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General discussion and future perspectives

Cardiovascular disease (CVD) is currently globally the major cause of mortality and 
morbidity, and 85% of all CVD deaths are caused by the formation of atheromatous 
plaques in the vessels, leading to ischemic heart disease, ischemic stroke and peripheral 
arterial disease (1). The build-up of an atherosclerotic plaque is a slow process that starts 
with accumulation of low-density lipoproteins (LDL) into the intima and subsequent the 
recruitment of inflammatory cells (2). Chronic exposure to cardiovascular risk factors, such 
as hypertension, smoking, dyslipidemia and diabetes (3), can increase the rate and severity 
of atherosclerosis. Primary prevention of CVD is achieved through early identification and 
modification of ‘lifestyle risk factors’, eventually in combination with interventions to 
reduce plasma lipids or blood pressure (4). These strategies slow disease progression but 
do not heal, shifting CVD into a chronic disease. This thesis described a variety of studies 
that aimed to reduce CVD risk by (I) evaluation of novel lipid-lowering interventions to 
prevent or regress atherosclerosis development, (II) identification of CV side-effects of 
registered drugs and an environmental pollutant, (III) development of a novel animal 
model combining dyslipidemia and diabetes, and (IV) evaluation of the cytokine 
oncostatin M (OSM) as potential target for CVD.
	 Mouse models have been extensively used for the study of CVD and permit 
experimental conditions to be controlled. Moreover, preclinical models enable the 
investigation of molecular and pathophysiological mechanisms and provide platforms for 
the development and evaluation of novel pharmaceuticals. Disadvantages are differences 
in lipoprotein metabolism between commonly used mouse models and man (5), which 
hamper the translation of preclinical findings to valuable clinical applications. All studies 
described in this thesis used the APOE*3-Leiden(.CETP) mouse as model for diet-induced 
hyperlipidemia and experimental atherosclerosis. These mice were initially developed as 
an animal model for Familial Dysbetalipoproteinemia (FD) or type III hyperlipoprotein-
emia, and were generated by the introduction of a DNA-construct containing the human 
APOE*3LEIDEN and APOC1 genes (6,7). Subsequent insertion of the CETP gene (8), encoding 
for cholesteryl ester transfer protein (CETP) that transfers cholesteryl esters from 
high-density lipoprotein (HDL) to apolipoprotein-B (apoB)-containing lipoproteins in 
exchange for triglyceride(TG), generated an animal model with a lipoprotein metabolism 
representative for the human situation with a delayed clearance of apoB-containing 
particles and CETP expression (8). These mice have been widely used for the evaluation of 
lipid-lowering interventions and consistently demonstrated their translatable value (9–11). 
	 Proprotein convertase subtilisin kexin 9 (PCSK9) was discovered in 2003 (12) as the 
major down-regulator of the LDL-receptor and to date, PCSK9 inhibition is among the 
most powerful strategies to target LDL-C. Two monoclonal antibodies against PCSK9, 
evolocumab and alirocumab, are currently available in the clinic, and several innovative 
strategies to modulate PCSK9 levels are under development (12). One approach is 
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activation of the immune system to eliminate endogenous circulating PCSK9 using 
PCSK9-peptide-based vaccines. In Chapter 2 we evaluated such a vaccine and found that 
immunization induces a strong and long-lasting immune response resulting in reduced 
plasma levels of PCSK9, total cholesterol (TC) and non-high-density lipoprotein-cholesterol 
(non-HDL-C), as well as markers of systemic inflammation. Furthermore, atherosclerotic 
lesion progression and vascular inflammation was reduced. Preliminary data in healthy 
subjects showed that immunization was safe and well-tolerated. More than 90% of the 
subjects developed a PCSK9 specific antibody response with a mean LDL-C reduction of 
13.3% at week 70 (13).  This novel vaccine may have a future role in lowering LDL-C beginning 
in early adulthood to reduce lifetime risk of CV events, since Mendelian randomization 
studies have suggested that prolonged exposure to lower LDL-C beginning early in life is 
associated with a substantially greater reduction in the risk of CVD than the current 
practice of lipid-lowering beginning later in life (14). The advantage of vaccination over 
chronic treatment with antibodies to achieve long-term LDL-C reductions is the less 
frequent application which may enhance tolerability, drug adherence and cost-effective-
ness (15). Another advantage is the potential to combine the anti-PCSK9 epitope with 
epitopes of different potential targets for LDL-C lowering, for instance ANGPTL3, apoC3 or 
lipoprotein(a). Preventive immunization against viruses/bacteria have been successfully 
used for decades and is widely accepted, and numerous therapeutic cancer vaccine 
strategies have been developed or are currently under development (16). Also, two 
vaccines for hypertension and hyperglycemia are under development (17). These advances 
demonstrate the possibilities of immunization, which might become an important 
approach in future preventive medicine. Importantly, regarding the more permanent 
approach of active immunization, it is crucial to exclude side-effects to ensure a safe 
application of the vaccine in the future. 
	 Most preclinical studies evaluated novel lipid-lowering interventions in a progression 
setting, including our study with the PCSK9 vaccine. However, most patients start their 
treatment when atherosclerosis has already developed and therefore, strategies focusing 
on regression of pre-existing lesions are warranted. In Chapter 3 we evaluated whether 
gradual and aggressive reduction of cholesterol in both LDL and remnant lipoproteins by 
antibodies against PCSK9 (alirocumab) and/or angiopoietin like 3 protein (ANGPTL3) 
(evinacumab) on top of atorvastatin could regress experimental atherosclerosis. In this 
study, alirocumab and evinacumab similarly reduced non-HDL-C levels and fully blocked 
atherosclerosis progression when administered on top of atorvastatin. In addition, plaque 
stability was improved, as evidenced by a decrease in macrophages and an increase in 
collagen content. When administered in triple combination (alirocumab + evinacumab + 
atorvastatin) non-HDL-C levels were reduced to 1 mmol/L and atherosclerotic lesions 
regressed beyond the baseline level. This is the first intervention study in a well-estab-
lished, translational mouse model for hyperlipidaemia and atherosclerosis showing that 
high-intensive cholesterol-lowering triple treatment with atorvastatin, alirocumab and 
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evinacumab regresses lesion size, diminishes macrophage accumulation through reduction 
of proliferation and improves plaque stability. 
	 Recently, Mendelian randomization studies have demonstrated that the CV risk 
reduction of TG-lowering LPL variants (e.g. ANGPTL3) is similar to the CV risk reduction of 
LDL-C lowering LDLR variants (e.g. PCSK9) per unit apoB change (18). These findings 
correspond with our observation that alirocumab and evinacumab equally block lesion 
progression. Clinical trials, including the IMPROVE-IT (ezetimibe) (19), ODYSSEY OUTCOMES 
(alirocumab) (20,21), and FOURIER (evolocumab) (22) trials, demonstrate that the combination  
of statin therapy with other non-statin agents has a significantly improved clinical benefit 
over statin treatment alone. Also, these studies demonstrated that long-term (3 years), 
high-intensive cholesterol lowering with anti-PCSK9 antibodies on top of atorvastatin did 
not adversely affect new-onset of diabetes, diabetes worsening, hepatic disorders and 
neurocognitive disorders (23). The present data in APOE*3-Leiden.CETP mice provide 
evidence that combined lowering of LDL and remnant lipoproteins on top of a statin 
further reduce CV risk. The efficacy and safety of this combination strategy should be 
confirmed in clinical trials. Alirocumab is approved by the FDA and EMA for heterozygous 
Familial Hypercholesterolemia (FH) patients or those with clinical atherosclerotic CVD  
who require additional lowering of LDL-C as an adjunct to diet and maximally tolerated 
statin therapy (24). Evinacumab is currently being evaluated in phase II trials for patients 
with severe hypertriglyceridemia (NCT03452228) and persistent hypercholesterolemia 
(NCT03175367) and in phase III trials for patients with homozygous FH (NCT03399786 and 
NCT03409744). 
	 Unexpected cardiovascular toxicities in patients receiving approved anti-cancer 
treatments are common and have been observed during active treatment as well as in 
cancer survivors (25). In Chapter 4, we explored the etiology of the toxic cardiovascular 
side-effects of BCR-ABL1 tyrosine kinase inhibitors (TKIs), used for the treatment of chronic 
myeloid leukemia (CML) patients. While the first line TKI imatinib has proven to be effective 
and safe, the second and third line nilotinib and ponatinib, respectively, increase the 
prevalence of myocardial infarction, peripheral arterial occlusive disease and ischemic 
cerebrovascular events pointing to pro-atherosclerotic, pro-thrombotic or combined 
effects (26–28). Using APOE*3-Leiden.CETP mice, we found that nilotinib and ponatinib 
enhance mRNA expression of coagulation factors of both the contact activation (intrinsic) 
and tissue factor (extrinsic) pathways and increase plasma levels of FVII (ponatinib) and 
activity of FVIIa (nilotinib), important players in the pathogenesis of atherothrombotic 
events. Also, we observed a reduction in plasma lipids and atherosclerosis development 
with imatinib and ponatinib. In Chapter 5 we investigated the mechanism behind the 
observed lipid alterations and found that imatinib decreased plasma TC and TG levels by 
reduction of the very-low-density-lipoprotein (VLDL)-apoB-particle production and 
cholesterol ester content of the VLDL particles, while ponatinib reduced plasma TC levels 
by lowering intestinal lipid absorption. Our findings correspond with the lipid-modulating 
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effects (29–32) and improved cardiovascular outcome (33) of imatinib. In addition, our 
data provide evidence that nilotinib and ponatinib do not enhance atherosclerosis, but 
increase coagulability. Patients that suffered from cardiovascular side-effects upon 
nilotinib and ponatinib treatment commonly presented cardiovascular risk factors (27). 
Therefore, we propose that the pro-thrombotic effects of nilotinib and ponatinib as found 
in our study may aggravate a pre-existing atherothrombotic condition. In addition to our 
findings on coagulation, several reports using in vivo or ex vivo approaches found 
pro-thrombotic properties of nilotinib (34,35) and ponatinib (36) via other mechanisms 
(e.g. platelet aggregation, increased expression of von Willebrandt factor, thrombus 
growth). Moreover, hematological malignancies increase plasma tissue factor levels (37,38), 
which further potentiates the pro-thrombotic state. These observations underline the 
importance to select and monitor CML-patients that have the potential to develop athero-
thrombotic cardiovascular disease before application of the drugs, to improve therapy 
decision and patient care. 
	 In addition to unexpected post-market safety events of registered drugs, environmental 
pollutants like perfluorooctanoic acid (PFOA) may increase CV risk. Before being phased- 
out, PFOA was widely used as an emulsifier in the manufacture of fluoropolymers, and as 
it is extremely stable, it persists in the environment (39). Epidemiological studies have 
reported positive associations between serum PFOA and total and non-HDL-C (40–46). 
However, the modest association observed in studies of general populations is inconsistent 
with the weaker associations reported in more highly exposed workers (47–54). In addition, 
there is no increased risk for coronary artery disease in these populations when compared 
to internal reference cohorts (55–57). Therefore, in Chapter 6 we evaluated the effects of 
three different doses PFOA, representing environmental, occupational and toxicological 
exposure, on plasma lipid levels and lipoprotein metabolism using APOE*3-Leiden.CETP 
mice. We found that PFOA did not alter plasma lipid levels or lipoprotein metabolism at 
environmentally or occupationally relevant exposure levels. However, when mice were 
exposed to a toxicological PFOA dose, plasma TC, non-HDL-C and TG levels were decreased 
and HDL-C levels were increased. In the latter mice, PFOA decreased VLDL production and 
increased VLDL clearance by the liver, leading to a reduction of plasma non-HDL-C levels. 
Moreover, HDL-C levels increased through reduction of CETP activity and changes in gene 
expression of proteins involved in HDL metabolism. The majority of these changes were 
mediated by activation of peroxisome proliferator-activated receptor (PPAR)α. Our data 
correspond with the reduced plasma TC levels observed in a phase I trial in patients that 
received high doses of PFOA as an antitumor agent (58). In contrast, our findings do not 
support the increase in cholesterol as found in some observational epidemiological 
studies, thereby indicating that the reported associations between plasma cholesterol 
and PFOA exposure are associative rather than causal. 
	  The number of patients with type 2 diabetes is rising and among these patients, 
cardiovascular complications are the leading cause of morbidity and mortality. Cardiovascular 
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safety and efficacy of anti-diabetic drugs received increased attention since the FDA and 
EMA mandated all new diabetes drugs to demonstrate cardiovascular safety (59,60). 
Preclinical models are used for the development and evaluation of novel drugs, and 
translational models combining diabetes and cardiovascular disease are required. In 
Chapter 7 we described the characteristics of the APOE*3-Leiden.Glucokinase+/- (E3L.
GK+/-) mouse model, which was generated by cross-breeding the hyperlipidemic 
APOE*3-Leiden mouse with the hyperglycemic glucokinase knockout (GK+/-) mouse.  E3L.
GK+/- mice had plasma lipid levels comparable to E3L mice and plasma glucose levels 
comparable to GK+/- mice, leading to enhanced atherosclerosis progression in E3L.GK+/- 
mice relative to E3L mice, which was predicted by glucose exposure. Since the E3L mouse 
model responds similarly as humans do to lipid-lowering agents (61–70) and GK+/- mice to 
anti-diabetic drugs at doses corresponding to therapeutic drug levels in man (71,72), we 
propose that the E3L.GK+/- mouse is a promising novel diet-inducible disease model for 
investigation of the etiology and evaluation of drug treatment on diabetic atherosclerosis. 
Examples of these applications are the evaluation of novel anti-diabetic and anti-athero-
sclerotic agents and combinations, investigation of the pathophysiological mechanisms 
behind the cardiovascular adverse (73–75) and beneficial (76,77) effects of some 
anti-diabetic agents, and the etiology of statin-induced risk for diabetes (78). 
	 The role of cytokines in the initiation and progression of atherosclerosis is increasingly 
recognized and consequently, novel therapies targeting cytokines (79), including IL-1β 
with the anti-IL-1β antibody canakinumab (80), are being developed. In Chapter 8, we 
evaluated the role of the cytokine OSM in the initiation of atherosclerosis and found that 
OSM induced endothelial activation in vitro using human endothelial cells from different 
vascular beds, and in vivo using APOE*3-Leiden.CETP mice. Since endothelial activation is 
an initial step in atherosclerosis development, we proposed that OSM may play a role in 
the initiation of atherosclerotic lesion formation. However, remarkably, long-term exposure 
of APOE*3-Leiden.CETP mice to OSM reduced atherosclerotic lesion size and severity, 
despite enhanced plasma E-selectin levels and monocyte adhesion to the activated 
endothelium of the aortic root (Chapter 9). These findings correspond to our observation 
that higher serum OSM levels in humans are associated with post-incident coronary heart 
disease and overall survival probability in the AGES Reykjavik Study, suggesting a protective 
cardiovascular effect. Interestingly, knockout of the OSMβ receptor in APOE-/- mice also 
attenuated atherosclerotic lesion size (81). Similar contradictions have been reported 
regarding the pro- and anti-inflammatory effects of OSM. OSM is associated with 
inflammatory diseases including lung inflammation, rheumatoid arthritis and multiple 
sclerosis. Moreover, intradermal injection of, and intranasal exposure to OSM induces 
accumulation of inflammatory cells. On the other hand, OSM suppresses inflammation in 
mouse models of inflammatory bowel disease, arthritis, autoimmune encephalomyelitis 
and multiple sclerosis (82), and it has been suggested that administration of OSM has 
favorable effects on the metabolic syndrome (82,83). Given the confusing effects of OSM 
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and its involvement in many biological processes, including tumorigenesis, hematopoiesis, 
bone and fat turnover, central nervous system development, liver regeneration and 
inflammatory responses in several tissues (84), further research is required to ensure safe 
application of potential OSM-related therapies. 
	 Today, we understand better how to treat CVD, but despite these advances, many 
patients remain at increased cardiovascular risk. In this thesis, we discussed several strategies 
that may contribute to further risk reduction in the future. The novel lipid-lowering 
strategies (e.g. vaccination, combination therapy) that have been evaluated in our studies 
provide evidence that further LDL-C/non-HDL-C lowering and subsequent cardiovascular 
risk reduction is achievable, which has to be confirmed in clinical trials. Furthermore, 
we unraveled (part of) the etiology of the cardiovascular safety issues of the TKIs nilotinib 
and ponatinib and the mechanistic insights provided by our data may contribute to safer 
application of the drugs to CML-patients. Serum PFOA in environmental and occupational 
exposed adults had been found to be associated with increased plasma cholesterol, but 
our data demonstrate that this association is associative rather than causal . Looking 
forward, we described a novel mouse model, the E3L.GK+/- mouse, that can be used for 
the study of diabetic macrovascular complications and the evaluation of anti-diabetic 
drugs. Shifting towards the role of inflammation in atherosclerosis, we evaluated the 
potential of the cytokine OSM as new target for CVD. In contrast to our hypothesis and 
evidence provided by the literature, administration of OSM decreased atherosclerotic 
lesion size, and this confusing observation has to be elucidated before further development 
of OSM-related treatment strategies. 
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