antibodies (Cat# STA-078, Cell Biolabs) and commercial polyclonal rabbit anti-24 

acetylated-lysine antibodies (Cat# ADI-KAP-TF120-E, Enzo Lifesciences), or our human ACPA 25 

monoclonal antibody as described in [3]. In short, proteins were coated at a concentration of 10µg/mL 26 

(in 0.1M carbonatebicarbonate buffer, pH 9.6) on Nunc Maxisorp plates (Cat# 430341, Thermofisher 27 

Scientific) and incubated overnight at 4°C. Wells were blocked with PBS + 2% BSA to inhibit unspecific 28 

antibody binding to the plastic for 4 hours at 4°C before incubating the plates with the anti-carbamyl-29 

lysine antibodies, anti-acetylated-lysine antibodies or the ACPA monoclonal (diluted in RIA buffer 30 

containing 10mM TRIS (pH 7.6), 350mM NaCl, 1% TritonX, 0.5% Na-deoxycholate and 0.1% SDS) 31 

overnight at 4°C. Binding of the antibodies was detected by a goat-anti-rabbit Horse RadishPeroxidase 32 

(HRP)-conjugated antibody (for the rabbit polyclonal antibodies) (#P0448, DAKO) or a rabbit-anti-33 

human-IgG HRP-conjugated antibody (for the human ACPA monoclonal) (Cat# P0214, DAKO) (4hrs at 34 

4°C or 2hrs at RT). HRP content was visualised by incubation with ABTS (2,2’-azino-bis(3-35 

ethylbenzothiazoline-6-sulphonic acid)) with 1:2000 H2O2. Fibrinogen nor OVA was recognised by 36 

commercial antibodies against either carbamylated or acetylated lysine, indicating the absence of 37 

PTMs (Fig S1B). 38 

Mass spectrometry 39 

For MS analysis, modified proteins and their non-modified counterparts were subjected to 4-12% 40 

PAGE (NuPAGE Bis-Tris Precast Gel, Life Technologies). Bands were cut from the gel, and the proteins 41 

subjected to reduction with dithiothreitol, alkylation with iodoacetamide and in-gel trypsin digestion 42 

using Proteineer DP digestion robot (Bruker).  43 



Tryptic peptides were extracted from the gel slices, lyophilized, dissolved in 95/3/0.1 v/v/v 44 

water/acetonitril/formic acid and subsequently analysed by on‐line C18 nanoHPLC MS/MS with a 45 

system consisting of an Easy nLC 1000 gradient HPLC system (Thermo, Bremen, Germany), and a 46 

LUMOS mass spectrometer (Thermo). Fractions were injected onto a homemade precolumn (100 μm 47 

× 15 mm; Reprosil-Pur C18-AQ 3 μm, Dr. Maisch, Ammerbuch, Germany) and eluted via a homemade 48 

analytical nano-HPLC column (15 cm × 50 μm; Reprosil-Pur C18-AQ 3 um). The gradient was run from 49 

10% to 40% solvent B (20/80/0.1 water/acetonitrile/formic acid (FA) v/v/v) in 20 min. The nano-HPLC 50 

column was drawn to a tip of ∼5 μm, and acted as the electrospray needle of the MS source. The 51 

LUMOS mass spectrometer was operated in data-dependent MS/MS (top-10 mode) with collision 52 

energy at 32 V and recording of the MS2 spectrum in the orbitrap. In the master scan (MS1) the 53 

resolution was 120,000, the scan range 400-1500, at an AGC target of 400,000 @maximum fill time of 54 

50 ms. Dynamic exclusion after n=1 with exclusion duration of 10 s. Charge states 2-5 were included. 55 

For MS2 precursors were isolated with the quadrupole with an isolation width of 1.2 Da. HCD collision 56 

energy was set to 32 V. First mass was set to 110 Da. The MS2 scan resolution was 30,000 with an AGC 57 

target of 50,000 @maximum fill time of 60 ms.  58 

In a post-analysis process, raw data were first converted to peak lists using Proteome Discoverer 59 

version 2.1 (Thermo Electron), and then submitted to the Uniprot database (452772 entries), using 60 

Mascot v. 2.2.04 (www.matrixscience.com) for protein identification. Mascot searches were with 10 61 

ppm and 0.02 Da deviation for precursor and fragment mass, respectively, and trypsin as enzyme. Up 62 

to two missed cleavages were allowed, and carbamidomethyl on Cys was set as a fixed modification. 63 

Methionine oxidation, carbamylation (Lys) and acetylation (Lys) were set as variable modification. 64 

Protein modifications were finally compared using Scaffold software version 4.7.5 65 

(www.proteomesoftware.com). The interpretation of MS2 spectra of modified peptides were also 66 

manually judged. Abundances were estimated using Proteome Discoverer workflow. The mass 67 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 68 

PRIDE [4] partner repository with the dataset identifier PXD012898. 69 

Mouse immunisations 70 
8-10 week-old female C57BL6/J mice were purchased from Charles River. Mice received two injections 71 

intraperitoneal with antigen (100µg) emulsified in Alhydrogel (Cat# vac-alu-250, Invivogen) in a 1:1 72 

ratio. Animal experiments were approved by the local Ethical Committee for Animal Experimentation 73 

and performed conform national guidelines. All immunised mice were healthy and showed no signs 74 

of autoimmunity throughout the experiment.  75 

 76 

Legends supplementary figures 77 

Supplementary figure 1: 78 
 79 

Structural overview of the posttranslational protein modifications  80 

Schematic view of the amino acid structures of arginine and lysine, and their conversions towards 81 

citrulline, homocitrulline and acetylated lysine (A). ELISA with commercial polyclonal anti-acetylated-82 

lysine antibodies, polyclonal anti-carbamylated-lysine antibodies or monoclonal ACPA to test modified 83 

proteins for the presence of post-translational modifications (B). Non-modified OVA nor fibrinogen is 84 

recognised by the commercial antibodies or the ACPA-monoclonal. OVA, ovalbumin; Fib, fibrinogen; 85 

http://www.matrixscience.com/


Ca, carbamylated; Cit, citrullinated; Ac, acetylated; OD, optical density; PAD, peptidylarginine 86 

deiminase; ACPA, anti-citrullinated-protein antibodies; ug/mL, microgram per milliliter. 87 

 88 

Supplementary figure 2: 89 

 90 

Immunisation with CaOVA or AcOVA induces antibody responses towards modified MBP. 91 

Antibody reactivity towards modified MBP in sera derived from non-immunised (A), OVA-immunised 92 

(B), CitOVA-immunised (C), CaOVA-immunised (D) or AcOVA-immunised (E) mice was measured by 93 

ELISA. Reactivity is depicted as OD values measured at 415nm. For all groups, n=6. Representative 94 

data from two experiments is shown. OVA, ovalbumin; Cit, citrullinated; Ca, carbamylated; Ac, 95 

acetylated; MBP, myelin basic protein; OD, optical density.  96 

 97 

Supplementary figure 3: 98 

 99 

Flow-through of CCP2-specific antibody purification renders low levels of CCP2-reactivity 100 

The flow-through after CCP2-specific antibody purification from synovial fluid (A) or plasma (B) 101 

contains low levels of antibody reactivity towards the CCP2 peptide. Two representative RA patients 102 

are shown for the CCP2 isolation. Similar results have been acquired for the Ca-FCS-specific 103 

purifications. Reactivity is shown as arbitrary units per mg IgG. CCP2, cyclic citrullinated peptide 2; 104 

CArgP2, cyclic arginine-control peptide 2, AU, arbitrary units; mg, milligram; IgG, immunoglobulin G 105 
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