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Abstract—Although the class-imbalance classification problem
has caught a huge amount of attention, hyperparameter op-
timisation has not been studied in detail in this field. Both
classification algorithms and resampling techniques involve some
hyperparameters that can be tuned. This paper sets up several
experiments and draws the conclusion that, compared to using
default hyperparameters, applying hyperparameter optimisation
for both classification algorithms and resampling approaches can
produce the best results for classifying the imbalanced datasets.
Moreover, this paper shows that data complexity, especially
the overlap between classes, has a big impact on the potential
improvement that can be achieved through hyperparameter
optimisation. Results of our experiments also indicate that using
resampling techniques cannot improve the performance for some
complex datasets, which further emphasizes the importance
of analyzing data complexity before dealing with imbalanced
datasets.

Keywords—Class Imbalance, Hyperparameter Optimisation,
Overlapping Classes

I. INTRODUCTION

The class-imbalance classification problem has caught
growing attention from both the academic and the indus-
trial field. Over years of development, many techniques
have proven to be efficient in handling imbalanced datasets.
These methods can be divided into data-level approaches and
algorithmic-level approaches [1], [2], [3], where the data-
level approaches aim to produce balanced datasets and the
algorithmic-level approaches aim to adjust classical classifica-
tion algorithms in order to make them appropriate for handling
imbalanced datasets.

By far, the most commonly used approach for handling
imbalanced data is a combination of resampling techniques
and machine learning classification algorithms [4]. Both re-
sampling techniques and machine learning algorithms involve
some hyperparameters that are set to some default values
and could be tuned. However, hyperparameter optimisation
has not been studied yet in detail in the context of learning
from imbalanced data, where both components could be tuned
simultaneously.

In this paper we explore the potential of applying hy-
perparameter optimisation for automatic construction of high
quality classifiers for imbalanced data. In our research we
experiment with a small collection of imbalanced datasets
and two classification algorithms: RandomForest and SVM. In

TABLE I

SIX SCENARIOS IN OUR EXPERIMENTS.

Scenario Classification Algorithms Resampling Approaches
(1) Ay + Ry, | Default hyperparameters No

(2) Ao+ Ry, | Optimised hyperparameters | No

(3) Ag+ Ry | Default hyperparameters Default hyperparameters
(4) Ao + R4 | Optimised hyperparameters | Default hyperparameters
(5) Aq+ R, | Default hyperparameters Optimised hyperparameters
(6) Ao + R, | Optimised hyperparameters Optimised hyperparameters

each experiment we consider six scenarios for hyperparameter
optimisation (see Table I). For classification algorithms, we
consider two conditions, algorithms with default hyperparame-
ters (A4) and algorithms with optimised hyperparameters (A4,).
For resampling approaches, we consider three conditions, no
resampling applied (R,), resampling applied with default
hyperparameters (£4) and resampling applied with optimised
hyperparameters ([,).

Results of our experiments demonstrate that an improve-
ment can be obtained by applying hyperparameter tuning. In
the six scenarios, optimising the hyperparameters for both
classification algorithms and resampling approaches gives the
best performance for all six datasets. Further study shows that
the data complexity of the original data, especially the overlap
between classes, influences whether a significant improvement
can be achieved through hyperparameter optimisation. Com-
pared to imbalanced datasets with high class overlap, hyper-
parameter optimisation works more efficiently for imbalanced
datasets with low class overlap. In addition, we point out
that resampling techniques are not effective for all datasets,
and their effectiveness is also affected by data complexity
in the original datasets. Hence, we recommend studying the
data complexity of imbalanced datasets before resampling the
samples and optimising the hyperparameters.

The remainder of this paper is organized as follows. Section
II covers the relevant background knowledge on several resam-
pling approaches, hyperparameter optimisation, performance
metrics and data complexity measures. Section III presents
the research related to our work and shows the necessity of
optimising the hyperparameters and studying data complexity



for imbalanced datasets. In Section IV, the experimental setup
is introduced in order to understand how the results are
generated. Section V gives the results of our experiments.
Section VI concludes the paper and outlines further research.

II. BACKGROUND KNOWLEDGE

In this section, we review some background knowledge and
start with the brief introduction of several popular resampling
techniques (Section II-A) and hyperparameter optimisation
(Section II-B). Then, the commonly used performance metric
(Section II-C) in the field of imbalanced learning and one data
complexity measure (Section II-D) are presented.

A. Resampling Techniques

In the following, the four established resampling techniques
SMOTE, ADASYN, SMOTETL and SMOTEENN are intro-
duced.

1) SMOTE: The synthetic minority over-sampling tech-
nique (SMOTE), proposed in 2002, is the most popular resam-
pling technique [5]. SMOTE produces balanced data through
creating artificial data based on the randomly chosen minority
samples and their K -nearest neighbors [5]. A new synthetic
sample x5 can be generated according to the following equa-
tion [6]

where x; is the minority sample to oversample, &; is a
randomly selected neighbor from its K -nearest minority class
neighbors and ¢ is a random number, where ¢ € [0, 1]. Figure 1
illustrates how the synthetic samples are created in the SMOTE
technique.

SMOTE provides a balanced dataset through introducing
synthetic minority samples in order to prevent classification
algorithms from overlooking the minority samples, therefore
improving their performances.
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Fig. 1. An illustration of how to generate synthetic samples through SMOTE.
Example of K-nearest minority class neighbors for sample x; (K=5) (left)
and new synthetic samples generated through SMOTE (right)

2) ADASYN: The adaptive synthetic (ADASYN) sampling
technique is a method that aims to adaptively generate minority
samples according to their distributions [7]. The samples
which are harder to learn are given higher importance and will
be oversampled more often [2]. The key point in ADASYN is
to determine a weight (7;) for each minority sample and use

7; as the sampling importance. Weight 7; of a minority sample
x; is defined as [7]
Ti Az
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where my is the number of minority samples, A; is the number
of neighbors of x; that belong to majority class. For a specific
minority sample, if the value of r; is close to 1, it indicates a
high level of difficulty to learn it. Then, the synthetic samples

that will be generated for a minority sample can be calculated
by [7]

gi =7 - G, 3)

T, =

1=1

?7 y ey Mgy (2)

where G is the total number of synthetic minority samples
that need to be produced. Figure 2 shows an example of the
sampling importance for different minority samples.
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Fig. 2. Example of sampling importance for different minority samples. Ac-
cording to definition, 11 =79 = 1,73 = rq = 0.8 and 71 = 72 > 73 = 74,
indicating the sampling importance of sample &1, 22 is higher than &3, x4
and more synthetic samples will be produced for &1 and x2.

Compared to SMOTE, the only difference in ADASYN
oversampling procedure is that more synthetic samples will
be generated for harder minority samples. In this way, the
ADASYN not only provides less learning bias but puts more
focus on the difficulty to learn minority samples.

3) SMOTETL: In a binary classification problem, a Tomek
link is defined as a pair of samples from different classes
which are the nearest neighbors for each other [8]. In the
SMOTETL technique, the first step is to oversample the
minority classes using SMOTE and then the Tomek links for
the oversampled samples are removed [9]. In other words, the
SMOTETL technique provides a more clear decision boundary
by removing part of the samples in the overlapping region.

4) SMOTEENN: Similar to SMOTETL, the first step of
SMOTEENN is also to oversample the minority class with
SMOTE. After that, the Wilson’s Edited Nearest Neighbors
(ENN) are used to remove the sample who has a different
class from at least two of its three nearest neighbors [10].
By removing the noisy samples, SMOTEENN makes the
classification algorithm work more efficiently.

B. Hyperparameter Optimisation

The most basic methods used by beginners in the field of
imbalanced learning are combining the resampling techniques
and machine learning classification algorithms. Compared with
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Fig. 3. Example of clearing Tomek links for oversampled samples (upper)
and example of removing the noisy samples using ENN (lower). Compared
with SMOTETL, SMOTEENN produces a clearer decision boundary.

randomly selecting the hyperparameters in a learning algo-
rithm, choosing a set of optimal hyperparameters can improve
the performance of the algorithm.

In this paper, RandomForest and SVM are considered to
do the classification and both algorithms involve various hy-
perparameters, which affect the performance (e.g., prediction
accuracy) significantly. For instance, in RandomForest, the
choice of the depth of a decision tree and the number of
trees in a forest will have an influence on the performance.
To determine the best set of hyperparameters for a given
problem/dataset naturally leads to the well-established hyper-
parameter optimisation task. The hyperparameter optimisation
problem can be represented by [11]

2* = argmin f(x), 4
TEX
where x can be any combination of hyperparameters in domain
x and z* is the set of hyperparameters that achieve the lowest
value of objective function f(z). Typically, it is expensive to
evaluate f(x) directly.
Bayesian hyperparameter optimisation approaches provide
a less expensive way to optimise the hyperparameters. Its
strategy keeps tracking previous evaluated results and use the
obtained information to form a surrogate probabilistic model
of the objective function M <+ P(y|z), where z indicates
candidate hyperparameters and y indicates the probability of
the corresponding score on the objective function [11], [12].
Compared to the original objective function, this surrogate
one is less expensive to optimise, because it chooses the next
candidate hyperparameters worth evaluating instead of wasting
time on unworthy hyperparameters.
In practical, there are many software packages based on
Bayesian hyperparameter optimisation, e.g. Spearmint, SMAC,

HyperOpt, SPOT, etc. In this paper, a python library', Hyper-
Opt [13], is used to perform the hyperparameter optimisation
for classification algorithms.

C. Performance Metrics for Imbalanced Learning

Accuracy is the most commonly used measure for classifica-
tion problems. In a binary classification problem, the confusion
matrix (see Table II) can provide intuitive classification results.

TABLE I
CONFUSION MATRIX FOR A BINARY CLASSIFICATION PROBLEM

Positive prediction
True Positives (TP)
False Positives (FP)

Negative prediction
False Negatives (FN)
True Negatives (TN)

Positive class
Negative class

According to the confusion matrix (see Table II), accuracy
(Acc) can be calculated as follows.

e — TP + TN )
“TTPIFN+FP+TN

However, accuracy may give a deceptive evaluation in im-
balanced domains. For example, in a binary class-imbalance
classification problem, the majority-class and minority-class
samples take 95% and 5% of the total samples respectively.
Even if the classifier predicts all the samples as majority class,
the accuracy is still 95%, which makes the classifier seems
extremely efficient but actually it neglects the minority class.
That is to say, the accuracy does not reflect the actual effec-
tiveness of an algorithm in imbalanced domains. In imbalance
learning domain, the Area Under the ROC Curve (AUC) can
be used to evaluate the performance [14], [15] and can be
computed by

_ 1+TPrate*FPrate

A
ucC 9 )
TP
TPrate = ——————
rate TP-Q—FN? (6)
FP
FPrgte = =——————.
rate FP+TN

where T'P,4e is the true positives rate, F' P4 is the false
positives rate.

Apart from the AUC value, there are also some other
measures to assess the performance for imbalanced datasets,
such as geometric mean (GM) [16] and F-measure (FM) [15].
These measures are given by

TP TN

M =
“ \/TP+FNXFP+TN’
(14 B)? x Recall x Precision

FM = B2 x Recall + Precision 7
o IP
Reca TPLEN
Precision = L
TP+ FP’

where (3 is a coefficient and normally set to 1.

lavailable at: http://hyperopt.github.io/hyperopt/



D. Data Complexity Measures

For the data complexity measures in binary classification
problems, the measures can be divided into feature over-
lapping measures, measures of the separability of classes
and geometry, topology and density of manifolds measures
[10], [17]. In this paper, only one of the feature overlapping
measures, maximum Fisher’s discriminant ratio is considered.

The maximum Fisher’s discriminant, denoted by F1, mea-
sures the overlap between the feature values of different
classes and is given by [10]:

F1= m:glx T, ®)
where m is the number of features, ry, is the discriminant
ratio for each feature f; and can be calculated through the
following formula (for a binary classification problem) [18]:
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where n. is the number of examples in class ¢, p/* is the
mean value of feature f; across class c, ,uf i is the mean value
of feature f; across all classes, and zf represents the value
of feature f; for a sample from class ¢ [18]. F1 measures the
highest discriminant ratio among all the features in the dataset
and higher discriminant ratio indicates lower complexity [10].

Tf= ©))

III. RELATED WORKS

As mentioned in the Introduction, the combination of re-
sampling techniques and machine learning classification al-
gorithms is the most commonly used approach for handling
imbalanced datasets. Research works also focused on these
two separate parts, developing new resampling techniques and
adjusting machine learning algorithms to be more appropri-
ate for imbalanced datasets. Both resampling techniques and
classification algorithms involve some hyperparameters, which
might influence the performance significantly. However, no
detailed hyperparameter optimisation research has been done
in the context of learning from imbalanced data. Previous
research has considered the hyperparameters for the classifiers
for class-imbalance problems [19], but the hyperparameters in
resampling techniques are not included. Apart from developing
new techniques to deal with imbalanced datasets, the data
complexity in the dataset itself has caught an increasing atten-
tion in recent studies of class-imbalance problems. It has been
shown that the degradation of machine learning algorithms for
imbalanced datasets is not directly caused by class imbalance,
but is also related to the degree of class overlapping [20], and
the classification algorithms are more sensitive to noise than to
class imbalance [15]. It is also concluded that data complexity
may influence the choice of resampling methods [2]. Hence,
in this paper, we consider the hyperparameter optimisation
for both resampling techniques and classification algorithms.
Furthermore, the relation between the degree of class overlap
and the added value of hyperparameter tuning is investigated.

IV. EXPERIMENTAL SETUP

In this section, we first introduce the datasets used our
experiment (Section IV-A) and then highlight the importance
of cross-validation design (Section IV-B). After that, the
procedure to execute the experiment is given (Section IV-C).

A. Datasets

The experiments reported in this paper are based on six im-
balanced datasets from the KEEL-collection [21]. Detailed in-
formation on the datasets are shown in Table III. The “glass1”
VS “glass6” and “yeast3” VS “yeast4” can be regarded as two
comparison groups. IR indicates the imbalance ratio, which is
the ratio of the number of majority class samples to the number
of minority class samples. The overlap between classes is
calculated by Maximum Fisher’s Discriminant Ratio (F7).
Lower F1 value indicates higher overlap between classes [2].

TABLE III
INFORMATION ON THE DATASETS.

Dataset #Attributes | #Examples | #Classes | IR F1

glass1 9 214 2 1.82 0.92
glass6 9 214 2 6.38 0.53
yeast3 8 1484 2 8.1 0.70
yeast4 8 1484 2 28.1 0.91
ecoli3 7 336 2 8.6 0.84
abalonel9 | 8 4174 2 129.44 | 0.96

B. Cross-Validation Design

Cross-validation (CV) is an effective technique to assess the
classification performance. Recent research has concluded that
a poorly designed CV procedure for imbalanced datasets will
result in an overoptimism problem [22], [2]. The overoptimism
occurs when CV is performed after oversampling. Suppose
we first obtain a balanced dataset through oversampling ap-
proaches, then perform cross-validation. In this way, since
the synthetic samples share similar patterns with the original
sample, samples with similar patterns may appear in both
training and test set, which will lead to the overoptimism
problem [2]. In order to avoid this problem in our experiment,
5-fold stratified CV is first implemented on the dataset and
only the training set is oversampled.

C. Design of the Experiments

As mentioned in Section I, we experiment with six im-
balanced datasets, two algorithms and four resampling tech-
niques. Thus, in our experiment, we have 6-2-5 = 60 settings
tested on each data set, with 6 scenarios, 2 classifiers, and 5
resampling approaches (including none).

The hyperparameter optimisation for classification algo-
rithm is done through HyperOpt. Hyperparameters in resam-
pling approaches includes the number of neighbors, imbalance
ratio after resampling and etc. In our experiment, hyperparam-
eter optimisation for resampling approaches is done through
grid search. Whenever we optimise hyperparameters with
“HyperOpt”, the AUC loss (1-AUC) is set as the objective



TABLE IV
EXPERIMENTAL RESULTS (AUC) FOR TWO CLASSIFICATION ALGORITHMS REGARDING SIX SCENARIOS.
THE GREY SHADE AND NO SHADE INDICATE THE EXPERIMENTAL RESULTS FOR SVM AND RANDOMFOREST RESPECTIVELY.
P-VALUES INDICATE THE STATISTICAL EVIDENCE OF T-TESTS BETWEEN EXPERIMENTAL RESULTS OF SCENARIO (A, + Ro) AND (Ag + Ry).
DATASET WITH * INDICATES THE RESULTS OF SCENARIO (A, + R,) IS SIGNIFICANTLY HIGHER THAN RESULTS OF SCENARIO (A4 + Ryg).

Resampling Approaches (SVM vs. RandomForest)

Scenarios ~ Dataset NONE SMOTE ADASYN SMOTETL SMOTEENN
Aq+ Rn 0.6753  0.8301 — — — — — — — —
Ao+ Rn 0.8309  0.8345 — — — — — — — —
Aq+ Rg — 0.7165 0.8401 0.7253 0.8456 0.7416 0.8420 0.7484 0.8126
Ao+ Ry glassl™® — — 0.8360 0.8537 0.8390 0.8527 0.8423 0.8479 0.8435 0.8278
Aq+ R, — — 0.7322 0.8599 0.7370 0.8498 0.7437 0.8463 0.7518 0.8216
Ao+ Ro — — 0.8508 0.8649 0.8592 0.8631 0.8659 0.8527 0.8673 0.8379
p-value — — < 0.05 0.00600 <«0.05 00133 <0.05 0.0022 <0.05 0.0100
Aq+ Rn 0.9768  0.9884 — — — — — — — —
Ao+ Rn 0.9848  0.9892 — — — — — — — —
Aq+ Ry — — 0.9749 0.9862 0.9727 0.9849 0.9768 0.9880 0.9761 0.9870
Ao+ Rg  glass6 — — 0.9807 0.9893 0.9787 0.9877 0.9832 0.9886 0.9840 0.9883
Ad+ Ro — — 0.9796 0.9888 0.9744 0.9870 0.9805 0.9896 0.9795 0.9905
Ao+ Ro — — 0.9850 0.9897 0.9833 0.9883 0.9861 0.9917 0.9857 0.9910
p-value — — 0.0693 0.1633 0.1819 0.1166 0.3067 0.1513 0.0603 0.1279
Aq+ Rn 0.9688  0.9624 — — — — — — — —
Ao+ Rn 09712 0.9700 — — — — — — — —
Aq+ Ry — — 0.9642 0.9662 0.9601 0.9670 0.9659 0.9653 0.9649 0.9693
Ao+ Rg  yeast3 — — 0.9663 0.9731 0.9655 0.9727 0.9701 0.9669 0.9689 0.9743
Aqg+ R, = — 0.9671 0.9693 0.9628 0.9696 0.9684 0.9705 0.9668 0.9722
Ao+ R, — — 0.9704 0.9759 0.9683 0.9756 0.9733 0.9742 0.9716 0.9787
p-value — — 0.3890 0.1529 0.1256 0.0567 0.6166 0.0585 0.2084 0.0573
Aqg+ Rn 0.8479  0.9211 — — — — — — — —
Ao+ Rn 0.8739  0.9389 — — — — — — — —
Ag+ Rq — — 0.9025 0.9165 0.8998 0.9123 0.9019 0.9257 0.9079 0.9237
Ao+ Rg  yeastd* — — 0.9132 0.9300 0.9076 0.9293 0.9089 0.9312 0.9093 0.9327
Aq+ Ro — — 0.9098 0.9345 0.9059 0.9319 0.9102 0.9327 0.9122 0.9291
Ao+ Ro — — 0.9178 0.9393 0.9105 0.9346 0.9147 0.9389 0.9201 0.9364
p-value — — < 0.05 0.0075 0.0133 0.0013 0.0061 0.0036 0.0385 0.0355
Aq+ R 0.9540  0.9359 — — — — — — — —
Ao+ Rn 0.9551  0.9535 — — — — — — — —
Ag+ Rg — — 0.9528 0.9310 0.9505 0.9303 0.9508 0.9300 0.9514 0.9329
Ao+ Rgq  ecoli3 — — 0.9559 0.9338 0.9519 0.9395 0.9549 0.9384 0.9529 0.9385
Aq+ R, — — 0.9562 0.9419 0.9528 0.9396 0.9569 0.9417 0.9571 0.9416
Ao+ Ro — — 0.9581 0.9432 0.9543 0.9407 0.9573 0.9444 0.9598 0.9450
p-value — — 0.4507 0.1337 0.3408 0.1532 0.4436 0.0773 0.3596 0.0575
Aq+ Rn 0.7373  0.7239 — — — — — — — —
Ao+ Ry 0.7687  0.8077 — — — — — — — —
Aq+ Rg — — 0.8051 0.7934 0.8053 0.7971 0.8051 0.7946 0.8060 0.8034
Ao, + R;  abalonel9* — 0.8478 0.8328 0.8484 0.8347 0.8473 0.8331 0.8496 0.8395
Aq+ R, — — 0.8088 0.8095 0.8097 0.8023 0.8089 0.8077 0.8108 0.8090
Ao + Ro = — 0.8494 0.8389 0.8503 0.8402 0.8488 0.8391 0.8511 0.8414
p-value — — <005 <005 <005 <005 <005 <005 <005 <«0.05

function to minimise and the number of iterations is set to
500. For each experiment, we repeated 30 times with different
random seeds. After that, the paired t-tests were performed on
each 30 AUC values to test if there is significant difference
between the results of each scenario on a 5% significance level.

V. RESULTS AND DISCUSSION

The experimental results are presented in Table IV to
investigate the importance of hyperparameter optimisation for
imbalanced datasets. For all the six datasets in our experiment,
we observe that optimising the hyperparameters for both clas-
sifiers and resampling approaches gives the best performance.

The statistical hypothesis tests mentioned in Section IV-C are
performed on the AUC values of scenario (A4 + Ry) and
(A, + R,). The test results indicate that there is enough
statistical evidence showing the performance improvements
are significant for datasets “glass1”, “yeast4” and “abalone19”.
In other words, applying the hyperparameter optimisation
does not bring significant improvement for datasets “glass6”,
“yeast3” and “ecoli3”. Our experimental results demonstrate
that significant improvement can be achieved by performing
hyperparameter optimisation for datasets with high F} values.
That is to say, hyperparameter optimisation works efficiently



for datasets with low overlap between classes.

Furthermore, comparing the AUC values of scenario (A4 +
R,) and (Ay + Ry), for datasets “glass6”, “yeast3” and
“ecoli3, resampling techniques does not improve the classifi-
cation performance. Thus, we can conclude that oversampling
techniques are not effective for datasets with high overlap.
The generated synthetic samples might bring additional noise
and make the class overlap even higher. Another point worth
mentioning is that, compared to datasets with high overlap, we
expected the classification algorithms would perform better
on datasets with low overlap. However, the experimental
results are contrary to our presupposition. This is because the
complexity of a classification problem is not only determined
by the overlap between classes but also related to other types
of complexity, such as linearity measures.

In the end, we can also observe that there is no specific
combination of classifiers and resampling techniques that can
provide the best performance for all datasets. For a given
dataset, the best combination of classifiers and resampling
approaches might depend on the data complexity itself.

VI. CONCLUSIONS AND FUTURE WORK

In this work we considered six scenarios of hyperparameter
optimisation for classification algorithms and resampling ap-
proaches. Two main conclusions can be derived according to
our experimental results:

1). In our experiment, the results of scenario (A, + R,)
outperform the other five scenarios. Especially for im-
balanced datasets with low class overlap, applying hyper-
parameter optimisation for both classification algorithms
and resampling approaches can significantly improve the
performance. Nevertheless, the time consumption caused
by hyperparameter optimisation is not negligible. For ex-
ample, according to our experimental design, for “glass1”
dataset, the time cost of one experiment in scenario
(Ag + Ry) and (A, + R,) are respectively 0.0625s and
239.3476s. Therefore, we recommend studying the data
complexity and considering the trade-off between time
cost and potential improvement before optimising the
hyperparameters.

2). Based on our experimental results, we find oversampling
techniques does not give performance improvement for
imbalanced datasets with high class overlap. This further
emphasizes the importance of learning the data complexity
before dealing with the imbalanced datasets.

In future work, more data complexity measures will be
considered in order to study the relation between hyperparam-
eter optimisation and data complexity in detail. Additionally,
more attention should be put on developing techniques which
can efficiently handle complex imbalanced datasets. Finally,
we observe the best choice of classifiers and oversampling
techniques depends on the dataset itself. Therefore, another
study worth exploring would be to produce a semi-automatic
approach which can help choosing the best combination of
resampling approaches, machine learning algorithms and hy-
perparameter optimisation strategies.
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