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GENERAL INTRODUCTION

1
Atherosclerosis

Prevalence
Cardiovascular disease (CVD) is the number 1 cause of death globally and the annual 
number of deaths from CVD is predicted to rise from 17.5 million in 2012 to 22.2 million by 
2030 (1). Currently, 31% of all deaths worldwide is caused by CVD and low and middle- 
income countries are now most affected. Its major clinical manifestations include ischemic 
heart disease, ischemic stroke and peripheral arterial disease, all caused by the formation 
of atheromatous plaques in the vessels, and comprises 85% of all CVD deaths (1). 

Development of atherosclerotic plaques
The build-up of an atherosclerotic plaque is a complex and slow process, which in humans 
begins in early childhood, and becomes clinical relevant after many decades. Atherogenesis 
begins with the recruitment of inflammatory cells into the intima. As response to irritative 
stimuli (e.g. dyslipidaemia, hypertension or pro-inflammatory mediators) endothelial 
permeability increases, the composition of the extracellular matrix beneath the endothelium 
changes, and the arterial endothelial cells express leukocyte adhesion molecules (2). As a 
result, blood monocytes are captured on the endothelial surface, and cholesterol-
containing low-density lipoproteins (LDL) and remnant particles enter and accumulate  
in the arterial wall and are oxidized (2). Oxidized LDL (oxLDL) promotes monocyte 
adhesion and also binds to scavenger receptors on macrophages which triggers uptake  
of oxLDL leading to the formation of foam cells (type I and II lesions). These cells produce 
pro-inflammatory mediates, reactive oxygen species and tissue factor pro-coagulants, 
that amplify the inflammatory process and further increase endothelial permeability (2,3). 
Smooth muscle cells (SMCs) migrate from the media into the intima, proliferate, and 
produce extracellular matrix molecules, e.g. interstitial collagen, proteoglycans and elastin, 
to form a fibrous cap that overlies the lipid-laden foam cells (2,3). The subendothelial 
proteoglycans entrap LDL and subsequently extra-cellular lipids accumulate (type III 
lesions). Several plaque factors, including excessive inflammation, oxidized lipids and 
cholesterol, trigger macrophage cell death (4) leading to the formation of a pool with 
accumulated cellular debris and extracellular lipids, called the necrotic core of the plaque 
(type IV lesions). Also, as the result of necrosis, calcium deposits develop (type V lesions).  
In the advanced type IV and V lesions, thick layers of fibrous connective tissue cover  
the lipid-rich necrotic core. Activated macrophages and type 1 T-helper cells produce 
metalloproteinases and cytokines that weaken the tensile strength of the collagen cap (4). 
Consequently, lesions may rupture thereby releasing their fatty core into the lumen which 
triggers thrombus formation (type VI lesions) (5). Plaque rupture and subsequent thrombus 
formation can be clinically silent as they may heal, but can also induce CV ischaemic 
events through partial or total occlusion of the affected artery. 
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CHAPTER 1

Risk factors
Several risk factors contribute to the initiation and progression of atherosclerosis 
development and can be divided in non-modifiable and modifiable risk factors. Non- 
modifiable risk factors include personal history of CVD, family history of CVD, age and 
gender. Modifiable risk factors include hypertension, obesity, diabetes mellitus, and 
elevated plasma glucose, LDL-cholesterol, and triglyceride (TG) levels, and lifestyle 
variables (poor dietary patterns, smoking, physical inactivity and harmful use of alcohol). 
Moreover, genetic disorders in the lipoprotein metabolism, e.g. familial dysbetalipo
proteinema or type III hyperlipidemia, add to CVD risk. As lifestyle variables and metabolic 
perturbations are closely linked to each other, patients with CVD commonly present a 
cluster of risk factors. Estimated odds ratios of these risk factors demonstrate that abnormal 
plasma lipids are a major risk factor for atherosclerosis (Table 1) (6), and therefore, 
this thesis mainly focuses on the role of the lipoprotein metabolism in atherosclerosis 
development and CV safety. In addition, the contribution of diabetes and inflammation to 
CV risk will be discussed. 

Table 1  �Risk of acute myocardial infarction associated with risk factors in  
the overall population

Risk factor Odds ratio (99% CI)
adjusted for all risk factors

Current smoking 2.87

Current and former smoking 2.04

Diabetes 2.37

Hypertension 1.91

Abdominal obesity (2 vs 1)† 1.12

Abdominal obesity (3 vs 1)† 1.62

Vegetables and fruit daily 0.70

Exercise 0.86

ApoB/ApoA1 ratio (2 vs 1) § 1.42

ApoB/ApoA1 ratio (3 vs 1) § 1.84

ApoB/ApoA1 ratio (4 vs 1) § 2.41

ApoB/ApoA1 ratio (5 vs 1) § 3.25

The relation between the individual risk factors and first myocardial infarction is indicated. In total 15152 cases and 
14820 controls from 52 countries representing every continent, were enrolled. †Top two tertiles vs lowest tertile. 
§Second, third, fourth, or fifth quintiles vs lowest quintile. Data are extracted from reference (6).
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GENERAL INTRODUCTION

1
Lipoprotein metabolism

Lipids are transported within the plasma in the form of lipoprotein particles, and, depending 
on their density are classified as chylomicrons, very-low-density lipoprotein (VLDL), inter-
mediate-density lipoprotein (IDL), LDL, and high-density lipoprotein (HDL). LDL and HDL 
predominantly transport cholesterol, whereas chylomicrons and VLDL are enriched in TGs. 
The metabolism of these lipoproteins is divided into two pathways, the exogenous 
pathway and the endogenous pathway (7) and lipids are removed from the peripheral 
tissues by reverse cholesterol transport (Figure 1). 

The exogenous pathway
The exogenous pathway refers to the absorption of dietary lipids by the enterocytes in the 
intestine, where they are assembled with apolipoprotein(apo)B48 into chylomicrons and 
enter the blood stream via the lymphatic vessels. In the blood, the chylomicrons receive 
apoCII and apoE from HDL-particles. ApoCII binds and activates lipoprotein lipase (LPL), 

Figure 1  Pathways of lipoprotein metabolism. The liver plays a central role in the exogenous and 

endogenous pathway of lipid transport. HDL facilitates reverse cholesterol transport. CM, chylomicron; 

CMR, chylomicron remnant; VLDL, very-low-density lipoprotein; IDL, intermediate-density lipoprotein; 

LDL, low-density lipoprotein; HDL, high-density lipoprotein; FFA, free fatty acids; apoCII, apolipoprotein C-II; 

apoE, apolipoprotein E; CE, cholesterol ester; TG, triglycerides; CETP, cholesteryl ester transfer protein;  

LDLR, low-density lipoprotein receptor, SR-B1, scavenger receptor class B type 1.
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an enzyme attached to the luminal surface of endothelial cells in capillaries of adipose, 
heart and skeletal muscle tissue. Upon binding, TGs from the chylomicron particles are 
hydrolysed into glycerol and fatty acids and the remnant particles are cleared by the liver 
through binding of apoE to the LDL receptor (7). 

The endogenous pathway
The liver plays a central role in the endogenous pathway. Triacylglycerols and cholesterol 
esters (CE) are assembled with apoB100 into VLDL, and when they reach the blood stream 
they receive apoCII and apoE from HDL particles. Like chylomicrons, the TGs from the 
VLDL particles are hydrolysed by endothelial LPL and consequently transform into IDL. IDL 
particles are taken up by the liver through binding of the remnant and LDL receptor with 
apoE or apoB100, or are further hydrolysed into LDL. LDL particles contain a relatively high 
cholesterol content and transfer lipids to the peripheral cells or are cleared by the liver 
through LDLR-apoB100 interaction (7). However, more importantly with respect to ather-
osclerosis, LDL can enter the arterial wall, in contrast to the larger VLDL and chylomicrons, 
where they are oxidative and proteolytically modified and contribute to the formation of 
atherosclerotic lesions. 

Reverse cholesterol transport
HDL is the main lipoprotein involved in the reverse cholesterol transport pathway, which 
starts with the formation of nascent HDL by the liver and intestine. HDL particles acquire 
free cholesterol and phospholipids that are effluxed from cells in the peripheral tissues, 
including the vessel wall, a process mediated by ABCA1 resulting in the formation of 
mature HDL. The HDL particles transport the cholesterol to the liver either directly by 
interacting with hepatic scavenger receptor B1 (SR-B1), or the CEs in HDL are exchanged 
for TGs from VLDL or LDL particles through cholesterol ester transfer protein (CETP) (7). 
When remnant particles and LDL are taken up by the liver, unesterified cholesterol can be 
secreted into the bile, or is converted into bile acids. 

The contribution of LDL-C, HDL-C and TGs to CVD risk
1.  LDL-C
LDL-C is recognized as a primary causal risk factor in CVD as evidenced from many 
experimental, epidemiological and genetic studies (8,9). In addition, intervention trials 
with statin therapy confirm a reduced incidence of coronary heart disease as a consequence  
of cholesterol-lowering in LDL (10,11), and recent trials indicate that intensive lipid-lowering  
with statins may be more beneficial in risk reduction than less intensive (or standard) 
therapy (12). According to results from the latter meta-analysis, every 1 mmol/L (39 mg/dL) 
reduction in LDL-C is associated with a 23% reduction in the risk of major vascular events 
(12) suggesting that a 2–3 mmol/L reduction in LDL-C would correspond with a 40–50% 
reduction in events.
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2.  HDL-C
Epidemiological studies consistently report an inverse association between coronary heart 
disease risk and HDL-C: results from 4 prospective epidemiologic studies indicate that an 
increase of 1 mg/dL (0.03 mmol/L) in HDL-C is associated with a 2–3% reduction in risk (13).
	 Besides its major role in reverse cholesterol transport, HDL has also been described  
to have anti-inflammatory, anti-oxidant, anti-platelet and vasodilatory properties and may 
therefore have a protective role in coronary heart disease (14). Several therapeutic approaches 
aimed at raising HDL-C levels have since been investigated. However, undisputed proof 
for causality of low HDL-C in CVD is lacking and clinical trials aimed at raising HDL-C to 
prevent disease (AIM-HIGH, HPS2-THRIVE, ILLUMINATE, dal-OUTCOMES, ACCELERATE, 
REVEAL) have failed to meet their primary goals (15–17). In addition, data from Mendelian 
randomization studies show that HDL-C and myocardial infarction risk are not causally 
related (14,18). A systematic review and meta-analysis of relevant preclinical studies and 
clinical trials on the contribution of non-HDL-C/LDL-C lowering versus HDL-C raising 
concluded that the protective role of lowering LDL-C and non-HDL-C is well-established 
(19). However, the contribution of raising HDL-C on inhibition of atherosclerosis and the 
prevention of CVD remains undefined and may be dependent on the mode of action of 
HDL-C-modification. Similar outcome data were found for the prevention of clinical events  
in randomized controlled trials and on inhibition of atherosclerosis in relevant, CETP-
expressing, animals emphasizing the validity/translatability of these animal models to  
the human situation (19).

3.  TGs and remnant cholesterol
Triglycerides are primarily carried by remnants, a combined term for IDL-, VLDL-, and 
chylomicron remnants (20). Because of the small size of remnants, they are able to penetrate 
the arterial wall, thereby promoting accumulation of cholesterol in the intimal space, foam 
cell formation, and atherosclerosis (21). It is most likely that the cholesterol content of 
remnants, and not TGs, causes atherosclerosis because most cells can degrade TGs but not 
cholesterol (20). However, the concentration of TGs is highly correlated with the cholesterol 
content of remnants (22) and Mendelian randomization analyses demonstrated that 
TG-lowering LPL variants and LDL-C lowering LDLR variants were similarly associated with 
lower risk of CVD per unit difference in apoB (23). As a result, targeting TGs has become an 
interesting approach to reduce CV events and several novel therapies that interfere with 
the LPL pathway are under development, including inhibition of apoCIII and angiopoietin- 
like protein 3 (ANGPTL3) (24–26). One of these agents, the ANGPTL3 antibody evinacumab, 
was evaluated in this thesis and is therefore discussed in the next section.

Lipid-lowering interventions
Primary prevention of CVD can be achieved by promoting healthy lifestyle behaviour to 
the general population and at the individual level, and by targeting CV risk factors, e.g. 
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increased blood pressure, plasma lipid and glucose levels (27). Lifestyle modifications to 
improve the plasma lipid profile include quit smoking, reduced intake of dietary 
unsaturated fat, saturated fat and cholesterol, increased intake of dietary fibre, vegetables 
and fruits, reduction of excessive body weight, and increased physical activity (6,27). 
Depending on the estimated total CV risk and plasma LDL-C levels, lifestyle modifications 
can be accompanied by lipid-lowering drugs. For patients that are at high risk, subjects 
with documented CVD, diabetes mellitus or markedly elevated plasma cholesterol, 
additional lipid lowering therapies should always be considered (27). Table 2 summarizes 
the lipid lowering interventions currently available and their relative risk reduction for 
major vascular events. Two of these agents, statins and PCSK9 inhibitors, have been 
evaluated in this thesis and are therefore discussed below. 

1.  Statins
Statins are discovered in 1973 by Akira Endo who isolated the compound compactin from 
the fungus Penicillium citrinum, which was found to be a competitive inhibitor of HMG-CoA 
reductase, the rate-controlling enzyme in hepatic cholesterol synthesis (28). The first 

Table 2  Overview of lipid-lowering interventions currently available

Lipid-lowering 
intervention

Mechanism of LDL-C lowering Relative risk 
reduction for major 
vascular events*1

PCSK9 inhibitors Increased LDL-C clearance through 
upregulation of LDLR.

0.49

Ileal bypass Reduced absorption of cholesterol by the 
intestine and restoration of the metabolic 
response to a meal.

0.65

Statins Decreased cholesterol biosynthesis through 
inhibition of HMG-CoA reductase. 

0.80

Bile acid sequestrants Bind components of the bile in the intestine 
thereby preventing their reabsorption. 

0.78

Dietary interventions Reduced calorie/fat intake and binding of bile 
acids and cholesterol to fibers.

0.83

Fibrates Activation of peroxisome proliferator-activated 
receptor α leading to decreased VLDL particle 
production and increased lipid clearance.

0.88

Ezetimibe Reduced cholesterol absorption in the small 
intestine through blockage of the Niemann-
Pick C1 like 1 transporter, essential for the 
sterol transport across the enterocytes.

0.94

Niacin Increases clearance of VLDL particles. 0.94

*1 Data extracted from reference (12).
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1
commercially available statin based on this discovery was lovastatin, followed by 2 
semi-synthetic statins (simvastatin and pravastatin) and 4 synthetic statins (fluvastatin, 
atorvastatin, rosuvastatin and pitavastatin) (28). Inhibition of HMG-CoA reductase lowers 
intracellular cholesterol concentration which results in a compensatory increased LDLR 
expression on the hepatocytes and consequently, increased LDL-C uptake and decreased 
plasma LDL-C levels. Statins reduce plasma LDL-C levels by 20 to 50%, depending on the 
type of statin and dose (27), and reduce CV risk by 23% per 1.0 mmol/L LDL-C reduction 
(12). Due to their proven efficacy, statins are among the most frequently prescribed drugs 
in the world, although there are some limitations. The response to statins is variable and 
despite maximally tolerated statin doses, a subgroup of patients does not reach their 
LDL-C goals and remain at significant residual risk. Also, meta-analyses demonstrate that 
further LDL-C lowering further reduces CVD risk (12), while an estimated 6% reduction of 
LDL-C is achieved per doubling of the statin dose, the so-called “6% rule” (29). Last, while 
statins are generally well-tolerated, “muscle complaints” have been reported (30,31) and 
are the primary reason for statin non-adherence and discontinuation (30). To overcome 
these limitations, additional therapeutic agents, including proprotein convertase 
subtilisin/kexin 9 (PCSK9) and ANGPTL3 inhibitors, have been introduced or are currently 
under development. 

2.  PCSK9 inhibitors
PCSK9 inhibitors are the most powerful cholesterol-lowering agents currently available. 
PCSK9 is an enzyme that binds to and shuttles the LDL receptor in the intracellular 
lysosomal degradation pathway in the liver and other cells thereby preventing the 
clearance of LDL-C from the plasma. Humans with loss-of-function mutations in the PCSK9 

gene exhibit extremely low levels of LDL-C and are protected from atherosclerosis, 
whereas gain-of-function mutations are associated with hypercholesterolemia (32). 
Consequently, antibodies (evolocumab and alirocumab) against PCSK9 have been 
developed. When administered on top of maximally tolerated doses of statins, these 
antibodies additionally reduce plasma LDL-C levels up to 60% and the risk of CV events by 
15% (33,34). Evolocumab and alirocumab are FDA and EMA approved for subjects with 
heterozygous familial hypercholesterolemia or for those with clinical atherosclerotic CVD 
that do not reach their LDL-C goals despite maximally tolerated statin treatment. 

3.  ANGPTL3 inhibitors
ANGPTL3 is almost exclusively synthesized in the liver, and is an endogenous inhibitor of 
lipoprotein lipase (LPL), thereby reducing the hydrolysis of TGs in capillaries of adipose 
tissue and muscles (25). Genetic loss-of-function of ANGPTL3 causes familial combined 
hypolipidemia, characterized by very low plasma TG, LDL-C and HDL-C concentrations, 
and decreased odds of atherosclerotic CVD (26). Pharmacologic antagonism of ANGPTL3 
with the antibody evinacumab reduced atherosclerotic lesion area in dyslipidemic 
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APOE*3-Leiden.CETP mice, and dose-dependently reduced TG and LDL-C levels in healthy 
subjects evaluated in a phase I trial (26). This novel approach to reduce plasma lipids is 
particularly important for the treatment of patients with familial hypercholesterolemia 
with defects in the LDLR, as statins and PCSK9 inhibitors depend on functional LDLR, as 
well as for patients with the metabolic syndrome and type 2 diabetes, which are associated 
with elevated plasma TG levels (25). Evinacumab is currently being evaluated in a phase III 
trial for patients with homozygous familial hypercholesterolemia. 

Diabetes and CVD risk

Type 2 diabetes is characterized by elevated blood glucose levels and insulin resistance, 
and is commonly associated with obesity and other components of the metabolic 
syndrome (Table 3) (35), including atherogenic dyslipidaemia, which consists of elevated 
plasma concentrations of both fasting and postprandial TG-rich lipoproteins, small dense 
LDL and low HDL-cholesterol (36). Consequently, CVD remains the leading cause of 
morbidity and mortality for patients with type 2 diabetes (36). Despite the close relation 
between hyperglycaemia and CVD, most studies that evaluated intensive glycaemic 
control in diabetic patients failed to show significant benefits in terms of CV morbidity and 
mortality (37), and some agents even increased adverse CV events, e.g. heart failure (38) 
and myocardial infarction (39,40). To establish the safety of new antidiabetic drugs, the 
FDA and EMA mandated all new diabetes drugs to demonstrate CV safety (41,42), of which 
the clinical trials with empagliflozin (EMPA-REG OUTCOME) (43), liraglutide (LEADER) (44) 
and piogliazone (45) were among the first that showed beneficial effects on CVD 
outcomes. 

Table 3  Definition of the metabolic syndrome

Central obesity
Plus any two:

Raised TGs >150 mg/dL (1.7 mmol/L)
Specific treatment for this lipid abnormality

Reduced HDL-C <40 mg/dL (1.03 mmol/L) in men
<50 mg/dL (1.29 mmol/L) in women
Specific treatment for this lipid abnormality

Raised blood pressure Systolic >130 mmHg
Diastolic >85 mmHg
Treatment of previously diagnosed hypertension

Raised fasting plasma glucose Fasting plasma glucose > 100 mg/dL (5.6 mmol/L)
Previously diagnosed type 2 diabetes

Data extracted from reference (35).
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Inflammation in atherosclerosis

The role of inflammation in atherosclerotic disease is well-established and it has been 
shown that inflammatory processes mediate all stages of atherosclerosis: from the 
initiation through progression and eventually, thrombotic complications (46). As a result, 
not only plasma lipid levels, but also plasma levels of the inflammatory biomarker 
C-reactive protein (CRP) are predictive for individual CVD risk (47). Important players in the 
inflammatory pathways are cytokines, that can be classified as pro- or anti-atherogenic. 
Examples of pro-atherogenic cytokines are tumour necrosis factor-α (TNF-α), interleukin 
(IL)-1, and IL-6, whereas transforming growth factor -β (TGF-β), IL-10, and IL-35 are among 
the anti-atherogenic cytokines (48). Cytokines are expressed by a variety of inflammatory 
cells but also by other tissues including white adipose tissue, liver, vascular SMCs and the 
endothelium. Plasma levels of the pro-inflammatory cytokines IL-6, IL-5 and interferon- γ 
(IFN-γ) have been found to be associated with CVD risk (49). From a clinical perspective, 
targeting cytokines would be an interesting approach to reduce inflammation-driven 
atherosclerosis progression. As a result, several therapeutic approaches that modulate 
cytokine production have been developed or are under investigation (48). Examples are 
the anti-IL-6 antibody tocilizumab which has been shown to attenuate the inflammatory 
response after coronary angiography in patients with non-ST-elevation myocardial 
infarction (50), and the CANTOS trial with the anti-IL-1β antibody canakinumab that 
demonstrated a lower rate of recurrent CV events in patients with previous myocardial 
infarction, which was related to the magnitude of CRP reduction (51). In this thesis, the 
pro-inflammatory cytokine Oncostatin M (OSM) has been evaluated as potential 
therapeutic target for CVD. 

OSM
OSM is a member of the IL-6 family cytokines and plays an important role in various 
biologic actions. There are two types of functional OSM receptors, the leukaemia inhibitory 
factor receptor (LIFR) and the OSM receptor (OSMR) (53). OSM signals through both 
receptors in humans, whereas only the OSMR is used in mice (53). OSM is synthesized in 
hematopoietic cells and in various inflammatory cells such as activated T-cells, neutrophils, 
eosinophils, and macrophages (54). OSM has been found to be upregulated in multiple 
chronic inflammatory diseases (55–57) and it is expressed at sites of atherosclerotic lesions 
(58). Epidemiological studies have shown that an elevated serum OSM level is positively 
correlated with the degree of coronary stenosis in patients with coronary artery disease 
(59). Moreover, development of atherosclerosis is attenuated in OSMR-β deficient APOE-/- 
mice (60), indicating the pro-atherogenic properties of OSM. Currently, there are no 
therapies available that target OSM. 
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Experimental atherosclerosis

This thesis describes (I) novel strategies to reduce plasma lipids and atherosclerosis 
development, (II) the (cardio)vascular off-target effects of registered drugs and an 
environmental pollutant, (III) a novel mouse model for diabetic atherosclerosis combining 
modifiable elevated plasma lipid and glucose levels, and (IV) the potential of OSM as novel 
pro-inflammatory CV target. In all these studies we used the APOE*3-Leiden(.CETP) mouse 
model, a humanized model for lipoprotein metabolism and atherosclerosis. 

Mouse versus man
Conventional mouse strains used in preclinical biomedical and toxicological research, for 
example C57BL/6 mice or BALB/c mice, are considered not to be the most appropriate 
animal models to study modulation of lipoprotein metabolism, since lipolysis of TG-rich 
particles as chylomicrons and VLDL and their remnants and clearance of the apoB-con-
taining (non-HDL) lipoproteins via the apoE-LDL-receptor pathway are fast processes as 
compared to humans (61). Consequently, the mice have relatively low plasma TG and 
cholesterol levels with low levels of the atherogenic VLDL and LDL, and the majority of 
cholesterol is contained in HDL (Figure 2A-B). Severe dietary regimens with saturated fat 
and high amounts of cholesterol and cholic acid are required to increase the amount of 
non-HDL-C to some extent, but still lower than in humans (62). As a result, these strains 
only develop small lesions with features of the earliest state of atherosclerosis, but do not 
develop complex atherosclerotic lesions (63) as seen in CVD patients.
	 In humans, lipolysis is slower and removal of apoB-containing lipoproteins is delayed (61). 
In addition, humans unlike mice possess an important player in lipoprotein metabolism, 
CETP, which transfers cholesterol from HDL to (V)LDL in exchange for triglycerides, thereby 
increasing (V)LDL-C levels and decreasing HDL-C. Due to these differences, in man cholesterol is 
contained mainly in the pro-atherogenic LDL and to a lesser extent in HDL (Figure 2C-D).

The APOE*3-Leiden.CETP mouse model
To develop a mouse model with a more human-like lipoprotein metabolism for pharma-
cological, nutritional and toxicological research, the APOE*3-Leiden transgenic mouse 
was generated by the introduction of a genomic human DNA construct carrying the 
mutant APOE*3-LEIDEN gene, the APOCI gene, and all known regulatory elements, 
obtained from a patient with familial dysbetalipoproteinemia (FD) (64). FD or type III 
hyperlipoproteinemia is characterized by elevated levels of plasma cholesterol and an 
increased ratio of cholesterol to TG in the VLDL and IDL fractions, resulting in the 
appearance of β-VLDL particles (65). These mice were cross-bred with mice expressing 
human CETP under control of its natural flanking regulatory DNA-sequences (66) to obtain 
the APOE*3-Leiden.CETP mouse, as a humanized model for FD and mixed dyslipopro-
teinemia (67). While normal wild-type mice have a very rapid clearance of apoB-containing 



535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer
Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019 PDF page: 23PDF page: 23PDF page: 23PDF page: 23

23

GENERAL INTRODUCTION

1

Figure 2  Mice have a fast clearance of apoB-containing lipoproteins and do not express CETP (A), 

as a result the majority of plasma cholesterol is confined to HDL (B), with TC and TG levels of 1.5–2.0 and 

0.2–0.3 mmol/L in C57BL/6 mice. Humans have a slower clearance of apoB-containing lipoproteins 

and do express CETP (C) and normolipidemic man have TC and TG levels of <5.2 and 0.5–1.5 mmol/L, 

respectively, and cholesterol consists mainly of non-HDL-C (VLDL-C/LDL-C) (D). The APOE*3-Leiden.

CETP mouse has a lipoprotein profile similar as in FD patients and a lipoprotein metabolism similar to 

that in man (E), and on a chow diet TC and TG levels are 3.0–4.0 and 2.5–3.0 mmol/L, mainly confined 

to the non-HDL-C fraction (F).

A

C

E

B

D

F
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lipoproteins, APOE*3-Leiden(.CETP) mice have an impaired clearance and increased TG 
level, and are thereby mimicking the slow clearance observed in humans, particularly in 
patients with FD (61,65,68). Similarly as in FD patients, in APOE*3-Leiden and APOE*3-Leiden.
CETP mice, the major part of plasma cholesterol is contained in the VLDL and VLDL-remnant 
particles, leading to formation of β-VLDL particles, which is further increased by cholesterol 
feeding (64,67) (Figure 2E-F). Consequently, APOE*3-Leiden.CETP mice develop advanced 
atherosclerotic lesions with characteristics of human pathology that can be histologically 
classified according to the American Heart Association (AHA) (5) (Figure 3). 
	 Importantly, as compared to the widely used hyperlipidaemic and atherogenic apoE- 
and LDLR-deficient (apoE-/- and LDLR-/-) mice, the APOE*3-Leiden(.CETP) mice possess an 
intact but delayed apoE-LDLR-mediated clearance, which is an essential characteristic of 
human lipoprotein metabolism and for the proper, human-like response on hypolipidemic 
drugs (69,70). APOE*3-Leiden.CETP mice respond well to dietary intervention using 
human-relevant (Westernized) diets with increases in plasma cholesterol and TG and 
these lipids can be titrated to levels mimicking those in humans. Therefore, APOE*3-Leiden.
CETP mice are a translational and predictive animal model for the effect of drugs on 
lipoprotein metabolism and atherosclerosis. Also, the APOE*3-Leiden.CETP mouse model 
has proved to be a suitable model for investigation of the mechanism of action of 
off-target effects of drugs (71) and environmental pollutants (72). Table 4 gives an 
overview of lipid-lowering interventions that have been evaluated in APOE*3-Leiden.CETP 
mice and compares the effects on plasma lipids and atherosclerosis with data in hyperlip-
idaemic and FD-patients. It should be noted that APOE*3-Leiden.CETP mice respond 
similarly as FD-patients to niacin and fibrates, whereas greater (V)LDL-C reductions are 
achieved in APOE*3-Leiden.CETP mice relative to hyperlipidaemic patients (73–75). 

Figure 3  Atherosclerotic lesions in APOE*3-Leiden.CETP mice. Type I: early fatty streaks consist of ≤ 10 

foam cells in the intima. Type II: regular fatty streaks consist of >10 foam cells in the intima. Type III: mild 

plaques consist of foam cells covered with a fibrotic cap. Type IV: moderate plaques consist of foam 

cells, often together with necrosis and cholesterol crystals, and severe disorganization of the intima. 

Inflammatory cells and foam cells infiltrate the media and intimal smooth muscle cells disarrange. Type V: 

severe plaques consist of foam cells, a fibrotic cap, necrosis, cholesterol crystals and calcium deposits. 

The media and adjacent adventitia may contain accumulations of lymphocytes, macrophages, and 

macrophage foam cells. Severe disarrangement of the media with disruption of the elastic fibers. 

Type IIType I Type III Type IV Type V
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Outline of the thesis

This thesis describes a variety of studies on novel interventions and targets in lipid and 
lipoprotein metabolism and atherosclerosis, and on CV safety of anti-cancer drugs and a 
widely used industrial surfactant that persists in the environment. In all studies the 
APOE*3-Leiden(.CETP) mouse model was used as a well-established translational model 
for lipoprotein metabolism and atherosclerosis development.
	 In Chapter 2 we evaluated whether a vaccine against PCSK9 could induce an 
effective immune response against PCSK9, thereby reducing plasma cholesterol levels 
and atherosclerosis progression. However, as most patients at CVD risk are treated after 
development of atherosclerosis, therapies that regress pre-existent lesions are warranted. 
It is known that the magnitude of regression is correlated with the percentage of LDL-C 
reduction, and therefore, Chapter 3 evaluated if aggressive lipid-lowering interventions 

Table 4  �Effects of lipid-lowering interventions in APOE*3-Leiden.CETP mice  
and humans

Lipid lowering 
intervention

APOE*3-Leiden.CETP mice Humans References

Plasma
cholesterol

Atherosclerosis Plasma 
cholesterol

Cardiovascular 
risk

HmgCoA reductase inhibitors/ statins

Atorvastatin ↓ ↓ ↓ ↓ (12,76–79)

Simvastatin ↓ ↓ ↓ ↓ (12,73)

TG-lowering, HDL-raising drugs

Niacin ↓/↑*1 ↓ ↓/↑*1 ↔ (12,16,17,73,75,80)

Fibrates ↓/↑*1 ↓*2 ↓/↑*1 ↓ (12,75,81–85)

HDL-modulating drugs

Anacetrapib ↓/↑*1 ↓ ↓/↑*1 ↓ (74,87,88)

Torcetrapib ↓/↑*1 ↑ ↓/↑*1 ↑ (89,90)

PCSK9 inhibitors

Alirocumab ↓ ↓ ↓ ↓ (12,33,77)

Evolocumab ↓ ↓ ↓ ↓ (69,91)

Miscellaneous

Ezetimibe ↓ ↓ ↓ ↓ (12,78)

Bile acid 
sequestrants

↓*2 nd ↓ ↓ (12,86)

Evinacumab ↓ ↓ ↓ nd (26)

*1 HDL-C increased; *2 In APOE*3-Leiden mice, unpublished data in APOE*3-Leiden.CETP mice; nd, not determined.



535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer
Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019 PDF page: 26PDF page: 26PDF page: 26PDF page: 26

26

CHAPTER 1

using double and triple treatment with simple or combined inhibition of PCSK9 
(alirocumab) and ANGPTL3 (evinacumab) on top of atorvastatin, could regress pre-existent 
lesions. Chapter 4 describes the CV off-target effects of three generations tyrosine kinase 
inhibitors (TKIs), imatinib, nilotinib and ponatinib, respectively, that are being used for the 
treatment of patients with chronic myeloid leukaemia (CML). In contrast to the safe profile 
of imatinib, CV side effects have been reported in patients receiving nilotinib and 
ponatinib. Also, modulations in plasma lipids occur when CML patients are treated with 
these TKIs, therefore we investigated the mechanism of these lipid modulations in 
Chapter 5. The dose effects of perfluorooctanoic acid (PFOA) on lipoprotein metabolism 
are presented in Chapter 6. PFOA has been widely used as an emulsifier in the manufacture of 
fluoropolymers, is extremely stable and therefore persists in the environment. In addition to 
abnormalities in plasma lipids, diabetes can add to the CVD risk and the development of 
novel anti-diabetic drugs has shifted from solely glucose-lowering agents towards agents 
that additionally reduce CVD risk. This shift requires preclinical translational models that 
combine hyperlipidaemia and hyperglycaemia, and we therefore developed a mouse 
model with both features, the APOE*3-Leiden.glucokinase+/- mouse. The characteristics  
of this novel model are described in Chapter 7. The next two chapters describe the 
evaluation of the cytokine OSM as possible target to reduce endothelial inflammation, 
important in the initiation of atherosclerosis. In Chapter 8 we evaluated the inflammatory 
response to OSM in different human vascular beds, and on markers of endothelial 
inflammation in plasma and the aortic root of APOE*3-Leiden.CETP mice. In Chapter 9, 
mice were prolonged exposed to OSM and atherosclerosis development was examined. 
In addition, we investigated possible associations between plasma OSM levels in CVD 
patients and survival from coronary heart disease. 
	 The results obtained in these studies and future perspectives are discussed in 
Chapter 10.
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