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Abstract 

The 6′-fluorinated aristeromycin analogues 2a-j and the phosphoramidate prodrugs 3a-c were 

designed as dual-target antiviral compounds aimed at inhibiting both the viral RNA-dependent 

RNA polymerase (RdRp) and the host cell S-adenosyl-homocysteine (SAH) hydrolase, which 

would indirectly target capping of viral RNA. These novel compounds were synthesized, using 

the electrophilic fluorination of silyl enol ether with Selectfluor as the key step. The adenosine 

and N6-methyladenosine analogues 2a-e potently inhibited the activity of SAH hydrolase, 

while only the adenosine derivatives 2a-c exhibited potent antiviral activity against MERS-

coronavirus, SARS-coronavirus, chikungunya virus and/or Zika virus. The introduction of a 

fluorine at the 6′-position enhanced the inhibition of SAH hydrolase and the activity against 

RNA viruses. The 6′-β-fluoroaristeromycin (2a) was ~4-fold more potent (IC50 = 0.37 µM) in 

its inhibition of SAH hydrolase than the control compound, (−)-aristeromycin.  6′,6′-

Difluoroaristeromycin (2c) exhibited a strong inhibitory effect on the replication of all tested 

RNA viruses, including MERS-CoV (EC50 = 0.2 µM), SARS-CoV (EC50 = 0.5 µM), CHIKV 

(EC50 = 0.13 µM) and ZIKV (EC50 = 0.26 µM). In viral load reduction assays this compound 

reduced infectious progeny titers up to 2.5 log. The phosphoramidate prodrug 3a also 

demonstrated potent broad-spectrum antiviral activity, possibly by inhibiting the viral RdRp. 

This study shows that 6′-fluorinated aristeromycin analogues can serve as starting points for 

the development of broad-spectrum antiviral agents that target RNA viruses.   
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■ Introduction 

Over the past 15 years outbreaks of a number of emerging positive-stranded RNA (+RNA) 

viruses,1 such as the severe acute respiratory syndrome coronavirus (SARS-CoV),2 Middle 

East respiratory syndrome coronavirus (MERS-CoV),3 chikungunya virus (CHIKV),4 and Zika 

virus (ZIKV)5 have seriously threatened human health and have had a substantial socio-

economic impact. SARS-CoV and MERS-CoV cause serious respiratory diseases6 that can be 

fatal in approximately 10% and 35% of cases, respectively. CHIKV is transmitted by 

mosquitoes and causes a painful arthritis that can persist for months.7 ZIKV is also transmitted 

by mosquitoes,8 although sexual transmission8 occurs as well. This virus usually causes mild 

disease, but can cause neurological complications in adults and fetal death or severe 

complications, including microcephaly in infants when women are infected during pregnancy.9 

CHIKV and ZIKV have caused massive outbreaks, totaling millions of infections over the past 

decade. Currently, there are no effective chemotherapeutic agents or vaccines that can prevent 

or cure infections of any of these four serious pathogens. 

The aforementioned viruses belong to the +RNA virus group (Baltimore class IV),1 which 

indicates that their genomic RNA has the same polarity as mRNA and can be directly translated 

by host ribosomes upon release into the cytoplasm of a host cell. After infection, the genomes 

of these viruses are translated into polyproteins that are subsequently cleaved into individual 

proteins by viral and/or host proteases. The nonstructural proteins (nsps) of these viruses 

harbour a variety of enzymatic activities that are required for the replication of the viral RNA, 

and invariably include a RNA-dependent RNA polymerase (RdRp)10, an enzyme which is not 

present in uninfected cells. The RdRp transcribes the genomic RNA into a complementary 

negative-stranded RNA that subsequently serves as the template for the synthesis of new 
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positive-stranded RNA.  

Many +RNA viruses (including coronaviruses, CHIKV and ZIKV) also encode 

methyltransferases (MTases)11 that are required for methylation of viral mRNA cap 

structures.12 Since this capping is crucial for stability and translation of the viral RNA, and 

evasion of the host innate immune response, the viral MTases are considered promising targets 

for the development of antiviral therapy.12 Inhibition of MTases can be indirectly achieved by 

the inhibition of S-adenosyl-L-homocysteine (SAH) hydrolase.13 The SAH hydrolase catalyzes 

the interconversion of SAH into adenosine and L-homocysteine. Inhibition of this enzyme 

leads to the accumulation of SAH in the cell, which in turn inhibits S-adenosyl-L-methionine 

(SAM)-dependent transmethylase reactions by feedback inhibition.13,14 Most of the viral 

methyltransferases are dependent on SAM as the only methyl donor. Compounds that target 

cellular proteins might exhibit a broader spectrum of activity, are less likely to lead to drug-

resistance, but have a higher likelihood of toxicity. Compounds that are specifically aimed at 

viral proteins are expected to be less cytotoxic, but might have a more narrow spectrum of 

antiviral activity and might have a lower barrier antiviral drug-resistance14 Thus, the approach 

of targeting cellular proteins such as SAH hydrolase can be considered as a promising strategy 

for the development of broad-spectrum antiviral agents.14  

A number of compounds have been reported to act as SAH hydrolase inhibitors.14 Type I 

inhibitors act through inactivation of the NAD+ cofactor, and their inhibitory effect on the 

catalytic activity of the enzyme can be reversed by the addition of excess NAD+.14 Type II 

inhibitors are irreversible inhibitors of the SAH hydrolase that form covalent bonds with amino 

acid residues in the active site of the enzyme. This irreversible inhibition cannot be reversed 

by the addition of NAD+ or adenosine or by dialysis.14 

Since both the viral RdRp and host SAH hydrolase are critical for virus replication, we 
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aimed to design broad-spectrum nucleoside analogue inhibitors that could directly target RdRp 

activity and/or indirectly inhibit the methylation of viral RNA through their effect on the host 

SAH hydrolase. Modified nucleosides are usually taken up by the cell via nucleoside 

transporters, and can be successively converted into mono-, di-, and triphosphates by cellular 

kinases.15 Then. these modified nucleoside triphosphates (NTPs) can compete with natural 

NTPs during RNA synthesis or can be incorporated into the nascent viral RNA, leading to chain 

termination or detrimental mutations.15 

(
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Figure 1.
 Rationale for the design of the target nucleosides 2 and 3.
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(−)-Aristeromycin (1) is a naturally occurring carbocyclic nucleoside, that was originally 

identified as a metabolite of Streptomyces citricolor in 1967.16a The first synthesis of 1 as 

racemate was reported by Clayton and his co-worker,16b-d and its asymmetric syntheses have 

since been reported.16e-h It is a type I SAH hydrolase inhibitor and exhibits potent antiviral 

activity against many viruses.14a However, it could not be further advanced into clinical 

development because of its cytotoxicity.17 Compound 1 was found to be toxic at low 

concentrations in both adenosine kinase positive (AK+) and AK- cells. AK+ cells were 

presumably killed by the 5 -phosphorylated form of 1, while the toxicity in AK- cells was 

caused by 1 itself.17 However, this compound is also metabolized into a triphosphate form and 
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has been observed to exert a variety of metabolic effects.17 We aimed to use 1 as a prototype 

for the design of dual-target compounds intended at directly inhibiting the viral RdRp and 

indirectly inhibiting the capping process through targeting of cellular SAH hydrolase.  

Since the introduction of a fluorine at the 6′-position of carbocyclic nucleosides has been 

known to affect biological activities to a significant extent,18 we aimed to synthesize the 6 -

fluorinated-aristeromycin analogues 2 by introducing fluorine at the 6′-position of 1 (Figure 1). 

Prisbe and his co-workers18a have reported the synthesis of (±)-6 -α- and (±)-6 -β-fluorinated 

aristeromycins and their inhibitory activity on SAH hydrolase, but the synthesis and biological 

activity of (±)-6,6 -difluoroaristeromycin was not reported, despite the fact that the structure 

was claimed in the patent.18b Thus, we set out to synthesize the 6 -fluorinated-aristeromycin 

analogues 2 in the optically pure D-forms since biological activity can generally be attributed 

to one enantiomer, the D-isomer. Schneller and co-workers18c reported the elegant synthesis of 

optically pure (–)-6ʹ-β-fluoro-aristeromycin, but its biological activity was not reported. Their 

synthetic route involved the 6-β-fluoroazide as the key intermediate, which was synthesized 

by employing SN2 fluorination of the 6-α-triflic azide with tris(dimethylamino)sulfur 

(trimethylsilyl)difluoride (TASF), whereas our current approach19 included the stereoselective 

electrophilic fluorination of silyl enol ether with Selectfluor® as the fluorine source. In addition 

to the adenosine analogues, aimed at inhibiting SAH hydrolase and/ or RdRp, we have also 

synthesized 6ʹ-fluorinated purine and pyrimidine nucleosides (changes in B the structure shown 

in fig 1), which could interfere with viral RNA synthesis by targeting the viral RdRp after their 

phosphorylation by cellular kinases.15 To bypass the first and rate-limiting 5′-phosphorylation 

step, we have also synthesized a phosphoramidate prodrug 3 of nucleoside 2, using the 

McGuigan ProTides.20 Herein, we report the synthesis of the 6′-fluoro-aristeromycin analogues 
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2 and 3 and a preliminary characterization of their effect on several +RNA viruses, which 

provided insight into structure-activity relationships (SARs). 

 

■ Results and Discussion 

Chemistry. For the synthesis of the target nucleosides 2, the key fluorosugars 8a-c were 

synthesized from D-ribose via electrophilic fluorination, as shown in Scheme 1. 
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D-Ribose was converted to D-cyclopentenone 4 according to our previously published 

procedure.21 The 1,4-conjugated addition of 4 with Gilman reagent yielded the D-

cyclopentanone derivative 5.22 Treatment of 5 with lithium hexamethyldisilazide (LiHMDS) 
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followed by trapping with triethylsilyl chloride (TESCl) gave silylenol ether 6, which was 

treated with (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate): 

Selectfluor) in DMF at 0 °C to yield a 5:1 ratio of 6-β-fluorosugar 7a to 6-α-fluorosugar 7b.20 

The stereochemistry of the fluorine in 7a and 7b was confirmed by 1H NOE experiments. 

Irradiation of 6-H of 7b gave NOE effects on its 2-H and 5-H, indicating the 6-α-fluoro 

configuration, but no NOE effects were observed on the same experiment in the case of 7a, 

confirming the 6-β-fluoro configuration. The configuration of the fluorine in 7b was further 

confirmed by the X-ray crystal structure obtained after it was converted to the final uracil 

derivative 2g (Scheme 5).  Further electrophilic fluorination of 6-β-fluorosugar 7a or 6-α-

fluorosugar 7b under the same conditions yielded the 6,6-difluorosugar 7c, which was 

equilibrated to form a geminal diol due to the presence of electronegative fluorine atoms. 

Electrophilic fluorinations with other electrophilic fluorines such as N-

fluorobenzenesulfonimide (NFSI) or N-fluoro-O-benzenedisulfonimide (NFOBS) were 

problematic, resulting in low yields with many side spots. The reduction of 7a-c with sodium 

borohydride (NaBH4) or lithium borohydride (LiBH4) in MeOH resulted in the production of 

the 1-hydroxyl derivatives 8a-c. 

As the α-fluoro derivative 8b was obtained as the minor isomer, as shown in Scheme 1, we 

wanted to improve the stereoselective synthesis of 8b, by using Rubottom23 oxidation as the 

key step, as illustrated in Scheme 2. Rubottom oxidation of silylenol ether 6 with osmium 

tetroxide (OsO4) and N-methylmorpholine-N-oxide (NMO) followed by trapping with t-

butyldimethylsilyl chloride (TBSCl) produced 6-β-alkoxyketone 9 as a single stereoisomer in 

53% yield. The reduction of ketone 9 with NaBH4 gave alcohol 10, which was protected with 

a benzyl group to give 11. Removal of the TBS group in 11 with tetra-n-butylammonium 

fluoride (TBAF) yielded the 6-β-alcohol 12. To our disappointment, the treatment of 12 with 
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N,N-diethylaminosulfur trifluoride (DAST) gave the desired product, 6-α-fluoride 13a, but also 

the undesired product 1-β-fluoride 13b at a 1:1 ratio. The formation of 13a (route I) resulted 

from the direct SN2 reaction of 12a with fluoride, while 12a was readily converted into the 

oxonium ion 12b (route II) via its participation of the neighboring benzyl group, which was 

attacked exclusively by the fluoride at the less sterically hindered 1-position to yield the 

undesired product 13b (route III). However, the product via route IV was not formed because 

of the steric effect of t-butyloxymethyl substituent. 
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Scheme 2. Synthetic Approach to 6-α-Fluorosugar 8b via Rubottom Oxidation

Reagents and conditions: a) i. OsO4, NMO ⋅ H2O, THF, rt, 1 h, then NaHCO3, MeOH, 
rt, 3 h; ii. TBSCl, imidazole, DMF, rt, 3 h; b) NaBH4, MeOH, rt, 1 h; c) BnBr, NaH, 
DMF, 0

 o
C to rt, 12 h; d) TBAF, THF, rt, 12 h; e) DAST, toluene, 0 oC to rt, 2 h.
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To avoid the participation of the neighboring group, we considered using a cyclic sulfate 

substrate with electron-withdrawing property and conformational restraint to be the best choice. 

Furthermore, cyclic sulfate has the advantage that it can  be utilized as a surrogate for epoxide 

during nucleobase condensation, as shown in Scheme 3. The regioselective cleavage of the 2,3-

acetonide in 10 with trimethylaluminum (AlMe3) followed by treatment of the resulting diol 

with thionyl chloride (SOCl2) yielded the 6-β-hydroxyl cyclic sulfite 14 after the removal of 
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the TBS group. The treatment of 14 with DAST yielded the desired 6-α-fluoro cyclic sulfite 15 

as a single stereoisomer. The cyclic sulfite 15 was oxidized to form cyclic sulfate 16, which 

was subsequently condensed with 6-chloropurine anion; however, this resulted in 

decomposition.20 Thus, we decided to synthesize the 6-α-fluoro derivative 8b according to 

Scheme 1. 
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14 15
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Scheme 3. Synthetic Approach to 6-α-Fluorosugar 8b via Cyclic Sulfate
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Scheme 4 depicts the synthesis of the aristeromycin analogues 2a-e from the 6-β-fluoro-, 6-α-

fluoro-, and 6,6-difluorosugars 8a-c.20 Compounds 8a-c were treated with triflic anhydride 

(Tf2O) followed by treatment with sodium azide to give azido derivatives 18a-c. The catalytic 

hydrogenation of 18a-c yielded the amino derivatives 19a-c, respectively, which are starting 

compounds for the base-building process. The treatment of 19a-c with 5-amino-4,6-

dichloropyrimidine18a-c,24 in the presence of N,N-diisopropylethylamine (DIPEA) under 
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microwave radiation conditions yielded 20a-c, which were cyclized with diethoxymethyl 

acetate18a-c,24 in the presence of microwave radiation to produce the 6-chloropurine derivatives 

21a-c. The treatment of 21a-c with t-butanolic ammonia followed by the removal of protective 

groups under acidic conditions yielded the 6′-β-fluoro-, 6′-α-fluoro-, and 6′,6′-

difluoroaristeromycins 2a-c, respectively. The treatment of 21a and 21c with 40% aqueous 

methylamine followed by aqueous trifluoroacetic acid (TFA) resulted in N6-methyl-

aristeromycin analogues 2d and 2e, respectively.  
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Reagents and conditions: a) (E)-3-methoxy-2-propenoyl isocyanate, benzene, 4Å-MS,
DMF, -20 oC to rt, 15 h; b) 2 M H2SO4, dioxane, reflux, 1.5 h; c) BzCl, pyridine, CH2Cl2, 
rt, 15 h; d) i) 1,2,4-triazole, POCl3

, Et
3N, CH3CN, rt, 15 h. ii) NH4OH, dioxane, rt, 15 h.

iii) NH3/MeOH, rt, 15 h
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Scheme 5. Synthesis of Fluorinated Pyrimidine Nucleoside Analogues 2f-j
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The amino derivatives 19a-c were also converted into the pyrimidine nucleoside derivatives 
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2f-j, as shown in Scheme 5. Treatment of 19a-c with (E)-3-methoxy-2-propenoyl isocyanate, 

which was prepared by reacting 3-methoxyacryloyl chloride with silver isocyanate, in benzene 

produced 22a-c, respectively, which were cyclized with 2 M H2SO4 to yield the uridine 

derivatives 2f-h, respectively.25 The structures of 2g and 2h were  confirmed by the X-ray 

crystallography(Scheme 5).26 To synthesize the cytidine derivatives 2i and 2j, compounds 2f 

and 2h were benzoylated to give 23a and 23b, respectively, which were converted to the 

cytidine derivatives 2i and 2j using a conventional three step procedures.27 
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Scheme 6. Synthesis of Phosphoamidate Prodrugs 3a-c

Reagents and Conditions: a) cH2SO4
, acetone, rt, 4 h;

b) i. TMSOTf, DMAP, HMDS, 75 °C, 2 h; ii. Boc2O,
THF, rt, 4 h; iii. MeOH:Et3N (5:1), 55 °C, 16 h; c) A, t-

BuMgCl, 
 4Å-MS

, THF, 0 oC to rt, 36 h; d) 50% HCOOH, 
rt, 8 h.
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The uracil phosphoramidate analogue Sofosbuvir20 is used in the clinic as a powerful anti-
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hepatitis C virus (HCV) agent. Therefore, we have also synthesized the uracil phosphoramidate 

prodrugs 3b-c and the adenine phosphoramidate prodrug 3a derived from the purine and 

pyrimidine nucleoside analogues 2a-j by using McGuigan’s ProTide prodrug methodology,20 

as shown in Scheme 6. 6′,6′-Difluoro-aristeromycin (2c) was treated with acetone under acidic 

conditions to give 2,3-acetonide 24. The treatment of 24 with di-tert-butyl dicarbonate (Boc2O) 

yielded a mixture of 25a and 25b in a 2:1 ratio, which was converted to the phosphoramidate 

prodrug 26 by treating with phosphoramiditing reagent (A) in the presence of t-

butylmagnesium chloride.28 The treatment of 26 with 50% formic acid produced the final 

product, prodrug 3a. The monofluoro- and difluoropyrimidine derivatives 2f and 2h were 

similarly converted to the final prodrugs 3b and 3c. 
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Table 1. Inhibition of SAH hydrolase and the replication of several +RNA viruses by all final 

nucleoside analogues 2a-j and 3a-c 

ND: Not Determined; Selectivity Index (SI) = CC50/EC50 
EC50: Effective concentration to inhibit the replication of the virus by 50% 
CC50: Cytotoxic concentration to inhibit the replication of normal cells by 50% 
EC50>100 indicates that no antiviral activity was observed at the highest concentration tested, either because there 
was no protection or the compound was toxic. 
 

 

Compound 
No. 

SAH 
hydrolase 

IC50 

(µM) 

MERS-CoV SARS-CoV ZIKV CHIKV 

EC50 

(µM) 
CC50 

(µM) SI EC50 

(µM) 
CC50 

(µM) SI EC50 

(µM) 
CC50 

(µM) SI EC50 

(µM) 
CC50 

(µM) SI 

1  1.32 >50 2  >50 >5  0.64 2.4 3.8 0.8 6.3 7.9 

2a  0.37 0.20 0.60 3 ND ND  ND ND  >100 >100  

2b  9.70 ND ND  ND ND  2.54 3.97 1.56 0.53 1.32 2.49 

2c  1.06 0.2 3.2 16 0.5 5.9 11.8 0.26 >2.5 >9.6 0.13 >1.25 >9.6 

2d  4.39 >50 >50  >100 >100  >100 >100  >100 >100  

2e  0.76 >50 12.5  >100 >100  >100 >100  >100 >100  

2f  >100 >100 >100  >100 >100  >100 >100  >100 >100  

2g  >100 >100 >100  >100 >100  >100 >100  >100 >100  

2h  >100 >50 >50  >100 >100  >100 >100  >100 >100  

2i  >100 >100 >100  >100 >100  >100 >100  >100 >100  

2j  >100 >50 >50  >100 >100  >100 >100  >100 >100  

3a  >100 9.3 >50 
>
5.
4 

6.8 >25 >3.7 1.75 >25 >14.3 1.95 >12.5 >6.4 

3b >100 >50 >50  >100 >100  >100 >100  >100 >100  

3c  >100 >50 >50  >100 >100  >100 >100  >100 >100  
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Inhibition of SAH hydrolase. All compounds 1,  2a−j and 3a−c, were assayed for their 

ability to inhibit recombinant human SAH hydrolase protein, expressed in E. coli JM109, using 

a 5,5′-dithiobis-2-nitrobenzoate (DTNB) coupled assay as described by Lozada-Ramirez et 

al.29 As expected, all adenosine derivatives 2a-e potently inhibited SAH hydrolase, but none 

of the pyrimidine analogues 2f-j showed any inhibitory activity at concentrations up to 100 

µM. None of the prodrugs 3a-c exhibited inhibitory activity at concentrations up to 100 µM. 

This result is not surprising because adenosine is the substrate for SAH hydrolase. Among the 

adenosine analogues, 6′-β-fluoroaristeromycin (2a) exhibited the most potent inhibitory 

activity (IC50 = 0.37 µM), which was 3.6-fold more potent than the control 1 (IC50 = 1.32 µM). 

However, 6′-α-fluoroaristeromycin (2b, IC50 = 9.70 µM) was 26-fold less potent than the 

corresponding 6′-β-fluoro analogue 2a and 7.4-fold less active than the 6′-unsubstituted 

compound 1. This indicates that the stereochemistry at the 6′-position is important for 

inhibitory activity. Interestingly, the introduction of two fluorines at the 6 -position, resulted in 

2c (IC50 = 1.06 µM), which was slightly more potent than the control 1. The inhibitory activity 

of the 6′-fluoro-aristeromycin series can be ranked in the following order: 6′-β-F > 6′,6′-F,F > 

6′-H > 6′-α-F. The introduction of a methyl group at the N6-amino group of 2a, resulting in 2d, 

decreased the inhibitory activity (IC50 = 4.39 µM) by 11.9-fold, while the addition of a methyl 

group to the N6-amino group of 2c, resulting in 2e, increased the inhibitory activity (IC50 = 0.76 

µM) by 1.7-fold. These results demonstrate that the N6-mehyladenine and the adenine moieties 

do not lead to a decrease in inhibitory activity. 

Antiviral activity. The novel 6 -fluoro-aristeromycin analogues 2a-j and 3a-c were screened 

for antiviral activity against a variety of +RNA viruses. The compounds were tested for 

antiviral activity in cytopathic effect (CPE) reduction assays at 4 concentrations, i.e. 150, 50, 



20 

 

16.7, and 5.6 µM by preaparing 3-fold serial dilutions. Compounds that demonstrated antiviral 

activity in this primary screen were further tested more extensively in dose response 

experiments at up to 8 different concentrations to determine the EC50. Cytotoxicity (CC50) was 

determined in parallel in uninfected cells (Table 1).  

As shown in Table 1, only the adenosine derivatives 2a-c exhibited potent antiviral 

activities against +RNA viruses, while the other purine N6-methyladenine derivatives 2d and 

2e and pyrimidine derivatives 2f-j did not show significant antiviral activities, not even at 100 

µM. This result suggests that the antiviral activity might be due to an (indirect) effect on viral 

MTase activity through the inhibition of host SAH hydrolase. Inhibition of the viral RdRp 

appears not to be important. The mechanism of action of these compounds has been studied in 

more detail and results will be published elsewhere (Kovacikova, K. et al. & Ogando, N. S. et 

al., manuscripts in preparation). 

Compound 2a inhibited MERS-CoV replication with an EC50 of 0.20 µM; however, it 

was also rather cytotoxic, resulting in a selectivity index (SI) of 3. Replacement of the 

remaining 6′-H in 2a with F, resulted in compound 2c, which exhibited a > 5-fold reduction in 

cytotoxicity, while its antiviral activity remained unchanged, with an EC50 of ~0.20 µM and a 

SI of 15 for MERS-CoV. This compound was also active against SARS-CoV with a SI of 12.5, 

suggesting that it may be a broad-spectrum coronavirus inhibitor. In addition, it also inhibited 

ZIKV replication with an EC50 of 0.26 µM (SI >10), and was active against CHIKV with an 

EC50 of 0.13 µM. Compound 2b showed some inhibitory effects on CHIKV and ZIKV 

replication, but this was likely due to pleiotropic cytotoxic effects, as the SI was <3. Among 

the phosphoramidate prodrugs 3a-c, only the adenosine prodrug 3a exhibited significant broad-

spectrum antiviral activities, demonstrating that it may inhibit the RdRp of RNA viruses after 
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conversion into the triphosphate form, although it remains to be determined in biochemical 

assays whether the triphosphate form affects RdRp activity.20 Compound 3a had an EC50 of 9.3 

µM for MERS-CoV and 6.8 µM for SARS-CoV, but it also had a SI<10, and it was therefore 

not considered a potent inhibitor of coronavirus replication. However, for CHIKV and ZIKV, 

3a had EC50 values of 1.95 µM and 1.75 µM, respectively with good selectivity indices. 

Interestingly, the prodrug 3a was less potent, but also much less cytotoxic than the parent 

compound 2c, which is unusual as regularly the phosphoamidate is more potent than the parent 

drug.20 The phosphoamidate 3a might be slowly hydrolyzed to the 5′-monophosphate by 

metabolic enzymes, or to the parent drug 2c by a phosphatase, which could inhibit SAH 

hydrolase, explaining the observed antiviral effect. Viral load reduction assays were performed 

with compound 2c by infecting cells with CHIKV, ZIKV, SARS-CoV and MERS-CoV, 

followed by treatment with different concentrations of 2c. At 30 hpi (CHIKV) or 48 hpi (ZIKV, 

SARS- and MERS-CoV) infectious progeny titers in the medium were determined by plaque 

assay (Figure 2). Treatment with concentrations higher than 1 μM of 2c reduced infectious 

CHIKV titers by more than 2 log. The effect on ZIKV infectious progeny titers was limited and 

showed a ~1 log reduction. For SARS-CoV the reduction in infectious progeny titer was ~1.5 

log at 2c concentrations above 0.3 μM. The strongest antiviral effect was observed for MERS-

CoV, with a ~2.5 log reduction in infectious progeny titers when infected cells were treated 

with 2c concentrations above 0.3 μM. Follow-up studies to gain more insight into the mode of 

action of 2c and 3a and related compounds are currently ongoing and results will be published 

elsewhere (Kovacikova, K. et al. & Ogando, N. S. et al., manuscripts in preparation). 
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Figure 2: Effect of 2c on the infectious progeny of CHIKV, ZIKV, SARS-CoV and MERS-CoV. Cells 
were infected with the virus indicated on the y-axis of the graph in medium with various concentrations 
of 2c. Infectious progeny titers were determined by plaque assay (n=4) and viability of non-infected cells 
was monitored using the CellTiter 96®AQueous Non-Radioactive Cell Proliferation Assay (Promega). 
Significant differences are indicated by *: *, p<0.05;  **, p<0.01; ***, p<0.001; ****, p<0.0001. 

 

Finally, we measured the logP of the most active compound 2c by pH-metric method, 

using a T3 Sirius instrument, because the lipophilicity is a major determinant for compound 

absorption, distribution in the body, penetration across biological barriers, metabolism and 

excretion. The measured logP was 0.02, indicating that it is almost equally partitioned between 

the lipid and aqueous phases. The relatively low logP of 2c is expected to be overcome by 

converting it to the phosphoamidate 3a. 

(
−
)-Aristeromycin (1)

HO OH

RO YX B

HO OH

HO
N

N

N

N

NH2

Figure 2.
 Summarized SAR of 6'-fluorinated aristeromycin analogues 2 and 3.

Anti-RNA Virus Activity

1. 6'-fluorine (X,Y): β-fluorine > difluorine > H,H > α-fluorine
2. Base (B): adenine > N6-methyladenine >> pyrimidine
3. R: H >> P

SAH Hydrolase Inhibitory Activity

1. MERS-CoV (X,Y/B/R): F,H/A/H = F,F/A/H > F,F/A/P >> (−
)-aristeromycin

2. SARS-CoV (X,Y/B/R): F,F/A/H > F,F/A/P >> (−
)-aristeromycin

3. ZIKA (X,Y/B/R): F,F/A/H > (−
)-aristeromycin > F,F/A/P > H,F/A/H 

4. CHIKV (X,Y/B/R): F,F/A/H > H,F/A/H > (−
)-aristeromycin > F,F/A/P

P = phosphoramidate

2 and 3

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/cell-proliferation-assay
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■ CONCLUSION 

We have synthesized the 6′-fluorinated aristeromycin analogues 2a-j, which were designed as 

dual-target antiviral compounds aimed at inhibiting both the viral RdRp and the host SAH 

hydrolase. The electrophilic fluorination of silyl enol ether with Selectfluor was the key step in 

the synthesis. We have also synthesized the phosphoramidate prodrugs 3a-c to determine 

whether these would inhibit virus replication through an effect on the viral RNA polymerase. 

Figure 3 depicts the summarized SAR of the synthesized 6′-fluorinated final nucleoside 

analogues, 2a-j and 3a-c concerning the inhibition of human SAH hydrolase and the inhibition 

of the replication of various +RNA viruses with capped genomes. It was discovered that the 

introduction of fluorine at the 6′-position increases the inhibitory activity on SAH hydrolase 

and the replication of selected +RNA viruses. Compared to the 6′-unsubstituted compound 1, 

the 6′-fluorinated aristeromycin analogues 2a and 2c more potently inhibited SAH hydrolase 

activity and the replication of MERS-CoV, SARS-CoV, ZIKV, and CHIKV. Among these 

compounds, 6′-β-fluoroaristeromycin (2a) was the most potent with an IC50 of 0.37 µM for 

SAH hydrolase activity and an EC50 of 0.20 µM for MERS-CoV replication. There was a 

correlation between the inhibition of SAH hydrolase and the antiviral activity of the compounds, 

suggesting the latter was mainly due to indirect targeting of viral methylation reactions. The 

SAR studies and lack of antiviral effect of several purine and pyrimidine analogues suggests 
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that the antiviral effect of 1, 2a, and 2c is unlikely due to targeting of the viral RdRp. Compound 

2c appears to be an interesting compound for further development and evaluation as a broad-

spectrum antiviral agent, as it inhibited several coronaviruses, CHIKV, and ZIKV. More 

detailed biological studies on the efficacy of these compounds in virus-infected cells and into 

their mode of action are currently ongoing and will be published elsewhere.  

■ Experimental section 

Chemical Synthesis. General Methods. Proton (1H) and carbon (13C) NMR spectra were 

obtained on a Bruker AV 400 (400/100 MHz), Bruker AMX 500 (500/125 MHz), Jeol JNM-

ECA600 (600/150 MHz), or Bruker AVANCE III 800 (800/200 MHz) spectrometer. Chemical 

shifts are reported as parts per million (δ) relative to the solvent peak. Coupling constants (J) 

are reported in hertz (Hz). Mass spectra were recorded on a Thermo LCQ XP instrument. 

Optical rotations were determined on Jasco III in appropriate solvent. UV spectra were 

recorded on U-3000 made by Hitachi in methanol or water. Infrared spectra were recorded on 

FT-IR (FTS-135) made by Bio-Rad. Melting points were determined on a Buchan B-540 

instrument and are uncorrected. The crude compounds were purified by column 

chromatography on a silica gel (Kieselgel 60, 70-230 mesh, Merck). Elemental analyses (C, H, 

and N) were used to determine the purity of all synthesized compounds, and the results were 

within ± 0.4% of the calculated values, confirming ≥ 95% purity.  

(((3aR,6R,6aR)-6-(tert-Butoxymethyl)-2,2-dimethyl-6,6a-dihydro-3aH-

cyclopenta[d][1,3]dioxol-4-yl)oxy)triethylsilane (6). To a cooled (–78 °C) solution of 5 

(1568.0 mg, 6.470 mmol) in anhydrous THF (32.0 mL, 0.2 M) was dropwise added 

chlorotriethylsilane (5.4 mL, 32.355 mmol), followed by addition of LiHMDS (19.0 mL, 1.0 

M solution in THF, 19.0 mmol) under N2. After being stirred at the same temperature for 10 
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min, the reaction mixture was quenched with saturated aqueous NH4Cl (80 mL). The layers 

were separated, and the aqueous layer was extracted with EtOAc (150 mL). The combined 

organic layers were washed successively with H2O and saturated brine, dried over anhydrous 

MgSO4, filtered, and evaporated. The residue was purified by column chromatography (silica 

gel, hexanes/EtOAc, 100/1 to 30/1) to give 6 (2267.0 mg, 98%) as colorless oil: [α]D20 = +36.48 

(c 1.23, CHCl3); 1H NMR (400 MHz, CDCl3) δ 4.73 (dd, J = 1.1, 6.0 Hz, 1 H), 4.58 (d, J = 2.1 

Hz, 1 H), 4.36 (d, J = 6.1 Hz, 1 H), 3.27 (dd, J = 5.6, 8.6 Hz, 1 H), 3.15 (dd, J = 6.6, 8.6 Hz, 1 

H), 2.72 (dd, J = 5.9, 5.9 Hz, 1 H), 1.42 (s, 3 H), 1.32 (s, 3 H), 1.12 (s, 9 H), 0.96 (t, J = 8.0 

Hz, 9 H), 0.66-0.72 (m, 6 H); 13C NMR (100 MHz, CDCl3) δ 154.1, 110.3, 104.4, 82.8, 79.7, 

72.5, 63.9, 47.9, 27.4 (3 × CH3-tert-butyl), 27.3, 25.8, 6.5 (3 × triethylsilyl), 4.6 (3 × 

triethylsilyl); IR (neat) 2973, 1648, 1363, 1262, 1204, 1056, 851, 748 cm-1; HRMS (FAB) 

found 356.2388 [calcd for C19H36O4Si+ (M+H)+ 356.2383]. 

(3aR,5R,6R,6aR)-6-(tert-Butoxymethyl)-5-fluoro-2,2-dimethyldihydro-3aH-

cyclopenta[d][1,3]dioxol-4(5H)-one (7a) and (3aR,5S,6R,6aR)-6-(tert-butoxymethyl)-5-

fluoro-2,2-dimethyldihydro-3aH-cyclopenta[d][1,3]dioxol-4(5H)-one (7b). To a cooled (0 

oC) solution of silyl enol ether 6 (8.75 g, 24.548 mmol) in anhydrous DMF (123.0 mL, 0.20 

M) was added 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane 

bis(tetrafluoroborate) (13.04 g, 36.824 mmol, Selectfluor) in one portion under N2. After being 

stirred at the same temperature for 12 h, the reaction mixture was quenched with saturated 

aqueous NH4Cl (130 mL), diluted with EtOAc (130 mL). The layers were separated and the 

aqueous layer was extracted with EtOAc (2 × 100 mL). The combined organic layers were 

washed successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and 

evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 
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40/1 to 20/1) to give 7a and 7b (5.80 g, 91%, total yield, 7a:7b = 5.2:1 by 1H NMR analysis). 

Compound 7a: white solid; [α]D25 = –156.69 (c 0.735, CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 5.29 (dd, J = 8.2, 49.5 Hz, 1 H), 4.70 (t, J = 5.7 Hz, 1 H), 4.20 (dd, J = 2.4, 6.1 Hz, 1 H), 3.61 

(dd, J = 1.6, 8.6 Hz, 1 H) 3.38-3.41 (m, 1 H), 2.75 (d, J = 8.2 Hz, 1 H), 1.41 (s, 3 H), 1.30 (s, 

3 H), 1.06 (s, 9 H); 13C NMR (100 MHz, CDCl3) δ 203.0 (d, J = 12.9 Hz), 111.4, 88.5 (d, J = 

201.5 Hz), 78.2 (d, J = 6.9 Hz), 75.0 (d, J = 3.1 Hz), 74.3, 56.6 (d, J = 6.6 Hz), 40.5 (d, J = 

15.5 Hz), 26.8 (3 × CH3-tert-butyl), 26.2, 23.6; 19F NMR (376 MHz, CDCl3) δ –220.60~221.14 

(m); LRMS (ESI+) found 283.13 [calcd for C13H21FO4Na+ (M+Na)+ 283.1322]; Anal. Calcd 

for C13H21FO4: C, 59.98; H, 8.13. Found: C, 59.99; H, 8.53. 

Compound 7b: white solid; [α]D25 = –83.72 (c 0.495, CHCl3); 1H NMR (600 MHz, CDCl3) δ 

5.21-5.36 (ddd, J =1.3, 4.5, 50.8 Hz, 1 H), 4.55 (d, J = 5.9 Hz, 1 H), 4.50 (d, J = 5.9 Hz, 1 H), 

3.63 (d, J = 2.2 Hz, 2 H), 2.52-2.58 (m, 1 H), 1.41 (s, 3 H), 1.33 (s, 3 H), 1.13 (s, 9 H); 13C 

NMR (150 MHz, CDCl3) δ 207.8 (d, J = 12.9 Hz), 112.2, 91.9 (d, J = 192.4 Hz), 78.78 (d, J = 

3.5 Hz), 78.74, 73.6, 60.5 (d, J = 4.3 Hz), 45.0 (d, J = 17.9 Hz), 27.2 (3 × CH3-tert-butyl), 26.8, 

25.2; 19F NMR (376 MHz, CDCl3) δ –196.0~196.2 (m); HRMS (FAB) found 262.1679 [calcd 

for C13H22FO4+ (M+H)+ 261.1505]; Anal. Calcd for C13H21FO4: C, 59.98; H, 8.13. Found: C, 

59.77; H, 8.45. 

(3aR,6R,6aR)-6-(tert-Butoxymethyl)-5,5-difluoro-2,2-dimethyldihydro-3aH-

cyclopenta[d][1,3]dioxol-4(5H)-one (7c). Yield = 70% (mixture of 7c and 7d); white solid; 

[α]D25 = –4.34 (c 0.21, MeOH); 1H NMR (7c and 7d mixture, 400 MHz, CDCl3; 7c and 7d 

mixture) δ 4.82 (s, 1 H), 4.72 (t, J = 6.1 Hz, 1 H), 4.52-4.57 (m, 1 H), 4.35-4.41 (m, 1 H), 4.25 

(dd, J = 8.0, 4.0 Hz, 1 H), 3.74 (s, 1 H), 3.69 (d, J = 8.0 Hz, 1 H), 3.67-3.60 (m, 1 H), 3.54-
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3.59 (m, 1 H), 3.46 (d, J = 8.3 Hz, 1 H), 2.68 (d, J = 17.4 Hz, 1 H), 2.53-2.62 (m, 1 H), 1.48 (s, 

3 H), 1.44 (s, 3 H), 1.34 (s, 3 H), 1.32 (s, 3 H), 1.21 (s, 9 H), 1.06 (s, 9 H). 

General procedure for the synthesis of 8a-c. To a cooled (0 °C) solution of 7a-c (1 equiv) in 

MeOH (0.18 M) sodium borohydride or lithium borohydride was added in a single portion in 

a N2 atmosphere. After stirring for 30 min at the same temperature, the reaction mixture was 

neutralized with acetic acid (2 mL) and evaporated. The residue was diluted with saturated 

aqueous NH4Cl, and the aqueous layer was extracted with EtOAc (2 × 100 mL). The combined 

organic layers were dried over anhydrous MgSO4, filtered, and evaporated. The residue was 

purified by column chromatography (silica gel, hexanes/EtOAc, 20/1) to give 8a-c. 

 (3aS,4R,5R,6R,6aR)-6-(tert-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-3aH-

cyclopenta[d][1,3]dioxol-4-ol (8a). Yield = 71%; colorless syrup; [α]D25 = –47.46 (c 0.395, 

CHCl3); 1H NMR (400 MHz, CDCl3) δ 4.91 (td, J = 6.6, 52.5 Hz, 1 H), 4.51-4.52 (m, 1 H), 

4.47 (ddd, J = 1.6, 6.3, 7.8 Hz, 1 H), 4.26-4.34 (m, 1 H), 3.52 (dd, J = 3.3, 8.8 Hz, 1 H), 3.36-

3.39 (m, 1 H), 2.67 (d, J = 7.9 Hz, 1 H), 2.46 (bs, 1 H), 1.45 (s, 3 H), 1.32 (s, 3 H), 1.14 (s, 9 

H); 13C NMR (100 MHz, CDCl3) δ 111.1, 99.5 (d, J = 185.9 Hz), 81.2 (d, J = 4.4 Hz), 76.3 (d, 

J = 9.0 Hz), 74.0 (d, J = 23.4 Hz), 73.0, 56.8 (d, J = 8.2 Hz), 44.6 (d, J = 18.1 Hz), ), 27.3 (3 × 

CH3-tert-butyl), 26.1, 24.1; 19F NMR (376 MHz, CDCl3) –211.0~211.21 (m); HRMS (FAB) 

found 263.1662 [calcd for C13H24FO4+ (M+H)+ 263.1659]; Anal. Calcd for C13H23FO4: C, 

59.52; H, 8.84. Found: C, 59.32; H, 9.15. 

(3aS,4R,5S,6R,6aR)-6-(tert-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-3aH-

cyclopenta[d][1,3]dioxol-4-ol (8b). Yield = 67%; colorless syrup ; [α]D25 = –40.42 (c 0.22, 

MeOH); 1H NMR (500 MHz, CDCl3) δ 4.68 (dd, J = 4.1, 52.4 Hz, 1 H), 4.46-4.53 (m, 2 H), 

4.13-4.24 (m, 1 H), 3.33-3.40 (m, 1 H), 2.81 (d, J = 11.4 Hz, 1 H), 2.50 (dt, J = 2.9, 22.9 Hz, 1 
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H), 1.46 (s, 3 H), 1.30 (s, 3 H), 1.08 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ 111.4, 98.4 (d, J 

= 181.5 Hz,), 82.8, 79.3, 73.8(d, J = 16.3 Hz), 73.0, 60.6 (d, J = 12.1 Hz), 49.2 (d, J = 18.3 Hz), 

27.1 (3 × CH3-tert-butyl), 26.2, 24.2; HRMS (ESI+) found 285.1480 [calcd for C13H23FNaO4+ 

(M+Na)+ 285.1478]; Anal. Calcd for C13H23FO4: C, 55.70; H, 7.91. Found: C, 55.40; H, 7.75. 

(3aS,4R,6R,6aR)-6-(tert-Butoxymethyl)-5,5-difluoro-2,2-dimethyltetrahydro-3aH-

cyclopenta[d][1,3]dioxol-4-ol (8c). Yield = 74%; colorless syrup; [α]D25 = 22.37 (c 0.28, 

MeOH); 1H NMR (500 MHz, CDCl3) δ 4.53 (t, J = 5.7 Hz, 1 H), 4.44 (ddd, J = 2.6, 6.4, 8.9 

Hz, 1 H), 4.20-4.29 (m, 1 H), 3.55 (d, J = 8.7 Hz, 1 H), 3.39 (d, J = 8.8 Hz, 1 H), 2.76 (d, J = 

11.5 Hz, 1 H), 2.43 (d, J = 17.2 Hz, 1 H), 1.46 (s, 3 H), 1.31 (s, 3 H), 1.12 (s, 9 H); 13C NMR 

(125 MHz, CDCl3) δ 126.9 (dd, J = 252.3, 260.3 Hz), 110.9, 79.6 (d, J = 5.9 Hz), 75.5 (d, J = 

11.3 Hz), 73.7 (dd, J = 18.5, 25.8 Hz), 73.4, 57.6 (dd, J = 4.6, 8.5 Hz), 48.7 (t, J = 20.8 Hz), 

27.2 (3 × CH3-tert-butyl), 25.9, 24.2; HRMS (ESI+) found 298.1834 [calcd for C13H26F2NO4+ 

(M+NH4)+ 298.1830 ]; Anal. Calcd for C13H22F2O4: C, 55.70; H, 7.91. Found: C, 55.45; H, 7.56. 

 

(3aR,5R,6R,6aR)-6-(tert-Butoxymethyl)-5-((tert-butyldimethylsilyl)oxy)-2,2-

dimethyldihydro-3aH-cyclopenta[d][1,3]dioxol-4(5H)-one (9). To a cooled (0 °C) solution 

of 6 (1275 mg, 3.57 mmol) in anhydrous THF (12 mL, 0.3 M) was added 4-methylmorpholine 

N-oxide monohydrate (967 mg, 7.15 mmol, 2 equiv) and osmium tetroxide (1000 mg, 3.93 

mmol, 1.1 equiv) under N2 atmosphere. After stirring for 30 min, the reaction mixture was 

added sodium thiosulfate pentahydrate (300 mg), sodium sulfite (300 mg) and acetone (30 mL) 

and stirred additional 1 h at the same temperature. The layers were separated, and the aqueous 

layer was extracted with EtOAc (100 mL). The combined organic layers were washed with 

H2O followed by saturated brine, dried over anhydrous MgSO4, filtered, and evaporated. The 
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residue was used for the next step without further purification. To a solution of above generated 

intermediate in anhydrous DMF (18 mL, 0.19 M) was added tert-butyldimethylsilyl chloride 

(1614 mg, 10.71 mmol) and imidazole (729 mg, 10.71 mmol) under N2 atmosphere. After 

stirring for 3 h at room temperature, the reaction mixture was quenched with saturated aqueous 

NH4Cl (50 mL) and diluted with EtOAc (50 mL). The layers were separated, and the aqueous 

layer was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed 

successively with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and 

evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 

40/1 to 20/1) to give 9 (705 mg, 53%) as a colorless syrup: [α]D25 = –103.19 (c 0.30, MeOH); 

1H NMR (400 MHz, CDCl3) δ 4.65 (d, J = 6.4 Hz, 1 H), 4.53 (d, J = 8.0 Hz, 1 H), 4.11 (d, J = 

6.3 Hz, 1 H), 3.61 (dd, J = 1.6, 8.0 Hz, 1 H), 3.30 (dd, J = 2.4, 8.1 Hz, 1 H), 2.41-2.46 (m, 1 

H), 1.42 (s, 3 H), 1.30 (s, 3 H), 1.03 (s, 9 H), 0.88 (s, 9 H), 0.13 (s, 3 H), 0.05 (s, 3 H); 13C 

NMR (100 MHz, CDCl3) δ 207.2, 110.9, 78.1, 75.8, 73.7, 71.3, 56.9, 42.3, 27.0 (3 × CH3-tert-

butyl), 26.4, 25.7 (3 × CH3-tert-butyl), 23.8, 18.3, -4.4, -5.6; HRMS (FAB+) (m/z) found 

373.2398, [calcd for C19H37O5Si+ (M+H)+ 373.2410]; Anal. Calcd for C19H36O5Si: C, 61.25; H, 

9.74. Found: C, 61.26; H, 9.75. 

(3aS,4R,5R,6R,6aR)-6-(tert-Butoxymethyl)-5-((tert-butyldimethylsilyl)oxy)-2,2-

dimethyltetrahydro-3aH-cyclopenta[d][1,3]dioxol-4-ol (10). To a cooled (0 °C) solution of  

9 (471 mg, 1.26 mmol) in methanol (6.3 mL, 0.2 M) was added sodium borohydride (144 mg, 

3.79 mmol, 3 equiv) under N2 atmosphere. After being stirred at the same temperature for 1 h, 

the reaction mixture was diluted with H2O (20 mL) and EtOAc (20 mL). The layers were 

separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic 

layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, 

filtered, and evaporated. The residue was purified by column chromatography (silica gel, 
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hexanes/EtOAc, 30/1 to 20/1) to give 10 (415 mg, 88%) as a colorless syrup: [α]D25 = −40.39 

(c 0.32, MeOH); 1H NMR (500 MHz, CDCl3) δ 4.49 (d, J = 6.1 Hz, 1 H), 4.41 (t, J = 6.2 Hz, 

1 H), 4.07 (t, J = 6.9 Hz, 1 H), 3.95 (dd, J = 6.8, 14.7 Hz, 1 H), 3.48 (dd, J = 3.9, 8.5 Hz, 1 H), 

3.32 (dd, J = 4.6, 8.5 Hz, 1 H), 2.43 (d, J = 8.4 Hz, 1 H), 2.12-2.18 (m, 1 H), 1.45 (s, 3 H), 1.32 

(s, 3 H), 1.12 (s, 9 H), 0.87 (s, 9 H), 0.09 (s. 3 H), 0.05 (s, 3 H); 13C NMR (125 MHz, CDCl3) 

δ 110.4, 81.0, 78.8, 77.0, 76.1, 72.6, 57.3, 46.0, 27.4 (3 × CH3-tert-butyl), 26.2, 25.8 (3 × CH3-

tert-butyl), 24.0, 18.1, -4.5, -5.1; HRMS (FAB+) (m/z) found 375.2584, [calcd for C19H39O5Si+ 

(M+H)+ 375.2567]; Anal. Calcd for C19H38O5Si: C, 60.92; H, 10.23. Found: C, 60.91; H, 10.25. 

(((3aR,4R,5R,6R,6aR)-4-(Benzyloxy)-6-(tert-butoxymethyl)-2,2-dimethyltetrahydro-3aH-

cyclopenta[d][1,3]dioxol-5-yl)oxy)(tert-butyl)dimethylsilane (11). To a cooled (0 °C) 

solution of 10 (193 mg, 0.515 mmol) in DMF (5.2 mL, 0.1 M) was added benzyl chloride (0.12 

mL, 1.030 mmol, 2.0 equiv) and sodium hydride (41 mg, 1.030 mmol, 2.0 equiv) under N2 

atmosphere. After being stirred at room temperature for 12 h, the reaction mixture was diluted 

with H2O (20 mL) and EtOAc (20 mL). The layers were separated, and the aqueous layer was 

extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively 

with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and evaporated. The 

residue was purified by column chromatography (silica gel, hexanes/EtOAc, 50/1) to give 11 

(204 mg, 85%) as a colorless syrup: [α]D25 = −46.64 (c 0.66, MeOH); 1H NMR (400 MHz, 

CDCl3) δ 7.22-7.39 (m, 5 H), 4.76 (d, J = 12.4 Hz, 1 H), 4.59 (d, J = 12.4 Hz, 1 H), 4.45 (d, J 

= 6.0 Hz, 1 H), 4.33-4.37 (m, 2 H), 3.83 (dd, J = 5.6, 8.8 Hz, 1 H), 3.39 (dd, J = 4.4, 8.8 Hz, 1 

H), 3.32 (dd, J = 4.0, 8.4 Hz, 1 H), 2.05-2.11 (m, 1 H), 1.48 (s, 3 H), 1.29 (s, 3 H), 1.03 (s, 9 

H), 0.88 (s, 9 H), 0.09 (s, 3 H), 0.05 (s, 3 H); 13C NMR (200 MHz, CDCl3) δ 138.9, 128.4, 

128.1, 127.9, 127.7, 127.2, 110.0, 82.1, 80.2, 76.0, 75.6, 72.4, 71.7, 57.5, 45.7, 27.3 (3 × CH3-
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tert-butyl), 26.4, 25.8 (3 × CH3-tert-butyl), 24.2, -4.7, -4.9; HRMS (FAB+) (m/z) found 

465.3001, [calcd for C26H45O5Si+ (M+H)+ 465.3029]; Anal. Calcd for C26H44O5Si: C, 67.20; H, 

9.54. Found: C, 67.22; H, 9.55. 

(3aR,4S,5R,6S,6aR)-4-(Benzyloxy)-6-(tert-butoxymethyl)-2,2-dimethyltetrahydro-3aH-

cyclopenta[d][1,3]dioxol-5-ol (12). To a cooled (0 °C) solution of 11 (179 mg, 0.385 mmol) 

in anhydrous THF (3.8 mL, 0.1 M) was added tetra-n-butylammonium fluoride solution (1.2 

mL, 1.0 M solution in THF, 1.2 mmol, 3.0 equiv) under N2 atmosphere. After being stirred at 

room temperature for 12 h, the reaction mixture was diluted with H2O (30 mL) and EtOAc (30 

mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). 

The combined organic layers were washed successively with H2O and saturated brine, dried 

over anhydrous MgSO4, filtered, and evaporated. The residue was purified by column 

chromatography (silica gel, hexanes/EtOAc, 8/1) to give 12 (129 mg, 88%) as a colorless syrup: 

[α]D25 = −49.04 (c 0.28, MeOH); 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 7.2 Hz, 2 H), 7.29-

7.35 (m, 2 H), 7.23-7.28 (m, 1 H), 4.85 (d, J = 12.4 Hz, 1 H), 4.62 (d, J = 12.4 Hz, 1 H), 4.51 

(t, J = 6.0 Hz, 1 H), 4.40-4.45 (m, 2 H), 3.81 (dd, J = 4.8, 7.2 Hz, 1 H), 3.58 (dd, J = 3.6, 8.8 

Hz, 1 H), 3.44 (dd, J = 4.4, 8.8 Hz, 1 H), 2.70 (bs, 1 H), 2.26-2.32 (m, 1 H), 1.48 (s, 3 H), 1.31 

(s, 3 H), 1.08 (s, 9 H); 13C NMR (200 MHz, CDCl3) δ 138.5, 128.3 (2 × CH-benzene), 128.0 

(2 × CH-benzene), 127.5, 111.1, 82.7, 80.6, 77.2, 76.7, 73.4, 71.9, 59.3, 45.4, 27.2 (3 × CH3-

tert-butyl), 26.5, 24.6; Anal. Calcd for C20H30O5: C, 68.54; H, 8.63. Found: C, 68.52; H, 8.64. 

(3aR,4R,5S,6R,6aR)-4-(benzyloxy)-6-(tert-butoxymethyl)-5-fluoro-2,2-

dimethyltetrahydro-3aH-cyclopenta[d][1,3]dioxole (13a). To a cooled (0 °C) solution of 12 

(20 mg, 0.052 mmol) in anhydrous toluene (2.0 mL, 0.026 M) was dropwise added 

diethylaminosulfur trifluoride (30 µL, 0.210 mmol, 4.0 equiv) under N2 atmosphere. After 
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being stirred at room temperature for 2 h, the reaction mixture was quenched with saturated 

aqueous NH4Cl (30 mL) and EtOAc (30 mL). The layers were separated, and the aqueous layer 

was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively 

with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and evaporated. The 

residue was purified by column chromatography (silica gel, hexanes/EtOAc, 30/1) to give 13a 

(5.6 mg, 30%) and 13b (5.6 mg, 30%) as a colorless syrup. 

Compound 13a. [α]D25 = −26.59 (c 0.22, MeOH); 1H NMR (500 MHz, CDCl3) δ 7.25-7.34 

(m, 5 H), 4.96 (ddd, J = 2.6, 6.8, 52.7 Hz, 1 H), 4.72 (dd, J = 0.8, 11.6 Hz, 1 H), 4.54 (d, J = 

11.6 Hz, 1 H), 4.44-4.52 (m, 2 H), 4.02-4.09 (m, 1 H), 3.41-3.47 (m, 2 H), 2.15-2.18 (m, 1 H), 

1.47 (s, 3 H), 1.28 (s, 3 H), 1.12 (s, 9 H); 13C NMR (200 MHz, CDCl3) δ 137.8, 128.3 (2 × CH-

benzyl), 128.1 (2 × CH-benzyl), 127.8, 111.8, 96.0 (d, J = 187.1 Hz), 81.6, 79.3, 78.2 (d, J = 

15.7 Hz), 72.6, 71.8, 60.6 (d, J = 11.0 Hz), 50.2 (d, J = 18.7 Hz), 27.0 (3 × CH3-tert-butyl), 

26.6, 24.4; HRMS (FAB+) (m/z) found 353.2121, [calcd for C20H30FO4+ (M+H)+ 353.2128]; 

Anal. Calcd for C20H29FO4: C, 68.16; H, 8.29. Found: C, 68.13; H, 8.27. 

Compound 13b. [α]D25 = −61.72 (c 0.42, MeOH); 1H NMR (500 MHz, CDCl3) δ 7.38 (t, J = 

7.3 Hz, 2 H), 7.31 (t, J = 7.2 Hz, 2 H), 7.25 (d, J = 7.2 Hz, 1 H), 5.18 (dt, J = 7.8, 53.7 Hz, 1 

H), 4.76 (d, J = 12.2 Hz, 1 H), 4.66 (d, J = 12.2 Hz, 1 H), 4.45-4.49 (m, 1 H), 4.41-4.44 (m, 1 

H), 4.19 (ddd, J = 5.9, 7.7, 16.5 Hz, 1 H), 3.45 (dd, J = 3.0, 8.8 Hz, 1 H), 3.31-3.34 (m, 1 H), 

2.37-2.43 (m, 1 H), 1.47 (s, 3 H), 1.28 (s, 3 H), 1.01 (s, 9 H); 13C NMR (125 MHz, CDCl3) 

δ 138.0, 128.3, 127.9 (2 × CH-benzyl), 127.7 (2 × CH-benzyl), 112.2, 103.5, 102.1, 81.5 (d, J 

= 27.5 Hz), 81.1 (d, J = 20.0 Hz), 72.6, 72.4, 57.6, 48.8 (d, J = 6.2 Hz), 27.4 (3 × CH3-tert-

butyl), 27.1, 25.0; HRMS (FAB+) (m/z) found 353.2131, [calcd for C20H30FO4+ (M+H)+ 

353.2128]; Anal. Calcd for C20H29FO4: C, 68.16; H, 8.29. Found: C, 68.13; H, 8.27. 
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(3aR,4R,5S,6R,6aS)-4-(tert-Butoxy)-5-(tert-butoxymethyl)-6-hydroxytetrahydro-3aH-

cyclopenta[d][1,3,2]dioxathiole 2-oxide (14). Regioselective cleavage. To a cooled (–78 °C) 

solution of 10 (420 mg, 1.121 mmol) in anhydrous CH2Cl2 (5.6 mL, 0.2 M) was dropwise 

added trimethylaluminum (3.4 mL, 2.0 M solution in haxane, 6.727 mmol, 6.0 equiv) under N2 

atmosphere. After being stirred at room temperature for 12 h, the reaction mixture was 

quenched with saturated aqueous NH4Cl (30 mL) and EtOAc (30 mL). The layers were 

separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic 

layers were washed successively with H2O and saturated brine, dried over anhydrous MgSO4, 

filtered, and evaporated. The residue was purified by column chromatography (silica gel, 

hexanes/EtOAc, 10/1) to give diol intermediate (245 mg, 56%) 10a as a colorless syrup. 

Introduction of cyclic sulfite. To a cooled (0 °C) solution of diol intermediate 10a (250 mg, 

0.639 mmol) in anhydrous CH2Cl2 (6.4 mL, 0.1 M) was dropwise added triethylamine (0.3 mL, 

2.239 mmol, 3.5 equiv) followed by thionyl chloride (70 µL, 0.959 mmol) under N2 

atmosphere. After being stirred at room temperature for 30 min, the reaction mixture was 

quenched with saturated aqueous NH4Cl (30 mL) and diluted with EtOAc (30 mL). The layers 

were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined 

organic layers were washed successively with H2O and saturated brine, dried over anhydrous 

MgSO4, filtered, and evaporated. The residue was purified by flash column chromatography 

(silica gel, hexanes/EtOAc, 10/1) to give cyclic sulfite intermediate 10b (249 mg, 89%) as a 

colorless syrup. TBS deprotection. To a cooled (0 °C) solution of 10b (286 mg, 0.654 mmol) 

in anhydrous THF (6.5 mL, 0.1 M) was added acetic acid (0.13 mL, 0.131 mmol, 0.2 equiv) 

followed by tetra-n-butylammonium fluoride solution (2.6 mL, 1.0 M solution in THF, 2.6 

mmol, 4.0 equiv) under N2 atmosphere. After being stirred at room temperature for 12 h, the 

reaction mixture was quenched with H2O (30 mL) and diluted with EtOAc (30 mL). The layers 
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were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined 

organic layers were washed successively with H2O and saturated brine, dried over anhydrous 

MgSO4, filtered, and evaporated. The residue was purified by column chromatography (silica 

gel, hexanes/EtOAc, 6/1) to give 14 (202 mg, 96%, Two diastereomers A and B were generated 

from sulfoxide stereogenic center) as a colorless syrup: For A: 1H NMR (400 MHz, CDCl3) 

δ 5.27 (t, J = 5.4 Hz, 1 H), 5.02 (d, J = 5.9 Hz, 1 H), 4.79 (s, 1 H), 4.44 (dd, J = 4.8, 11.4 Hz, 

1 H), 4.19 (d, J = 3.9 Hz, 1 H), 3.80 (dd, J = 2.6, 9.3 Hz, 1 H), 1.90-1.94 (m, 1 H), 1.27 (s, 9 

H), 1.21 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ 86.9, 82.6, 74.9, 74.5, 74.1, 69.4, 58.2, 43.6, 

28.3 (3 × CH3-tert-butyl), 27.2 (3 × CH3-tert-butyl); HRMS (FAB+) (m/z) found 323.1530, 

[calcd for C14H27O6S+ (M+H)+ 323.1528]; For B: 1H NMR (500 MHz, CDCl3) δ 4.98-5.07 (m, 

2 H), 4.79 (d, J = 6.4 Hz, 1 H), 4.36 (dd, J = 4.6, 11.5 Hz, 1 H), 4.31 (d, J = 4.1 Hz, 1 H), 3.84 

(d, J = 9.2 Hz, 1 H), 3.77 (d, J = 9.3 Hz, 1 H), 2.65 (d, J = 10.1 Hz, 1 H), 1.25 (s, 9 H), 1.21 (s, 

9 H). 

(3aR,4R,5R,6S,6aR)-4-(tert-butoxy)-5-(tert-butoxymethyl)-6-fluorotetrahydro-3aH-

cyclopenta[d][1,3,2]dioxathiole 2-oxide (15). To a cooled (0 °C) solution of 14 (33 mg, 0.102 

mmol) in anhydrous CH2Cl2 (1.5 mL, 0.068 M) was dropwise added diethylaminosulfur 

trifluoride (60 µL, 0.434 mmol, 4.0 equiv) under N2 atmosphere. After being stirred at room 

temperature for 4 h, the reaction mixture was quenched with saturated aqueous NH4Cl (30 mL) 

and diluted with EtOAc (30 mL). The layers were separated, and the aqueous layer was 

extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively 

with H2O and saturated brine, dried over anhydrous MgSO4, filtered, and evaporated. The 

residue was purified by flash column chromatography (silica gel, hexanes/EtOAc, 15/1) to give 

15 (12 mg, 37%) as a colorless syrup: 1H NMR (600 MHz, CDCl3) δ 5.17 (ddd, J = 4.6, 7.8, 
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52.7 Hz, 1 H), 5.03 (t, J = 8.2 Hz, 1 H), 4.92 (ddd, J = 5.0, 8.7, 17.8 Hz, 1 H), 4.06 (ddd, J = 

7.8, 11.0, 16.5 Hz, 1 H), 3.53 (ddd, J = 2.7, 2.7, 6.8 Hz, 1 H), 3.44 (dd, J = 2.2, 9.1 Hz, 1 H), 

2.54-2.58 (m, 1 H), 1.17 (s, 18 H); 13C NMR (125 MHz, CDCl3) δ 102.1 (d, J = 191.2 Hz), 

87.2 (d, J = 28.2 Hz), 81.9 (d, J = 5.8 Hz), 74.5, 72.8, 72.4 (d, J = 19.2 Hz), 55.5, 50.4 (d, J = 

6.5 Hz), 28.6 (3 × CH3-tert-butyl), 27.5 (3 × CH3-tert-butyl). 

(3aR,4R,5R,6S,6aR)-4-(tert-butoxy)-5-(tert-butoxymethyl)-6-fluorotetrahydro-3aH-

cyclopenta[d][1,3,2]dioxathiole 2,2-dioxide (16). To a solution of cyclic sulfite 15 (13 mg, 

0.040 mmol) in CCl4/CH3CN/H2O (1:1:1.5, total 1.75 mL, 0.14 M) was added in one portion 

sodium periodate (26 mg, 0.120 mmol), followed by ruthenium (III) chloride trihydrate (2 mg, 

0.008 mmol) at room temperature under N2 atmosphere. After being stirred at the same 

temperature for 20 min, the reaction mixture was quenched with H2O (20 mL), and diluted with 

CH2Cl2 (20 mL). The layers were separated, and the aqueous layer was extracted with CH2Cl2 

(2 × 50 mL). The combined organic layers were washed successively with H2O and saturated 

brine, dried over anhydrous MgSO4, filtered, and evaporated. The crude product 16 was used 

for the next step without further purification. 

General procedure for the synthesis of 18a-c. Triflation. To a cooled (0 °C) solution of 8a-c 

(1 equiv) in anhydrous pyridine (0.32 M), trifluoromethanesulfonic anhydride (2 equiv) was 

added dropwise in a N2 atmosphere. After stirring at the same temperature for 30 min, the 

reaction mixture was quenched with H2O (50 mL) and diluted with EtOAc (30 mL). The layers 

were separated, and the aqueous layer was extracted with EtOAc (2 × 30 mL). The combined 

organic layers were washed with saturated aqueous CuSO4 followed by water, dried over 

anhydrous MgSO4, filtered and evaporated. The residue was used for the next step without 

further purification. 

Azidation. To a solution of triflate intermediate (1 equiv) in anhydrous DMF (0.19 M), sodium 
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azide (3 equiv) was added in a single portion at room temperature. After being heated to 60-

100 °C and stirred for 4-15 h, the reaction mixture was cooled to room temperature, quenched 

with H2O (50 mL), and diluted with EtOAc (50 mL). The layers were separated, and the 

aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organic layers were 

washed with H2O followed by saturated brine, dried over anhydrous MgSO4, filtered, and 

evaporated. The residue was purified by column chromatography (silica gel, hexanes /EtOAc, 

10/1) to give 18a-c. 

 (3aS,4S,5R,6R,6aR)-4-Azido-6-(tert-butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-

3aH-cyclopenta[d][1,3]dioxole (18a). Yield = 45%; colorless syrup; [α]D25 = –24.42 (c 0.016, 

CH2Cl2); 1H NMR (500 MHz, CDCl3) δ 5.16 (td, J = 52.4, 3.1 Hz, 1 H), 4.66 (t, J = 6.0 Hz, 1 

H), 4.41 (t, J = 6.5 Hz, 1 H), 3.62-3.69 (m, 1 H), 3.54 (s, 1 H), 3.50 (s, 1 H), 2.27-2.36 (m, 1 

H), 1.47 (s, 3 H), 1.29 (s, 3 H), 1.16 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ 114.1, 96.9 (d, J 

= 182.6 Hz), 82.0, 80.2, 73.1, 67.9 (d, J = 15.7 Hz), 57.8 (d, J = 7.2 Hz), 49.4 (d, J = 17.6 Hz), 

27.3 (3 × CH3-tert-butyl), 27.1, 24.6; 19F NMR (376 MHz, CDCl3) –206.9~207.2 (m); IR (neat) 

2108 cm-1; LR-MS (ESI+) 310.15 [calcd for C13H22FN2NaO3+ (M+Na)+ 310.1543]; Anal. Calcd 

for C13H22FN3O3: C, 54.34; H, 7.72; N, 14.62. Found: C, 54.35; H, 7.45; N, 14.23. 

(3aS,4S,5S,6R,6aR)-4-Azido-6-(tert-butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-

3aH-cyclopenta[d][1,3]dioxole (18b). Yield = 88%; colorless syrup; [α]D25 = 9.66 (c 0.51, 

MeOH); 1H NMR (500 MHz, CDCl3) δ 4.75 (dt, J = 7.7, 53.0 Hz, 1 H), 4.41 (dd, J = 4.5, 6.7 

Hz, 1 H), 4.22 (t, J = 5.7 Hz, 1 H), 4.00 (ddd, J = 5.5, 7.4, 16.6 Hz, 1 H), 3.43-3.50 (m, 2 H), 

2.33-2.44 (m, 1 H),1.50 (s, 3 H), 1.27 (s, 3 H), 1.15 (s, 9 H); 13C NMR (150 MHz, CDCl3) 

δ 112.7, 95.8 (d, J = 188.9 Hz), 81.0 (d, J = 8.6 Hz), 77.8 (d, J = 7.2 Hz), 73.0, 70.9 (d, J = 

20.1 Hz), 57.9, 49.1 (d, J = 18.7 Hz), 27.3 (3 × CH3-tert-butyl), 27.2, 25.0; IR (neat) 2111 cm-
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1; Anal. Calcd for C13H22FN3O3: C, 54.34; H, 7.72; N, 14.62. Found: C, 54.12; H, 7.94; N, 

14.33. 

(3aS,4S,6R,6aR)-4-Azido-6-(tert-butoxymethyl)-5,5-difluoro-2,2-dimethyltetrahydro-

3aH-cyclopenta[d][1,3]dioxole (18c). Yield = 75%; colorless syrup; [α]D25 = –43.39 (c 0.36, 

MeOH); 1H NMR (500 MHz, CDCl3) δ 4.40-4.44 (m, 1 H), 4.34-4.39 (m, 1 H), 3.87-3.95 (m, 

1 H), 3.61 (dd, J = 6.5, 9.3 Hz, 1 H), 3.48 (t, J = 7.6 Hz, 1 H), 2.54-2.66 (m, 1 H), 1.49 (s, 3 

H), 1.28 (s, 3 H), 1.17 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ 127.1 (dd, J = 255.9, 260.9 Hz), 

113.0, 80.0 (d, J = 5.9 Hz), 78.4 (d, J = 5.6 Hz), 73.4, 69.1 (dd, J = 18.8, 25.1 Hz), 57.2 (d, J = 

6.4 Hz), 50.8 (t, J = 20.0 Hz), 27.3 (3 × CH3-tert-butyl), 26.9, 24.7; IR (neat) 2116 cm-1; Anal. 

Calcd for C13H21F2N3O3: C, 51.14; H, 6.93; N, 13.76. Found: C, 51.45; H, 7.21; N, 14.10. 

General procedure for the synthesis of 19a-c. To a suspension of 18a-c (1 equiv) in methanol 

(0.2 M), 10% palladium on activated carbon (0.03 equiv) was added and stirred overnight at 

room temperature in a H2 atmosphere. After filtration, the solvent was removed, and the residue 

was used for the next step without further purification. 

General procedure for the synthesis of 20a-c. To a solution of 19a-c (1 equiv) in n-butanol 

(0.38 M), 5-amino-4,6-dichloro pyrimidine (3-10 equiv) and diisopropylamine (10 equiv) were 

added. The reaction mixture was placed under microwave irradiation at 170-200 °C for 4-7 h. 

The solvent was co-evaporated with MeOH, and the residue was purified with column 

chromatography (silica gel, hexane/EtOAc, 4/1) to give 20a-c, respectively. 

N4-((3aS,4S,5R,6R,6aR)-6-(tert-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)-6-chloropyrimidine-4,5-diamine (20a). Yield = 66% from 

18a; yellow foam; [α]D25 = –53.8 (c 0.10, CH2Cl2); 1H NMR (500 MHz, CDCl3) δ 8.08 (s, 1 

H), 5.27-5.33 (bs, 1 H,), 5.24 (td, J = 3.5, 52.9 Hz, 1 H), 4.71-4.81 (m, 1 H), 4.57 (t, J = 6.1 
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Hz, 1 H), 4.44 (t, J = 6.3 Hz, 1 H), 3.58-3.63 (m, 1 H), 3.53 (t, J = 9.2 Hz, 1 H), 3.39 (bs, 2 H), 

2.42-2.55 (m, 1 H), 1.52 (s, 3 H), 1.30 (s, 3 H), 1.18 (s, 9 H); 13C NMR (200 MHz, CDCl3) δ 

154.4, 149.0, 122.4, 113.8, 95.9 (d, J = 178.7 Hz), 84.2, 80.1, 77.1, 73.3, 59.8 (d, J = 15.9 Hz), 

58.0 (d, J = 7.0 Hz), 49.4 (d, J = 17.6 Hz), 27.4 (3 × CH3-tert-butyl), 27.2, 24.8; 19F NMR (376 

MHz, CDCl3) –212.8~213.1 (m); UV (CH2Cl2) λmax 287 nm; LRMS (ESI+) found 388.17 [calcd 

for C17H27ClFN4O3+ (M+H)+ 389.1756]; Anal. Calcd for C17H26ClFN4O3: C, 52.51; H, 6.50; N, 

14.45. Found: C, 52.45; H, 6.13; N, 14.15. 

N4-((3aS,4S,5S,6R,6aR)-6-(tert-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)-6-chloropyrimidine-4,5-diamine (20b). Yield = 47% from 

18b; yellow foam; [α]D25 = –11.79 (c 0.36, MeOH); 1H NMR (500 MHz, CDCl3) δ 8.10 (s, 1 

H), 5.56 (d, J = 9.2 Hz, 1 H), 4.89 (dt, J = 3.1, 51.0 Hz, 1 H), 4.77 (dd, J = 9.1, 21.2 Hz, 1 H), 

4.61 (dd, J = 2.5, 5.0 Hz, 1 H), 4.51 (dd, J = 2.4, 6.0 Hz, 1 H), 3.60 (dd, J = 2.6, 9.2 Hz, 1 H), 

3.55 (dd, J = 2.5, 9.3 Hz, 1 H), 3.39 (bs, 2 H), 2.60 (d, J = 23.5 Hz, 1 H), 1.54 (s, 3 H), 1.29 (s, 

3 H), 1.21 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ 154.2, 149.6, 143.4, 122.4, 111.7, 101.3 (d, 

J = 185.1 Hz), 85.5 (d, J = 3.3 Hz), 82.0 (d, J = 2.6 Hz), 74.0, 63.7 (d, J = 26.6 Hz), 60.6 (d, J 

= 7.1 Hz), 51.3 (d, J = 20.5 Hz), 27.5 (3 × CH3-tert-butyl), 27.1, 24.9; UV (MeOH) λmax 297.60, 

265.07 nm; HRMS (ESI+) found 389.1762 [calcd for C17H27ClFN4O3+ (M+H)+ 389.1756]; Anal. 

Calcd for C17H26lFN4O3: C, 52.51; H, 6.50; N, 14.45. Found: C, 52.56; H, 6.51; N, 14.43. 

N4-((3aS,4S,6R,6aR)-6-(tert-Butoxymethyl)-5,5-difluoro-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)-6-chloropyrimidine-4,5-diamine (20c). Yield = 67% from 

18c; yellow foam; [α]D25 = –61.76 (c 0.23, MeOH); 1H NMR (500 MHz, CDCl3) δ 8.11 (s, 1 

H), 5.71 (d, J = 10.1 Hz, 1 H ), 5.03 (t, J = 12.7 Hz, 1 H), 4.56 (t, J = 4.6 Hz, 1 H), 4.40-4.45 

(m, 1 H), 3.69 (dd, J = 2.6, 9.5 Hz, 1 H), 3.57 (dd, J = 4.4, 9.4 Hz, 1 H), 3.38 (bs, 2 H), 2.72 (d, 
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J = 14.7 Hz, 1 H), 1.53 (s, 3 H), 1,44 (s, 3 H), 1.25 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ 

154.5, 149.6, 143.9, 128.0 (dd, J = 257.3, 260.0 Hz), 122.3, 111.7, 84.5, 79.7 (d, J = 4.1 Hz), 

74.5, 61.7 (dd, J = 18.1, 31.9 Hz), 58.3 (t, J = 5.8 Hz), 51.6 (t, J = 22.6 Hz), 27.5 (3 × CH3-

tert-butyl), 26.7, 24.6; UV (MeOH) λmax 297.39, 263.29 nm; HRMS (ESI+) found 407.1658 

[calcd for C17H26ClF2N4O3+ (M+H)+ 407.1661]; Anal. Calcd for C17H25ClF2N4O3: C, 50.19; H, 

6.19; N, 13.77. Found: C, 50.11; H, 6.23; N, 13.65. 

General procedure for the synthesis of 21a-c. A solution of 20a-c in diethoxymethyl acetate 

(0.15 M) was placed under microwave irradiation at 140 °C for 3 h. The mixture was then co-

evaporated with MeOH three times and the resulting residue was purified with column 

chromatography (silica gel, hexane/EtOAc, 7/1) to give 21a-c. 

9-((3aS,4S,5R,6R,6aR)-6-(tert-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)-6-chloro-9H-purine (21a). Yield = 96%; yellow foam; [α]D25 

= –29.2 (c 0.17, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ 8.74 (s, 1 H), 8.34 (d, J = 2.4 Hz, 1 

H), 5.28-5.43 (td, J = 2.8, 52.8 Hz, 1 H), 5.12-5.23 (m, 2 H), 4.61 (t, J = 5.0 Hz, 1 H), 3.65-

3.69 (m, 1 H), 3.61 (t, J = 9.2 Hz, 1 H), 2.56-2.71 (m, 1 H), 1.56 (s, 3 H), 1.32 (s, 3 H), 1.17 

(s, 9 H); 13C NMR (100 MHz, CDCl3) δ 152.3, 151.4, 144.2, 144.1, 131.4, 115.4, 97.7-95.9 (d, 

J = 181.2 Hz), 82.9, 80.1, 73.5, 63.1 (d, J = 16.1 Hz), 58.0 (d, J = 7.4 Hz), 50.0 (d, J = 17.5 

Hz), 27.6 (3 × CH3-tert-butyl), 27.5, 25.1; 19F NMR (376 MHz, CDCl3) –202.6~202.9 (m); UV 

(CH2Cl2) λmax 271 nm; LRMS (ESI+) found 399.16 [calcd for C18H25ClFN4O3+ (M+H)+ 

399.1599]; Anal. Calcd for C18H24ClFN4O3: C, 54.20; H, 6.06; N, 14.05. Found: C, 54.12; H, 

6.34; N, 14.23. 

9-((3aS,4S,5S,6R,6aR)-6-(tert-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)-6-chloro-9H-purine (21b). Yield = 76%; yellow foam; [α]D25 
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= –31.54 (c 0.54, MeOH); 1H NMR (500 MHz, CDCl3) δ 8.67 (s, 1 H), 8.15 (s, 1 H), 5.55 (dt, 

J = 8.4, 53.6 Hz, 1 H), 5.02 (t, J = 6.4 Hz, 1 H), 4.84-4.94 (m, 1 H), 4.65 (t, J = 5.1 Hz, 1 H), 

3.53-3.63 (m, 2 H), 2.47-2.57 (m, 1 H), 1.54 (s, 3 H), 1.25 (s, 3 H), 1.17 (s, 9 H); 13C NMR 

(150 MHz, CDCl3) δ 151.7, 151.5, 151.3, 144.8, 132.3, 113.1, 93.9 (d, J = 191.0 Hz), 79.1 (d, 

J = 7.9 Hz), 77.6 (d, J = 7.9 Hz), 73.1, 67.8 (d, J = 20.8 Hz), 58.1, 48.7 (d, J = 18.7 Hz) 27.5 

(3 × CH3-tert-butyl), 27.3, 25.0; UV (MeOH) λmax 264.36 nm; HRMS (ESI+) found 399.1589 

[calcd for C18H25ClFN4O3+ (M+H)+ 399.1599]; Anal. Calcd for C18H24ClFN4O3: C, 54.20; H, 

6.06; N, 14.05. Found: C, 54.34; H, 6.46; N, 13.99. 

9-((3aS,4S,6R,6aR)-6-(tert-Butoxymethyl)-5,5-difluoro-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)-6-chloro-9H-purine (21c). Yield = 92%; yellow foam; [α]D25 

= –46.05 (c 0.43, MeOH); 1H NMR (500 MHz, CDCl3) δ 8.73 (s, 1 H), 8.28 (d, J = 2.1 Hz, 1 

H), 5.30 (dt, J = 6.9, 20.1 Hz, 1 H), 5.10 (t, J = 6.7 Hz, 1 H), 4.57-4.62 (m, 1 H), 3.63-3.73 (m, 

2 H), 2.81-2.93 (m, 1 H), 1.56 (s, 3 H), 1.30 (s, 3 H), 1.18 (s, 9 H); 13C NMR (125 MHz, CDCl3) 

δ 152.4, 152.4, 151.3, 143.9 (d, J = 4.0 H), 131.2, 125.6 (dd, J = 253.4, 264.6 Hz), 114.0, 79.5 

(d, J = 7.7 Hz), 77.9 (d, J = 7.5 Hz), 73.7, 64.6 (dd, J = 19.3, 24.3 Hz), 57.1 (d, J = 7.1 Hz), 

50.3 (t, J = 19.8 Hz), 27.3 (3 × CH3-tert-butyl), 27.2, 25.0; UV (MeOH) λmax 263.74 nm; 

HRMS (ESI+) found 417.1500 [calcd for C18H24ClF2N4O3+ (M+H)+ 417.1505]; Anal. Calcd for 

C18H23ClF2N4O3: C, 51.86; H, 5.56; N, 13.44. Found: C, 51.56; H, 5.96; N, 13.13. 

General procedure for the synthesis of 2a-c. To a solution of 21a-c in tert-butanol (2 mL, 

0.27 M) contained in a stainless steel bomb reactor, saturated ammonia in tert-butanol (15 mL) 

was added and the reactor was locked. After being heated to 120 °C with stirring for 15 h, the 

mixture was cooled to room temperature and co-evaporated with MeOH. Without purification, 

the residue was added to a trifluoroacetic acid/H2O solution (2:1, v/v, total 15 mL) and heated 
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to 50 °C with stirring for 15 h. After the reaction mixture was evaporated, the residue was 

purified by column chromatography (silica gel, CH2Cl2/MeOH, 9/1) to give 2a-c. 

 (1R,2S,3S,4R,5R)-3-(6-Amino-9H-purin-9-yl)-4-fluoro-5-(hydroxymethyl)cyclopentane-

1,2-diol (2a). Yield = 43%; white solid; mp 172-177 °C; [α]D25 = –64.49 (c 0.22, MeOH); 1H 

NMR (800 MHz, CD3OD-d6) δ 8.26 (d, J = 2.0 Hz, 1 H), 8.21 (s, 1 H), 5.21 (dt, J = 4.0, 54.6, 

1 H), 4.99 (ddd, J = 3.4, 10.8, 29.5 Hz, 1 H), 4.75 (dd, J = 6.7, 9.4 Hz, 1 H), 4.02 (dd, J = 4.8, 

6.4 Hz, 1 H), 3.79-3.85 (m, 2 H), 2.42-2.51 (m, 1 H); 13C NMR (200 MHz, CD3OD) δ 158.1, 

154.6, 152.2, 142.4 (d, J = 3.3 Hz), 120.5, 92.8 (d, J = 180.7 Hz), 74.3, 71.8, 64.0 (d, J = 17.0 

Hz), 60.6 (d, J = 10.7 Hz), 54.3 (d, J = 17.9 Hz); 19F NMR (376 MHz, CD3OD) δ −204.7 ~ 

205.4 (m); UV (MeOH) λmax 259.90 nm; HRMS (ESI+) found 284.1161 [calcd for 

C11H15FN5O3+ (M+H)+ 284.1159]; Anal. Calcd for C11H14FN5O3: C, 46.64; H, 4.98; N, 24.72. 

Found: C, 46.65; H, 5.38; N, 25.10. 

(1R,2S,3S,4S,5R)-3-(6-Amino-9H-purin-9-yl)-4-fluoro-5-(hydroxymethyl)cyclopentane-

1,2-diol (2b). Yield = 71%; white solid; mp 182-186 °C; [α]D25 = –11.85 (c 0.26, MeOH); 1H 

NMR (500 MHz, CD3OD) δ 8.19 (s, 1H), 8.18 (s, 1 H), 5.40 (ddd, J = 5.2, 7.3, 54.4 Hz, 1 H), 

5.03 (ddd, J = 7.5, 9.8, 20.7 Hz, 1 H), 4.60 (dd, J = 5.1, 9.9 Hz, 1 H), 4.05-4.09 (m, 1 H), 3.80 

(d, J = 5.8 Hz, 2 H), 2.28-2.40 (m, 1 H); 13C NMR (125 MHz, CD3OD) δ 158.0, 154.3, 151.9, 

143.4, 121.6, 95.8 (d, J = 186.4 Hz), 74.2 (d, J = 7.4 Hz), 73.2 (d, J = 3.3 Hz), 68.6 (d, J = 21.1 

Hz), 62.6, 54.6 (d, J = 19.0 Hz); 19F NMR (378 MHz, CD3OD) δ -185.244 (dt, J = 23.8, 53.7 

Hz); UV (MeOH) λmax 260.88 nm; HRMS (ESI+) found 284.1155 [calcd for C11H15FN5O3+ 

(M+H)+ 284.1159]; Anal. Calcd for C11H14FN5O3: C, 46.64; H, 4.98; N, 24.72. Found: C, 46.38; 

H, 5.12; N, 24.33. 
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(1R,2S,3S,5R)-3-(6-Amino-9H-purin-9-yl)-4,4-difluoro-5-(hydroxymethyl)cyclopentane-

1,2-diol (2c). Yield = 61%; white solid; mp 180-185 °C; [α]D25 = –56.51 (c 0.30, MeOH); 1H 

NMR (500 MHz, CD3OD) δ 8.26 (d, J = 19.5 Hz, 1 H), 8.20 (s, 1 H), 5.33 (dt, J = 10.0, 17.0 

Hz, 1 H), 4.79 (dd, J = 5.2, 10.6 Hz, 1 H, merged with solvent peak), 4.13-4.17 (m, 1 H), 3.79-

3.91 (m, 2 H), 2.60-2.71 (m, 1 H); 13C NMR (200 MHz, CD3OD) δ 158.2, 154.8, 152.6, 142.7 

(d, J = 2.4 Hz), 125.9 (dd, J = 252.3, 258.4 Hz), 120.6, 73.7 (d, J = 7.3 Hz), 71.8 (d, J = 3.3 

Hz), 64.8 (dd, J = 19.4, 23.8 Hz), 59.6 (d, J = 10.8 Hz), 56.4 (t, J = 19.9 Hz); 19F NMR (378 

MHz, CD3OD) δ −97.5 (d, J = 238.5 Hz), −115.4 (dt, J = 15.9, 238.9 Hz); UV (MeOH) λmax 

259.92 nm; HRMS (ESI+) found 302.1066 [calcd for C11H14F2N5O3+ (M+H)+ 302.1065]; Anal. 

Calcd for C11H13F2N5O3: C, 43.86; H, 4.35; N, 23.25. Found: C, 44.17; H, 4.14; N, 23.05. 

General procedure for the synthesis of 2d and 2e. To a solution of 21a and 21c (0.283 mmol) 

in EtOH (1.5 mL, 0.19 M) in a sealed glass tube, methylamine (40 wt. % in H2O, 10 mL) was 

added. After being stirred at room temperature for 2 h, the mixture was concentrated and added 

to a trifluoroacetic acid/H2O solution (2:1, v/v, total 15 mL) without purification. After being 

heated to 50 °C with stirring for 15 h, the reaction mixture was evaporated. The residue was 

purified by column chromatography (silica gel, CH2Cl2/MeOH, 9/1) to give 2d and 2e 

respectively. 

(1S,2R,3R,4R,5S)-4-Fluoro-3-(hydroxymethyl)-5-(6-(methylamino)-9H-purin-9-

yl)cyclopentane-1,2-diol (2d). Yield = 67%; white solid; mp 197-201 °C; [α]D25 = –61.46 (c 

0.40, MeOH); 1H NMR (800 MHz, CD3OD) δ 8.27 (s, 1 H), 8.20 (d, J = 18.4 Hz, 1 H), 5.21 

(dt, J = 4.0, 54.6 Hz, 1 H), 4.98 (ddd, J = 3.4, 10.0, 29.6 Hz, 1 H), 4.74 (dd, J = 6.7, 9.4 Hz, 1 

H), 4.01 (dd, J = 4.9, 6.4 Hz, 1 H), 3.79-3.85 (m, 2 H), 3.11 (bs, 3 H), 2.42-2.51 (m, 1 H); 13C 

NMR (200 MHz, CD3OD) δ 157.5, 154.6, 151.1, 141.8 (d, J = 3.7 Hz), 121.1, 92.9 (d, J = 
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180.8 Hz), 74.3, 71.8, 64.0 (d, J = 17.0 Hz), 60.6 (d, J = 10.5 Hz), 54.3 (d, J = 18.0 Hz), 28.5; 

19F NMR (376 MHz, CD3OD) δ −206.3 (dt, J = 29.7, 53.4 Hz); UV (MeOH) λmax 266.89 nm; 

HRMS (ESI+) found 298.1317 [calcd for C12H17FN5O3+ (M+H)+ 298.1315]; Anal. Calcd for 

C12H16FN5O3: C, 48.48; H, 5.42; N, 23.56. Found: C, 48.50; H, 5.22; N, 23.93. 

(1S,2R,3R,5S)-4,4-Difluoro-3-(hydroxymethyl)-5-(6-(methylamino)-9H-purin-9-

yl)cyclopentane-1,2-diol (2e). Yield = 76%; white solid; mp 125-129 °C; [α]D25 = –48.62 (c 

0.25, MeOH); 1H NMR (500 MHz, CD3OD) δ 8.24 (s, 1 H), 8.20 (s, 1 H), 5.33 (dt, J = 9.9, 

18.4 1H), 4.79 (dd, J = 10.3, 10.2 Hz, 1 H), 4.17 (s, 1 H), 3.81-3.90 (m, 2 H), 3.10 (bs, 3 H), 

2.67 (m, 1 H); 13C NMR (125 MHz, CD3OD) δ 157.5, 154.7, 151.5, 142.1, 125.9 (dd, J = 252.4, 

258.1 Hz), 121.1, 73.7 (d, J = 7.25 Hz), 71.9 (d, J = 3.1 Hz), 64.7 (dd, J = 20.0, 24.3 Hz), 59.6 

(d, J = 10.8 Hz), 56.4 (t, J = 19.9 Hz), 28.6; 19F NMR (378 MHz, CD3OD) δ −97.4 (d, J = 

238.5 Hz), −115.3 (d, J = 238.9 Hz); UV (MeOH) λmax 263.72 nm; HRMS (ESI+) found 

316.1227 [calcd for C12H16F2N5O3+ (M+H)+ 316.1221]; Anal. Calcd for C12H15F2N5O3: C, 

45.71; H, 4.80; N, 22.21. Found: C, 45.99; H, 4.47; N, 22.02. 

General procedure for the synthesis of 22a-c. To a cooled (−20 °C) solution of 19a-c (1 

equiv) in DMF (0.2 M), 3-methoxyacryloyl isocyanate (2 equiv) in benzene was added 

dropwise in a N2 atmosphere. After the reaction mixture was slowly warmed to room 

temperature for 15 h with stirring, the reaction mixture was filtered with CH2Cl2 and co-

evaporated with toluene and ethanol. The residue was purified by column chromatography 

(silica gel, hexane/EtOAc, 1.5/1) to give 22a-c. 

(E)-N-(((3aS,4S,5R,6R,6aR)-6-(tert-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)carbamoyl)-3-methoxyacrylamide (22a). Yield = 76%; 

colorless syrup; [α]D25 = –19.41 (c 0.37, MeOH); 1H NMR (600 MHz, CDCl3) δ 10.24 (s, 1 H), 
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9.16 (d, J = 8.2 Hz, 1 H), 7.61 (d, J = 12.4 Hz, 1 H), 5.35 (d, J = 12.4 Hz, 1 H), 5.06 (dt, J = 

3.2, 52.7 Hz, 1 H), 4.51 (t, J = 6.6 Hz, 1 H), 4.29-4.38 (m, 2 H), 3.64 (s, 3 H), 3.45-3.52 (m, 2 

H), 2.21-2.31 (m, 1 H), 1.41 (s, 3 H), 1.21 (s, 3 H), 1.10 (s, 9 H); 13C NMR (150 MHz, CDCl3) 

δ 168.0, 163.3, 155.4, 113.7, 97.5, 96.7 (d, J = 178.8 Hz), 84.4, 80.1, 72.9, 58.6 (d, J = 15.8 

Hz), 57.8 (d, J = 6.5 Hz), 57.4, 49.8 (d, J = 17.2 Hz), 27.2 (3 × CH3-tert-butyl), 27.1, 24.6; UV 

(MeOH) λmax 243.14 nm; HRMS (ESI+) found 389.2088 [calcd for C18H30FN2O6+ (M+H)+ 

389.2088]. 

(E)-N-(((3aS,4S,5S,6R,6aR)-6-(tert-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)carbamoyl)-3-methoxyacrylamide (22b). Yield = 88%; 

colorless syrup; [α]D25 = –20.47 (c 0.34, MeOH); 1H NMR (500 MHz, CDCl3) δ 10.33 (s, 1 H), 

8.96 (d, J = 7.4 Hz, 1 H), 7.63 (d, J = 12.3 Hz, 1 H), 5.39 (d, J = 12.3 Hz, 1 H), 4.80 (dt, J = 

6.4, 52.5 Hz, 1 H), 4.44 (t, J = 5.5 Hz, 1 H), 4.33-4.41 (m, 2 H), 3.67 (s, 3 H), 3.46 (d, J = 32.5 

Hz, 2 H), 2.33-2.42 (m, 1 H), 1.46 (s, 3 H), 1.24 (s, 3 H), 1.13 (s, 9 H); 13C NMR (150 MHz, 

CDCl3) δ 168.1, 163.2, 155.5, 111.9, 97.9 (d, J = 187.4 Hz), 97.5, 83.3 (d, J = 7.2 Hz), 79.0 (d, 

J = 6.5 Hz), 73.1, 61.9 (d, J = 23.7 Hz), 58.6 (d, J = 2.1 Hz), 57.4, 49.9 (d, J = 19.4 Hz), 27.3 

(3 × CH3-tert-butyl), 27.2, 25.0; UV (MeOH) λmax 242.93 nm; HRMS (ESI+) found 389.2098 

[calcd for C18H30FN2O6+ (M+H)+ 389.2088]. 

(E)-N-(((3aS,4S,6R,6aR)-6-(tert-Butoxymethyl)-5,5-difluoro-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)carbamoyl)-3-methoxyacrylamide (22c). Yield = 90%; 

colorless syrup; [α]D25 = –40.41 (c 0.52, MeOH); 1H NMR (500 MHz, CDCl3) δ 10.26 (s, 

1 Η), 9.11 (d, J = 8.7 Hz, 1 H), 7.65 (d, J = 12.3 Hz, 1 H), 5.37 (d, J = 12.4 Hz, 1 H), 4.52-4.62 

(m, 1 H), 4.39 (s, 2 H), 3.67 (s, 3 H), 3.53-3.60 (m, 2 H), 2.57-2.68 (m, 1 H), 1.47 (s, 3 H), 1.27 

(s, 3 H), 1.16 (s, 9 H); 13C NMR (125 MHz, CDCl3) δ 167.9, 163.4, 155.7, 126.9 (dd, J = 252.9, 
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261.3 Hz), 112.4, 97.4, 82.5 (d, J = 6.9 Hz), 78.6 (d, J = 4.9 Hz), 73.5, 60.6 (dd, J = 19.4, 29.2 

Hz), 57.4 (d, J = 6.1 Hz), 57.3, 50.8 (t, J = 20.8 Hz), 27.1 (3 × CH3-tert-butyl), 27.0, 24.9; UV 

(MeOH) λmax 242.22 nm;  HRMS (ESI+) found 407.1991 [calcd for C18H29F2N2O6+ (M+H)+ 

407.1994]. 

General procedure for the synthesis of 2f-h. To a stirred solution of 22a-c in 1,4-dioxane (3 

mL, 2.5 M) 2 M sulfuric acid (0.3 mL) was dropwise added. After refluxing with stirring for 1 

h, the reaction mixture was cooled to room temperature and neutralized with DOWEX 66 ion-

exchange resin. The mixture was filtered, and evaporated. The residue was purified by column 

chromatography (silica gel, CH2Cl2/MeOH, 9/1) to give 2f-h, respectively. 

1-((1S,2R,3R,4R,5S)-2-Fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopentyl)pyrimidine-

2,4(1H,3H)-dione (2f). Yield = 56%; white solid; mp 112-118 °C; [α]D25 = –77.11 (c 0.20, 

MeOH); 1H NMR (500 MHz, CD3OD) δ 7.70 (dd, J = 1.1, 8.1 Hz, 1 H), 5.69 (d, J = 8.0 Hz, 1 

H), 5.10 (dt, J = 4.1, 55.3 Hz, 1 H), 4.91 (dd, J = 3.4, 10.2 Hz, 1 H, merged with solvent peak), 

4.46 (dd, J = 6.6, 10.1 Hz, 1 H), 3.93 (t, J = 4.8 Hz, 1 H), 3.70-3.80 (m, 2 H), 3.69 (s, 1 H), 

2.29-2.41 (m, 1 H); 13C NMR (125 MHz, CD3OD) δ 166.9, 154.2, 145.5 (d, J = 3.8 Hz), 102.7, 

93.0 (d, J = 180.1 Hz), 72.4, 71.7, 64.4 (d, J = 16.6 Hz), 60.6 (d, J = 11.4 Hz), 53.8 (d, J = 17.9 

Hz); 19F NMR (378 MHz, CD3OD) δ −208.9 (dt, J = 29.9, 59.7 Hz); UV (MeOH) λmax 264.11 

nm; HRMS (ESI+) found 261.0886 [calcd for C10H14FN2O5+ (M+H)+ 261.0887]; Anal. Calcd 

for C10H13FN2O5: C, 46.16; H, 5.04; N, 10.77. Found: C, 45.98; H, 5.44; N, 10.98. 

1-((1S,2S,3R,4R,5S)-2-Fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopentyl)pyrimidine-

2,4(1H,3H)-dione (2g). Yield = 53%; white solid; mp 195-200 °C; [α]D25 = –16.89 (c 0.35, 

MeOH); 1H NMR (500 MHz, CD3OD) δ 7.60 (d, J = 7.9 Hz, 1 H), 5.69 (d, J = 7.90 Hz, 1 H), 

5.07-5.21 (ddd, J = 5.10, 6.85, 55.2 Hz, 1 H), 4.61-4.69 (ddd, J = 7.35, 8.75, 22.6 Hz, 1 H), 
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4.32 (dd, J = 5.25, 9.00 Hz, 1 H), 3.98 (t, J = 3.75 Hz, 1 H), 3.70 (m, 2 H), 2.24 (m, 1 H); 13C 

NMR (125 MHz, CDCl3) δ 167.1, 153.6, 147.4, 103.5, 94.8 (d, J = 183.9 Hz), 73.4 (d, J = 7.3 

Hz), 73.1 (d, J = 22.0 Hz), 72.7 (d, J = 3.5 Hz), 62.3 (d, J = 1.8 Hz), 54.1 (d, J = 18.9 Hz); 19F 

NMR (378 MHz, CD3OD) δ −184.3 (dt, J = 23.8, 53.7 Hz); UV (MeOH) λmax 265.33 nm; 

HRMS (ESI+) found 261.0894 [calcd for C10H14FN2O5+ (M+H)+ 261.0887]; Anal. Calcd for 

C10H13FN2O5: C, 46.16; H, 5.04; N, 10.77. Found: C, 46.24; H, 5.23; N, 10.78. 

1-((1S,3R,4R,5S)-2,2-Difluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopentyl)pyrimidine-

2,4(1H,3H)-dione (2h). Yield = 52%; white solid; mp 164-169 °C; [α]D25 = –31.06 (c 0.30, 

MeOH); 1H NMR (500 MHz, CD3OD) δ 7.67 (dd, J = 2.35, 8.15 Hz, 1 H) 5.71 (d, J = 8.05 Hz, 

1 H), 5.36, (dt, J = 10.3, 17.7 Hz, 1 H), 4.41 (dd, J = 5.15, 10.7 Hz, 1 H), 4.07 (m, 1 H), 3.73-

3.82 (m, 2 H), 2.53 (m, 1 H); 13C NMR (150 MHz, CD3OD) δ 166.6, 154.1, 145.3 (d, J = 4.3 

Hz), 126.8 (dd, J = 252.8, 258.5 Hz), 103.4, 72.5 (d, J = 7.9 Hz), 71.8 (d, J = 2.9 Hz), 64.4 (dd, 

J = 18.7, 25.1 Hz), 59.5 (d, J = 11.5 Hz), 56.3 (t, J = 20.1 Hz); 19F NMR (378 MHz, CD3OD) 

δ −96.6 (d, J = 238.9 Hz), −116.9 (dt, J = 15.1, 238.5 Hz); UV (MeOH) λmax 262.41 nm; HRMS 

(ESI+) found 279.0801 [calcd for C10H13F2N2O5+ (M+H)+ 279.0793]; Anal. Calcd for 

C10H12F2N2O5: C, 43.17; H, 4.35; N, 10.07. Found: C, 43.34; H, 4.67; N, 9.94. 

General procedure for the synthesis of 2i and 2j.  

Benzoylation. To a cooled (0 °C) solution of 2f or 2h (1 equiv) in CH2Cl2 (0.07 M), benzoyl 

chloride (6 equiv) and pyridine (6.7 equiv) were added in a N2 atmosphere. After being stirred 

for 15 h at room temperature, the reaction mixture was quenched with H2O and extracted with 

CH2Cl2. The organic layers were combined and washed with H2O followed by brine, dried over 

MgSO4, filtered and evaporated. The residue was purified with column chromatography (silica 

gel, hexane/EtOAc, 1/1) to give the benzoylated intermediate. 



48 

 

Introduction of Triazole. To a cooled (0 °C) suspension of 1,2,4–triazole (10 equiv) in 

anhydrous MeCN (0.6 M), phosphoryl chloride (10 equiv) was added dropwise in a N2 

atmosphere. After stirring, the benzoylated intermediate (1 equiv) in MeCN (0.14 M), followed 

by trimethylamine (10 equiv), were added to the reaction mixture. After additional stirring at 

room temperature for 15 h, the reaction mixture was evaporated. The reaction mixture was 

diluted with CH2Cl2 and H2O. The layers were separated, and the organic layers were washed 

with H2O, dried over MgSO4, filtered and evaporated. 

Amination. In the sealed glass tube, above-generated intermediate in 1,4-dioxane (0.06 M) was 

added excess saturated aqueous ammonia at room temperature. After being stirred at the same 

temperature for 2 h, the reaction mixture was evaporated and purified with flash 

chromatography (silica gel, CH2Cl2/MeOH, 7/1) to give the benzoyl protected cytosine 

intermediate. 

Benzoyl deprotection. In a sealed glass tube, the above-generated benzoyl protected cytosine 

intermediate in MeOH (0.2 M) was added saturated ammonia in MeOH (0.2 M). After being 

stirred at the same temperature for 2 d, the reaction mixture was evaporated and diluted with 

H2O and CH2Cl2. The layers were separated, and the H2O layers were washed with CH2Cl2 10 

times and evaporated to give 2i and 2j, respectively. 

4-Amino-1-((1S,2R,3R,4R,5S)-2-fluoro-4,5-dihydroxy-3-

(hydroxymethyl)cyclopentyl)pyrimidin-2(1H)-one (2i). Yield = 17%; white solid; mp 230-

233 °C; [α]D25 = –84.26 (c 0.20, MeOH); 1H NMR (800 MHz, CD3OD) δ 7.67 (dd, J = 1.3, 7.5 

Hz, 1 H), 5.88 (d, J = 7.4 Hz, 1 H), 5.23 (dt, J = 3.7, 55.4 Hz, 1 H), 4.93 (ddd, J = 3.4, 10.3, 

30.4 Hz, 1 H), 4.44 (dd, J = 6.6, 10.3 Hz, 1 H), 3.92 (dd, J = 4.5, 6.3 Hz, 1 H), 3.71-3.78 (m, 2 

H), 2.31-2.40 (m, 1 H); 13C NMR (200 MHz, CDCl3) δ 168.3, 160.3, 145.7 (d, J = 3.1 Hz), 

96.2, 93.0 (d, J = 179.9 Hz), 72.5, 71.8, 65.3 (d, J = 16.6 Hz), 60.7 (d, J = 11.3 Hz), 53.9 (d, J 
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= 17.9 Hz); 19F NMR (376 MHz, CD3OD) δ –209.4 (dt, J = 29.3, 53.4 Hz); UV (MeOH) λmax 

274.67 nm; HRMS (ESI+) found 260.1041 [calcd for C10H15FN3O4+ (M+H)+ 260.1047]; Anal. 

Calcd for C10H14FN3O4: C, 46.33; H, 5.44; N, 16.21. Found: C, 46.71; H, 5.12; N, 15.99. 

4-Amino-1-((1S,3R,4R,5S)-2,2-difluoro-4,5-dihydroxy-3 

(hydroxymethyl)cyclopentyl)pyrimidin-2(1H)-one (2j). Yield = 20%; white solid; mp 242-

245 °C; [α]D25 = –39.85 (c 0.30, MeOH); 1H NMR (500 MHz, CD3OD) δ 7.62 (dd, J = 7.45, 

2.35 Hz, 1 H), 5.90 (d, J = 7.40 Hz, 1 H), 5.51 (dt, J = 18.2, 10.0 Hz, 1 H), 4.37 (dd, J = 10.6, 

5.25 Hz, 1 H), 4.06 (m, 1 H), 3.73-3.83 (m, 2 H), 2.54 (m, 1 H); 13C NMR (150 MHz, CD3OD) 

δ 168.2, 160.1, 145.7 (d, J = 3.6 Hz), 126.9 (dd, J = 252.1, 259.2 Hz), 96.8, 72.9 (d, J = 8.6 

Hz), 71.7 (d, J = 3.6 Hz), 65.1 (dd, J = 18.7, 23.0 Hz), 59.6 (d, J = 10.8 Hz), 56.3 (t, J = 20.1 

Hz); 19F NMR (378 MHz, CD3OD) δ –97.4 (d, J = 235.9 Hz), –117.4 (dt, J = 14.7, 238.9 Hz); 

UV (MeOH) λmax 272.27, 237.93 nm; HRMS (ESI+) found 278.0954 [calcd for C10H14F2N3O4+ 

(M+H)+ 278.0952]; Anal. Calcd for C10H13F2N3O4: C, 43.32; H, 4.73; N, 15.16. Found: C, 

43.56; H, 4.56; N, 15.44. 

General procedure for the synthesis of 24, 27a and 27b.  

To a cooled (0 °C) suspension of 2c, 2f and 2h (1 equiv) in acetone (0.005 M) was added 1-2 

drops of cH2SO4 in N2 (g). After being stirred at room temperature for 4 h, the reaction mixture 

was neutralized with solid NaHCO3, filtered, and evaporated under reduced pressure. The 

residue was further purified by silica gel column chromatography to give 24, 27a and 27b, 

respectively. 

 ((3aR,4R,6S,6aS)-6-(6-Amino-9H-purin-9-yl)-5,5-difluoro-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)methanol (24). Yield = 96%; colorless syrup; 1H NMR (500 

MHz, CD3OD) δ 8.31 (s, 1 H), 8.21 (s, 1 H), 5.30-5.40 (m, 2 H), 4.70 (br s, 1 H), 3.94 (dd, J = 
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6.8, 11.4 Hz, 1 H), 3.86 (dd, J = 6.8, 11.4 Hz, 1 H), 2.81-2.90 (m, 1 H), 1.58 (s, 3 H), 1.35 (s, 

3 H); 13C NMR (125 MHz, CD3OD) δ 163.5 (dd, J = 33.1, 69.2 Hz), 156.5, 152.2, 152.0, 143.4, 

128.0 (dd, J = 251.7, 263.6 Hz), 116.0, 80.7 (d, J = 7.3 Hz), 79.6 (d, J = 8.3 Hz), 66.1 (dd, J = 

19.2, 22.8 Hz), 59.2 (d, J = 8.0 Hz), 53.8 (t, J = 19.4 Hz), 28.2, 25.9; HRMS (ESI+) (m/z) found 

342.1370, [calcd for C14H18F2N5O3+ (M+H)+ 342.1372]; Anal. Calcd for C14H17F2N5O3: C, 

49.27; H, 5.02; N, 20.52. Found: C, 49.28; H, 4.98; N, 20.91. 

1-((3aS,4S,5R,6R,6aR)-5-Fluoro-6-(hydroxymethyl)-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)pyrimidine-2,4(1H,3H)-dione (27a). Yield = 98%; colorless 

syrup; 1H NMR (500 MHz, CD3OD) δ 7.75 (dd, J = 1.4, 8.1 Hz, 1 H), 5.70 (d, J = 8.1 Hz, 1 

H), 5.20 (dt, J = 3.1, 54.1 Hz, 1 H), 5.01-5.13 (m, 2 H), 4.58 (d, J = 6.3 Hz, 1 H), 3.73-3.83 (m, 

2 H), 2.42-2.56 (m, 1 H), 1.50 (s, 3 H), 1.32 (s, 3 H); 13C NMR (125 MHz, CD3OD) δ 166.7, 

153.7, 145.3 (d, J = 5.9 Hz), 116.5, 103.2, 99.2 (d, J = 180.2 Hz), 82.2, 82.0, 65.0 (d, J = 15.7 

Hz), 60.3 (d, J = 8.7 Hz), 53.2 (d, J = 17.7 Hz), 28.4, 25.9; HRMS (ESI+) (m/z) found 301.1185, 

[calcd for C13H18FN2O5+ (M+H)+ 301.1194]; Anal. Calcd for C13H17FN2O5: C, 52.00; H, 5.71; 

N, 9.33. Found: C, 52.15; H, 5.47; N, 9.15. 

1-((3aS,4S,6R,6aR)-5,5-Difluoro-6-(hydroxymethyl)-2,2-dimethyltetrahydro-4H-

cyclopenta[d][1,3]dioxol-4-yl)pyrimidine-2,4(1H,3H)-dione (27b). Yield = 97%; 1H NMR 

(500 MHz, CD3OD) δ 7.71 (dd, J = 2.0, 8.1 Hz, 1 H), 5.73 (d, J = 8.1 Hz, 1 H), 5.33 (dt, J = 

6.8, 21.3 Hz, 1 H), 4.94 (d, J = 6.8 Hz, 1 H), 4.57-4.63 (m, 1 H), 3.88 (dd, J = 6.7, 11.4 Hz, 1 

H), 3.81 (dd, J = 6.7, 11.4 Hz, 1 H), 2.68-2.79 (m, 1 H), 1.54 (s, 3 H), 1.34 (s, 3 H); HRMS 

(ESI+) (m/z) found 319.1104, [calcd for C13H17F2N2O5+ (M+H)+ 319.1100]; Anal. Calcd for 

C13H16F2N2O5: C, 49.06; H, 5.07; N, 8.80. Found: C, 49.43; H, 5.47; N, 8.43. 

Synthesis of tert-Butyl-(9-((3aS,4S,6R,6aR)-5,5-difluoro-6-(hydroxymethyl)-2,2-

dimethyltetrahydro-4H-cyclopenta[d][1,3]dioxol-4-yl)-9H-purin-6-yl)carbamate (25a) 
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and its N6-di-Boc derivative (25b). To a suspension of 24 (20 mg, 0.058 mmol) and 4-

dimethylaminopyridine (1 mg, 0.0058 mmol) in hexamethyldisilazane (3 mL), trimethylsilyl 

trifluoromethanesulfonate (5 μL) was added dropwise at room temperature in a N2 atmosphere 

(g). After being heated to 75 °C with stirring for 2 h, the reaction mixture was evaporated, and 

anhydrous THF (7 mL) was added. To a cooled (0 oC) reaction mixture, di-t-butyl dicarbonate 

(63 mg, 0.29 mmol) was added. After stirring for 4 h at room temperature, the reaction mixture 

was evaporated, and the residue was added to MeOH/trimethylamine (6 mL, 5:1(v/v)). After 

heating to 55 °C with stirring for 16 h, the reaction mixture was evaporated, and the residue 

was purified with column chromatography (silica gel, CH2Cl2/MeOH, 50/1) to give 25a (13 

mg, 52%) and 25b (8 mg, 25%) as colorless syrup. 

Compound 25a: 1H NMR (500 MHz, CD3OD) δ 8.59 (s, 1 H), 8.49 (s, 1 H), 5.36-5.50 (m, 2 

H), 4.72 (d, J = 5.6 Hz, 1 H), 3.95 (dd, J = 6.8, 11.4 Hz, 1 H), 3.87 (dd, J = 6.8, 11.4 Hz, 1 H), 

2.83-2.95 (m, 1 H), 1.57 (s, 12 H), 1.34 (s, 3 H); HRMS (ESI+) (m/z) found 442.1899, [calcd 

for C19H26F2N5O5+ (M+H)+ 442.1897]. 

Compound 25b: 1H NMR (500 MHz, CD3OD) δ 8.87 (s, 1 H), 8.73 (d, J = 1.8 Hz, 1 H), 5.46-

5.57 (m, 2 H), 4.75 (d, J = 5.4 Hz, 1 H), 3.95 (dd, J = 6.8, 11.4 Hz, 1 H), 3.88 (dd, J = 6.8, 11.4 

Hz, 1 H), 2.84-2.95 (m, 1 H), 1.59 (s, 3 H), 1.37 (s, 21 H); 13C NMR (125 MHz, CD3OD) δ 

156.2, 154.2, 152.2, 152.1 (2 × C(O) -Boc protection group), 147.8 (d, J = 2.4 Hz), 130.6, 128.1 

(dd, J = 251.8, 263.3 Hz), 116.0, 86.1, 80.4 (d, J = 7.4 Hz), 79.7 (d, J = 8.2 Hz), 72.7, 66.5 (dd, 

J = 19.1, 23.1 Hz), 59.2 (d, J = 8.0 Hz), 53.8 (t, J = 19.2 Hz), 28.7 (6 × CH3-tert-butyl), 28.3, 

25.9; HRMS (ESI+) (m/z) found 542.2411, [calcd for C24H34F2N5O7+ (M+H)+ 542.2421]. 

iso-Propyl ((S)-(((3aR,4R,6S,6aS)-6-(6-((tert-butoxycarbonyl)amino)-9H-purin-9-yl)-5,5-

difluoro-2,2-dimethyltetrahydro-4H-cyclopenta[d][1,3]dioxol-4-yl)methoxy) 

(phenoxy)phosphoryl)-L-alaninate (26). To a stirred suspension of 25a (16 mg, 0.036 mmol), 
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25b (7 mg, 0.012 mmol) and powdered molecular sieves (4 Å, 62 mg) in anhydrous THF (20 

mL), tert-butylmagnesium chloride solution (0.26 mL, 1.0 M in THF, 0.26 mmol) was added 

at 0°C in a nitrogen atmosphere. After 10 min, a solution of pentafluoro-phosphoramidate 

reagent A (47 mg, 0.10 mmol) in THF (12 mL) was slowly added, and the reaction mixture 

was stirred at room temperature for 36 h. Then, it was quenched by the dropwise addition of 

methanol (10 mL), filtered, and evaporated. The residue was purified by column 

chromatography (silica gel, CH2Cl2/MeOH, 9/1) to give the phosphoramidate 26 as a colorless 

liquid (12 mg, 33%): 1H NMR (500 MHz, CD3OD) δ 8.59 (s, 1 H), 8.45 (s, 1 H), 7.37 (d, J = 

7.8 Hz, 2 H), 7.25 (d, J = 8.1 Hz, 2 H), 7.19 (d, J = 7.5 Hz, 1 H), 5.50 (dt, J = 5.9, 22.3 Hz, 1 

H), 5.40-5.45 (m, 1 H), 4.92-4.99 (m, 1 H), 4.73-4.80 (m, 1 H), 4.36-4.50 (m, 2 H), 3.86-3.98 

(m, 1 H), 3.07-3.19 (m, 1 H), 1.58 (s, 12 H), 1.34 (s, 6 H), 1.21 (d, J = 6.2 Hz, 3 H), 1.17 (d, J 

= 6.2 Hz, 3 H); HRMS (ESI+) (m/z) found 711.2716, [calcd for C31H42F2N6O9P+ (M+H)+ 

711.2713]. 

iso-Propyl((S)-(((1R,3S,4S,5R)-3-(6-amino-9H-purin-9-yl)-2,2-difluoro-4,5-

dihydroxycyclopentyl)methoxy)(phenoxy)phosphoryl)-L-alaninate (3a). A solution of 26 

(15 mg, 0.021 mmol) in 10 mL of formic acid/H2O (1:1, v:v) was stirred at room temperature 

for 8 h. After evaporation, the crude product was purified by column chromatography (silica 

gel, CH2Cl2/ MeOH, 6/1) to give 3a (9.9 mg, 82%) as a colorless solid: mp 95-100 °C; UV 

(MeOH) λmax 259.6 nm; [α]D25 = –38.06 (c 0.001, MeOH); 1H NMR (400 MHz, CD3OD) δ 8.18 

(s, 1 H), 8.17 (d, J = 1.6 Hz, 1 H), 7.35 (d, J = 8.4 Hz, 2 H), 7.23 (d, J = 8.6 Hz, 2 H), 7.18 (d, 

J = 8.0 Hz, 1 H), 5.26-5.38 (m, 1 H), 4.81-4.98 (m,  merged with H2O peak, 1 H), 4.74 (dd, J 

= 4.8, 10.0 Hz, 1 H), 4.29-4.43 (m, 2 H), 7.17 (br s, 1 H), 3.82-3.93 (m, 1 H), 2.79-2.94 (m, 1 

H), 1.32 (d, J = 6.8 Hz, 3 H), 1.19 (d, J = 6.2 Hz, 3 H), 1.14 (d, J = 6.2 Hz, 3 H); 13C NMR 

(150 MHz, CD3OD) δ 175.2 (d, J = 5.7 Hz), 158.1, 154.7, 153.0, 152.9, 152.6, 142.6, 131.6 (2 
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× CH-phenyl), 127.0, 124.4 (dd, J = 253.5, 260.6 Hz), 122.2 (d, J = 4.3 Hz), 120.6 (2 × CH-

phenyl), 73.3 (d, J = 7.1 Hz), 71.2 (d, J = 5.0 Hz), 70.9, 64.6, 64.1 (dd, J = 5.0, 10.7 Hz), 52.4, 

22.6 (d, J = 2.9 Hz, 2 × CH3), 21.2 (d, J = 6.5 Hz); 19F NMR (376 MHz, CD3OD) δ –98.71 (d, 

J = 238.4 Hz), –115.13 (dt, J = 14.9, 236.4 Hz); HRMS (ESI+) (m/z) found 571.1889, [calcd 

for C23H30F2N6O7P+ (M+H)+ 571.1876]; Anal. Calcd for C23H29F2N6O7P: C, 48.42; H, 5.12; N, 

14.73. Found: C, 48.74; H, 4.98; N, 14.54. 

iso-Propyl ((S)-(((1R,2R,3S,4S,5R)-3-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2-

fluoro-4,5-dihydroxycyclopentyl)methoxy)(phenoxy)phosphoryl)-L-alaninate (3b). 

Introduction of phosphoramidate. To a cooled (0 °C) suspension of 27a (21 mg, 0.069 mmol) 

and molecular sieves (4 Å, 35 mg) in anhydrous THF (15 mL, 0.005 M), tert-butylmagnesium 

chloride solution (0.34 mL, 1.0 M in THF, 0.34 mmol) was added dropwise in a N2 

atmosphere(g). After being stirred for 5 min, a solution of the phosphoramidate reagent A (31 

mg, 0.069 mmol) in anhydrous THF (7 mL) was added dropwise, and the reaction mixture was 

stirred at room temperature for 36 h, quenched with MeOH (5 mL), filtered and evaporated, 

and the residue was purified by column chromatograph (silica gel, CH2Cl2/MeOH, 24/1) to 

give phosphoramidate as a colorless liquid (13 mg, 33%): 1H NMR (500 MHz, CD3OD) δ  7.73 

(dd, J = 1.3, 8.1 Hz, 1 H), 7.36 (d, J = 7.8 Hz, 2 H), 7.24 (d, J = 7.8 Hz, 2 H), 7.19 (d, J = 7.4 

Hz, 1 H), 5.70 (d, J = 8.1 Hz, 1 H), 5.02-5.22 (m, 3 H), 4.93-5.01 (m, 1 H), 4.66 (d, J = 6.3 Hz, 

1 H), 4.29 (d, J = 7.6 Hz, 2 H), 3.87-3.95 (m, 1 H), 2.62-2.73 (m, 1 H), 1.51 (s, 3 H), 1.34 (d, 

J = 7.7 Hz, 3 H), 1.32 (s, 3 H), 1.22 (d, J = 6.2 Hz, 6 H); HRMS (ESI+) (m/z) found 570.2003, 

[calcd for C25H34FN3O9P+ (M+H)+ 570.2011].  

Hydrolysis. A solution of phosphoramidate (13 mg, 0.022 mmol) in a formic acid/H2O solution 

(1:1, v/v, 7 mL total) was stirred at room temperature for 8 h. The reaction mixture was 

evaporated and the residue was purified by column chromatography (silica gel, CH2Cl2/MeOH, 
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7/1) to give the phosphoramidate prodrug 3b (10.8 mg, 90%) as a white solid: mp 107-110 °C; 

UV (MeOH) λmax 262.8 nm; [α]D25 = –59.40 (c 0.001, MeOH); 1H NMR (500 MHz, CD3OD) 

δ 7.64 (d, J = 8.1 Hz, 1 H), 7.36 (d, J = 7.9 Hz, 2 H), 7.23 (d, J = 7.9 Hz, 2 H), 7.19 (d, J = 7.4 

Hz, 1 H), 5.68 (d, J = 8.1 Hz, 1H), 5.04 (dt, J = 4.1, 55.4 Hz, 1 H), 4.87-4.98 (m, merged with 

H2O peak, 2 H), 4.45 (dd, J = 6.6, 9.7 Hz, 1 H), 4.26 (d, J = 7.1 Hz, 2 H), 3.99 (d, J = 5.4 Hz, 

1 H), 3.85-3.93 (m, 1 H), 2.49-2.60 (m, 1 H), 1.33 (d, J = 7.0 Hz, 3 H), 1.21 (d, J = 6.1 Hz, 6 

H); 13C NMR (125 MHz, CD3OD) δ 175.2, 166.9, 154.0, 151.1, 145.4, 131.5 (2 × CH-phenyl), 

126.9 (2 × CH-phenyl), 122.2 (d, J = 4.6 Hz), 102.8, 93.3 (d, J = 184.5 Hz), 80.3, 79.9 (d, J = 

32.5 Hz), 72.3, 71.2, 70.9, 64.2 (d, J = 16.0 Hz), 52.4, 22.7 (d, J = 9.2 Hz, 2 × CH3), 21.2 (d, J 

= 6.8 Hz); 19F NMR (376 MHz, CD3OD) δ –208.27 (dt, J = 29.7, 59.4 Hz); HRMS (ESI+) (m/z) 

found 530.1685, [calcd for C22H30FN3O9P+ (M+H)+ 530.1698]; Anal. Calcd for C22H29FN3O9P: 

C, 49.91; H, 5.52; N, 7.94. Found: C, 50.03; H, 5.32; N, 7.54. 

iso-Propyl ((S)-(((1R,3S,4S,5R)-3-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-2,2-

difluoro-4,5-dihydroxycyclopentyl)methoxy)(phenoxy)phosphoryl)-L-alaninate (3c). 

Compound 3c was synthesized according the same procedure used in the preparation of 3b: 

Yield = 30%; white solid; mp 174 °C (decomp); UV (MeOH) λmax 262.8 nm; [α]D25 = –19.40 

(c 0.001, MeOH); 1H NMR (500 MHz, CD3OD) δ  7.53 (dd, J = 2.1, 8.1 Hz, 1 H), 7.36 (d, J = 

7.8 Hz, 2 H), 7.25 (d, J = 7.8 Hz, 2 H), 7.20 (d, J = 7.6 Hz, 1 H), 5.70 (d, J = 8.1 Hz, 1 H), 

5.29-5.39 (m, 1 H), 4.93-5.02 (m, 1 H), 4.30-4.39 (m, 2 H), 4.23-4.29 (m, 1 H), 4.08 (br s, 1 

H), 3.84-3.92 (m, 1 H), 2.69-2.80 (m, 1 H), 1.33 (d, J = 7.1 Hz, 3 H), 1.22 (d, J = 6.2 Hz, 6 H); 

19F NMR (376 MHz, CD3OD) δ –98.47 (d, J = 237.2 Hz), –116.91 (dt, J = 17.6, 237.2 Hz); 

HRMS (ESI+) (m/z) found 548.1619, [calcd for C22H29F2N3O9P+ (M+H)+ 548.1604]; Anal. 

Calcd for C22H28F2N3O9P: C, 48.27; H, 5.16; N, 7.68. Found: C, 48.12; H, 4.98; 8.01. 
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SAH hydrolase assay.18e-g,29 

The gene encoding human placental SAH hydrolase was cloned into expression plasmid 

pPROKcd20. Recombinant SAH hydrolase protein was produced in E. coli JM109 in 50 mM 

Tris-HCl (pH 7.5) containing 2 mM EDTA and was purified by DEAE-cellulose column (2.8 

cm x 6 cm), ammonium sulfate fractionation (35-60%), Sephacryl S-300HR (1.0 cm x 105 cm), 

and DEAE cellulose (2.8 cm x 24 cm). The protein homogeneity was confirmed by 10% SDS-

PAGE. The protein concentration was determined by using Bradford method. Bovine serum 

albumin was a standard material for protein assay. Enzyme activity was determined in reaction 

mixtures (250 μL) that contain 50 mM sodium phosphate (pH 8.0), 2 μM SAH hydrolase (0.5 

μM tetrameric form) and varying concentrations of compounds. The reaction mixtures were 

first preincubated with the compounds for 10 min at 37 °C, after which the reaction was 

initiated by adding 100 μM SAH. The reaction was allowed to proceed for 20 min, followed 

by the addition of DNTB to a final concentration of 200 μM. The absorbance of the product 5-

thio-2-nitrobenzoic acid (TNB) was measured at 412 nm using a spectrophotometer (Varian, 

Cary100). The molar extinction coefficient for TNB (ε412 = 13700 M−1 cm−1) was used in 

calculations to quantify TNB formation. 

Cells, viruses and compounds 

Vero E6 and Vero CCL81 cells were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM; Lonza), supplemented with 8% fetal calf serum (FCS; PAA), 2 mM L-glutamine, 100 

IU/ml of penicillin and 100 µg/ml of streptomycin, and were grown at 37°C in a humidified 

incubator with 5% CO2. Vero cells were maintained in Eagles Minimum Essential Medium 

(EMEM; Lonza) ), supplemented with 8% fetal calf serum (FCS; PAA), 100 IU/ml of penicillin 

and 100 µg/ml of streptomycin, and were grown at 37°C in a humidified incubator with 5% 

CO2  Infections were performed in EMEM with 25 mM HEPES (Lonza) supplemented with 
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2% FCS, L-glutamine, and antibiotics. Infectious clone-derived CHIKV(CHIKV-LS3) was 

generated as described by Scholte et al.29 The ZIKV strain SL0612 was isolated from an 

infected traveler returning from Suriname as described by Van Boheemen et al.31 The Sindbis 

virus (SINV) strain HR and Semliki Forest virus (SFV) strain SFV4 are part of the LUMC 

virus collection. The MERS-CoV strain EMC/2012 was isolated from patient material in the 

Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia and was obtained from Erasmus Medical 

Center, Rotterdam.32 The SARS-CoV strain Frankfurt 1 was provided by H. F. Rabenau and H. 

W. Doerr (Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany).33 The 

compounds were dissolved in DMSO to obtain 20 mM stock solutions. All work with infectious 

CHIKV, MERS-CoV, SARS-CoV and ZIKV was performed inside biosafety cabinets in the 

BSL-3 facilities of the Leiden University Medical Center. 

Antiviral CPE-reduction assays 

VeroE6 cells were seeded at a density of 5,000 cells/well (CHIKV) or 10,000 cells/well (SARS-

CoV, SFV and SINV) in a total volume of 100 µL per well in 96 well plates. Vero cells were 

seeded at a density of 20,000 cells/well when used for MERS-CoV infections and Vero CCL81 

cells were seeded at a density of 5,000 cells/well for ZIKV infections under the same conditions 

as described for Vero E6. The following day, compound dilutions with concentrations of 150, 

50, 16.7 and 5.6 µM were prepared in the infection medium by 3-fold serial dilution of the 150 

µM solution. After replacing the culture medium with the respective dilutions of the compound, 

the cells were infected with CHIKV (MOI 0.005), SFV (MOI 0.025), SINV (MOI 0.025), ZIKV 

(MOI 0.05), MERS-CoV (MOI 0.005) or SARS-CoV (MOI 0.01). Viability assays were 

conducted in parallel. Each compound was tested at each concentration in quadruplicate (4 

biological replicates per concentration). An MTS colorimetric assay was conducted 40 h post-

infection (hpi) for SFV, 76 hpi for SINV, 72 h hpi for MERS- and SARS-CoV, and 96 hpi for 
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CHIKV and ZIKV by adding 20 µl/well of the CellTiter 96® AQueous One Solution Cell 

Proliferation Assay (MTS) reagent (Promega). The assay was stopped after 2-2.5 h by fixing 

the cells with 37% formaldehyde. The absorbance was measured at 495 nm in a Berthold 

Mithras LB 940 plate reader, and the values were expressed relative to uninfected (infection) 

or untreated (viability) samples. The results represent the average of quadruplicate samples 

expressed as the mean ± SD. Compounds that were found to be protective were further 

evaluated in CPE reduction assays by testing 8 different concentrations to determine the EC50 

as previously described.30,33 The cytotoxicity (CC50) of the compounds was determined in 

parallel, and all experiments were performed in quadruplicate. Graph-Pad Prism 8.0.1 was used 

for EC50 and CC50 determination by non-linear regression. 

Viral load reduction assays  

VeroE6 (CHIKV, ZIKV) cells were seeded at a density of 7.5 x 104 cells/well in 0.5 ml DMEM/8%FCS in 

24-well cell culture plates and allowed to adhere overnight. For MERS-CoV and SARS-CoV a cell 

density of or 6.0 x 104 cells/well of Vero E6 and Vero cells was used, respectively, under the same 

conditions as described above. The next day, compound dilutions (0 – 1.5 µM) were prepared in 

EMEM/2%FCS to which virus was added to yield inocula for infecting the cells with a MOI of 0.1 for 

CHIKV, MOI of 1 for ZIKV and an MOI of 0.01 for SARS- and MERS-CoV. Cells were incubated at 37°C 

with 250 µl/well of the inoculum for 1 hr (CHIKV, SARS- and MERS-CoV) or 2 hrs (ZIKV). After the 

infection, the cells were washed twice with 1 ml/well warm PBS and 0.5 ml/well fresh EMEM/2%FCS 

with different concentrations of compound (0 – 1.5 µM) was added. The cells were incubated for 30 hrs 

(CHIKV) or 48 hrs (ZIKV, SARS- and MERS-CoV) at 37°C, after which supernatants were harvested 

and stored at -80 ̊ C for determination of the infectious virus titer by plaque assay. Viability assays were 

conducted in parallel as described in the previous paragraph. Plaque assays with CHIKV and SARS-

CoV on VeroE6 cells, MERS-CoV on Vero cells, and ZIKV on Vero CCL81 cells were performed as 

described previously (). Compound 2c was tested at each concentration in duplicate in two independent 

experiments (n=4). Graph-Pad Prism 8.0.1 was used for statistical analysis with one-way ANOVA 
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multiple comparison test.   
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