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Abstract

Objectives: Previous studies indicate a role for Oncostatin M (OSM) in atherosclerosis and 
other chronic inflammatory diseases for which inhibitory antibodies are in development. 
However, to date no intervention studies with OSM have been performed, and its relation 
to coronary heart disease (CHD) has not been studied. 
Methods and Results: Gene expression analysis on human normal arteries (n=10) and 
late stage/advanced carotid atherosclerotic arteries (n=127) and in situ hybridization on 
early human plaques (n=9) showed that OSM, and its receptors, OSM receptor (OSMR) and 
Leukemia Inhibitory Factor Receptor (LIFR) are expressed in normal arteries and athero-
sclerotic plaques. Chronic OSM administration in APOE*3-Leiden.CETP mice (n=15/group) 
increased plasma E-selectin levels and monocyte adhesion to the activated endothelium 
independently of cholesterol but reduced the amount of inflammatory Ly-6CHigh 
monocytes and atherosclerotic lesion size and severity. Using aptamer-based proteomics 
profiling assays high circulating OSM levels were shown to correlate with post incident 
CHD survival probability in the AGES–Reykjavik study (n=5457). 
Conclusions: Chronic OSM administration in APOE*3-Leiden.CETP mice reduced athero-
sclerosis development. In line, higher serum OSM levels were correlated with improved 
post incident CHD survival probability in patients, suggesting a protective cardiovascular 
effect.
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Introduction

Cytokines have an indisputable role in all stages of atherosclerosis development. In the 
initial stages of the disease, cytokines induce endothelial activation leading to endothelial 
adhesion molecule expression and leukocyte recruitment to the activated endothelium. 
In later stages of the disease, cytokines are involved in smooth muscle cell (SMC) migration, 
foam cell formation and enhanced MMP activity leading to plaque destabilization (1,2). 
 Similarly, a role for Oncostatin M (OSM) in atherosclerosis has been suggested (3,4). 
This cytokine is secreted by activated macrophages and neutrophils and signals through 
the Leukemia Inhibitory Factor Receptor (LIFR) and the OSM receptor (OSMR) (5–7).  
OSM induces endothelial activation by increasing cytokine release, adhesion molecule 
expression, and leukocyte adhesion to the activated endothelium in cultured endothelial 
cells (8–10). Moreover, OSM reduces vascular integrity of rat blood brain barrier endothelial 
cells and enhances angiogenesis (11,12). Next to its effects on the endothelium, OSM 
enhances SMC proliferation, migration and differentiation (4,12,13).
 Additional evidence for this potential role of OSM in atherosclerosis, was provided  
by Albasanz-Puig et al., who showed that OSM is expressed in both murine and human 
atherosclerotic plaques (13). Furthermore, in ApoE-/- mice, OSMR deficiency attenuated 
atherosclerosis development and increased plaque stability (14). 
 Using a different approach, we recently demonstrated that short-term OSM 
administration (for 3 weeks) to APOE*3-Leiden.CETP mice increased plasma E-selectin 
levels, Interleukin (IL)-6 mRNA expression in the aorta and Intercellular Adhesion Molecule 1 
(ICAM-1) expression and monocyte adherence to the activated endothelium in the aortic 
root (10). Collectively, these findings suggest that OSM may be involved in atherosclerosis 
development but so far this has never been studied. 
 The aim of this study is to investigate whether OSM is involved in atherosclerosis 
development in a humanized mouse model and in man. Therefore, we first investigated if 
OSM and its receptors are expressed in human normal and atherosclerotic arteries and if 
circulating OSM levels correlate with markers of endothelial activation in humans. Next, 
we explored the effect of long-term OSM administration on endothelial activation, athero-
sclerosis development and lesion composition in APOE*3-Leiden.CETP mice, a translational 
model for human lipoprotein metabolism and atherosclerosis development (15). Finally, 
we investigated if circulating OSM levels were associated with survival probability post 
coronary heart disease (CHD) in humans.
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Materials and methods

Microarray on BiKE study material
Late stage/advanced atherosclerotic plaques were obtained from patients undergoing 
surgery for high grade (>50%) carotid stenosis and retained within the BiKE study. Normal 
artery controls were obtained from nine macroscopically disease-free iliac arteries and 
one aorta from organ donors without history of cardiovascular disease. All samples were 
collected with informed consent from patients or organ donor guardians. 127 plaques 
from BiKE patients and 10 normal arteries were analyzed by Affymetrix HGU133 plus 2.0 
GeneChip microarrays. Robust multiarray average normalization was performed and 
processed gene expression data was transformed in log2-scale. The microarray dataset is 
available from Gene Expression Omnibus (GSE21545). The BiKE study cohort demographics, 
details of sample collection, processing, and analyses were previously described (16). 

In situ hybridization (ISH) on SOCRATES study material
Early stage atherosclerotic lesions for in situ hybridization were obtained from the 
SOCRATES biobank (Leiden University Medical Center, the Netherlands). Details of this 
biobank have been described previously (17). Briefly, this biobank contains aortic wall 
patches obtained during kidney transplantation with grafts derived from cadaveric 
donors. Sample collection and handling were performed in accordance with the 
guidelines of the Medical and Ethical Committee in Leiden, the Netherlands, and the code 
of conduct of the Dutch Federation of Biomedical Scientific Societies (https://www.federa.
org/?s=1&m=82&p=0&v=4#827). Chromogenic mRNA-ISH was essentially performed as 
previously described (18,19) on 9 atherosclerotic lesions from the SOCRATES biobank. For 
detection of the OSM, OSMR and LIFR mRNAs, ISH was performed in a Ventana Discovery 
ULTRA instrument (Ventana Medical Systems Inc., AZ, USA) using the ACD RNAscope® 2.5 
Red Kit (Advanced Cell Diagnostics, Newark, CA, USA) and the mRNA Discovery ULTRA 
RED 4.0 procedure. RNAscope® 2.5 VS. Probes for Hs-OSM (#456389), Hs-OSMR-tv1 
(#445699) and Hs-LIFR (#441029) were designed by the probe manufacturer (Advanced 
Cell Diagnostics). FFPE sections (5 µm) were applied to Superfrost Plus (Thermo Fisher 
Scientific) slides, and all operations including deparaffinization, pretreatment, ISH and 
counterstaining using hematoxylin were performed in a Ventana Discovery ULTRA 
instrument. Following the ISH-procedure in the Ventana instrument, slides were washed 
in lukewarm tap water with detergent until oil from the slides was fully removed. 
Subsequently, slides were washed in demineralized water, air dried and mounted in 
EcoMount mounting medium (Advanced Cell Diagnostics) prior to scanning in a 
bright-field whole-slide scanner (Axio Scan.Z1, Zeiss, Oberkochen Germany) using a 20x 
objective. The resulting digital images were inspected and regions of interest were 
selected. 
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Proteomics on AGES-Reykjavik study material
Association between OSM levels and IL-6, vascular cell adhesion molecule (VCAM)-1, 
P-selectin, E-selectin, ICAM-1 and Monocyte chemoattractant protein-1 (MCP-1) levels, 
and between OSM levels and survival were explored in the AGES-Reykjavik cohort 
(n=5457) (20), a single-center prospective population-based study of deeply phenotyped 
elderly European Caucasians (aged 66 through 96, mean age 75±6 years) who survived 
the 50-year-long prospective Reykjavik study. Phenotype description, patient numbers 
and other details related to the present study have been described previously (21). The 
AGES-Reykjavik study was approved by the NBC in Iceland (approval number VSN-00-063), 
the National Institute on Aging Intramural Institutional Review Board (USA), and the Data 
Protection Authority in Iceland. We applied a custom version of the Slow Off-rate Modified 
Aptamer (SOMAmer) platform targeting proteins known or predicted to be found in the 
extracellular milieu, including the predicted extracellular domains of single- and certain 
multi-pass transmembrane proteins, as previously described (21). 
 For survival analysis post CHD, we used 698 incident CHD cases exhibiting 307 deaths 
during the survival follow-up period of 12 years. Follow-up time for survival post incident 
CHD was defined as the time from 28 days after an incident CHD event until death from 
any cause or end of follow-up time. 

Animals and treatments
Sixty-five female in-house bred APOE*3-Leiden.CETP transgenic mice (10-15 weeks of age) 
were used. Mice were housed under standard conditions with a 12h light-dark cycle and 
free access to food and water. Body weight, food intake and clinical signs of behavior were 
monitored regularly. Mice received a Western type diet (semi-synthetic containing 15 
w/w% cacao butter and 0.15% dietary cholesterol, Altromin, Tiel, the Netherlands). At t=0 
weeks, after a run-in period of 3 weeks, mice were matched based on body weight, age, 
plasma total cholesterol and E-selectin levels in 4 groups: a control group, and three 
intervention groups, two of which were treated with 10 or 30 µg/kg/day OSM for 16 weeks, 
and an initial priming group, which received 30 µg/kg/day OSM for the first 5.5 weeks only. 
All groups consisted of 15 mice except for the control group which had an additional 5 
mice to monitor the atherosclerosis development. Five mice were removed from the 
study based on human end-point criteria and were excluded from all analyses: 2 mice in 
the 16 week 30 µg/kg/day OSM group and 1 in each of the other 3 groups. At t=0 weeks, 
an ALZET® Osmotic Pump Type 1004 (Durect, Cupertino, CA) containing either 10 or 30 
µg/kg/day murine OSM (R&D systems, Minneapolis, MN) or the vehicle (PBS + 1% mouse 
serum) was placed subcutaneously in the flank and were replaced at t=5.5 and 11 weeks. 
Doses were based on our previous research (10). Prior to surgery, mice received the 
analgesic Carprofen (5 mg/kg s.c.) and were anesthetized with isoflurane (induction 4%, 
maintenance 2%). EDTA blood samples were drawn after a 4 hour fast at t=0, 4, 8, 12 and 
16 weeks for determination of total cholesterol and inflammatory markers. At t=12 weeks, 
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4 mice from the control group were euthanized to assess atherosclerosis development for 
the determination of the end-point of the study. At t=16 weeks, mice were euthanized by 
gradual CO2 inhalation. Death was confirmed by exsanguination (via heart puncture) and 
hearts were isolated. All animal experiments were performed conform the guidelines 
from Directive 2010/63/EU of the European Parliament on the protection of animals used 
for scientific purposes or the NIH guidelines. Approval was granted by the ethics committee  
on animal experiments (approval reference number DEC-3683) and the institutional animal 
welfare body (approval reference number TNO-255).

Plasma parameters
Plasma cholesterol was measured spectrophotometrically with enzymatic assays (Roche 
Diagnostics). E-selectin and MCP-1 were measured with ELISA kits from R&D (Minneapolis, 
MA, USA), and Serum Amyloid A (SAA) with an ELISA kit from Tridelta Development Limited 
(Maynooth, County Kildare, Ireland). All assays were performed according to the 
manufacturer’s instructions. 

Histological assessment of atherosclerosis and plaque composition
Atherosclerotic lesion area and severity were assessed in the aortic root area, as reported 
previously (22,23). Briefly, the aortic root was identified by the appearance of aortic valve 
leaflets, and serial cross-sections of the entire aortic root area (5 µm thick with intervals of 
50 µm) were mounted on 3-aminopropyl triethoxysilane-coated slides and stained with 
haematoxylin-phloxine-saffron (HPS). For each mouse, the lesion area was measured in  
4 subsequent sections. Each section consisted of 3 segments (separated by the valves). 
For determination of atherosclerotic lesion severity, the lesions were classified into five 
categories according to the American Heart Association (AHA) criteria (24): type 1 (early 
fatty streak), type 2 (regular fatty streak), type 3 (mild plaque), type 4 (moderate plaque), 
and type 5 (severe plaque). The total lesion area was calculated per cross-section. Due to 
a technical error one mouse of the OSM (30 µg/kg, 16 weeks) was excluded from analysis. 
Lesion severity was calculated as relative amount of type I-V lesions in which the lesion-free 
segments are included. From this, the relative amounts of lesion-free segments and 
diseased segments were calculated, and the relative amount of diseased segments was 
further subdivided into type I–V lesions, where types I-III refer to mild, and types IV-V to 
severe lesions. Lesion composition of type IV and V lesions was assessed after double 
immunostaining with anti-α smooth muscle actin (1:400; PROGEN Biotechnik GmbH, 
Germany) for smooth muscle cells (SMC), and anti-mouse MAC-3 (1:400; BD Pharmingen, 
the Netherlands) for macrophages. Anti-α smooth muscle actin was labeled with Vina 
green (Biocare Medical, Pacheco, USA), and MAC-3 with DAB (Vector laboratories, 
Burlingame, USA). After slides were scanned and analyzed, cover slips were detached 
overnight in xylene and Sirius Red staining for collagen was performed. The necrotic area 
was measured in the Sirius Red-stained slides. Lesion stability index, as the ratio of collagen 
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and αSMC area (i.e. stabilization factors) to macrophage and necrotic area (i.e. destabiliza-
tion factors) was calculated as described previously (22). Lesion composition was assessed 
in all type IV-V lesions with a mean of 5.9 ± 3.1 lesions in control, 5.6 ± 2.5 lesions in OSM 
10 µg/kg/d, 2.9 ± 2.0 lesions in OSM 30 µg/kg/d temporary and 2.8 ± 2.9 lesions in OSM 30 
µg/kg/d. Eight mice were excluded from analysis as there were no type IV-V lesions 
present (n=1 in control; n=4 in OSM 30 µg/kg/d temporary and n=3 in OSM 30 µg/kg/d). 
In each segment used for lesion quantification, ICAM-1 expression and the number of 
monocytes adhering to the endothelium were counted after immunostaining with 
mouse monoclonal ICAM-1 antibody (1:400; Santa Cruz Biotechnology, Dallas, USA) and 
AIA 31240 antibody (1:500; Accurate Chemical and Scientific, New York, USA) respectively 
(25). NLRP3 expression in the macrophages was quantified after staining with rabbit 
polyclonal antibody to NLRP3 (1:400; Abcam, Cambridge, UK). All slides were scanned by 
an Aperio AT2 slide scanner (Leica Biosystems). Atherosclerotic area, monocyte adherence 
and ICAM-1 expression were measured in Image Scope (version 12-12-2015), and the area 
that stained positive for αSMA, MAC-3, Sirius Red and NLRP3 in the plaques was quantified 
automatically in Fiji (version 30-5-2017) using a threshold method. 

Flow cytometry
To analyze the different monocyte subsets, 25 µL whole blood was incubated with 
antibodies against CD11b (APC-eFluor780-conjugated, eBioscience, San Diego, California, 
USA), Ly-6C (eFluor450-conjugated, eBioscience, San Diego, California, USA) and Ly-6G 
(A647-conjugated, Biolegend, San Diego, California, USA) for 30 min at RT. Erythrocytes 
were lysed with lysis buffer (deionized water with 168 mM ammonium chloride (Merck, 
Darmstadt, Germany), 9.99 mM potassium bicarbonate (Merck, Darmstadt, Germany) and 
0.11 mM Na2EDTA (Sigma-Aldrich, St. Louis, MO, USA)) for 10 min on ice and remaining 
erythrocytes were lysed with fresh lysis buffer for 5 min on ice. After washing, cells were 
fixed in 1% paraformaldehyde for 10 min on ice, measured with flow cytometry (Gallios, 
Beckman Coulter Fullerton, CA, USA) and analyzed with Kaluza Flow Analysis Software 
Version 2.1 (Beckman Coulter). Monocytes were defined as CD11b+Ly-6G-. 

Statistics
BiKE transcriptomic dataset analyses were performed with GraphPad Prism 6 and 
Bioconductor software using a linear regression model adjusted for age and gender and 
a two-sided Student’s t-test assuming non-equal deviation, with correction for multiple 
comparisons according to Bonferroni, as previously described (16). Data are presented as 
mean ± SD and adjusted p<0.05 was considered to indicate statistical significance.
 Prior to protein data analyses, we applied a Box-Cox transformation on the proteins to 
improve normality, symmetry and to maintain all protein variables on a similar scale (21). 
For protein to protein correlation we used linear regression analysis. Given consistency in 
terms of sample handling including time from blood draw to processing, same personnel 
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handling all specimens and the ethnic homogeneity of the Icelandic population we 
adjusted only for age and sex in all our regression analyses. 
 Mouse data analyses were performed with GraphPad Prism 7.04 and IBM SPSS v25.0. 
Data are presented as mean ± SD. Normally (Gaussian) distributed mouse parameters 
were analyzed with a t-test or one-way ANOVA and not normally distributed mouse 
parameters with a Kruskal-Wallis test followed by a Mann-Whitney U test if significant. A 
significant difference between the 16 week 10 and 16 week 30 µg/kg/day groups was 
considered as a dose-dependent difference. The rejection criteria were adjusted using a 
Bonferroni-Holm correction. Correlation between plaque size and Ly-6CHigh monocytes 
was tested with a Pearson correlation. A two-tailed p-value of 0.05 was regarded 
statistically significant in all analyses. 
 Cox proportional hazards regression was used for post incident CHD and Kaplan-Meier 
plots were applied to display survival data. 

Results

mRNAs coding for OSM, OSMR and LIFR are present in human 
atherosclerotic plaques
To explore if OSM signaling can be involved in human plaque development, we first 
investigated if OSM mRNA and the mRNAs for the receptors for OSM, OSMR and LIFR, were 
present in late-stage human carotid plaques from the BiKE study. Gene expression analysis 
revealed presence of OSMR, LIFR and OSM mRNAs at low to moderate levels. mRNA 
expression of both receptors was significantly downregulated in plaques (p<0.0001) 
compared to normal arteries, while OSM expression was significantly increased (p=0.003) 
(Figure 1A-C). OSM mRNA expression positively correlated with macrophage markers and 
negatively with SMC markers (Table 1). Subsequent in situ hybridization confirmed the 
presence of OSMR, LIFR and OSM mRNAs in all investigated atherosclerotic plaque stages 
(Figure 1D-O), which is reflected in Table 2. 
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Figure 1  OSM, OSMR and LIFR mRNA expression is present in human atherosclerotic plaques. mRNA 

expression was measured in normal arteries and in carotid plaques by microarray analysis (A-C) and 

ISH was used to visualize OSM, OSMR and LIFR mRNA expression (red spots and shown by the black 

arrows) in two different stages of atherosclerosis development, the late fibroatheroma (D-I) and intimal 

xanthoma (J-O). ***p<0.001, ****p<0.0001. Abbreviations: ISH, in situ hybridization.
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Table 1  Correlation between OSM and genes of interest in plaques

 Gene symbol Pearson r p-value Significance level

Cell type markers

Smooth muscle cells

Myosin heavy chain 11 MYH11 -0.4327 < 0.0001 ****

Smoothelin SMTN -0.4437 < 0.0001 ****

Alpha smooth muscle actin ACTA2 -0.3476 < 0.0001 ****

Myocardin MYOCD -0.4119 < 0.0001 ****

Transgelin TAGLN -0.3127 0.0004 ***

Endothelial cells

von Willebrand factor VWF 0.1486 0.0967 ns

Pecam-1 (CD31) PECAM1 0.3009 0.0006 ***

Dendritic cells

Itgax (CD11c) ITGAX 0.4738 < 0.0001 ****

Ly75 (CD205) LY75 -0.03098 0.7295 ns

CD80 CD80 0.6013 < 0.0001 ****

T Lymphocytes

CD11b ITGAM 0.4048 < 0.0001 ****

ITGAL ITGAL 0.5012 < 0.0001 ****

CD27 CD27 0.107 0.233 ns

CD28 CD28 0.2859 0.0012 **

CD3 delta CD3D 0.3678 < 0.0001 ****

CD4 CD4 0.1078 0.2295 ns

CD8A CD8A 0.2258 0.0107 *

PTPRC (CD45RA) PTPRC 0.3758 < 0.0001 ****

CD69 CD69 0.4909 < 0.0001 ****

ITGAE ITGAE 0.2827 0.0013 **

FABP4 FABP4 0.3884 < 0.0001 ****

Macrophages

CD83 CD83 0.5474 < 0.0001 ****

CD86 CD86 0.4934 < 0.0001 ****

CD163 CD163 0.4434 < 0.0001 ****

TNFRSF9 TNFRSF9 0.3696 < 0.0001 ****

CD40 CD40 0.3422 < 0.0001 ****

CD36 CD36 0.4466 < 0.0001 ****

Inflammation/ Apoptosis Calcification markers

IL-1beta IL1B 0.5657 < 0.0001 ****

NFkB NFKB1 0.1764 0.0481 *
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Table 1  Continued

 Gene symbol Pearson r p-value Significance level

Inflammation/ Apoptosis Calcification markers

MCP-1 CCL2 0.5311 < 0.0001 ****

Caspase-3 CASP3 0.2726 0.002 **

Caspase-7 CASP7 0.05738 0.5233 ns

Caspase-9 CASP9 0.2318 0.009 **

BCL2 BCL2 0.2761 0.0018 **

RANTES CCL5 0.3821 < 0.0001 ****

BMP4 BMP4 -0.1434 0.1091 ns

Extracellular matrix/ degradation

MMP9 MMP9 0.4202 < 0.0001 ****

TIMP1 TIMP1 0.3891 < 0.0001 ****

Growth factors

TGFB1 TGFB1 0.4113 < 0.0001 ****

TGFA TGFA 0.328 0.0002 ***

IGF1 IGF1 0.256 0.0038 **

PDGFA PDGFA -0.02346 0.7943 ns

PDGFB PDGFB 0.2417 0.0064 **

PDGFC PDGFC -0.2382 0.0072 **

PDGFD PDGFD -0.2889 0.001 **

Chemokines and receptors

Interferon gamma IFNG 0.2032 0.0225 *

IL2  IL2 0.2446 0.0058 **

IL4 IL4 0.03414 0.7043 ns

IL5 IL5 0.1947 0.0289 *

IL6 IL6 0.5659 < 0.0001 ****

IL9 IL9 0.05453 0.5442 ns

IL10 IL10 0.4213 < 0.0001 ****

Pearson correlation analyses were calculated from n=127 human plaque microarrays, p-values are corrected for 
multiple comparisons according to the Bonferroni method. Correlation considered weak if r < 0.3 moderate if 0.3 
< r < 0.5 and strong if r > 0.5. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
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OSM is associated with endothelial activation markers IL-6 and 
VCAM-1 in humans
We previously found that OSM induces endothelial activation both in vitro in human 
endothelial cells and in vivo in APOE*3-Leiden.CETP mice (10). To investigate if OSM can  
be linked with markers of endothelial activation in a human setting as well, we measured 
serum levels of OSM and several circulating endothelial activation markers in the AGES- 
Reykjavik study. OSM levels modestly correlated with IL-6 (β = 0.210, p=5*10-56) and 
VCAM-1 (β = 0.130, p=4*10-20) levels, but inversely with P-Selectin (β = -0.115, p=5*10-17), 
E-Selectin (β = -0.092, p=2*10-11) and ICAM-1 (β = -0.013, p=5*10-7) levels (Figure 2). 
No correlation of OSM with MCP-1 was observed. 

Table 2  Quantification of ISH signal in various atherosclerotic plaque stages

mRNA expression

OSM OSMR LIFR

Adaptive Intimal Thickening Neo-intima 1 2 2

Media 1 3 2

Adventitia 1 3 3

Intimal Xanthoma Neo-intima 1 2 2

Media 0 2 3

Adventitia 0 2 3

Pathological Intimal Thickening Neo-intima 1 2 2

Media 1 3 2

Adventitia 1 3 3

Early Fibroatheroma Neo-intima 2 2 2

Media 1 2 2

Adventitia 1 3 3

Late Fibroatheroma Neo-intima 2 2 2

Media 2 2 2

Adventitia 1 2 4

Fibrous Calcified Plaque Neo-intima 2 2 2

Media 1 3 2

Adventitia 1 3 2

The amount of ISH signal was scored in various atherosclerotic plaque stages. A general score and a single cell 
score was given. 0 = no signal, 1 = few cells expressing mRNA, 2 = low expression, 3 = moderate expression and 
4 = high expression. Abbreviations: ISH, in situ hybridization.
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Chronic exposure to OSM results in a pro-inflammatory vascular 
phenotype in APOE*3-Leiden.CETP mice
The above and our previous data (10) suggest a role for OSM in atherosclerosis 
development. Therefore, we performed a long-term study in which we administered OSM 
to APOE*3-Leiden.CETP mice for 16 weeks. To specifically investigate the effect of OSM on 
the initiation of atherosclerosis, we added an initial priming group that was treated with 
OSM only for the first 5.5 weeks of the study. As previous studies had a much shorter 
duration (ranging from 6 hours to 3 weeks), we first investigated if long-term OSM 
treatment persistently causes an inflammatory phenotype by measuring E-selectin, MCP-1 
and SAA plasma levels, as markers of vessel wall, general and liver-derived inflammation. 
Treatment groups receiving either 10 µg/kg/day (p=0.002) or 30 µg/kg/day (p<0.001) OSM 
for 16 weeks showed markedly increased E-selectin levels at all time points and a 
dose-dependent increase at t=4 (p<0.01) and 8 weeks (p<0.01). The group receiving 5.5 
weeks 30 µg/kg/day OSM treatment also showed markedly increased E-selectin levels at 
t=4 (p<0.001), though after discontinuation of OSM treatment, E-selectin levels dropped 
and declined to similar levels as the control group. MCP-1 and SAA levels did not differ 
between the OSM treated groups and control (Figure 3A-C). Also, no statistical difference 

Figure 2  OSM is associated with endothelial activation markers. Association of serum IL-6 (A), VCAM-1 

(B), P-selectin (C), E-selectin (D), ICAM-1 (E) and MCP-1 (F) levels (y-axis) with quintiles of increasing 

OSM serum levels (x-axis) using specific aptamers measured in 5457 subjects of the AGES cohort. 

Linear regression analyses were used to test for association. 
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was observed in ICAM-1 expression at the endothelium in the aortic root area (Figure 3D). 
In contrast, monocyte adhesion, as functional marker of endothelial activation, in the 
aortic root area was increased from 4.9 ± 3.3 monocytes per cross-section in the control 
group to 17.9 ± 10.7 in the 16 weeks 30 µg/kg/day group (p=0.003) (Figure 3E). These 
results indicate that continuous OSM exposure results in a sustained pro-inflammatory 
vascular phenotype, even after 16 weeks of treatment.

Figure 3  OSM induces a pro-inflammatory vascular phenotype in APOE*3-Leiden.CETP mice. 

Plasma E-selectin, MCP-1 and SAA (A-C) were measured at multiple time points during the study. 

Monocyte adhesion (D) and endothelial ICAM-1 expression were assessed per cross-section in 

the aortic root area (E). Data represent mean ± SD (n=12-20). ‡ p<0.05 compared to 10 µg/kg/day; 

**p<0.01 compared to control; ‡‡ p<0.01 compared to 10 µg/kg/day; ***p<0.001 compared to control.
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OSM reduces atherosclerotic lesion area and severity in 
APOE*3-Leiden.CETP mice
Total plasma cholesterol levels, a risk factor for cardiovascular disease, did not differ 
between any of the groups (data not shown). Atherosclerotic lesion size and severity were 
investigated in the aortic root area of which representative pictures are shown in Figure 4. 
The control group had an average lesion size of 119 ± 64 *1000 µm2. In the 5.5 week 30 µg/
kg/day OSM group, plaque size was reduced by 59% (p=0.002) and in the 16 week 30 µg/
kg/day OSM group by 58% (p=0.002), while the 16 week 10 µg/kg/day OSM treated group 
did not differ from the control (Figure 5A). The decrease in plaque area was 
dose-dependent (p=0.006). In the control group, 62 ± 27% of the lesions were classified as 
severe lesions, while only 23 ± 22% (p=0.001) and 26 ± 24% (p=0.002) of the lesions were 
severe in the 16 week 30 µg/kg/day and 5.5 week 30 µg/kg/day OSM treated group, 

Figure 4  Effect of OSM on plaque composition in APOE*3-Leiden.CETP mice. Representative 

pictures showing severe lesion types (type IV and V) stained with HPS staining, SMC staining (green), 

macrophage staining (brown) and collagen staining (red) to determine the effect of OSM on the 

lesion composition.



535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer
Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019 PDF page: 226PDF page: 226PDF page: 226PDF page: 226

226

CHAPTER 9

Figure 5  OSM reduces lesion size and severity in APOE*3-Leiden.CETP mice. The atherosclerotic 

lesion size was determined in the aortic root area (A) and the lesions were classified as mild (type 

I-III) or severe (IV and V) lesions (B). Furthermore, the amount of necrosis, macrophages, smooth 

muscle cells and collagen was quantified (C) and the lesion stability index was calculated by dividing 

the summed proportions of SMCs and collagen, as stabilizing factors, by the summed proportions 

of necrosis and macrophages, as destabilizing factors (D). Additionally, the amount of NLRP3 

expression was examined as percentage of the macrophage area (E). Data represent mean ± SD 

(n=9-15). *p<0.05 **p<0.01 compared to control; ‡‡ p<0.01 compared to 10 µg/kg/day.    
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respectively. Again, the 16 week 10 µg/kg/day OSM treatment group did not differ from 
the control group. In line with plaque area, we observed a dose-dependent decrease in 
lesion severity (p=0.003) (Figure 5B). Collectively, these results show that early continuous 
exposure to OSM reduces atherosclerotic lesion size and severity independently from 
plasma cholesterol in APOE*3-Leiden.CETP mice.

OSM has no effect on the stability of severe lesions in  
APOE*3-Leiden.CETP mice
To assess the effect of OSM treatment on plaque stability of the severe lesions, we 
determined the amount of necrosis and macrophages, as indicators of unstable plaques 
and the amount of SMCs and collagen, as indicators of stable plaques (Figure 5C) in the 
severe lesions. Lesions in the control group consisted of 6 ± 3% necrosis, 37 ± 18% 
macrophages, 5 ± 2% SMCs and 38 ± 10% collagen. The amount of necrosis was decreased 
to 3 ± 1% in the 5.5 week 30 µg/kg/day OSM group (p=0.012) and to 2 ± 1% in the 16 week 
30 µg/kg/day OSM group (p=0.01), while the macrophage content was slightly increased 
in the 16 week 30 µg/kg/day OSM group (55 ± 10%) (p=0.016) only. The collagen content 
was decreased in the 5.5 week 30 µg/kg/day OSM group to 28 ± 17% (p=0.012) and to 27 
± 13% in the 16 week 30 µg/kg/day OSM group (p=0.018). No difference was observed in 
SMC content. The plaque composition of the 16 week 10 µg/kg/day OSM group was 
similar as in the control group. No differences were observed in the plaque stability ratio 
between the control and OSM treated groups (Figure 5D). As the amount of macrophages 
is not necessarily a measure for macrophage activity, we measured the expression of the 
caspase-1-activating inflammasome protein NLRP3 as marker of macrophage activation 
(26). No significant difference was observed in NLRP3 expression in the plaque area 
(Figure 5E). In conclusion, although OSM does affect lesion composition by slightly 
increasing the amount of macrophages and decreasing the amount of necrosis and 
collagen, it does not affect overall plaque stability of the severe lesions.

OSM reduces the inflammatory Ly-6CHigh monocyte subset
No difference in the percentage of circulating CD11b+ cells was observed between the 
groups (Figure 6A). As the Ly-6CHigh monocyte subset is linked to atherosclerosis 
development (27), we investigated the effect of OSM on the circulating monocyte subtype 
composition (Figure 7). In the control group 20.8 ± 6.5% of the monocytes belonged to 
the Ly-6CHigh subset and 79.2 ± 6.5% to the Ly-6CLow+Intermediate subset. The amount of 
Ly-6CHigh monocytes was decreased to 13.2 ± 3.8% in the 16 week 30 µg/kg/day OSM 
group (p=0.004) and the amount of Ly-6CLow+Intermediate monocytes increased to 86.8 ± 
3.8% (p=0.004) (Figure 6B and C). The Ly-6CHigh subset showed a positive correlation 
with lesion size (r=0.303, p=0.029), supporting a role of the Ly-6CHigh monocytes in the 
development of atherosclerosis (Figure 6D). Thus, OSM decreases the percentage of 
Ly-6CHigh monocytes which may contribute to the smaller atherosclerotic lesion size. 
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Serum OSM levels are associated with increased post incident CHD  
in humans
We next explored if variable levels of OSM in the human circulation were associated with 
survival probability in the AGES-Reykjavik study. We found that higher serum OSM levels 
were associated with increased survival probability post incident CHD (HR=0.838, p=2*10-6) 
(Figure 8A), also using adjusted survival curves for the Cox model (28) (Figure 8B). Thus, 
elevated levels of OSM predicted reduced mortality in humans. 

Figure 6  OSM reduces the percentage of circulating Ly-6CHigh monocytes. No difference in 

percentage of CD11b+ cells was observed between the groups (A). But, APOE*3-Leiden.CETP 

mice treated with OSM have a higher percentage of circulating Ly-6CHigh monocytes (B) and a 

lower percentage of circulating Ly-6CLow+Intermediate monocytes (C). The percentage of Ly-6CHigh 

monocytes was correlated with an increased lesion size (D). Data represent mean ± SD (n=12-20). 
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Figure 7  Representative pictures of the distribution of the Ly-6C monocyte subsets. Based on the  

Ly-6C expression, monocytes were distributed into 3 monocyte subsets, the Ly-6CLow, Ly-6CIntermediate 

and Ly-6CHigh monocyte subset.
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Discussion

In the present study, we showed that mRNAs coding for OSM as well as its receptors, 
OSMR and LIFR, were expressed in human normal arteries and carotid atherosclerotic 
plaques. We demonstrated that serum OSM levels in humans were positively correlated 
with several but not with other well-known markers of endothelial activation. Chronic 
OSM administration to APOE*3-Leiden.CETP mice reduced atherosclerotic lesion size and 
severity even after initial priming. In line with these data, increased OSM levels in humans 
were associated with decreased post incident CHD mortality. 
 Extending the previous finding by Albasanz-Puig et al (13), who showed that OSM is 
present in both human and murine atherosclerotic plaques, we here demonstrated the 
presence of OSMR and LIFR mRNA in human normal and atherosclerotic arteries as well. 
The relatively higher OSMR and LIFR expression in normal arteries compared to athero-
sclerotic arteries may be explained by the high expression of the receptors on endothelial 
and vascular SMCs (8,29). These cells make up a relatively large proportion of the normal 
artery, but less of the atherosclerotic plaque, in which there is influx and proliferation of 
inflammatory cells, which might dilute OSMR and LIFR expression. The opposite can be 
reasoned for the increased OSM expression in atherosclerotic arteries, as OSM is mainly 
produced by activated macrophages and neutrophils (5,6,30). Moreover, OSMR and LIFR 
expression may be downregulated in endothelial and SMCs in plaques compared to 

Figure 8  High OSM is associated with reduced post CHD mortality. Serum OSM levels of CHD 

patients were significantly associated with CHD related mortality rates when comparing the lower 

25% quantile to the upper 75% quantile in OSM levels (hazard ratio (HR)=0.838, p=2*10-6) (A), and in 

the adjusted survival curves for the Cox model for three groups of OSM protein levels (top vs. bottom 

HR=0.618, p=0.0005) (B). 
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endothelial and SMCs in normal arteries. Besides, the chronic inflammatory state during 
atherosclerosis development drives vascular SMC differentiation, which reduces the 
expression of SMC specific markers (31) and may therefore also reduce expression of LIFR 
and OSMR. This contention is in line with our observation that OSM is negatively correlated 
with SMC markers and with Kakutani et al., who showed that OSM induces SMC differenti-
ation (4).
 The correlation of OSM with IL-6 and VCAM-1 in the AGES-Reykjavik study is in line 
with previous findings in vitro (10). However, the inverse association of OSM with E-selectin 
and ICAM-1 contradicts with previous data showing increased levels induced by OSM in 
human endothelial cells in vitro (10) and increased serum E-selectin levels in APOE*3-Leiden.
CETP mice. The absence of a positive correlation between OSM and ICAM-1, E-selectin and 
P-selectin may be caused by statin use in the AGES-Reykjavik study (approx. 22%) (21), as 
statins reduce ICAM-1, E-selectin and P-selectin plasma levels in patients with coronary 
artery disease (32). Regardless, mice treated with OSM in the present study did show 
increased serum E-selectin levels which dropped after discontinuation of OSM treatment, 
indicating a causal relationship between OSM and E-selectin in vivo in mice. 
 As our present study had a much longer duration than previous intervention studies 
with OSM in mice (9,10), we first verified if the previously observed short-term inflammatory 
state (10) is also present after 16 weeks of OSM administration. OSM increased plasma 
E-selectin levels and monocyte adhesion in the aortic root area, similarly as in our previous 
study (10), indicating that OSM induces a sustained inflammatory state even after 
long-term OSM treatment. Although inflammation has been reported to contribute to 
atherosclerosis development (33), our results show, to our knowledge for the first time, 
that long-term chronic OSM treatment independently of cholesterol-lowering, results in 
significantly smaller and less severe atherosclerotic lesions in APOE*3-Leiden.CETP mice, 
clearly indicating that prolonged exposure to OSM has anti-atherogenic effects. Previously, 
Zhang et al., using a different approach, showed that OSMR deficient ApoE-/- mice have 
smaller and more stable plaques than their OSMR expressing littermates (14), suggesting 
that signaling via the LIFR alone or prevention of IL-31 and OSM signaling through OSMR 
(34) has a similar beneficial effect. 
 No difference was observed in the lesion stability index, and although we observed 
a slight increase in the amount of macrophages as percentage of the total plaque area, the 
amount of NLRP3 expression was very low and did not differ between any of the groups, 
indicating that the pro-inflammatory macrophage activity was not affected (26). In line 
with this, the percentage of pro-inflammatory Ly-6CHigh monocytes (35) was decreased 
and the percentage of non-inflammatory Ly-6CLow+Intermediate monocytes, which actively 
patrol the luminal site of the endothelium where they remove debris and damaged cells 
and are associated with reparative processes (35), was increased in OSM treated mice. The 
decrease in Ly-6CHigh monocytes plausibly contributes to the reduced amount of 
macrophages and the attenuated atherosclerosis development. 



535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer
Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019 PDF page: 232PDF page: 232PDF page: 232PDF page: 232

232

CHAPTER 9

Although our findings are counter-intuitive with several previously described pro-inflam-
matory characteristics of OSM (9,36), they are in line with studies addressing the anti-in-
flammatory properties of OSM. It has been shown that OSM administration suppresses 
TNFα (37) and IL-1β release in vitro (38), whereas TNFα, IL-1β and IFN-γ expression is 
increased in adipose tissue of OSMR knockout mice (39). Both cytokines are involved in 
atherosclerosis progression in mice as TNFα promotes atherosclerosis (40) and IL-1β 
knockout mice have smaller and less severe atherosclerotic lesions (41). In humans, anti-in-
flammatory treatments targeting TNFα or IL-1β are associated with decreased risk of 
myocardial infarction and overall cardiovascular events (42,43). Collectively, these and our 
data indicate that OSM has anti-inflammatory effects as well which may contribute to its 
anti-atherogenic properties. Moreover, OSM has been reported to induce endothelial 
proliferation (12,44) and to increase expression of adhesion molecules that bind endothelial 
progenitor cells (45,46), suggesting that OSM stimulates replacement of leaky, dysfunctional 
endothelial cells by new and healthy endothelial cells (47) and may therefore attenuate 
atherogenesis in the initial stages of the disease. This contention is in line with our finding 
that mice treated with OSM for only 5.5 weeks had a similar lesion size and severity as mice 
receiving OSM during a 16 week period and suggests that the observed anti-atherogenic 
effects of OSM have taken place during the initial stages of atherosclerosis development. 
Furthermore, although the observed increase in SMCs observed in this study was not 
significant, others have reported that OSM significantly enhances SMC proliferation in 
vitro (13), which is a contributor to a stable plaque phenotype (48). To conclude, OSM may 
contribute to attenuation of plaque development and improvement of plaque severity by: 
(I) its anti-inflammatory properties, (II) regenerating the endothelial barrier, (III) induction of 
SMC proliferation, and (IV) reducing the pro-inflammatory monocyte phenotype and 
promoting a more regenerative phenotype (48). 
 The anti-atherogenic effect of OSM in APOE*3-Leiden.CETP mice is consistent with 
the increased post incident CHD survival probability in humans with higher OSM levels in 
the AGES-Reykjavik study. Similarly, OSM treatment increased survival in a mouse injury 
model of acute myocardial infarction (49), emphasizing the regenerative properties of this 
cytokine (44,50). 
 As OSM has been suggested to have a progressive effect in chronic inflammatory 
diseases such as, rheumatoid arthritis (RA) (51) and inflammatory bowel disease (36,52), it 
has been proposed as a possible pharmaceutical target to suppress inflammation in these 
diseases (36,51,52) and the effect of anti-OSM treatment in RA has already been investigated 
in a phase 2 clinical trial (51). However, considering the anti-atherogenic effects and 
positive effect of OSM on survival in the present study, we strongly recommend that 
cardiovascular disease markers and survival are carefully monitored when testing an  
OSM inhibiting approach. In addition, since this study shows that OSM has beneficial 
immune modulating effects, the role of OSM in inflammatory diseases possibly needs  
to be reconsidered. 
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Taken together, our study provides more insight into the role of OSM in atherosclerosis 
development. APOE*3-Leiden.CETP mice treated with OSM had smaller and less severe 
plaques associated with a decrease in pro-inflammatory Ly-6CHigh monocytes. In line with 
the favorable effect in mice, we found an increased survival probability in humans that 
have high OSM levels, suggesting an atheroprotective effect for OSM. 
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