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Abstract

Fecal microbiota transplantation (FMT) is a well-established treatment for
recurrent Clostridioides difficile infection. FMT has become a more readily
available and useful new treatment option as a result of stool banks. The
current state of knowledge indicates that dysbiosis of the gut microbiota is
implicated in several disorders in addition to C. difficile infection. Random-
ized controlled studies have shown FMT to be somewhat effective in treating
ulcerative colitis, irritable bowel syndrome, and hepatic encephalopathy. In
addition, FMT has been beneficial in treating several other conditions, such
as the eradication of multidrug-resistant organisms and graft-versus-host
disease. We expect that FMT will soon be implemented as a treatment strat-
egy for several new indications, although further studies are needed.
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INTRODUCTION

Fecal microbiota transplantation (FMT) is now an established treatment for recurrent Clostridium
difficile infection (reclassified as Clostridioides difficile) (rCDI) (1, 2), with cure rates of 80–90% (3).
FMT is the transfer of fecal microbial content from a healthy individual into the gastrointesti-
nal (GI) tract of a diseased individual. The mechanism of action is not completely understood,
but restoration of a disturbed microbiota (also known as dysbiosis, which is required for CDI
pathogenesis) seems to underlie the observed effect (4). Dysbiosis may also be involved in the
pathogenesis of many other conditions, such as inflammatory bowel disease (IBD), irritable bowel
syndrome (IBS), multiple sclerosis (MS), hepatic encephalopathy (HE), and metabolic syndrome.
Targeting the disturbed microbiota, which may be achieved by dietary interventions, probiotics,
prebiotics, antibiotics, and FMT, might influence the course of these diseases. FMT seems the
most powerful yet uncontrolled strategy to target the microbiota.

Although FMT appears to be safe and easy to perform, it should be used with caution because
long-term effects are still unknown or unrecognized. FMT is currently indicated only for the
treatment of rCDI (1, 2). However, many clinical trials are investigating the effects of FMT on
other conditions, and thus FMT may soon become a treatment approach for a subset of patients
with IBD, HE, and other disorders. This review addresses the clinical use of FMT for patients
with CDI and summarizes the current knowledge about its potential future indications for other
conditions.

THE DYSBIOTIC GUT MICROBIOTA AS A TARGET FOR THERAPY

The human adult microbiota consists of roughly 40 × 1012 bacteria (∼0.2 kg) that provide essential
metabolic and biological functions such as extracting energy, producing growth factors, stimu-
lating the immune system, and creating colonization resistance (5). The term gut microbiota is
defined as the whole population of bacteria, viruses, parasites, and fungi colonizing the intestinal
tract (5). The adult gut microbiota consists of more than 2,000 species of bacteria, of which the
density and diversity increase from stomach to colon. The healthy gut microbiota is a diverse,
stable, resistant, and resilient microbial ecosystem (6). Dysbiosis is a perturbation in function and
composition of microbiota that is driven by environmental and host-related factors. The micro-
biota is predominantly formed by environmental factors (7). Bacteroidetes and Firmicutes are two
major phyla, together representing ∼90% of the microbiota (8).

The gut microbiota in a dysbiotic state has increasingly been implicated in the pathogenesis
and progression of numerous diseases. However, whether dysbiosis reflects changes caused by the
disease itself, or should be considered as a driving step in the pathogenesis, is not always understood.
Dysbiosis results in the disturbance of several metabolic pathways that influence immunological
and mechanical processes both in and outside the intestine, and it impairs colonization resistance.
These processes may be reverted by FMT, as shown in Figure 1.

Colonization Resistance

Colonization resistance is the protection provided by the healthy microbiota against invading
bacterial pathogens and overgrowth of commensal bacteria. This process is poorly understood but
seems to occur through direct (host-unrelated) and indirect (host-related) pathways (9). The direct
pathways include nutrient competition, production of bacteriocins (peptides with often narrow-
spectrum antimicrobial properties produced by bacteria), presence of bacteriophages (viruses that
can lyse bacterial cells), and type VI secretion systems (10–12). The indirect pathways include
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Dysbiosis

FMT

Immunomodulation
Mechanical barrier function

SCFA
metabolism

Bile acid
metabolism

Bacteriophages

Bacteriocins
Nutrient

competition

Direct transfer
of metabolites

(SCFA, bile acids)

Indirect
pathway

Direct
pathway

IBD, IBS,
hepatic encephalopathyEradication of MDROs Metabolic

syndromeClostridioides difficile infection

Figure 1
Mechanisms of FMT in a proposed schematic diagram of how FMT exerts its effect by restoring normal microbiota composition. The
direct pathway is unrelated to the host and transfers directly with the FMT. Host-related factors are involved in the indirect pathway.
Observed clinical effects of FMT have been linked to a perturbation in one or both pathways. An effect of FMT was found for the listed
conditions in clinical trials. Abbreviations: FMT, fecal microbiota transplantation; IBD, inflammatory bowel disease; IBS, irritable
bowel syndrome; MDRO, multidrug-resistant organism; SCFA, short-chain fatty acids.

epithelial barrier maintenance mediated by innate immune receptors and short-chain fatty acid
(SCFA) metabolism, as well as bile acid metabolism, which can influence the germination, growth,
and sporulation of bacteria (9, 13). In addition, Paneth and intestinal epithelial cells also produce
antimicrobial peptides, a process that appears to be driven by the microbiota (14).

Short-Chain Fatty Acids

SCFAs are produced by the gut microbiota through fermentation of indigestible starches
and complex sugars (15). The most common SCFAs in the gut are propionate, acetate, and
butyrate. Bacteroidetes produce mainly propionate and acetate, whereas Firmicutes produce
mostly butyrate (16). Immunomodulatory effects associated with SCFAs include an enhanced
barrier function and proliferation of gut epithelial cells, decreased induction of proinflammatory
cytokines, and stimulation of the presence of regulatory T cells (17). The increase in these cells
promotes mucosal homeostasis and protection from colonic inflammation (18). SCFAs may also
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potentiate a proinflammatory state in gut epithelial cells and in leukocytes (19). FMT may affect
SCFA metabolism by resolving dysbiosis or directly transferring SCFAs, which may underlie the
observed effects of FMT in metabolic syndrome, HE, and IBD (see below).

Bile Acid Metabolism

The primary bile acids cholic acid and chenodeoxycholic acid produced by hepatocytes are secreted
in the duodenum, which facilitates the absorption and digestion of fat and fat-soluble vitamins
in the small bowel. Ninety-five percent of primary bile acids are reabsorbed in the distal ileum
for reprocessing (enterohepatic circulation) (20). The 5% of acids that cannot be reabsorbed by
enterohepatic circulation are processed as secondary bile acids by 7α-dehydroxylation, which
is mediated by certain bacteria (21). Both primary and secondary bile acids play an important
role in protecting against bacterial overgrowth, immunomodulation, and inducing gut epithelial
integrity (22). Mice lacking G-protein-coupled bile acid receptor-1 show increased susceptibility
to colitis (23). Furthermore, bile acids suppress inflammatory response in human macrophages
by inhibiting the production of proinflammatory cytokines (24, 25). In CDI, dysbiosis results
in decreased conversion of primary bile acids into secondary bile acids. Primary bile acids may
promote germination of C. difficile, whereas secondary bile acids prevent germination (26). FMT
may restore bile acid metabolism by correcting dysbiosis or directly transferring primary and
secondary bile acids.

FECAL MICROBIOTA TRANSPLANTATION IN CLOSTRIDIOIDES
DIFFICILE INFECTION

The undisputed model of a disorder that is associated with dysbiosis of the gut microbiota is CDI.
C. difficile is a Gram-positive anaerobic, spore-forming bacteria. Two major events take place
during the pathogenesis of CDI: (a) dysbiosis characterized by the loss of diversity in and richness
of the microbiota, predisposing the individual to spore germination and colonization of C. difficile;
and (b) outgrowth and toxin production of C. difficile (4, 27). An infection caused by C. difficile can
present with symptoms ranging from mild diarrhea up to severe pseudomembranous colitis (4).
After antibiotic treatment with vancomycin, metronidazole, or fidaxomicin, recurrence is found
in ∼20% of patients with their first CDI episode, and recurrence rates increase with subsequent
episodes (1, 2, 28). Recurrence seems related to inadequate recovery of the gut microbiota in a
subset of patients, which enables the renewed outgrowth of antibiotic-resistant C. difficile spores
(29). Several randomized controlled trials (RCTs) have shown that FMT is superior to antibiotics
for curing patients with rCDI (30–32). A recent meta-analysis concluded that FMT results in
a clinical resolution of CDI symptoms in up to 90% of patients (3). The use of frozen feces
suspensions seems to be as effective as that of fresh suspensions, which justifies the storage of feces
samples and simplifies the logistics of FMT (33). In general, FMT is advised for patients with
rCDI; however, the optimal timing of FMT is unknown. Although it is generally proposed as
treatment for patients with a third CDI recurrence, FMT may also be beneficial for patients with
a second or even first recurrence, depending on the clinical course and the patient’s comorbidities.
In general, FMT may be considered at an earlier stage if (a) previous episodes were characterized
by more severe disease, (b) there is a need for prolonged hospitalization or the patient is a resident
of a long-term care facility, or (c) comorbidities justify prompt treatment.

Whether patients with a first episode of CDI may benefit from FMT is unknown. However,
in patients with a first episode of antibiotic-refractory or severe CDI, FMT is successful and may
even be lifesaving. A retrospective cohort study described 111 patients with severe CDI, including
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66 patients who were treated with FMT and 45 who were treated without FMT. The three-month
mortality rate after a diagnosis of severe CDI was 12% (8/66) in FMT-treated patients versus 42%
(19/45) with the standard of care, p < 0.001 (34).

Fecal Microbiota Transplantation Protocols and Standardization

To date, FMT is not a standardized treatment, and protocols differ according to local procedures.
In addition, legislation concerning FMT is not uniform, although FMT for rCDI is an accepted
treatment in many countries.

The preferred route of administration for FMT remains a topic of discussion. FMT can be
delivered through the upper GI route, via a duodenal tube or capsules taken orally (31, 32), or
through the lower GI route, via colonoscopy or enema (30, 35). Efficacy of FMT for the resolution
of CDI seems to be more or less equal regardless of the route of administration, although FMT
by enema requires repeated attempts (3). To date, no evidence has shown that small intestinal
bacterial overgrowth is induced by FMT through the upper GI route. Risk factors for procedure-
related adverse events may guide the choice for a particular route of delivery. For example, risk
factors for aspiration may favor the use of colonoscopy, whereas the upper GI route may be used
to avoid colonoscopy in fragile patients. A recent study showed high cure rates in patients treated
with oral capsulized FMT, a method that may decrease patient discomfort (31). However, the
method requires swallowing large numbers of capsules, which are not readily available.

In general, patients with recurrent CDI are treated with antibiotics for at least four days
prior to the infusion of the donor feces suspension. Antibiotic therapy should be stopped at least
24 h before FMT and should not be continued post-FMT unless severe colitis exists. Antibiotic
stewardship following FMT is warranted to prevent the prescription of unnecessary antibiotics,
which may cause post-FMT recurrences (36). Bowel lavage is routinely performed prior to FMT
by colonoscopy. Whether it is required to promote engraftment of donor microbiota is unknown.
We generally advise bowel lavage with reduced volumes of a macrogol solution prior to upper GI
FMT, although its contribution to the observed efficacy is questionable because oral capsulized
FMT without a prior bowel lavage appears to be effective as well (37). Other medications, including
proton pump inhibitors, also affect the microbiota (38); whether they influence FMT outcomes is
unknown.

In general, FMT seems safe, although data about long-term patient follow-up are still lacking.
Clinical trials rarely report serious adverse events related to FMT in patients with rCDI (30–32).
Side effects occur more frequently in patients with active ulcerative colitis (UC) or Crohn’s disease
(CD) treated with FMT; fever, increased C-reactive protein, and bacteremia have been reported
(39–41). These observations may be explained by the exposure of an inflamed (diseased) mucosa to
donor microbiota, in contrast with rCDI patients who are pretreated with antibiotics before FMT.

Stool Banking

With the increasing interest in FMT, standardization and easy access to donor feces suspensions are
needed to treat patients. To meet these needs, we advocate the use of stool banks. Stool banks can
operate at an institutional, national, or international level. Examples of stool banks are OpenBiome
and the Netherlands Donor Feces Bank (NDFB). The primary aim of a stool bank is to provide
high-quality, ready-to-use donor feces suspensions from a prescreened, well-defined donor pool,
enabling easy, safe, and cost-effective FMT treatment (42). The working process of a stool bank is
outlined in Figure 2. Stool banking enables quality assurance and central registration of adverse
events, both of which increase the safety of this unstandardized treatment approach. The NDFB
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• Reach out to potential 
donors through media 
and advertising

Recruitment

• Extensive screening for 
conditions/diseases 
associated with a 
disturbed microbiota

• Extensive screening
for transmissible 
pathogens

Screening

• Donor questionnaire 
on day of donation

• Fresh stool

• Processing of donor 
stool to fecal 
suspension

• Fixed amount of
donor feces

• Addition of 
cryoprotectant

Collection and
processing of stool

• Storage of all donor 
feces suspensions in 
biobank (–80°C)

• Separate storage of 
aliquots of original 
donor feces and fecal 
suspension as quality 
controls

• Database donors

Storage

• Rescreening of the 
donor before  releasing 
fecal suspensions to 
exclude the presence 
of transmissible 
(infectious) diseases in 
window phase

Rescreening

• Frozen suspensions

• Traceable logistics

• Instructions for 
handling and infusion 
of suspension

• Consultation and 
advice to treating 
physician

Distribution of donor
feces suspensions

• Follow-up and 
recording of outcome 
data of patients

• Follow up and 
recording of SAEs

• Consultation in case of 
adverse events

• Reporting adverse 
events (safety 
program)

• Quality assurance

Safety/follow-up

Figure 2
A proposed workflow diagram for the process of running a stool bank. Extensive screening and rescreening of (potential) donors are
performed before distribution of frozen, ready-to-use donor feces suspension. Upon donation, stool should be processed as soon as
possible (within 6 h) to sustain viability of the donor’s microbiota. A cryoprotectant is added to the fecal suspension to allow adequate
storage at −80◦C. An aliquot of each donation should be stored for potential analysis in case of SAEs. Abbreviations: FMT, fecal
microbiota transplantation; SAE, serious adverse event.

discusses each application for FMT in an independent, multidisciplinarily competent body before
dispensing donor fecal suspensions. This competent body is also available for consultation in the
case of serious adverse events (SAEs) and reports on SAEs. It is important to collect follow-up and
safety data on all patients treated.

INFLAMMATORY BOWEL DISEASE

CD and UC are chronic inflammatory disorders that affect parts of the GI tract and can even
present with extra intestinal symptoms. Growing evidence supports a role of the gut microbiota
in the pathogenesis of IBD (43). CD can be treated by the diversion of the fecal stream, whereas
relapse occurs with restoration of the fecal stream and reexposure to luminal contents. In addition,
antibiotics can be used as induction therapy in CD and UC, and strict enteral nutrition can induce
remission in CD (44, 45). Indeed, dysbiosis of the gut microbiota in patients with IBD exists, as
demonstrated by a reduced microbial diversity and loss of anaerobic bacteria (46), which may be a
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Table 1 Methods and outcomes of studies investigating FMT as induction therapy in patients with mild or moderate UC
activity

Feature of study Moayyedi et al. (48) Rossen et al. (50) Paramsothy et al. (49) Costello et al. (47)

Study design Double-blind RCT Double-blind RCT RCT RCT

Number of patients
[placebo]

75 [37] 48 [25] 81 [40] 73 [35]

Treatment regimen 6 FMTs 2 FMTs 40 FMTs, 39 enemas,
1 colonoscopy

3 FMTs, 2 enemas,
1 colonoscopy

Comparator
(placebo)

Water Autologous FMT Water Autologous FMT

Route of
administration

Lower GI, enema Upper GI, duodenal
tube

Lower GI, retention
enema, colonoscopy

Lower GI, retention
enema, colonoscopy

Stool donor per
suspension

Single donor Single donor Multiple donors Multiple donors

Follow-up 6 weeks 12 weeks 8 weeks 8 weeks

Primary endpoint Endoscopic remission Endoscopic remission Endoscopic response Endoscopic remission

Primary outcome
FMT versus
comparator

24% (9/38) versus 5%
(2/37)

p = 0.03

30% (7/23) versus 20%
(5/25)

p = 0.51

27% (11/41) versus 8%
(3/40)

p = 0.02

32% (12/38) versus 9%
(3/35)

p < 0.01

Abbreviations: FMT, fecal microbiota transplant; GI, gastrointestinal; RCT, randomized controlled trial; UC, ulcerative colitis.

promising target for new treatment strategies. Initial studies addressing the efficacy of probiotics
in IBD treatment showed disappointing results (43). However, four RCTs investigating FMT as
induction therapy in patients with mild or moderate UC activity showed promising results for a
small subset of patients (Table 1) (47–50).

Although two studies were terminated after an interim analysis showing no significant dif-
ference between FMT and placebo, the outcomes appeared slightly better with FMT (48, 50).
The difference in efficacy among donors in one study was remarkable, and the microbiota pro-
file of patients who achieved remission after FMT resembled that of their donor (48). A recent
meta-analysis suggests that the pooled results of the four RCTs show some benefit of FMT over
placebo, with the endpoint defined as endoscopic remission (39/140, 28%, versus 13/137, 9%,
p < 0.01) (51).

In CD, RCTs are lacking; only small uncontrolled cohort studies have been performed, with
mixed results. A meta-analysis reports a pooled remission rate of 52% among 71 CD patients
treated with FMT (52). However, the remission rate was attributed mainly to one large cohort
study (53). Furthermore, the only study reporting endoscopic outcome in CD showed no endo-
scopic remission at eight weeks post-FMT (54).

Because the observed effects have been very modest, FMT should still be considered an exper-
imental approach in IBD. Future studies may have to implement rational donor selection (use of
super donors), selection of patients who are more likely to respond, and anaerobic processing of
donor feces. In addition, little is known about the timing of FMT in patients with IBD: Should it
be used as induction therapy or applied after initiation of induction therapy? Studies addressing
the above questions may pave the way for FMT as a future treatment approach for a subset of
patients with UC and CD.

In relation to treating rCDI with FMT in IBD patients, a meta-analysis showed that FMT is
equally effective for treating rCDI in patients with IBD (initial cure rate of 81%) when compared
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with those without IBD (55). FMT was equally efficacious in treating rCDI for CD and UC
patients. A reported adverse event was an IBD flare; whether this flare was the result of FMT or
CDI remains a topic of discussion.

IRRITABLE BOWEL SYNDROME

IBS is characterized by abdominal pain and a change in bowel habits. While the pathophysiology
of IBS is not completely elucidated, researchers increasingly believe that dysbiosis of the gut
microbiota is involved. There appears to be a reduction in SCFA-producing bacteria, which may
be responsible for a proinflammatory state of the gut (56). Furthermore, IBS has been associated
with a disrupted epithelial barrier function in the gut (57). Germ-free mice that were colonized
with fecal bacteria of patients with IBS developed intestinal barrier dysfunction and innate immune
activation (58), which suggests a direct role of the microbiota in the pathophysiology of IBS.

Johnsen et al. recently published the first RCT investigating the effect of FMT in IBS patients
(59). Patients received one donor FMT infusion with fresh or frozen feces (50–80 g) or an au-
tologous FMT infusion. FMT was delivered in the cecum by colonoscopy. Investigators noted a
significant decrease in IBS severity score at three months post-FMT in 65% (36/55) of patients
after FMT, compared with 43% (12/28) of patients treated with an autologous FMT (control
group), p = 0.049. However, at 12 months post-FMT, the difference between groups was less
pronounced. Frozen FMT suspensions were not inferior to fresh suspensions (59). A recent review
combined data of case reports and studies treating IBS patients with FMT (60). When compiling
all small uncontrolled studies, its authors found an overall improvement of symptoms in 58% of
patients treated with FMT. Heterogeneity among studies was significant, and publication bias
cannot be excluded. In conclusion, a small subset of patients with IBS may benefit from FMT.
Future research should elucidate which IBS patients should be selected for FMT and which donor
microbiota is effective. In addition, the optimal FMT protocol for IBS needs to be defined. We
have not determined yet whether (antibiotic) pretreatment is required and how frequently FMT
needs to be repeated.

HEPATIC ENCEPHALOPATHY

HE is a complication of end-stage liver cirrhosis. Patients with cirrhosis have dysbiosis of the gut
microbiota. This condition may result in a proinflammatory environment in the gut (61) and a rel-
ative abundance of ammonia-producing bacteria such as Enterobacteriaceae and Streptococcaceae
(62). Hyperammonemia in this altered gut microbiota can potentiate neuronal dysfunction and
HE (63). Commensal taxa such as Lachnospiraceae, Ruminococcaceae, and Clostridiales XIV have
been associated with protective properties against neuronal dysfunction and HE. In contrast, taxa
of Streptococcaceae, Enterobacteriaceae, Lactobacillaceae, and Peptostreptococcaceae are associ-
ated with potentiating HE (64). Current treatment for HE already targets the gut microbiota and
consists of lactulose and/or the nonabsorbable antibiotic rifaximin. In one RCT, 10 participants
with liver cirrhosis and recurrent HE were treated with a single FMT via a retention enema in
combination with standard of care, and 10 participants received solely standard-of-care treatment.
FMT was performed with a rationally selected single donor having high relative abundances of
Lachnospiraceae and Ruminococcaceae (64). Standard of care consisted of lactulose and/or rifax-
imin and was continued throughout the study in both groups. After FMT, fewer SAEs (2 versus
8, p = 0.02) and new episodes of HE (0 versus 6, p = 0.03) were observed; the two SAEs after
FMT appeared to be unrelated to the intervention (65), and thus FMT seems safe in those fragile
patients. The results of this small study are promising but need confirmation by future studies. In
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this regard, it should be noted that the use of a carefully selected single donor in this study may
limit the reproducibility of the results. Taken together, the data so far indicate that HE may be
an important indication for FMT and may lead to the future development of more sophisticated
strategies targeting the microbiota.

GRAFT-VERSUS-HOST DISEASE

Graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation
may affect any organ. In particular, lower intestinal localization of GVHD is associated with a high
mortality rate (66). Treatment consists of systemic immunosuppressants. However, in a subset
of patients, steroid refractory GVHD occurs for which no treatment is available. In a murine
model, dysbiosis in intestinal GVHD results in decreased butyrate concentration in intestinal
epithelial cells (67), which could add to a proinflammatory state of the gut. FMT with 17 strains of
Clostridia known to increase butyric acid levels could significantly reverse the GVHD phenotype
in these mice. This finding provides a rationale for FMT in GVHD. Two small case series treating
GVHD patients with FMT showed hopeful results (68, 69). One group reported that three of
four patients with refractory GVHD treated with FMT could be weaned off steroids; one patient
initially responded, but symptoms relapsed as steroids were decreased (68). Another case series
consisted of three patients that were treated with repeated FMT, which initially resulted in a
clinical response (69). However, one patient soon relapsed after the dose of immunosuppressants
was lowered. In conclusion, FMT may be a rescue treatment for patients with steroid-refractory
GVHD. Future studies may address whether targeting the microbiota could prevent or treat
GVHD at an earlier stage.

MULTIDRUG-RESISTANT ORGANISMS

Colonization with multidrug-resistant organisms (MDRO) that may subsequently cause infec-
tions in vulnerable patients is an increasing health care threat. Investigators have hypothesized
that resistance to MDRO colonization can be increased by FMT, thereby preventing infectious
complications. This result was first observed in the feces of patients treated with FMT for rCDI,
in which the number and diversity of antimicrobial resistance genes decreased (70). This outcome
was achieved primarily by an increase in the normal abundance of Bacteroidetes and Firmicutes
and a reduction in the number of Proteobacteria, in which the antibiotic resistance genes are
predominantly found (70, 71).

Four small prospective cohort studies used FMT to eradicate MDROs (Table 2) (72–75), with
mixed results. The eradication of Gram-positive vancomycin-resistant enterococci (VRE) by FMT
appears to be more successful when compared with Gram-negative MRDOs. This result may be
explained by the transfer and production of bacteriocins during and following FMT, which may be
more effective in clearing Gram-positive pathogens (10, 76). Whether rationally selected donors
are needed to eradicate MDROs remains undetermined, and further investigation is needed.

METABOLIC SYNDROME

Metabolic syndrome is often described as a collection of symptoms including insulin resistance,
dyslipidemia, high blood pressure, and increased abdominal girth. Dysbiosis of the gut microbiota
in metabolic syndrome is linked to a proinflammatory state and an impaired mucosal barrier
function, often referred to as leaky gut syndrome (77). Two small RCTs showed that FMT of
lean donor stool increased glucose clearance in obese Caucasian males with metabolic syndrome
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Table 2 Methods and outcomes of studies addressing the efficacy of FMT against colonization with MDROs

Feature of study Bilinski et al. (72) Dinh et al. (74) Singh et al. (75) Davido et al. (73)

Study design Prospective cohort Prospective cohort Prospective cohort Prospective cohort

Number of patients 20 17 (8 CRE) 15 8 (6 CRE)

Treatment regimen Single FMT, repeat in case
of failure

Single FMT Single FMT, repeat in
case of failure

Single FMT

MDROs Klebsiella pneumonia,
Escherichia coli, Pseudomonas
aeruginosa, VRE, CRE,
Acinetobacter ursingii,
Stenotrophomonas
maltophilia

VRE, CRE ESBL enterobacteria VRE, CRE

Route of
administration

Upper GI, duodenal tube Upper GI, duodenal
tube

Upper GI, duodenal
tube

Upper GI, duodenal
tube

Primary endpoint Complete decolonization at
6 months post FMT

Complete
decolonization

Complete
decolonization

Complete
decolonization

Primary outcome 75% (15/20) VRE: 33% (3/9)
CRE: 38% (3/8)

40% (6/15) CRE: 38% (2/6)
VRE: 50% (1/2)

Abbreviations: CRE, carbapenem-resistant Enterobacteriaceae; ESBL, extended-spectrum beta-lactamases; FMT, fecal microbiota transplant;
GI, gastrointestinal; MDRO, multidrug-resistant organism; VRE, vancomycin-resistant enterococci.

(78, 79). Although researchers observed no beneficial effect on clinical parameters, these studies
indicate that the microbiota in metabolic syndrome may be a potential target for therapy.

AUTISM SPECTRUM DISORDERS

Autism spectrum disorders (ASD) are characterized by an impairment in social interaction and
communication, with restricted, repetitive patterns of behavior. GI symptoms such as constipation
or diarrhea often coincide with ASD (80), and patients suffering from neuropsychiatric disorders
including ASD were prescribed antibiotics in early childhood more often compared to controls
(81, 82). These observations support the hypothesis that gut dysbiosis is involved in the pathophys-
iology of ASD. In a murine model, gut microbiota shifts resulted in the onset of behavioral changes
and an impaired GI barrier function, both associated with neurodevelopmental disorders (83).

In an open-label study investigating the effect of FMT on ASD and GI symptoms, children
aged 7–16 years were treated with an intensive FMT regimen through oral or rectal administration
(84). A significant decrease in both GI and neuropsychiatric symptoms occurred, and it persisted
for eight weeks after treatment. Microbiota analysis revealed that parts of donor microbiota were
engrafted into the recipients (84). These results merit further investigation into therapies that
modulate gut microbiota in patients with ASD.

OTHER POTENTIAL FUTURE INDICATIONS

A strategy targeting the gut microbiota may influence the course of disorders in which dysbiosis
is observed. FMT appears to be suitable if a reset of the microbiota has prolonged effects on the
clinical course. However, more targeted approaches could be repeated on a regular basis and may
be suitable in chronic diseases as well. To date, case reports have been published about FMT for
many disorders, including microscopic colitis, celiac disease, constipation, pouchitis, and multiple
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sclerosis (MS) (85–90). In addition, preclinical evidence suggests that targeting the microbiota
may be beneficial for many other disorders. In such conditions, FMT is strictly experimental and
should not be offered outside a sophisticated setting.

Of interest is the increasing understanding of microbiota changes in MS and Parkinson’s disease
(PD). MS is a chronic neuroinflammatory disorder of the central nervous system. Studies address-
ing changes in the gut microbiota in active MS patients generally show dysbiosis, with a reduction
in abundance of Prevotella and Parabacteroides compared with healthy controls (91). This dys-
biosis results in a proinflammatory state of the gut microbiota (92). Microbiota involvement in
the pathogenesis of MS is suggested by two studies showing an increase in disease incidence or
severity in an MS murine model when FMT was performed with stool samples acquired from MS
patients (93, 94). Finally, case reports have described promising results of FMT in MS patients
(85, 88), although these results should be interpreted with caution.

PD is a progressive multifocal neurodegenerative disorder characterized by asymmetrical
bradykinesia, rigidity, and tremors. The pathogenesis of PD can be attributed to protein ag-
gregation, changes in calcium homeostasis, and mitochondrial impairment. One study found that
the gut microbiota is involved in the process of protein aggregation and neuroinflammation in a
murine model, processes that could be influenced by SCFA metabolism (95, 96). In a PD murine
model, FMT had neuroprotective effects and increased striatal dopamine concentrations, allevi-
ating motor symptoms (97). A human trial studying the effect of FMT in PD is currently ongoing
(NCT03026231).

Another potential indication for microbiota-modulating therapies is the enforcement of the
effect of immune checkpoint inhibitors (ICIs). ICIs fight cancer by blocking a checkpoint molecule
on T cells, which tumors use to shut down the immune cells, and can hold certain cancers at bay
for years. Unfortunately, only ∼25% of patients respond to ICIs. One study showed that changing
the gut microbiota of mice, either by FMT of different mice or by administration of Bifidobacteria,
increases the efficacy of ICI therapy against melanoma (98). Furthermore, an observational study
among 249 cancer patients who received antibiotics shortly before or soon after ICI was started
showed earlier relapse and death in these patients (99). FMT using stool from cancer patients who
responded to ICI (but not from nonresponders) into germ-free mice ameliorated the antitumor
effects of ICI (99, 100), and oral supplementation with Akkermansia muciniphila post-FMT to
nonresponders restored the efficacy of ICI by increasing the recruitment of T lymphocytes into
tumor beds of the mice (100). Finally, metagenomic analysis showed clear differences between the
microbiota of responders and nonresponders (99, 100). Taken together, preclinical and clinical
observations underline the important role of the microbiota in the response to ICIs. These findings
point to the potential of clinical intervention studies that aim to increase the effectiveness of ICIs.

CONCLUDING REMARKS

FMT is a rapidly emerging new therapy with a reach far beyond its undisputed indication, rCDI.
Accumulating clinical evidence supports its potential as a treatment strategy for a wide range of
disorders as shown in Table 3.

ClinicalTrials.gov currently lists more than 200 studies about FMT, indicating that FMT has
found its way in the scientific community. As yet, FMT is an unstandardized treatment; it should
be considered as a powerful attempt to prove the potential of a microbiota-targeting strategy for a
particular disorder. Subsequently, more sophisticated and standardized alternatives should replace
FMT as a standard treatment approach. In the meantime, FMT protocol should be optimized and
standardized for each separate indication, and the long-term safety of FMT needs to be further
established. Stool banks are required to facilitate safe FMT and provide opportunities for quality
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Table 3 Overview of the outcome of FMT studies performed in patients with various conditions

Disorder
Type of study
(references) Outcome

Comments and important
unresolved questions

Recurrent CDI RCT (30–32)
Meta-analysis (3)

Highly effective, cure rate single
infusion >80%

Advised in guidelines for recurrent
rCDI (1, 2)

Severe CDI Case series (34) Effective, probably safe May be lifesaving

UC RCT (47–50)
Meta-analysis (51, 52)

Pooled response rate of 29% for
achieving endoscopic remission

Optimization of protocol required:
Is rational selection of donors
required?

Is it possible to select patients who are
more likely to respond?

Should FMT be offered as induction
or maintenance treatment?

CD Cohort studies (53, 54)
Meta-analysis (52)

Pooled clinical response rate of
53%. No endoscopic remission
achieved

RCT needed
Rational donor selection needed

IBS RCT (59) Improvement of symptoms in 65%
of patients after FMT versus 43%
in controls

No sustained effect after 1 year

Larger RCTs needed
Which patients may benefit?
Is repeated FMT required?
How should patients be pre-treated
before FMT?

HE RCT (65) Safe, no SAEs related to FMT, no
new episodes of HE 150 days
post-FMT

Confirmative study needed
Rational donor selection needed

MDRO Cohort studies (72–75) Suggestive of some effectivity
eradicating VRE and ESBL
bacteria

Rational donor selection needed
RCT needed

Metabolic
syndrome/hepatic
steatosis

RCT (78, 79) No effect on clinical endpoints
Transient increased insulin
sensitivity

Strictly experimental

Autism Open-label trial (84) Effect noted on psychiatric and GI
symptoms

Further studies are needed

GVHD Case series (68, 69) Steroid-refractory GVHD:
decreased symptoms

Further studies are needed

Abbreviations: CD, Crohn’s disease; CDI, Clostridioides/Clostridium difficile infection; ESBL, extended-spectrum beta-lactamases; FMT, fecal microbiota
transplant; GI, gastrointestinal; GVHD, graft-versus-host disease; HE, hepatic encephalopathy; IBS, irritable bowel syndrome; MDRO, multidrug-
resistant organism; RCT, randomized controlled trial; SAE, serious adverse event; UC, ulcerative colitis; VRE, vancomycin-resistant enterococci.

control and central registration of safety and outcome data to identify possible unknown adverse
effects (42). Finally, the many potential future indications also underline the need for centralized
coordination and uniform legislation (following the model of the blood banks) to enable further
development of this promising FMT treatment strategy.
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87. Günaltay S, Rademacher L, Hultgren Hörnquist E, et al. 2017. Clinical and immunologic effects of
faecal microbiota transplantation in a patient with collagenous colitis. World J. Gastroenterol. 23:1319–24

88. Makkawi S, Camara-Lemarroy C, Metz L. 2018. Fecal microbiota transplantation associated with
10 years of disease stability in a patient with SPMS. Neurol. Neuroimmunol. Neuroinflamm. 5(4):e459

89. Tian H, Ge X, Nie Y, et al. 2017. Fecal microbiota transplantation in patients with slow-transit consti-
pation: a randomized, clinical trial. PLOS ONE 12:e0171308

90. van Beurden YH, van Gils T, van Gils NA, et al. 2016. Serendipity in refractory celiac disease: full
recovery of duodenal villi and clinical symptoms after fecal microbiota transfer. J. Gastrointestin. Liver
Dis. 25:385–88

91. Freedman SN, Shahi SK, Mangalam AK. 2018. The “gut feeling”: breaking down the role of gut micro-
biome in multiple sclerosis. Neurotherapeutics 15:109–25

92. Shahi SK, Freedman SN, Mangalam AK. 2017. Gut microbiome in multiple sclerosis: the players involved
and the roles they play. Gut Microbes 8:607–15

350 Ooijevaar et al.

A
nn

u.
 R

ev
. M

ed
. 2

01
9.

70
:3

35
-3

51
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
L

ei
de

n 
- 

Fa
cu

lte
it 

So
ci

al
e 

W
et

en
sc

ha
pp

e 
on

 0
5/

10
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



ME70CH23_Keller ARI 7 January 2019 10:39

93. Berer K, Gerdes LA, Cekanaviciute E, et al. 2017. Gut microbiota from multiple sclerosis patients enables
spontaneous autoimmune encephalomyelitis in mice. PNAS 114:10719–24

94. Cekanaviciute E, Yoo BB, Runia TF, et al. 2017. Gut bacteria from multiple sclerosis patients modulate
human T cells and exacerbate symptoms in mouse models. PNAS 114:10713–18

95. Sampson TR, Debelius JW, Thron T, et al. 2016. Gut microbiota regulate motor deficits and neuroin-
flammation in a model of Parkinson’s disease. Cell 167:1469–80.e12

96. Unger MM, Spiegel J, Dillmann KU, et al. 2016. Short chain fatty acids and gut microbiota differ between
patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 32:66–72

97. Sun MF, Zhu YL, Zhou ZL, et al. 2018. Neuroprotective effects of fecal microbiota transplantation on
MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling
pathway. Brain Behav. Immun. 70:48–60

98. Sivan A, Corrales L, Hubert N, et al. 2015. Commensal Bifidobacterium promotes antitumor immunity
and facilitates anti-PD-L1 efficacy. Science 350:1084–89

99. Gopalakrishnan V, Spencer CN, Nezi L, et al. 2018. Gut microbiome modulates response to anti-PD-1
immunotherapy in melanoma patients. Science 359:97–103

100. Routy B, Le Chatelier E, Derosa L, et al. 2018. Gut microbiome influences efficacy of PD-1-based
immunotherapy against epithelial tumors. Science 359:91–97

www.annualreviews.org • Fecal Microbiota Transplantation 351

A
nn

u.
 R

ev
. M

ed
. 2

01
9.

70
:3

35
-3

51
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
L

ei
de

n 
- 

Fa
cu

lte
it 

So
ci

al
e 

W
et

en
sc

ha
pp

e 
on

 0
5/

10
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



ME70_FrontMatter ARI 7 January 2019 10:31

Annual Review of
Medicine

Volume 70, 2019Contents

Arrhythmogenic Right Ventricular Cardiomyopathy: Progress Toward
Personalized Management
Cynthia A. James and Hugh Calkins � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

Capitalizing on Insights from Human Genetics to Identify Novel
Therapeutic Targets for Coronary Artery Disease
Erica P. Young and Nathan O. Stitziel � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �19

Innovations in Ventricular Assist Devices for End-Stage Heart Failure
Robert J.H. Miller, Jeffrey J. Teuteberg, and Sharon A. Hunt � � � � � � � � � � � � � � � � � � � � � � � � � � � �33

New and Emerging Therapies for Pulmonary Arterial Hypertension
Edda Spiekerkoetter, Steven M. Kawut, and Vinicio A. de Jesus Perez � � � � � � � � � � � � � � � � � � � �45

Non–Vitamin K Antagonist Oral Anticoagulants in the Treatment of
Atrial Fibrillation
Alexander C. Fanaroff and E. Magnus Ohman � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �61

Molecular Diagnostics for Mycobacterium tuberculosis Infection
Kristen V. Dicks and Jason E. Stout � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �77

Structure-Based Vaccine Antigen Design
Barney S. Graham, Morgan S.A. Gilman, and Jason S. McLellan � � � � � � � � � � � � � � � � � � � � � � �91

The Global Landscape of Tuberculosis Therapeutics
Jeffrey A. Tornheim and Kelly E. Dooley � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 105

Zika Virus Vaccine Development: Progress in the Face of New
Challenges
Michael S. Diamond, Julie E. Ledgerwood, and Theodore C. Pierson � � � � � � � � � � � � � � � � � � � � 121

Long-Acting HIV Drugs for Treatment and Prevention
Roy M. Gulick and Charles Flexner � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 137

DNA Methylation and Susceptibility to Autism Spectrum Disorder
Martine W. Tremblay and Yong-hui Jiang � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 151

Metformin for Treatment of Fragile X Syndrome and Other
Neurological Disorders
Ilse Gantois, Jelena Popic, Arkady Khoutorsky, and Nahum Sonenberg � � � � � � � � � � � � � � � � � 167

v

A
nn

u.
 R

ev
. M

ed
. 2

01
9.

70
:3

35
-3

51
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
L

ei
de

n 
- 

Fa
cu

lte
it 

So
ci

al
e 

W
et

en
sc

ha
pp

e 
on

 0
5/

10
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



ME70_FrontMatter ARI 7 January 2019 10:31

Postpartum Depression: Pathophysiology, Treatment,
and Emerging Therapeutics
Donna E. Stewart and Simone N. Vigod � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 183

Cystic Fibrosis: Emerging Understanding and Therapies
Michael M. Rey, Michael P. Bonk, and Denis Hadjiliadis � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 197

Progress in Understanding and Treating Idiopathic Pulmonary
Fibrosis
Jonathan A. Kropski and Timothy S. Blackwell � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 211

Current Status of Living Donor Liver Transplantation
in the United States
Samir Abu-Gazala and Kim M. Olthoff � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 225

CRISPR Correction of Duchenne Muscular Dystrophy
Yi-Li Min, Rhonda Bassel-Duby, and Eric N. Olson � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 239

Emerging Genetic Therapy for Sickle Cell Disease
Stuart H. Orkin and Daniel E. Bauer � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 257

Entering the Modern Era of Gene Therapy
Xavier M. Anguela and Katherine A. High � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 273

Ethics of Human Genome Editing
Barry S. Coller � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 289

Therapeutic Antisense Oligonucleotides Are Coming of Age
C. Frank Bennett � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 307

Sodium–Glucose Cotransporter–2 (SGLT-2) Inhibitors and the
Treatment of Type 2 Diabetes
Caroline K. Kramer and Bernard Zinman � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 323

Clinical Application and Potential of Fecal Microbiota Transplantation
R.E. Ooijevaar, E.M. Terveer, H.W. Verspaget, E.J. Kuijper, and J.J. Keller � � � � � � � � � 335

Gastric Cancer Etiology and Management in Asia and the West
Ashley E. Russo and Vivian E. Strong � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 353

Active Surveillance as First-Line Management of Papillary
Microcarcinoma
Yasuhiro Ito and Akira Miyauchi � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 369

Expanding Therapeutic Opportunities for Hematopoietic Stem Cell
Transplantation: T Cell Depletion as a Model for the Targeted
Allograft
Christina Cho and Miguel-Angel Perales � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 381

Harnessing Tumor Mutations for Truly Individualized Cancer
Vaccines

vi Contents

A
nn

u.
 R

ev
. M

ed
. 2

01
9.

70
:3

35
-3

51
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
L

ei
de

n 
- 

Fa
cu

lte
it 

So
ci

al
e 

W
et

en
sc

ha
pp

e 
on

 0
5/

10
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



ME70_FrontMatter ARI 7 January 2019 10:31
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