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Chapter 1

Introduction

In recent years, the number of scientific publications has been rapidly growing. The same

research question is often addressed by multiple independent studies, and tools are needed

to synthesize and summarize the research findings on the same topic. Meta-analysis has

been an increasingly popular and valuable tool to evaluate the evidence in areas as diverse

as social and behavioral sciences, medicine, biology, economics and marketing, among

others. The primary goal of a meta-analysis is to estimate a quantitative indicator of the

strength of evidence (i.e., effect size) and the consistency of the evidence. To synthesize the

research findings from multiple studies, meta-analysis combines the effect sizes computed

in each separate study, and computes a weighted mean of the study effect sizes as a

representative (called an overall effect size) for all studies. In practice, heterogeneity

often exists in the study effect sizes due to the variations, for example, in the sample

characteristics, the implementations of the experiments or treatments, the measurement

points, and other factors that may influence the study outcomes. Heterogeneity may lead

to contradictory conclusions, and makes it misleading to summarize all the study results

by only one overall effect size. In such cases, searching for the factors that account for the

heterogeneity in study effect sizes can be of high interest. So-called moderator analysis is

used to assess the contribution of the study-level factors on the heterogeneity.

Over the past decades, moderator analysis has focused on using regression, called

“meta-regression”, to understand the relationship between the effect size and moderators.

However, when multiple potential moderators are available, meta-regression has several

limitations. First, in the case of a large number of potential moderators, meta-regression

analysis has limited power to simultaneously investigate their influence. Second, meta-

regression requires the potential moderators and their interaction effects to be specified

beforehand, and usually it is difficult to include all possible interaction effects in one

model. Thus, interactions between moderators are seldom investigated in meta-analytic

studies. The knowledge of interaction effects, however, can provide valuable information

to understand whether the moderators amplify or attenuate each other’s influence on the

effect size. Moreover, such knowledge can be essential if the study is aiming at identifying
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the optimal intervention for specific subpopulations or the intervention with the most

effective combination of treatment components.

To overcome the aforementioned limitations, we propose using tree-based methods

in the framework of meta-analysis to explore the influence of moderators and examine

the interaction effects between them. Tree-based methods were introduced for the first

time by Morgan and Sonquist (1963) in a method called automatic interaction detection

(AID), and fully developed in classification and regression trees (CART) by Breiman,

Friedman, Stone, and Olshen (1984). Tree-based methods have the advantage of dealing

with interactions and handling non-linear relationships, and produce analysis results that

can be easily interpreted. In many fields, trees are popular approaches in single study

settings. But the application of tree-based methods in the framework of meta-analysis has

seldom been studied. In addition, to date, the field of meta-analysis has primarily focused

on confirmatory analyses, and methods development in explanatory analyses aiming at

explaining heterogeneity has been quite limited (Tipton, Pustejovsky, & Ahmadi, 2018).

Therefore, in this thesis a tree-based method, called meta-CART, is introduced for

investigating moderator effects in meta-analysis and the interactions among them. The

idea of meta-CART was originally proposed by Dusseldorp, van Genugten, van Buuren,

Verheijden, and van Empelen (2014). The researchers apply a two-step procedure by

first using classification and regression trees (CART) to identify interactions, and then

performing subgroup meta-analysis to test the significance of moderator effects. From

the original study, several issues arose. First, the study only considered one application,

and no simulation study was performed. Second, it used a classification tree in the first

step of the analysis by dichotomizing the study effect sizes by their median. Hence, it

is interesting to investigate whether using a regression tree will have better performance

than using a classification tree. Third, the studies were not weighted by their accura-

cies. This thesis addresses these issues by further developing the meta-CART method

and performing extensive simulation studies to examine the performance of the proposed

new implementations. An important aim of these simulation studies is to find the condi-

tions under which meta-CART can achieve satisfactory performance. Further aims are to

compare the performance of different implementations and to recommend guidelines for

practice.

The outline of this thesis is as follows. In Chapter 2, new meta-CART extensions are

proposed by using a regression tree to avoid dichotomization, by weighting study effect

sizes with their accuracy, and applying different pruning rules. The performance of these

extensions is evaluated via an extensive Monte Carlo simulation study on dichotomous

moderator variables. The factors that may influence the performance of meta-CART are

investigated.

In Chapter 3, new algorithms are proposed for meta-CART by integrating the two

steps of the approach into one step and by consistently taking into account the fixed-
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effect or random-effects assumption in both the tree-growing and the subgroup analysis

processes. For fixed effect meta-CART, weights are applied, and the subgroup analysis

is adapted. For random effects meta-CART, a new algorithm has been developed. The

performance of this new version of meta-CART is investigated via an extensive simulation

study on different types of moderator variables (i.e., dichotomous, nominal, ordinal, and

continuous variables).

Chapter 4 introduces the R-package metacart that provides user-friendly functions

to conduct meta-CART analyses in R. The core features of metacart are described, and

the application of this package is illustrated with diverse examples.

In Chapter 5, meta-CART is applied to a real-world data set to explore the interactions

among moderators. This meta-analytic study explores the influence of behavior change

techniques (BCTs) and the context or delivery components on the effectiveness of healthy

eating, physical activity and smoking interventions for low-income groups.

In Chapter 6, the meta-CART method of Chapter 3 is further extended in four aspects:

for the tree-growing process, a smooth sigmoid surrogate (SSS) strategy and a look-ahead

strategy are proposed to alleviate the local optimum problem and speed up the splitting

procedure. For the statistical inference in the identified subgroups, a permutation test is

used to appropriately assess the statistical significance of the heterogeneity between iden-

tified subgroups. Finally, a bootstrap procedure is proposed to correct the over-optimism

in the confidence intervals of the estimated subgroup effect sizes. The performance of

the proposed new approaches is evaluated via a simulation study. And the application is

illustrated with a real-world data.

In the epilogue, the main results presented in this thesis are summarized. Also, the

limitations of my work are discussed and suggestions for future research are made.

Publications

Chapters 2-6 are based on published or submitted papers. Hence, they can be read

separately. Here follows a list of the papers.

• Chapter 2: Li, X., Dusseldorp, E., & Meulman, J. J. (2017). Meta-CART: A tool

to identify interactions between moderators in meta-analysis. British Journal of

Mathematical and Statistical Psychology, 70(1), 118-136.

• Chapter 3: Li, X., Dusseldorp, E., & Meulman, J. J. (2019). A flexible approach to

identify interaction effects between moderators in meta-analysis. Research Synthesis

Methods, 10(1), 134-152.

• Chapter 4: Li, X., Dusseldorp, E., Su, X., & Meulman, J.J. (in press), “Multivariate

moderator meta-analysis with the R-package metacart”.Behavior Research Methods
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• Chapter 5: Bull, E. R., McCleary, N., Li, X., Dombrowski, S. U., Dusseldorp, E.,

& Johnston, M. (2018). Interventions to promote healthy eating, physical activity

and smoking in low-income groups: a systematic review with meta-analysis of be-

havior change techniques and delivery/context. International Journal of Behavioral

Medicine, 1-12.

• Chapter 6: Li, X., Dusseldorp, E., Su, X., & Meulman, J.J. (submitted), Advanced

tree-based subgroup identification in meta-analysis.
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Chapter 2

Meta-CART: A tool to identify

interactions between moderators in

meta-analysis

abstract

In the framework of meta-analysis, moderator analysis is usually performed only univari-

ately. When several study characteristics are available that may account for treatment

effect, standard meta-regression has difficulties in identifying interactions between them.

To overcome this problem, meta-CART has been proposed: an approach that performs

Classification and Regression Trees (CART) to identify interactions, and then subgroup

meta-analysis to test the significance of moderator effects. The previous version of meta-

CART has its shortcomings: when applying CART, the sample sizes of studies are not

taken into account, and the effect sizes are dichotomized around the median value. There-

fore, this article proposes new meta-CART extensions, with weighting study effect sizes

by their accuracy, and with performing a regression tree to avoid dichotomization. In

addition, new pruning rules are proposed. The performance of all versions of meta-CART

was evaluated via a Monte Carlo simulation study. The simulation results revealed that

meta-regression trees with random-effects weights and half a standard-error pruning rule

have the best performance. The required sample size for meta-CART to achieve satisfac-

tory performance depends on the number of study characteristics, the magnitude of the

interactions, and the residual heterogeneity.
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2.1 Introduction

In psychology and medicine, meta-analysis is a powerful tool to quantitatively integrate

findings from multiple studies in a systematic way. The effect size is usually chosen as

the standard representative of the study results. By combining the effect sizes, meta-

analysis computes a weighted mean of the study effect sizes as a representative (called a

summary effect size) for all studies. However, in case of substantial heterogeneity between

the studies, the summary effect size is not a good representative for all studies. In such

cases, it is important to identify possible causes of the heterogeneity (Normand, 1999;

Thompson, 1994; Thompson & Sharp, 1999). The search for study characteristics (e.g.,

quality of the design) that might account for effect size heterogeneity is called moderator

analysis and such study characteristics are called “moderators”. The most popular types

of moderator analyses are subgroup meta-analysis (for a categorical moderator) and meta-

regression (for a continuous one).

In most meta-analytic studies only univariate moderator analysis is performed (e.g.,

Huisman, De Gucht, Dusseldorp, & Maes, 2009). A plausible reason for this is that

popular meta-analysis programs do not allow to include multiple moderators into one

analysis (e.g., Comprehensive Meta-Analysis; Borenstein, Hedges, Higgins, & Rothstein,

2009). However, some recently developed programs allow for meta-regression with multi-

ple moderators (e.g., the R-package metafor; Viechtbauer, 2010).

Besides the need of including multiple moderator variables into one analysis, recent

meta-analyses emphasize the need to model interaction effects between moderators. When

interventions consist of several components, the researcher might be interested not only in

a research question such as “Are the interventions generally effective?” but also in “Which

combinations of components have the greatest probability of being most effective?” (Wel-

ton, Caldwell, Adamopoulos, & Vedhara, 2009). For example, in a meta-analysis on the

influence of behaviour change techniques (BCTs) on the effect of physical activity and

healthy eating interventions, the authors discussed that the data strongly suggest that

inclusion of a specific BCT (i.e., self-monitoring) in combination with other BCTs (e.g.,

self-regulation techniques) is likely to enhance the effectiveness of interventions. (Michie,

Abraham, Whittington, McAteer, & Gupta, 2009). When a priori hypotheses exist, stan-

dard meta-regression can be used to investigate interaction effects. However, interaction

effects between moderators are seldom investigated in meta-analysis. One possible rea-

son is the lack of theory and previous findings on possible interaction effects. When no

a priori hypotheses exist, the nature of the study is usually exploratory. In such cases,

standard meta-regression often lacks enough power for interaction detection between mul-

tiple moderators. Furthermore, it is difficult for standard meta-regression to investigate

higher-order interaction effects. For example, in a meta-analysis of 50 studies with 10

study characteristics that might account for the heterogeneity (i.e., potential modera-
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tors), there are
(
10
2

)
, that is, 45, possible two-way interaction terms and

(
10
3

)
, that is,

120, possible three-way interaction terms. In such cases, it is not possible for a standard

meta-regression to include all the interaction terms simultaneously.

Recently, a new approach called meta-CART was proposed to overcome these difficul-

ties (Dusseldorp et al., 2014). In a situation with many available study characteristics,

meta-CART searches for those combinations of characteristics that might account for

effect size heterogeneity. The method is a combination of Classification and Regression

Trees (CART; Breiman et al., 1984) and subgroup meta-analysis. In the first step of meta-

CART, a tree is fitted by CART using the study effect sizes as response variable, and the

study characteristics as predictor variables. In the second step, the terminal nodes of the

tree are used to create a new subgroup variable (with categories referring to the labels of

the leaves in which the studies were assigned to by CART) and a standard subgroup meta-

analysis is performed using the new subgrouping variable as moderator. Initial results of

meta-CART were promising from a substantial point of view (Dusseldorp et al., 2014),

that is, the results could be easily interpreted and were meaningful. Also, the potential of

the approach has been acknowledged (Michie, Johnson, & Johnston, 2015; O’Brien et al.,

2015). However, the recovery performance of meta-CART has not been investigated yet.

Furthermore, the previous version of meta-CART has several shortcomings: (a) it uses a

classification tree in the first step of the analysis. To obtain a distinction between more

successful and less successful interventions, the study effect sizes are dichotomized, which

implies loss of information (Hunter & Schmidt, 1990); (b) The sample sizes of studies

are not taken into account when applying CART, which means that CART ignores the

accuracy of the effect-size estimates.

In this paper, the first goal is to address possible solutions to overcome these shortcom-

ings, by omitting the dichotomization of the response variable, and by weighting study

effect sizes by their estimate accuracy. In addition, new pruning rules are proposed to

improve the performance of meta-CART. The proposed methodology results in two types

of trees (i.e., meta-classification trees and meta-regression trees), and several options of

weights and pruning rules for each type of tree. The second goal of this paper is to com-

pare the performance of all the options for meta-classification trees and meta-regression

trees, and, if possible, choose the best options for each type of tree. In addition, the

conditions for each type of tree to achieve satisfactory performance are explored. In this

paper, we focus on the interaction effects between dichotomous study characteristics (e.g.,

BCTs).The outline of this paper is as follows. First, we introduce meta-analysis, CART

and meta-CART. Next, we describe the proposed extensions of meta-CART. We then

evaluate and compare the performance of all the options for meta-classification trees and

also for meta-regression trees in an extensive simulation study. Depending on the results

of the extensive simulation study, the best options for each type of tree will be selected.

Finally, we summarize and discuss the results.
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2.2 Meta-analysis

The main purpose of meta-analysis can be summarized in three objectives: (a) to syn-

thesize the results of the studies; (b) to assess the heterogeneity in the studies, and (c)

to search for moderators that can explain the heterogeneity (Sánchez-Meca & Maŕın-

Mart́ınez, 1998). Depending on the type of studies, a variety of different effect size

measures can be used for a meta-analysis, including odds ratio, relative risk, correla-

tion coefficient, and (standardized) mean difference. In this paper, we focus on studies

that compare treatment and control groups with respect to some continuous response

variable, and Hedges’ g (Hedges, 1981) is used as the measure of effect size. Several tests

can be employed to determine whether heterogeneity exists in the effect sizes, of which

the Q-test is the most frequently used test. The formulas concerning effect size and the

Q-statistic can be found in Appendix A.

2.2.1 Meta-regression and subgroup meta-analysis

Meta-regression investigates whether particular study characteristics explain any of the

heterogeneity between studies. It can be performed under the fixed effects or the random

effects model. Fixed effects meta-regression assumes that the influential study character-

istics (i.e., moderators) explain all the heterogeneity between studies. Denote the true

effect size in the kth study by δk, and denote the observed effect size in the kth study by

gk. Under the fixed effects assumption, the observed effect size is given by

gk = δk + εk = β0 + β1x1k + β2x2k + ...+ βMxMk + εk, (2.1)

where xmk(m = 1, ...,M) specify the study characteristics of the kth study, and the βs

are the corresponding regression coefficients. The sampling error εk is assumed to be

distributed as N (0, σ2
εk

), where σ2
εk

is the sampling variance.

Random effects meta-regression allows for heterogeneity unexplained by moderators.

In a random effects model, there are two sources to account for the total variance of δk:

the variability introduced by the moderators in the model, and the additional variability

introduced by other unmeasured factors. Such additional variability is called “residual

heterogeneity” (Viechtbauer, 2007a), which will be denoted by σ2
τ . Under the random

effects assumption gk is given by

gk = δk + εk = β0 + β1x1k + β2x2k + ...+ βMxMk + τk + εk, (2.2)

where τk is distributed as N (0, σ2
τ ), and it reflects that the true effect size may vary from

study to study.
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Subgroup meta-analysis assesses the relationship between subgroup membership and

effect size, and is similar to meta-regression with one categorical study characteristic.

In subgroup meta-analysis, we consider two types of models, depending on the within-

subgroup and between-subgroups assumptions. The first one is the fixed effects model,

which assumes fixed effects within subgroups and also across subgroups. This means

that the difference in effect sizes between subgroups can be explained by the subgroup

membership, and within each subgroup the studies share a common effect size. The second

one is the mixed effects model, which is generally advocated in subgroup meta-analysis

(Borenstein et al., 2009; Viechtbauer, 2010). The mixed effects model assumes a random

effects model within subgroups and a fixed effects model across subgroups. In such a

model, the difference in effect sizes between subgroups are all explained by the subgroup

membership, and within each subgroup the model allows heterogeneity between studies.

The details concerning the heterogeneity test in mixed effects models can be found in

Appendix A.2.

2.3 CART

2.3.1 Building the tree

CART is a recursive partitioning method that was proposed by Breiman, Friedman, Stone,

and Olshen (1984). The method can be used for modeling the relationships between pre-

dictor variables and a categorical response variable by a classification tree or a continuous

response variable by a regression tree. For classification trees, trees are built by finding

the split on a predictor variable that best discriminates between different classes of the

response variable. This “best discriminates” is defined in terms of a partitioning criterion

called the impurity function. For regression trees, the partitioning criterion is defined

as the split that minimizes the squared difference between the observed and predicted

values of the response variable. For a useful introduction into CART we refer to Merkle

and Shaffer (2011) and more details concerning the partitioning criteria can be found in

Appendix A.3.

2.3.2 Pruning the tree

To prevent overfitting, a recommended strategy is to first grow an initial tree by continuing

the splitting process until all terminal nodes are either small (e.g., containing only one

or two subjects, that is, one or two studies in our case) or with zero impurity. Then the

initial tree is reduced to a final tree of smaller size by “pruning” the non-influential splits

(Breiman et al., 1984).

In most applications, cross-validation is the preferred method to estimate the misclas-

sification rate or sum-of-squared error. In this way, overfitting can be prevented and the
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best size of the tree can be selected. Sometimes, the minimum cross-validation rule is

used, by which the tree with the minimum cross-validation error is selected as the final

tree. But the minimum cross-validation error may be unstable due to the uncertainty

of its estimate. Therefore, Breiman et al. (1984) suggested using the one-standard-error

rule to reduce the instability, which selects the smallest tree whose cross-validation error

is within the minimum cross-validation error plus one standard error. To generalize the

pruning rules, a pruning parameter c can be introduced to select the pruned tree by us-

ing the c·SE rule (Dusseldorp, Conversano, & Van Os, 2010). The c·SE rule selects the

smallest tree whose cross-validation error is within the minimum cross-validation error

plus the standard error multiplied by c. The one-standard-error rule and the minimum

cross-validation error rule can be regarded as special cases of the c·SE rule when c = 1

and c = 0, respectively.

2.4 Meta-CART

2.4.1 Previous version of meta-CART

The previous version of meta-CART as proposed in Dusseldorp et al. (2014) is a two-step

procedure. In the first step, a classification tree is fitted to detect interaction effects be-

tween multiple moderators using the dichotomized effect sizes as response variable. For

an example of such a tree, we show a result from Dusseldorp et al. (2014) (see Figure 2.1).

The aim of this study was to identify particular combinations of behaviour change tech-

niques (BCTs) that explain intervention success (defined as an effect size higher than the

overall effect size of all studies). The tree in Figure 2.1 represents an interaction between

the BCTs “prompt intention formation” and “provide information about behaviour-health

link”. According to the classification tree, when the two BCTs are both included in the

intervention, the percentage of more successful interventions is higher (77%) than inter-

ventions that include only one or none of the two BCTs (41% and 36%, respectively).

In the second step, a standard subgroup meta-analysis is performed to investigate whether

the subgroup membership obtained from the pruned tree accounts for the heterogeneity

between the studies. If the pruned tree obtained by the first step has two or more terminal

Table 2.1: Results of Subgroup Analysis Using a Mixed Effects Model

Group # interv. ḡ 95% CI Q(df) p value
Grouping variable of tree
Group 1 33 0.26 0.16,0.35
Group 2 51 0.24 0.18,0.29
Group 3 22 0.46 0.39,0.59

25.2(2) <0.001
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Figure 2.1: Classification tree for the studies that use at least one of the motivation-
enhancing techniques from this category. Plots in the end nodes display the percentage
of interventions that were more successful (i.e., an effect size higher than 0.31). T1 and
T4 refer to Techniques 1 and 4 from the motivation-enhancing techniques category.
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nodes, and the subgroup meta-analysis indicates significance between subgroups hetero-

geneity, meta-CART indicates the presence of (a) moderator effect(s). For example, the

tree in Figure 2.1 results in three subgroups defined by the terminal nodes of the tree

(rectangles). Consequently, one new variable was added, with three categories referring

to these three terminal nodes. A subgroup meta-analysis was employed to test the signif-

icance of the new subgroup variable (see Table 2.1). As a result, the between subgroups

Q-statistic indicates that the difference between these subgroups in mean effect sizes

was highly significant. Interventions that included both “Prompt intention formation”

and “Provide information” about behaviour-health link were, on average, more effective

(ḡ = 0.46) than the other two groups of interventions (ḡ = 0.24 or ḡ = 0.26).

2.4.2 The extensions of meta-CART

As mentioned before, the previous version of meta-CART has two shortcomings: (a) the

dichotomization of the effect sizes, and (b) the ignorance of the difference in accuracy of

the effect sizes. In addition, the previous version uses the “one-standard-error” rule (see

section 2.3.2) to prune the classification tree, and the performance of the pruning rule in

meta-CART has not been investigated yet.

Regarding these shortcomings, we propose the following extensions that might improve

the performance of meta-CART. First, the original numeric values of effect sizes can be

used as the response variable to fit a regression tree, instead of fitting a classification tree.

As a result, there can be two types of trees: meta-regression trees and meta-classification

trees.

Second, weights can be assigned to the studies when applying CART. There are several

possible types of weights depending on the assumption for the residual heterogeneity (the

fixed effects or random effects model). Under the fixed effects assumption, the weight for

each study can be computed as

wk =
1

σ̂2
εk

/
K∑
k=1

1

σ̂2
εk

. (2.3)

The fixed effects weights do not take into account the residual heterogeneity. The weights

under the random effects assumption are given by: (Cohen, 1988)

wk =
1

σ̂2
εk

+ σ̂2
τ

/

K∑
k=1

1

σ̂2
εk

+ σ̂2
τ

. (2.4)

In total, there can be three types of weights for meta-CART: (a) all weights equal to

1, which is equivalent to applying no weights, (b) fixed effects weights, and (c) random

effects weights. For convenience, these three types of weights will be denoted by W0, W1
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and W2, respectively.

Third, the c·SE pruning rules (see section 2.3.2) can be employed in the partitioning

procedure of meta-CART. The pruning rule may influence the detection rate of interaction

effects. A pruning rule with a small value of c might be too liberal: the pruned tree

obtained by CART appears to be too large, implying too many interaction terms. On the

other hand, a pruning rule with a large value of c might be too conservative: the pruned

tree is too small, resulting in too few or even no interaction terms. In order to find the

optimal pruning rule for meta-CART, three values of c were chosen as 0, 0.5, 1.0.

Considering all the options, there are three options for the weights, and three options

for the pruning rules. As a result, 3× 3 = 9 possible options were proposed for each type

of tree (meta-regression tree and meta-classification tree).

2.5 Simulation

2.5.1 Motivation

In the simulation study, we were interested in two questions: (a) which options of meta-

CART generally have the best performance for each type of tree, and (b) given the best

options, which conditions are influencing the performance of each type of tree? The

conditions included observable features of meta-analytic data sets, such as the number of

studies, the within-study sample sizes, and the number of study characteristics, as well as

unobservable structures and parameters underlying the data, such as the complexity of the

interaction effects, the magnitude of the interaction effect, and the residual heterogeneity.

The recovery performance of meta-CART was measured by the ability of successfully

retrieving the true models underlying the data. Five tree structures were designed with

increasing complexity as the underlying true model to generate data sets (see Figure

2.2). Model A was created to assess the probability that meta-CART falsely detects (a)

moderator effect(s) when there is no moderator in the true model (Type I error). Model

B was created to evaluate the ability of meta-CART to detect the main effect of a single

moderator. Models C, D and E were created to evaluate the ability of meta-CART to

correctly detect the interaction effects between moderators when interaction effects are

present in the true model. In models C, D and E, the interventions are effective only

in studies with certain combination(s) of study characteristics. For example, in model C

the interventions are effective only when study characteristics x1 and x2 are both present.

The studies are thereby split on moderators into subgroups. The average effect size in the

ineffective subgroups was fixed to be 0. The average effect size in the effective subgroups

was made a design factor and denoted by δI .
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Figure 2.2: Simulated data sets were generated from five true tree structures: (a) to (e).
These tree structures represents a true model including: no moderator effect (model A);
only main effect of one moderator (model B); one two-way interaction (model C); two
two-way interactions (model D); and one three-way interaction (model E), respectively.
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2.5.2 Design factors

Inspired by previous simulation studies by Viechtbauer (2007b) and Higgins and Thomp-

son (2004), the influence on recovery performance of five design factors was examined: (a)

the number of studies (K); (b) the average within-study sample size (n̄); (c) the residual

heterogeneity (σ2
τ ); (d) the number of study-level covariates (M), and (e) the magnitude

of the interaction effect (δI). For each true model with each combination of the design

factors, 1000 datasets were generated and analyzed using each of the options for each type

of tree, implying 9× 2 versions of meta-CART.

In a pilot simulation study, it was found that all versions of meta-CART applied to

data sets with K = 20 studies result in poor power rates (≤ 0.30). Therefore, K = 20

was not included in our final simulation. Instead, three values of K were chosen: 40, 80,

120.

By adjusting the value of the within-study sample size nk, the amount of sampling

error σ2
εk

can be manipulated. We used the same method as in Viechtbauer (2007b) to

generate nk, by which the values of nk were sampled from a normal distribution with

mean n̄ and standard deviation n̄/3. Three levels of the average within-study sample size

n̄ were chosen as 40, 80, 160. The resulting nk ranged roughly between 15 and 420, which

are values encountered in practice.

When searching for the combinations of covariates (e.g., BCTs) that result in the

most effective interventions, the covariates are usually coded as binary variables, that

is, 0 for “not included”, and 1 for “included”. Therefore, in the simulation study we

focused on the detection of interaction effects between binary moderators. To assess how

many covariates (i.e., potential moderators) meta-CART can deal with to successfully

identify the true moderators and the interaction effect(s) between them, three values of

the number of covariates M were chosen: 5, 10, 20.

Unfortunately, the values of residual heterogeneity are barely reported in the literature

on meta-analysis. In a very few papers that reported values of residual heterogeneity, στ

ranges are between 0 and 0.05 (Dusseldorp et al., 2014; Viechtbauer, 2007a). Thus, the

values of σ2
τ were chosen as 0, 0.025, 0.05.

The magnitude of the interaction effect was measured by the average effect size of the

studies in the effective subgroups δI . The pilot simulation study showed that all versions

of meta-CART failed to achieve enough power (≤ 0.70) to detect a small interaction effect

with δI = 0.2. Therefore, two values of δI were chosen as 0.5 and 0.8, corresponding to a

medium and a large effect size, respectively (Cohen, 1988).

2.5.3 Monte Carlo Simulation

Artificial data sets were generated from each true model with each combination of the

design factors. As mentioned before, in each cell of the design, 1000 meta-analytic data
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sets were generated. Each meta-analytic data set consists of two subsets of the same size:

a training data set for fitting the model, and a test data set for estimating the prediction

error.

Within each data set, binary study characteristics were generated independently from

a Bernoulli distribution with a probability of 0.50. For a single study, the true effect

size δk was sampled from a normal distribution with mean ∆ and variance σ2
τ , where ∆

is the average population effect size. The value of ∆ depends on the moderators and

the corresponding true model. Then the observed effect size gk was sampled from a

non-central t-distribution (see Appendix A).

The 9 × 2 versions of meta-CART were applied to each generated data set. The

interaction effects were investigated in the first step, and the significance was tested by

the between subgroups Q-statistic with α = 0.05 in the second step on the same data set.

2.5.4 The evaluation criteria for success

Three criteria are employed to judge whether meta-CART successfully retrieved the true

model underlying the data:

Criterion 1. Meta-CART correctly detects the presence of moderator effect(s) in the

data sets generated from model B, C, D or E (power).

Criterion 2. Meta-CART obtains a pruned tree with exactly the same number of termi-

nal nodes as the true structure underlying the data (recovery of tree complexity).

Criterion 3. Meta-CART successfully selects the study characteristics used in the true

model (recovery of moderator(s)).

Each of the three criteria was evaluated and coded with 0 for “not satisfied” and 1 for

“satisfied” for each data set. Subsequently, for each cell of the design, the proportion of

successful (i.e., “satisfied” ) solutions was computed per criterion.

2.6 Results

2.6.1 The best options on average

The first goal of the simulation study was to find the best combination of options of

each type of meta-CART that has the best overall performance in most conditions (i.e.,

across different design factors). The performance of meta-CART was evaluated in terms

of the Type I error rates and the three evaluation criteria. Table 2.2 shows the estimated

Type I error rates averaged over all design factors for the 9× 2 versions of meta-CART.

The average Type I error rates of meta-regression trees range from .014 to .118, and the
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standard deviations range from .013 to .029. The averaged Type I error rates of meta-

classification trees range from .347 to .485 and the standard deviations range from .112 to

.189. In general, the Type I error rates mainly depend on the type of tree (meta-regression

trees outperform meta-classification trees) and the pruning rule, but not on the type of

weights.

Tables 2.3, 2.4 and 2.5 show the power rates, the recovery rates of tree complexity, and

the recovery rates of moderators averaged over all design factors for the 9× 2 versions of

meta-CART, respectively. The three criteria were averaged over the models B, C, D and E

since the patterns are similar in these four models. Again, it was found that the variation

of the three criteria mainly depends on the type of the tree and the pruning rule, but not

on the type of weights. In general, meta-classification trees result in higher power rates

than meta-regression trees. But meta-regression trees outperformed meta-classification

trees in terms of the two recovery rates. For meta-regression trees, applying weights W2

result in slightly better performance than applying weightsW0 orW1 in terms of all three

criteria. We chose the best combinations of options based on the Type I error rates

and the three criteria. An average Type I error below .05 was chosen to be acceptable in

order to control for the risk of finding spurious interaction effects. As a result, there is

no good combination of options for meta-classification trees. For meta-regression trees,

applying weightsW2 and a pruning rule with c = 0.5 was chosen as the best combination.

With control of acceptable Type I error rates, this combination of options has the highest

power rates, recovery rates of tree complexity and recovery rates of moderators

2.6.2 The influence of the design factors

The second goal of the simulation study is to evaluate the influence of the design factors

on the Type I error and the three criteria. We focus on the results of meta-regression trees

using only the best combination of options (as defined above). The Type I error rates

and the three criteria were computed separately for each model and each combination of

the design factors. The resulting proportions were subjected to an analysis of variance

(ANOVA) with the five design factors and their interactions as independent variables and

the five-way interaction being used as an error term.

For model A, the ANOVA results reveal that only the number of studies (K) has a

strong influence (partial η2 > 0.80) on the Type I error rates. The Type I error rates

decrease with increasing K (.069, .035, .021 when K = 40, 80, 120, respectively).

For models B, C, D, and E, the ANOVA results reveal that all the design factors and

most of their interactions have strong influence (partial η2 > 0.80) on the three criteria.

Despite some noise, in general, the three criteria are positively related to the number of

studies (K), the average within-study sample size (n̄), and the magnitude of interaction

effects (δI). On the other hand, the three criteria are negatively influenced by the number
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of potential moderators (M) and the residual heterogeneity (σ2
τ ). The plots representing

the three criteria have similar patterns. Because the recovery rates of tree complexity

is the most strict criterion among the three, these plots are represented in Figures 2.3,

2.4 and 2.5 for each cell of the design. The plots representing the power rates and the

recovery rates of moderators can be found in Supporting Materials. Note that the Figures

are ordered from K = 120 to K = 40 (left to right).

When there is only one main effect in the true model (model B), the recovery rates

are satisfactory (≥ .80; not shown) in all cases, except one: it is .75 in the case of a

medium-sized main effect, a small number of studies,a small within-study sample size,

a large number of moderators and large residual heterogeneity (K = 40, n̄ = 40, δI =

0.8,M = 20, σ2
τ = 0.05).

Figure 2.3 represents the recovery rates of tree complexity of meta-regression trees

when there is one two-way interaction in the true model (model C). When K = 120, meta-

regression trees can always achieve a satisfactory recovery rate (≥ .80). When K = 80,

the recovery rates are satisfactory in most cases, with one exception: the recovery rates

to detect a medium-sized interaction effect (δI = 0.5) are between .60 and .80 in cases

of large residual heterogeneity and a large number of study characteristics (σ2
τ = 0.05,

M = 20). When K = 40, the average within-study sample size needs to be large enough

(n̄ ≥ 160) to achieve a satisfactory recovery rate in cases of no residual heterogeneity

(Figure 2.3c). In cases of residual heterogeneity (Figures 2.3f, 2.3i), meta-regression trees

can achieve a satisfactory recovery rate for a medium-sized interaction effect only if the

residual heterogeneity is relatively small (σ2
τ = 0.025), the within-study sample size is

large (n̄ = 160), and the number of moderators is small (M = 5). If the average within-

study sample size is large enough and the number of study characteristics is relatively

small (n̄ ≥ 80, M ≤ 10), the recovery rates are satisfactory for a large-sized interaction

effect (δI = 0.8).

Figure 2.4 represents the recovery rates of tree complexity of meta-regression trees

when there are two two-way interactions in the true model (model D). When K = 120,

meta-regression trees achieve satisfactory recovery rates in most cases, with four excep-

tions: the recovery rates for a medium-sized interaction effect are between .5 and .8 in

the case of residual heterogeneity (σ2
τ ≥ 0.025) and M ≥ 10 (Figure 2.4g). When K = 80,

the picture is more complex. The recovery rates for detection of large-sized interaction

effects are satisfactory. If n̄ ≥ 160, the recovery rate is satisfactory to detect a medium-

sized interaction effect in case of small residual heterogeneity (Figure 2.4e). In case of

large residual heterogeneity (Figure 2.4h) meta-regression trees fail to achieve satisfactory

recovery rates to detect medium-sized interaction effects. When K = 40, meta-regression

trees fail to achieve satisfactory recovery rates.

Figure 2.5 represents the recovery rates of tree complexity of meta-regression trees

when there is one three-way interaction in the true model (model E). When K = 120, the
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recovery rates for a large-sized interaction effect are satisfactory. To achieve a satisfactory

recovery rate for detection of medium-sized interaction effect, the average within-study

sample size needs to be large (n̄ ≥ 160). In addition, the number of study characteristics

also needs to be small (M ≤ 5) in the case of large residual heterogeneity (σ2
τ = 0.05).

When K = 80, n̄ needs to be large enough (≥ 160) to achieve satisfactory recovery rates

in the case of no residual heterogeneity (Figure 2.5b). In cases of residual heterogeneity

(Figures 2.5e, 2.5h), meta-regression trees fail to achieve satisfactory recovery rates for

detection of medium-sized interaction effects. For detection of large-sized interaction

effects, the within-study sample size needs to be large enough (n̄ ≥ 80) for meta-regression

trees to achieve satisfactory recovery rates. In addition, the number of moderators needs

to be small (M ≤ 10) in case of large residual heterogeneity. When K = 40, meta-

regression trees fail to achieve satisfactory recovery rates.
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Figure 2.3: Recovery rates of tree complexity(y-axis) of meta-regression trees for model
C. Separate plots are shown for the number of studies (K), the average within-study
sample size (n, x-axis) and the residual heterogeneity (σ2

τ ). Separate lines are shown for
the combination of the number of moderators (M) and the interaction effect size (δI).
The legends of all plots are shown in plot (a).
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Figure 2.4: Recovery rates of tree complexity (y-axis) of meta-regression trees for model
D. Separate plots are shown for the number of studies (K), the average within-study
sample size (n, x-axis) and the residual heterogeneity (σ2

τ ). Separate lines are shown for
the combination of the number of moderators (M) and the interaction effect size (δI).
The legends of all plots are shown in plot (a).
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Figure 2.5: Recovery rates of tree complexity (y-axis) of meta-regression trees for model
E. Separate plots are shown for the number of studies (K), the average within-study
sample size (n, x-axis) and the residual heterogeneity (σ2

τ ). Separate lines are shown for
the combination of the number of moderators (M) and the interaction effect size (δI).
The legends of all plots are shown in plot (a).
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2.7 Discussion

2.7.1 General discussion

The present study proposed extensions for the meta-CART approach by Dusseldorp et

al. (2014) and investigated the performance of the previous and the extended options

for meta-CART via an extensive simulation study. The previous version of meta-CART

considered meta-classification trees only, whereas in this study meta-regression trees were

also used. Three options were defined for the weights (i.e., applying no weights, fixed

effects weights, or random effects weights), and three options for the pruning rules (i.e.,

c = 0, 0.5 or 1). The first question of the simulation study was directed at finding

the best combinations of options for meta-classification trees and meta-regression trees

separately. The simulation results show that meta-regression trees have the best perfor-

mance on average when applying random effects weights and using a pruning rule with

c = 0.5. Furthermore, no best combination of options could be found on average for

meta-classification trees, because all options failed to control the Type I error rate. The

second question focused on exploring the influence of the design factors on the Type I er-

ror rates, the power rates, the recovery rates of tree complexity, and the recovery rates of

moderators. The results revealed that the performance of meta-regression depends on all

the design factors (i.e., the number of studies, the within-study sample size, the number

of moderators, the magnititude of interaction effect size, and the residual heterogeneity)

and the complexity underlying the data. These results were used to formulate guidelines

for application (see Section 2.7.3).

Meta-CART was proposed to overcome the difficulties of standard meta-regression

to deal with multiple study characteristics and higher-order interactions in exploratory

meta-analytic studies. However, if there are a priori hypotheses about possible inter-

actions between moderators (i.e., in confirmatory studies), the advantage of standard

meta-regression is that the interaction(s) can be specified beforehand and tested. Thus,

meta-regression is the recommended tool for confirmatory meta-analytic studies. On the

other hand, meta-CART is recommended for exploratory studies, especially for studies

with multiple study characteristics and for studies interested in higher-order interactions.

Another difference between meta-CART and meta-regression is the interpretation of

the interaction effects. The interaction effects in meta-CART are presented in a parsi-

monious tree structure. In meta-regression, interaction effects are represented by strictly

additive functions. For example, model D in Figure 2.2 with a medium-sized interaction

effect can be expressed as

δk = 0.5 · x3k + 0.5 · x1kx2k − 0.5 · x1kx3k. (2.5)

It is worth noting that, without looking at the interactions, researchers might draw the
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false conclusion that interventions with the characteristic x3 have a positive treatment

effect in general. Compared to a linear regression model, the tree model directly shows

that the intervention is effective only in those interventions with x1 and x2 both present,

and those with x3 present but x1 absent. Although the tree structure provides a straight-

forward visual representation with easy interpretability, a downside of meta-CART may

be that main effects and interaction effects between multiple moderators are hardly dis-

tinguished. In contrast, regression models are well suited for representing strictly additive

functions but may not be able to represent complex interaction patterns and nonlinear

effects (Little, 2013).

2.7.2 Strengths, shortcomings, and remaining issues

One strength of our study is that the design factors of the simulation covered most values

that have been encountered in practice. Our results show that the power rates, the recov-

ery rates of tree complexity and the recovery rates of moderators are well discriminated by

the different values of design factors, that is, the conditions resulting in high performance

in the three criteria and those resulting in low performance are both encountered.

There are still some shortcomings in our study, some concerning the simulation design

and others concerning the meta-CART algorithm. First, the potential moderators in the

simulation study only contain binary variables, and were independently generated. For

binary moderators, there is only one possible split point for each moderator. As a result,

meta-regression trees were found to be stable in the simulation study. However, the sta-

bility of meta-regression trees might be an issue when dealing with nominal or continuous

moderator variables, since there are more possible split points. Second, the true models

that we designed to generate the data sets contained only one or two interaction effects

between moderators. However, interactions can be much more complex in real-world data

(e.g., Dusseldorp et al., 2014). Furthermore, the true intervention effect sizes in the in-

effective subgroups were designed to be all 0s, and the true effect sizes for the effective

subgroups only contained two values: 0.5 or 0.8. This might be too simplistic. We intend

to investigate the performance of meta-CART on nominal or continuous predictors and

more complex scenarios in future work.

There are also some shortcomings concerning the meta-CART algorithm. First, in our

pilot simulation study, it was found that all implementations of meta-CART had limited

detection rates (≤ 0.30) when applied to data sets with K = 20 studies. This means that

meta-CART is not recommended for meta-analytic data with K ≤ 20 studies. Second,

the procedure follows a step-wise approach. As a result, it lacks efficiency, and it uses

a local optimization procedure, which is a general shortcoming of recursive partitioning

methods. The two-step procedure also raises the issue of statistical inference. It would

be interesting in future work to integrate the two steps, and to investigate whether a
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global optimization procedure is possible. One possible solution is to maximize a test

statistic, for example, the chi-square statistic, over all possible combinations of covariates

(see Boulesteix, 2006). Another possible solution is to implement a statistical test within

the recursive partitioning to determine the best size of the tree (Hothorn, Hornik, &

Zeileis, 2006). Third, the improvement in the performance of meta-CART by applying

random-effects weights was small. One possible reason is that the current partitioning

criterion is based on the CART algorithm, and it does not take into account the residual

heterogeneity (i.e., σ2
τ ). A possible improvement might be applying random-effects weights

together with a partitioning criterion that maximizes the between subgroups Q-statistic

or minimizes the residual heterogeneity in meta-CART.

The simulation results revealed that all options for meta-classification trees result in

high average Type I error rates (ranging from 0.347 to 0.485). A possible explanation is

that the dichotomization of the response variable (i.e., study effect sizes) in classification

trees results in spurious results and inflates the Type I error rates. In Maxwell and

Delaney (1993), it has been shown that dichotomizing multiple predictor variables may

dramatically increase the probability of Type I errors in some situations. This study shows

that dichotomizing the response variable may also increase this probability. Another

reason of the Type I error inflation is that the subgroup meta-analysis in the second step

does not hold the nominal alpha level. Meta-CART detects and then tests interaction

effects between moderators by using the same data set. Such subgroup meta-analyses are

post-hoc tests and raise problems of statistical inference. In the two-step procedure, the

Type I error rates are controlled by two things: the pruning parameter and the nominal

alpha level of the subgroup Q statistic. To control the Type I error, we fixed the nominal

alpha level 0.05 since it is the most commonly used in practice, and we chose the best

pruning rule that results in acceptable Type I error rates. For meta-regression trees, this

approach finds c = 0.50 as the best pruning parameter. For meta-classification trees,

however, no pruning parameter can prevent the inflation of Type I error.

2.7.3 Guidelines for application of meta-CART

According to the simulation results, we recommend to use meta-regression trees instead

of meta-classification trees. Furthermore, applying random-effects weights and a pruning

rule with c = 0.50 was chosen as the best combination of options for meta-regression

trees. There is, however, a shortcoming for applying random-effects weights in a practical

application: the computation of the random-effects weights requires the value of the

residual heterogeneity σ2
τr , which is not known a priori. There are two possible solutions

for this problem. One suggested solution is to apply a meta-regression tree without weights

and a pruning rule with c = 0.50 instead, since the simulation study shows that there

is only a slight difference in the performance between the two combinations of options.
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An alternative solution is to first estimate the σ2
τr by employing a meta-regression tree

without weights, and then to use the estimated residual heterogeneity σ̂2
τr to compute the

random-effects weights.

Based on the simulation study results, recommendations can be made about the num-

ber of studies included in a meta-analysis using meta-CART to achieve a satisfactory

performance. This number depends on the complexity of the data and the number of

study characteristics. In general, 40 is the minimum number of studies required for meta-

CART to perform well in detecting simple interaction effects, that is, only one two-way

interaction. To detect more complex interaction effects, such as more than one two-way

interactions, or higher-order interactions, at least 80 studies are needed for meta-CART to

achieve a power higher than 0.80. Data sets with 120 or more studies would be ideal since

meta-CART has good performance in most cases, even in cases with residual heterogeneity

or complex interaction effects. In the case of large residual heterogeneity (≥ 0.025) and

complex interaction effects, meta-CART requires more studies and larger within-study

sample size (K ≥ 120, n̄ ≥ 160) for data sets with more than five study characteristics.

However, the performance of meta-CART is not much influenced by the number of study

characteristics in the case of small residual heterogeneity or a two-way interaction effect.

2.8 Supporting Materials

2.8.1 Plots displaying the power rates

Figures 2.6, 2.7, and 2.8 represent the power rates of meta-regression trees for models C,

D, and E, respectively. In general, the power rates are positively related to the number

of studies (K), the average within-study sample size (n̄), and the magnitude of interac-

tion effects (δI), except for some noise (e.g., 2.6i). On the other hand, the power rates

are negatively influenced by the number of potential moderators (M) and the residual

heterogeneity (σ2
τ ).
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Figure 2.6: Power rates (y-axis) of meta-regression trees for model C. Separate plots are
shown for the number of studies (K), the average within-study sample size (n, x-axis)
and the residual heterogeneity (σ2

τ ). Separate lines are shown for the combination of the
number of moderators (M) and the interaction effect size (δI). The legends of all plots
are shown in plot (a).
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Figure 2.7: Power rates (y-axis) of meta-regression trees for model D. Separate plots are
shown for the number of studies (K), the average within-study sample size (n, x-axis)
and the residual heterogeneity (σ2

τ ). Separate lines are shown for the combination of the
number of moderators (M) and the interaction effect size (δI). The legends of all plots
are shown in plot (a).
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Figure 2.8: Power rates (y-axis) of meta-regression trees for model E. Separate plots are
shown for the number of studies (K), the average within-study sample size (n, x-axis)
and the residual heterogeneity (σ2

τ ). Separate lines are shown for the combination of the
number of moderators (M) and the interaction effect size (δI). The legends of all plots
are shown in plot (a).
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2.9 Plots displaying recovery rates of moderators

Figures 2.9, 2.10, and 2.11 represent the recovery rates of moderators of meta-regression

trees for model C, D, and E, respectively. The plot is not shown for model B because

the recovery rates of moderators are higher than 0.80 in all cases. Similar to the recovery

rates of tree complexity, there is noise when the recovery rates are relatively low, or the

interaction terms in the true model are complex (i.e., model E). In general, the recovery

rates of moderators are positively related to the number of studies (K), the average within-

study sample size (n̄), and the magnitude of interaction effects (δI). On the other hand,

the recovery rates of moderators are negatively influenced by the number of potential

moderators (M) and the residual heterogeneity (σ2
τ ).
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Figure 2.9: Recovery rates of moderators (y-axis) of meta-regression trees for model C.
Separate plots are shown for the number of studies (K), the average within-study sample
size (n, x-axis) and the residual heterogeneity (σ2

τ ). Separate lines are shown for the
combination of the number of moderators (M) and the interaction effect size (δI). The
legends of all plots are shown in plot (a).
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Figure 2.10: Recovery rates of moderators (y-axis) of meta-regression trees for model D.
Separate plots are shown for the number of studies (K), the average within-study sample
size (n, x-axis) and the residual heterogeneity (σ2

τ ). Separate lines are shown for the
combination of the number of moderators (M) and the interaction effect size (δI). The
legends of all plots are shown in plot (a).
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Figure 2.11: Recovery rates of moderators (y-axis) of meta-regression trees for model E.
Separate plots are shown for the number of studies (K), the average within-study sample
size (n, x-axis) and the residual heterogeneity (σ2

τ ). Separate lines are shown for the
combination of the number of moderators (M) and the interaction effect size (δI). The
legends of all plots are shown in plot (a).
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Chapter 3

A flexible approach to identify

interaction effects between

moderators in meta-analysis

abstract

In meta-analytic studies, there are often multiple moderators available (eg, study charac-

teristics). In such cases, traditional meta-analysis methods often lack sufficient power to

investigate interaction effects between moderators, especially high-order interactions. To

overcome this problem, meta-CART was proposed: an approach that applies classification

and regression trees (CART) to identify interactions, and then subgroup meta-analysis

to test the significance of moderator effects. The aim of this study is to improve meta-

CART upon two aspects: 1) to integrate the two steps of the approach into one and 2) to

consistently take into account the fixed-effect or random-effects assumption in both the

the interaction identification and testing process. For fixed effect meta-CART, weights

are applied, and subgroup analysis is adapted. For random effects meta-CART, a new

algorithm has been developed. The performance of the improved meta-CART was in-

vestigated via an extensive simulation study on different types of moderator variables

(i.e., dichotomous, nominal, ordinal, and continuous variables). The simulation results

revealed that the new method can achieve satisfactory performance (power greater than

0.80 and Type I error less than 0.05) if appropriate pruning rule is applied and the number

of studies is large enough. The required minimum number of studies ranges from 40 to

120 depending on the complexity and strength of the interaction effects, the within-study

sample size, the type of moderators, and the residual heterogeneity.
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3.1 Introduction

The primary aims of meta-analysis are to synthesize the estimates of an effect or outcome

of interest from multiple studies (i.e., effect size), and to assess the consistency of evidence

among different studies (i.e., heterogeneity test). When study features (i.e., moderators)

are available, meta-analysis can be used to assess the influence of the study features on the

study outcomes. In recent years, there is a growing need to integrate research findings due

to the increasing number of publications. As research questions and data structures are

becoming more complex, there are often multiple moderators involved in meta-analytic

data (e.g., Michie, Abraham, et al., 2009). In such cases, conventional univariate meta-

analytic techniques (e.g., Hedges & Olkin, 1985; Schmidt & Hunter, 2014) may not be

appropriate. Multivariate meta-analytic techniques, for example, meta-regression, are

required to assess the influence of multiple moderators on the effect size.

When multiple moderators are available, the effects of moderators may be non-additive,

and the moderators may attenuate or amplify each other’s effect. In such situations, inter-

action effects between moderators occur. Knowledge about interaction effects may provide

valuable information. For example, when treatment alternatives consist of several com-

ponents, the researchers might be interested in questions such as “Which combination of

components is most effective?” (Welton et al., 2009). Knowledge of effective combinations

can be helpful to evaluate existing treatments (e.g., by examining whether an effective

combination of treatment components is used) and to design new potentially effective

treatments (e.g., by choosing the effective combinations of treatment components).

Despite the need to investigate multiple moderator variables and the interaction ef-

fects between them, most meta-analytic studies apply univariate moderator analyses only

(e.g., Huisman et al., 2009; Yang & Raine, 2009). And even in studies employing mul-

tivariate meta-analytic techniques, interaction effects were seldom investigated. Possible

reasons are the lack of appropriate methods and corresponding software for identifying

interaction effects in meta-analyses. To solve this problem, a new strategy, called meta-

CART, which integrates classification and regression trees (CART; Breiman et al., 1984)

into meta-analysis, was proposed (Dusseldorp, van Genugten, van Buuren, Verheijden,

& van Empelen, 2014; Li, Dusseldorp, & Meulman, 2017). This method can deal with

many predictors and represents interactions in a parsimonious tree structure. The results

of meta-CART were promising from a substantial point of view (Dusseldorp et al., 2014),

that is, the method could produce interpretable and meaningful results for real-world

data. Also, meta-CART has the potential to be an alternative statistical method for

meta-regression to understand the combined effects of moderators (Michie et al., 2015;

O’Brien et al., 2015). The results of a previous simulation study (Li, Dusseldorp, &

Meulman, 2017) showed that, regression trees in meta-CART have better performance

than classification trees. Meta-CART achieved satisfactory power and recovery rates
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(i.e., ≥ 0.80) with a sufficiently large sample size .

The existing version of meta-CART has two shortcomings. Firstly, it is a step-wise

procedure. In the first step, the interaction effects are identified by a tree-based algorithm

(i.e., CART) using the study effect sizes as outcome variable, and the moderators as

predictor variables. In the second step, the moderator effects are tested by a subgroup

meta-analysis using the terminal nodes as a new subgrouping variable (with categories

referring to the labels of the leaves in which the studies were assigned to by the tree).

Secondly, the fixed-effect and random-effects assumptions are not taken into account

consistently in meta-CART. The random-effects model assumption is considered by the

subgroup meta-analysis in the second step, but not in the splitting procedure of the first

step. Furthermore, the fixed-effect model is assumed in the first step, but not in the

testing procedure of the second step.

To overcome these shortcomings, we propose two new strategies, one for the fixed

effect model and one for the random effects model, that integrate the two steps of meta-

CART into one. By applying new splitting criteria and a new splitting algorithm, these

new strategies of meta-CART can identify interaction effects and perform the hetero-

geneity test simultaneously. Furthermore, the model assumption is applied consistently

throughout the whole process. The performance of the new strategies of meta-CART

are evaluated via an extensive simulation study with different types of moderators (i.e.,

dichotomous, nominal, ordinal and continuous). The outline of this paper is as follows.

First, we describe shortly the fixed-effect and random effects model in meta-analysis.

Second, we introduce the new strategies of meta-CART as fixed-effect meta-CART and

random-effects meta-CART with an illustrative example using a real-world data set. We

then evaluate the performance of the two approaches in a simulation study. Finally, we

summarize and discuss the results.

3.2 CART

CART is a recursive partitioning method proposed by Breiman et al. (1984). CART

includes two types of trees: classification trees (for a categorical outcome variable) and

regression trees (for a continuous outcome variable). In this article, we focus on regression

trees for meta-analysis, using a continuous outcome variable (i.e., the study effect size).

A previous study showed that in this framework regression trees outperformed classifi-

cation trees (Li, Dusseldorp, & Meulman, 2017). For a complete introduction for both

classification and regression trees, we refer to Merkle and Shaffer (2011).

There are two sequential procedures involved to fit a regression tree: a partitioning

procedure that grows a tree to split study cases into more homogeneous subgroups, and a

pruning procedure that removes spurious splits from the tree to prevent overfitting. The

partitioning procedure starts with all cases in one group (i.e., the root node). Then the
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root node is split into two subgroups (i.e., offspring nodes), by searching all possible split

points across all predictor variables to find the split that induces the highest decrease

in heterogeneity (called impurity). The within-node sum of squares is often used as the

impurity for a regression tree. Within a node j, the impurity can be written as

i(j) =
∑

(xk,dk)∈j

(dk − d̄(j))2, (3.1)

where (xk, dk) ∈ j denotes the cases (e.g., studies in meta-analysis) that are assigned to

node j with xk being the predictor vector (e.g., moderators) and dk being the outcome

variable (e.g., the study effect size); d̄(j) is the mean of dk for all cases (xk, dk) that fall

into node j (see also Breiman et al., 1984).The partitioning process can be repeated on

the offspring nodes, and each split partitions the parent node into two offspring nodes.

For example, in the tree of Figure 3.1b, a predictor variable “T1” with two values “Yes”

and “no”, which indicates if the behavior change technique “T1: provide information

about behavior-health link” was applied in a health psychological intervention, is selected

as the first splitting variable. If an intervention has applied “T1”, it belongs to the left

offspring node. Otherwise, it belongs to the right offspring node. Each of the two offspring

nodes can be the candidate of the parent node for the next split.

It is difficult to decide an optimal point to stop the splitting process. Instead, an

initial tree is grown as large as possible, and then pruned back to a smaller size by the

pruning procedure. To prune a tree, cross-validation is performed to estimate the sum

of squared errors.1 Based on the cross-validation error, there are several pruning rules to

select the best size of the tree. To generalize the pruning rules, a pruning parameter c

can be introduced to select the pruned tree by using the c · SE rule (Dusseldorp et al.,

2010). The c ·SE rule selects the smallest tree with a cross-validation error that is within

the minimum cross-validation error plus the standard error multiplied by c. For standard

CART algorithm, Breiman et al. (1984) suggested using the one-standard-error rule to

reduce the instability, which can be regarded as a special case of the c · SE rule when c

equals 1.

CART is capable of handling high-dimensional predictor variables of mixed types, and

excels in dealing with complex interaction effects. It also has the advantage of straight-

forward interpretability of the analysis results. However, there are two difficulties when

applying standard CART in meta-analysis: (1) the studies are not weighted by their ac-

curacy, and (2) no model assumption is imposed on the algorithm, whereas fix effect and

random effects assumptions are used in meta-analysis. We address these two issues and

1Ten-fold cross-validation is generally recommended by Breiman et al. (1984). Ten-fold cross-validation
involves splitting up one dataset to ten folds. To estimate the cross-validation errors, one fold can be
used as the “validation” set, and the left nine folds are used as the “training” set. For each fold used
as the validation set, a tree is built using the corresponding training set, and the prediction errors are
examined on the validation set.
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propose solutions in the following sections.

3.3 Fixed effect and random effects model in sub-

group meta-analysis

There are two families of statistical models in meta-analysis: fixed effect (FE) models and

random effects (RE) models (Hedges & Olkin, 1985). In this section, we mainly focus on

the two models in subgroup analysis, that is, the analysis to evaluate the effect of one

categorical moderator in meta-analysis.

Denote the observed effect size of the kth study by dk, FE models assume that

dk = δ + εk, (3.2)

where δ denotes the common effect size for all studies, and εk is the difference between

the observed effect size and the true effect size. There is only one source of variance, the

within-study sampling error variance σ2
εk

. In FE meta-analysis, the summary effect size

is computed as the weighted mean with weights wk = 1/σ2
εk

:

d+ =

∑
dk/σ

2
εk∑

1/σ2
εk

. (3.3)

In RE models, by contrast, there are two sources of variance: the within-study sam-

pling error variance and the between-studies variance. The observed effect size dk is

assumed to be

dk = δ + τi + εk, (3.4)

where δ is the grand mean of population effect sizes, and τi is the deviation of the study’s

true effect size from δ. The summary effect size is computed with weights w∗k = 1/(σ2
εk

+

σ2
τ ):

d∗+ =

∑
dk/(σ

2
εk

+ σ2
τ )∑

1/(σ2
εk

+ σ2
τ )
. (3.5)

When study features are available in a meta-analysis, one may perform a subgroup

analysis. If a subgroup analysis assumes that the variation of observed effect sizes is only

due to the subgroup membership and the within-study sampling error, the FE model is

used and it allows for no residual heterogeneity. Under these assumptions, the Q-statistic

within the jth subgroup will be

Qj =

Kj∑
k=1

(djk − dj+)2)

σ2
εjk

, (3.6)
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where Kj is the number of studies in the jth subgroup, djk is the observed effect size of

the the kth study in the jth subgroup, and dj+ is the subgroup weighted mean.

The between-subgroups Q-statistic is given by

QB =
J∑
j=1

Kj∑
k=1

(dj+ − d++)2

σ2
εjk

, (3.7)

where J is the total number of subgroups, and d++ is the grand weighted mean.

The total weighted sum of squares for all studies is

QT =
J∑
j=1

K∑
k=1

(djk − d++)2)

σ2
εjk

. (3.8)

There is a simple relationship among Qj, QB and QT that is analogous to the parti-

tioning of the sum of squares in analysis of variance (Hedges & Olkin, 1985, Page 156),

QT =
J∑
j=1

Qj +QB. (3.9)

If a subgroup analysis assumes that residual heterogeneity exists, the RE model is

used and it allows for variation unexplained by the subgroup membership and the within-

study sampling error. For subgroup analysis using a RE model, a generally advocated

approach is to assume a fixed effect model across subgroups and a random effects model

within subgroups 2 (Borenstein et al., 2009). This assumption means that the variation in

subgroup means is only explained by the subgroup membership, and the variation in the

observed study effect sizes is due to the subgroup membership, the residual heterogeneity

between studies, and the within-study sampling errors. The residual heterogeneity can

be estimated separately within subgroups, or a common estimate to all studies can be

computed by pooling the within-subgroup estimates. There are several estimators for

the residual heterogeneity available. In this study, we compute the pooled estimate for

residual heterogeneity using the DerSimonian and Laird (1986) method. The pooled

residual heterogeneity is computed as

σ2
τ =

∑p
j=1Qj −

∑p
j=1 dfj∑p

j=1Cj
, (3.10)

where Qj is computed as in (3.6), dfj equals K − 1, and the components Cj using the

fixed effects weights, are computed as

2sometimes called mixed effects model.
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Cj =
K∑
k=1

wjk −
∑
w2
jk∑

wjk
. (3.11)

The between-subgroups Q-statistic is given by

Q∗B = Q∗T −
p∑
j=1

Q∗j , (3.12)

where

Q∗T =

p∑
j=1

K∑
k=1

(djk − d∗++)2

σ2
εjk

+ σ2
τ

, (3.13)

and

Q∗j =
K∑
k=1

(djk − d∗j+)2

σ2
εjk

+ σ2
τ

. (3.14)

3.4 Fixed effect meta-CART

3.4.1 The algorithm

To solve the two difficulties when applying standard CART in meta-analysis, FE meta-

CART applies weights in the CART algorithm, and assumes absence of residual hetero-

geneity when searching for the influential moderators. In FE meta-CART, we apply the

weights used in the FE models in meta-analysis (wk = 1/σ2
εk

). As a result, the weighted

within-node sum of squares will be equivalent to the Q-statistic within node j. Denote

the weighted mean of the outcome variable in node j as d+(j). It can be shown that

d+(j) =

∑
(xk,dk)∈j(dk · wk)∑

(xk,dk)∈j(wk)
=

∑
(xk,dk)∈j dk/σ

2
εk∑

(xk,dk)∈j 1/σ2
εk

, (3.15)

which is equal to the summary effect size in node j under the fixed effect assumption (see

[3.3]). Also, the impurity function can be computed as

i(j) =
∑

(xk,dk)∈j

wk(dk − d+(j))2 =
∑

(xk,dk)∈j

(dk − d+(j))2

σ2
εk

, (3.16)

which is equal to the Q-statistic within node j as in (3.6).

When growing a FE meta-regression tree, the algorithm searches for the moderator

and the split point that minimize the sum of Qj of the offspring nodes. Note that this

is equal to the split that maximizes QB (see [3.9]). The splitting process continues until

all terminal nodes contain only one or two studies. Then the initial tree will be pruned

to a smaller size using cross-validation to prevent overfitting. For the previous version of

meta-CART, a pruning rule with c = 0.5 was generally recommended by Li, Dusseldorp,
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and Meulman (2017). For the new strategies of meta-CART in this study, we apply two

pruning rules with c = 0.5 and c = 1 and examine their performance. After the pruning

process, the final tree gives the corresponding between-subgroups QB and the estimates

for summary effect sizes dj+ within each subgroup as the analysis results.

3.4.2 An illustrative example

To illustrate the algorithm, we will use the data from Michie, Abraham, et al. (2009) as an

example. The complete data consist of 101 studies reporting 122 interventions targeted

at physical activity and healthy eating. In this motivating example, we will re-analyze

these data focusing on the motivation-enhancing behavior change techniques (BCTs) that

may explain the heterogeneity in the effect sizes of interventions. The interventions that

include at least one of the motivation-enhancing BCTs were selected (N = 106). The

details about the motivation-enhancing BCTs can be found in Table 3.1.

To identify influential BCTs and the interaction effects between them, FE meta-CART

starts with a root node including all selected studies (Figure 3.1a). For the first split,

the algorithm selects the moderator T1 since it results into the largest between-subgroups

Q-statistic (QB = 17.19 among 0.004, 0.10 and 4.35 when choosing the splitting variable

as T2, T4 and T5, respectively.) The root node is thereby split into two children nodes

(Figure 3.1b). These two nodes then become the candidates for the parent node for the

second split. The algorithm searches through all the combinations of parent node and

splitting variable, and selects the combination that maximizes the QB. This splitting

process continues until a large tree is grown and all of the terminal nodes only contain

one or two studies. Then the large tree is pruned to a smaller size by the cross-validation

procedure, and the final tree is selected as a tree with three terminal nodes shown in

Figure 3.1c.

The final tree represents an interaction effect between the BCTs “T1: provide informa-

tion about behavior-health link” and “T4: prompt intention formation”. The main result

of this tree is that the combination of “T1” and “T4” results in the highest effect size.

More specifically, when “T1” is not applied, the average effect size of the interventions

is 0.20 . When “T1” is applied together with “T4”, the interventions have the highest

average effect size (0.44). When only “T1” is applied without “T4”, the average effect

size is 0.19. The estimated subgroup effect sizes and the between-subgroups Q-statistic

(QB) are obtained simultaneously as the tree is grown. The final fixed effect QB equal to

40.59 indicates a significant interaction effect (p-value <0.001, df = 2).
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Figure 3.1: The first three splits of a FE meta-tree for the studies that applied at least
one of the motivation-enhancing techniques in Michie, Abraham, et al. (2009). T1 and
T4 are labels for behavior change techniques “Provide information about behavior-health
link” and “Prompt intention formation”, respectively.
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Table 3.1: overview of the motivation-enhancing behavior change techniques. The last
column displays the number (#) of studies that applied a technique in Michie, Abraham,
et al. (2009).

Technique Definition #
1. Provide information about behavior-health link General information about behavior risk,

for example, susceptibility to poor health
outcomes or mortality risk in relation to
the behavior

37

2. Provide information on consequences Information about the benefits and costs
of action or inaction, focusing on what will
happen if the person does or does not per-
form the behavior

64

3. Provide information about other’s approval Information about what others think
about the person’s behavior and whether
others will approve or disapprove of any
proposed behavior change

0

4. Prompt intention formation Encouraging the person to decide to act or
set a general goal, for example, to make a
behavior resolution, such as ”I will take
more exercise next week”

74

5. Motivational interviewing Prompting the person to provide self-
motivating statements and evaluations of
their own behavior to minimize resistance
to change

17

3.5 Random effects meta-CART

3.5.1 The algorithm

RE meta-CART takes residual heterogeneity into account, and searches for the influential

moderators based on the RE between-subgroups Q-statistic (Q∗B) as given in (3.12). To

grow a RE meta-tree, the algorithm starts with a root node that consists of all studies. In

each split of the algorithm, all terminal nodes of the tree obtained from the previous step

are considered as candidate parent nodes. To choose a split, two substeps are performed.

The first substep is to examine in each candidate parent node the optimal combination

of a splitting moderator variable and a split point. By each possible combination of

the splitting variable and split point, the candidate parent node can be split into two

offspring nodes and a new branch is formed after the split. For this split, the residual

heterogeneity unexplained by the subgroup membership is estimated for the whole tree

and the corresponding Q∗B is computed. The first substep then is concluded by selecting

across all possible splits the optimal combination that maximizes the Q∗B. In the second

substep, the values of Q∗B associated with the optimal combination are compared across

all candidate parent nodes, and the node with the highest Q∗B will be chosen. After these
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two substeps, a split is made by splitting the chosen parent node into two offspring nodes

(on the basis of the optimal combination of the splitting variable and the split point

associated with that parent node).

Same as the splitting process in FE meta-CART, each new split in RE meta-CART

refreshes the partitioning criterion: the between-subgroups Q-statistic. However, the RE

model implies that the residual heterogeneity σ2
τ is re-estimated after each split. As a

result, a split within one node will globally affect the estimation of σ2
τ and the value of

Q∗B. In other words, the within-subgroup Q∗j needs be computed not only for the new

offspring nodes, but also for all the other existing terminal nodes in the current tree.

Thus, this partitioning method is not fully recursive. Instead, RE meta-CART applies a

sequential partitioning algorithm.

The pruning process of RE meta-CART is the same as FE meta-CART. The initial

large tree is pruned back to a smaller size using cross-validation with the c ·SE rule. The

associated between-subgroups Q∗B, the estimates for residual heterogeneity σ2
τ , and the

within-subgroup summary effect sizes d∗j+ are obtained as the final tree is selected.

3.5.2 An illustrative example

We will use the same data as in 3.4.2 to illustrate the RE meta-CART algorithm. To

identify the interaction effects using the random effects model, the algorithm starts with a

root node including all selected studies (Figure 3.2a). The first split selects the moderator

T1, which results into the largest between-subgroups Q-statistic (Q∗B = 2.74 among 0.24,

1.32 and 0.10 when choosing the splitting variable as T2, T4 and T5, respectively.) Then

the two children nodes as shown in Figure 3.2b become the candidates of the parent

node for the second split. For the second split, the algorithm searches through all the

combinations of parent node and splitting variable, and selects the combination that

maximizes the Q∗B. Note that the value of the summary effect size in the unselected node

d∗1+ has been slightly changed from 0.245 to 0.241 after the new split. This change is due

to the new estimate for the residual heterogeneity σ2
τ . Therefore, a new split influences not

only the selected parent node but also the unselected node(s). As a result, the sequence of

the splits globally influences the estimates for σ2
τ , d

∗
+ and Q∗B. This sequential partitioning

process continues until a large tree is grown and all of the terminal nodes only contain

one or two studies3. After the pruning process, the final tree is selected as a tree with

three terminal nodes shown in Figure 3.2c.

The final tree by RE meta-CART selects the same moderators as FE meta-CART in

3.4.2: “T1: provide information about behavior-health link” and “T4: prompt intention

formation”. But under the RE assumption, the estimated summary effect sizes in each

subgroup and the between-subgroups Q-statistic are different from those estimated using

3The exact minimal number of studies in a node is fixed before splitting. We used here a size of two.
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FE model. The random effects Q∗B = 13.20 indicated a significant interaction effect

(p-value = 0.001, df = 2).



49

Figure 3.2: The first three splits of a RE meta-tree for the studies that applied at least
one of the motivation-enhancing techniques in Michie, Abraham, et al. (2009). T1 and
T4 are labels for behavior change techniques “Provide information about behavior-health
link” and “Prompt intention formation”, respectively.
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3.6 Simulation

3.6.1 Motivation

In the simulation study, we first aim at selecting pruning rules for the new strategies of

meta-CART to control the risk of finding spurious effects (see 3.4.1). Secondly, we evaluate

the performance of FE meta-CART and RE meta-CART under various conditions using

the selected pruning rules. It is important to note that the simulation study does not aim

at comparing FE meta-CART and RE meta-CART. The choice of the model assumption

should be based on theoretical grounds (also see 3.8.2). The conditions that we consider

include observable features of meta-analytic data sets, such as the number of studies, the

within-study sample sizes, the type of moderators, and the number of moderators, as well

as unobservable structures and parameters underlying the data, such as the complexity

of the interaction effects, the magnitude of the interaction effect, the correlation between

moderators, and the residual heterogeneity. The recovery performance of meta-CART is

measured by the ability of successfully retrieving the true structures underlying the data.

In addition, we compare its performance to meta-regression with true structures specified

beforehand, which can be seen as an idealized solution.

We use a design for the true tree structures that is comparable to Li, Dusseldorp,

and Meulman (2017). Five tree structures with increasing complexity are used as the

underlying true model to generate data sets (see Figure 3.3). Model A was used to assess

the probability that meta-CART falsely identifies (a) moderator effect(s) when there is

no moderator in the true model (Type I error). Model B was used to evaluate the ability

of meta-CART to identify the main effect of a single moderator. Models C, D and E

were used to evaluate the extent to which meta-CART correctly identifies the interaction

effects between moderators when interaction effects are present in the true model. In the

designed tree model, the treatment is effective only in studies with certain combination(s)

of study features. The studies are thereby split on moderators into subgroups. The

average effect size in the ineffective subgroups is fixed to be 0, and the average effect size

in the effective subgroups was a design factor and is denoted by δI . The true effect sizes

of the studies are generated from a normal distribution with mean equal to the average

effect size (i.e., 0 for ineffective subgroups and δI for effective subgroups), and standard

deviation equal to the residual heterogeneity.

3.6.2 Design factors

Artificial data were generated with observed study effect sizes d, the within-study sample

size n and potential moderators x1, . . . , xM . We used three design factors concerning the

moderators. The total number of potential moderators M was a design factor with three

values: 5, 10 and 20. We generated four different types of moderator variables (Type):



51

binary, nominal, ordinal, and continuous. In our study, all the ordinal moderators and

nominal moderators were generated with three levels (1, 2, 3 for ordinal and A, B, C

for nominal). The correlation matrix between the moderators (R) was a design factor.

Both independent and correlated moderators were generated. To generate uncorrelated

moderators we use R = I as the population correlation matrix. To generate correlated

moderators, we used a correlation matrix R computed from a real-world data set by

Michie, Abraham, et al. (2009). We first randomly sample M moderators from the 26

moderators in the Michie, Abraham, et al. (2009) data and compute the correlation ma-

trix. Then we generate M moderators using the computed correlation matrix. The range

of correlations varies roughly between −0.40 and 0.40.

In addition to the three design factors concerning the moderators, four other design

factors that may influence the effect size d were examined: (a) the number of studies (K);

(b) the average within-study sample size (n̄); (c) the residual heterogeneity (σ2
τ ); and (d)

the magnitude of the interaction effect (δI). Three values of K were chosen: 40, 80, 120.

Because a previous study showed that meta-CART applied to data sets with K ≤ 20

studies results in poor power rates (≤ 0.30) (Li, Dusseldorp, & Meulman, 2017), therefore

we start withK = 40. We used the same method as in Viechtbauer (2007b) to generate the

within-study sample size nk; the values of nk were sampled from a normal distribution with

an average sample size n̄ and standard deviation n̄/3. Three levels of the average within-

study sample size n̄ were chosen as 40, 80, 160. The resulting nk ranged roughly between

15 and 420, which are plausible values encountered in practice. The values of the residual

heterogeneity unexplained by the moderators σ2
τ were chosen as 0, 0.025, 0.05. The values

of δI were chosen as 0.3, 0.4, 0.5 and 0.8, among which 0.5 and 0.8 corresponding to a

medium and a large effect size, respectively (Cohen, 1988). A small effect size δI = 0.2

was not included in the study, because the previous study showed that meta-CART failed

to have enough power to detect small interaction effect(s) (Li, Dusseldorp, & Meulman,

2017). Thus in total we have M×Type×R ×K×n̄×σ2
τ×δI = 3×4×2×3×3×3×4 = 2592

design factors.

3.6.3 Monte Carlo Simulation

For each of the five tree structures, 1000 data sets were generated with all possible com-

binations of design factors (i.e., 2592 × 5 × 1000 = 12, 960, 000 data sets). To generate

continuous moderators, we first generate continuous variables from a multivariate nor-

mal distribution with variable means equal to 20, standard deviations equal to 10, and

with a correlation matrix as identity matrix (for independent moderators) or a correlation

matrix computed as mentioned above (for correlated moderators). Then the generated

variables were rounded to the first decimal place to allow for duplicate values. The aver-

age number of unique values of the continuous moderators was 37, 71, 102 for K = 40, 80,
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120, respectively. For non-continuous moderators, we first randomly generate continuous

variables from a multivariate normal distribution with a correlation matrix as mentioned

above. For binary moderators, the generated continuous variables were dichotomized

around their mean. For nominal moderators, the continuous variables were split by the

1/3 quantile and 2/3 quantile of the normal distribution, and the resulting three intervals

were randomly labeled by the letters A, B and C. For ordinal moderators, the continuous

variables were split by the 1/3 quantile and 2/3 quantile of the normal distribution and

ordered by the intervals that they belonged to. Note that the polytomization attenuates

the correlations between the resulting variables.

With the given moderators and the tree structure, the average true effect size ∆j

was computed for each subgroup j. For a single study k within each subgroup j, the

true effect size δjk was sampled from a normal distribution with mean ∆j and variance

σ2
τ . Finally, the observed effect size djk was sampled from a non-central t-distribution,

and the corresponding sampling errors σ2
ε were calculated (see Appendix A.2 for detailed

information).

3.6.4 The evaluation criteria for success

Three criteria are used to judge the performance of meta-CART with respect to the true

model underlying the data:

Criterion 1. Meta-CART falsely detects the presence of moderator effect(s) in the data

sets generated from model A (Type I error).

Criterion 2. Meta-CART detects the presence of moderator effect(s) in the data sets

generated from model B, C, D or E (power). This criterion evaluates if a non-

trivial tree is detected (i.e., a pruned tree with at least one split and a significant

between-subgroups Q), but does not examine the size of the tree and the correct

moderator(s).

Criterion 3. Meta-CART successfully selects the moderators used in the true model (re-

covery of moderator(s)). This criterion examines if the true model is fully recovered

with all the true moderators and no spurious moderators are selected.

The computation of these criteria will be specified in section 3.6.7.

3.6.5 Comparison to meta-regression

FE and RE meta-regression analyses were performed on the datasets generated from

non-trivial trees (models B, C, D and E) with the true moderator effect(s) specified.

The analyses results were compared to meta-CART in terms of recovery of moderators

(criterion 3). Note that in this scenario meta-regression is expected to result in higher
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Figure 3.3: Simulated data sets were generated from five true tree structures: (a) to
(e). The letters B, N, O and C denote the four types of moderator variables: binary,
nominal, ordinal and continuous respectively. These tree structures represents a true
model including: no moderator effect (model A); only main effect of one moderator (model
B); one two-way interaction (model C); two two-way interactions (model D); and one
three-way interaction (model E), respectively.



54

recovery rates, since the true structure is specified in meta-regression but to be explored

by meta-CART. The goal of this comparison is to evaluate how meta-CART compares to

the optimal performance that meta-regression can reach in an idealized scenario.

3.6.6 The estimates for subgroup effect sizes

The estimates for subgroup effect sizes were examined in the terminal nodes from the

successfully retrieved trees for one cell of the design with medium level of each design

factors (i.e., Tree complexity = model C, K = 80, n̄ = 80, σ2
τ = 0.025, M = 10, δI = 0.5,

R = the computed correlation matrix, Variable type = ordinal moderators). Although

trees with the first splitting variable as x2 and the second splitting variable as x1 are also

equivalent to model C, only the trees exactly the same as model C shown in Figure 3.3

were examined to make the resulting subgroups comparable. For each terminal node in

the selected trees, the averaged subgroup effect size estimates were computed, and the

proportion that the 95% confidence intervals (CIs) contain the true value were counted.

3.6.7 Analysis

FE meta-CART and RE meta-CART were applied to each generated data set using two

pruning rules with c = 0.5 and c = 1.0. The significance of the subgrouping defined by

the pruned tree was tested by the between subgroups Q-statistic with α = 0.05.

In total, 12, 960×1000 analyses were performed per strategy per pruning rule. Each of

the three criteria was evaluated and coded with 0 for “not satisfied” and 1 for “satisfied”

for each data set. Subsequently, for each cell of the design, the proportion of “satisfied”

solutions was computed per criterion. The resulting proportions were subjected to anal-

yses of variance (ANOVA) with the design factors and their interactions as independent

variables. Due to the computation time and the difficulty of interpretation, only four-way

and lower-order interactions were included as independent variables, and the higher-order

interactions were used as error terms. Partial eta squared (η̂2P , see Keppel, 1991, pp.

222-224) was computed for all main effects and interaction terms. For Type I error rate,

the pruning parameter c was included as a within-subject design factor, and the general-

ized eta squared (η̂2G, see Olejnik & Algina, 2003) was computed for all main effects and

interaction effect terms.

Both FE and RE meta-CART were compared to meta-regression on the 9, 720× 1000

data sets generated from non-trivial trees. For meta-regression, criterion 3 is defined as

all the true moderator effects being significant (i.e., p-value < 0.05). For each cell of the

design, the proportion of this criterion being satisfied was computed as the recovery rate.

The difference in recovery rates between meta-CART and meta-regression within each

cell were subjected to analyses of variance (ANOVA) as mentioned above.

The simulation, the meta-CART analyses, the meta-regression analyses, and ANOVA
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were performed in the R language (Team, 2017). The meta-CART analyses were per-

formed using the R-package metacart (Li, Dusseldorp, Liu, & Meulman, 2017). The

meta-regression analyses were performed using the R-package metafor (Viechtbauer,

2010). The R-codes for the simulation study are available at https://osf.io/mghsz/.

3.7 Results

For the Type I error rate of FE meta-CART, the ANOVA results reveal that the number

of studies (K) and the pruning parameter c have much stronger influence than the other

design factors (see Supporting Material Table 3.5). For the Type I error rate of RE meta-

CART, the main effect of K and the interaction between K and c have the strongest

influence (see Table 3.6). For both FE meta-CART and RE meta-CART, the estimated

Type I error rates decrease with increasing K and the pruning parameter c. Table 6.2

shows the estimated Type I error rates averaged over the less influential design factors (i.e.,

Type, R, M , n̄, σ2
τ , δI). An average Type I error below .05 was chosen to be acceptable in

order to control for the risk of finding spurious (interaction) effects. Therefore, the best

pruning parameter for FE meta-CART was selected as c = 1 if K < 80 and c = 0.5 if

K ≥ 80. And the best pruning parameter for RE meta-CART was selected as c = 1 if

K < 120 and c = 0.5 if K = 120. A higher value of c indicates more pruning. Thus, for

smaller K a higher amount of pruning is needed to control Type I error.

For the power rates and the recovery rates of the moderators, ANOVA was employed

to analyze the results of meta-CART using the selected pruning parameters as defined

above. For power rates, the ANOVA results on recovery rates reveal that FE meta-CART

and RE meta-CART are both strongly influenced by the main effects of the number of

studies K, the magnitude of the interaction effect δI , the tree complexity (B, C, D or

E), and the residual heterogeneity σ2
τ (Tables 3.7 and 3.8). In addition, RE meta-CART

is also strongly influenced by the main effects of the average within-study sample size

n̄ and the type of moderator variables. Similarly, the recovery rates of FE meta-CART

and RE meta-CART are both strongly influenced by the main effects of K, δI , the tree

complexity, σ2
τ , and the type of moderator variables (Table 3.9 and 3.10). The recovery

rates of RE meta-CART are also strongly influenced by n̄. Because the patterns of power

Table 3.2: Type I error rate of meta-CART, averaged over Type, R, M , n̄, σ2
τ , δI .

Fixed effect meta-CART Random effects meta-CART
model c K = 40 K = 80 K = 120 K = 40 K = 80 K=120
A 0.5 .071 (.011) .037 (.007) .023 (.006) .095 (.023) .061 (.018) .042 (.014)

1.0 .034 (.009) .010 (.005) .004 (.003) .033 (.011) .012 (.005) .005 (.003)

4Type I error rates higher than 0.05 are in boldface. The numbers in parentheses display
the standard deviations of the Type I error rates.

https://osf.io/mghsz/
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and recovery rates are similar and the latter is the more stringent criterion, we focus on

the results concerning recovery rates.

In general, the recovery rates increase with increasing K, δI and n̄, and decrease with

increasing σ2
τ and tree complexity. Binary moderators have the highest recovery rates,

whereas continuous moderators have the lowest recovery rates. The recovery rates for

nominal and ordinal moderators are similar. The influence of K, δI , the type of moderator

variables and the tree complexity are shown in Figures 3.4, 3.5 and 3.6. When K = 120

(see Figure 3.4), both FE and RE meta-CART are able to achieve satisfactory recovery

rates (≥ 0.80) for simple moderator effects (models B and C) in most cases, only with

some exceptions when δI = 0.3 for non-continuous moderators or δI ≤ 0.4 for continuous

moderators. For complex interaction effects (models D and E), meta-CART is able to

achieve satisfactory recovery rates if the interaction effect size is large (δI = 0.8) depending

on the type of moderators. When the moderators are binary variables, meta-CART can

always achieve satisfactory recovery rates for δI ≥ 0.8. When the moderators are nominal

or ordinal, FE meta-CART can achieve satisfactory recovery rates for model D, whereas

RE meta-CART can achieve satisfactory recovery rates for model E. When the moderators

are continuous variables, FE meta-CART can achieve satisfactory recovery rates for model

D, but RE meta-CART fails to achieve recovery rates higher than 0.80. When K = 80

(see Figure 3.5), both FE and RE meta-CART achieve satisfactory recovery rates for

simple moderator effects in most cases, with some exceptions when δI = 0.3 for non-

continuous moderators or δI ≤ 0.5 for continuous moderators. For complex interaction

effects, both FE and RE meta-CART are able to achieve satisfactory recovery rates for

binary moderators if the effect size is large (δI = 0.8), but fail to achieve recovery rates

higher than 0.80 for non-binary moderators. When K = 40 (see Figure 3.6), both FE

and RE meta-CART are able to achieve satisfactory recovery rates for simple moderator

effects, but fails to achieve recovery rates higher than 0.80 for complex interaction effects.

When there is only a univariate moderator effect in the true model (model B), both FE

and RE meta-CART have good performance in most cases. When there is a two-way

interaction (model C), both FE and RE meta-CART are able to achieve satisfactory

recovery rates if the moderators are non-continuous and the interaction effect size is large

(δI = 0.8).

For both FE and RE model assumption, the ANOVA results reveal that the difference

in recovery rates between meta-CART and meta-regression are strongly influenced by

the tree complexity (Tables 3.11 and 3.12). Table 3.3 shows the recovery rates and

the difference averaged over the less influential design factors (i.e., K, Type, R, M ,

n̄, σ2
τ , δI). For simple moderator effects, the recovery rates of meta-CART are close to

meta-regression with the correct structure specified. For complex interaction effects, the

difference is larger.

From the 1000 data sets generated from the cell of the design described in 3.6.6, 461
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trees were selected to examine the estimates for the subgroup effect sizes and the coverage

of 95% CIs. Table 3.4 shows that the averaged estimates are close to the true values in

both ineffective subgroups (δ = 0) and effective subgroups (δ = 0.5). The 95% CIs of FE

meta-CART have lower coverage than the nominated coverage probability, whereas the

95% CIs of RE meta-CART have coverage close to 0.95 for all three subgroups.

Table 3.3: Difference in recovery rates between meta-CART and meta-regression, averaged
over K, Type, R, M , n̄, σ2

τ , δI .

Fixed effect Random effects
Tree meta-CART meta-regression difference meta-CART meta-regression difference

B 0.94 (0.13) 1.00 (0.02) -0.05 (0.11) 0.95 (0.12) 0.99 (0.05) -0.04 (0.08)
C 0.71 (0.32) 0.83 (0.19) -0.12 (0.20) 0.71 (0.33) 0.71 (0.27) -0.00 (0.19)
D 0.33 (0.35) 0.72 (0.28) -0.39 (0.24) 0.22 (0.27) 0.56 (0.34) -0.34 (0.20)
E 0.21 (0.28) 0.74 (0.27) -0.53 (0.24) 0.24 (0.31) 0.60 (0.32) -0.35 (0.26)

5The difference is computed as the averaged recovery rates of meta-CART subtracted by
the averaged recovery rates of meta-regression. The numbers in parentheses display the
standard deviations.
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Figure 3.4: Recovery rates of FE and RE meta-CART when K = 120. Separate plots
are shown for the types of moderator variables. Separate lines are shown for the tree
complexity (models B, C, D and E).
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Figure 3.5: Recovery rates of FE and RE meta-CART when K = 80. Separate plots
are shown for the types of moderator variables. Separate lines are shown for the tree
complexity (models B, C, D and E).
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Figure 3.6: Recovery rates of FE and RE meta-CART when K = 40. Separate plots
are shown for the types of moderator variables. Separate lines are shown for the tree
complexity (models B, C, D and E).
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Table 3.4: The estimates for subgroup effect sizes in the successfully retrieved trees (N =
461) from data generated with Tree complexity = model C, K = 80, n̄ = 80, σ2

τ =
0.025, M = 10, δI = 0.5, R = the computed correlation matrix, Variable type = ordinal
moderators.

Fixed effect meta-CART RE meta-CART

δ averaged δ̂ coverage of 95% CIs δ averaged δ̂ coverage of 95% CIs
Subgroup 1 0 -0.014 (0.042) 0.835 0 -0.010 (0.053) 0.937
Subgroup 2 0 0.023 (0.058) 0.837 0 0.027 (0.059) 0.933
Subgroup 3 0.5 0.498 (0.037) 0.828 0.5 0.498 (0.044) 0.948

6 The numbers in parentheses display the standard deviations.

3.8 Discussion

3.8.1 Conclusion, strengths, shortcomings, and remaining issues

This study proposed new strategies for the meta-CART approach of Dusseldorp et al.

(2014) and Li, Dusseldorp, and Meulman (2017) as integrated procedures using the FE

or RE model, and investigated the performance of the new strategies via an extensive

simulation study. The simulation results show that the Type I error rates of meta-CART

are mainly influenced by the number of studies included in a meta-analysis. By varying the

pruning rule for different number of studies, the Type I error of meta-CART is satisfactory

(≤ 0.05). The power and recovery rates of meta-CART mainly depend on the number of

studies, the complexity of the true model, the type of moderator variables, the within-

study sample size, the magnitude of interaction effect(s), and the residual heterogeneity.

The simulation study used four tree structures with increasing complexity to assess the

ability of meta-CART to retrieve the true model underlying the data set. In general,

meta-CART performed well in retrieving simple models (models with a main effect or

one two-way interaction effect). For more complex models (models with two two-way

interaction effects or a three-way interaction effect), the power and recovery rates of

meta-CART varied from low (≤ 0.10) to high (≥ 0.80) depending on the design factors.

The strength of the simulation study is that we extensively examined the influence

of both observable design factors (i.e., the number of studies, the within-study sample

size, the type of moderators, and the number of moderators) and unobservable design

factors (i.e., complexity of the interaction effects, the magnitude of the interaction effect,

the correlation between moderators, and the residual heterogeneity). These design fac-

tors covered various situations that are encountered in practice. By taking into account

residual heterogeneity unexplained by the moderators, the simulation study also covers

the situations that not all the influential moderators are collected in the data. The results

show that the conditions resulting in high performance of meta-CART and those resulting

in low performance are both encountered.



62

One limitation of the simulation study is that the performance of meta-CART on

mixed types of moderators was not examined, although the algorithm can be applied

to data sets with mixed types. The main difficulties of investigating the influence of

mixed types of moderators are to define true models to generate artificial data, and to

define the proportion of each type of the potential moderators in generated data sets.

The large number of possible combinations of variable types and proportions within each

variable type makes it difficult to extensively examine the performance of meta-CART

on mixed types of moderators. In our study, the simulation results show that the Type I

error rates are not largely influenced by the types of moderators, but the power and the

recovery rates are strongly influenced by the type of moderators. The recovery rates are

highest for binary moderators, and lowest for continuous moderators. To roughly assess

the performance of meta-CART on mixed types of moderators, we performed a small

simulation study by applying FE meta-CART to 1000 data sets generated with mixed

types of moderators for one combination of the other design factors (K = 80, n̄ = 80,

R = I, M = 5, σ2
τ = 0). The true model to generate the data consists of a first split with a

binary moderator, and two two-way interactions with an ordinal moderator and a nominal

moderator. Given the same combination of other design factors, the estimated power rate

of mixed moderators (0.994) is comparable to the estimated power rates of binary, ordinal

and nominal moderators (1.000, 1.000, and 0.998, respectively). The estimated recovery

rate of mixed moderators (0.812) is lower than binary moderators (0.991), but higher

than ordinal and nominal moderators (0.653 and 0.649, respectively). Thus, it might

be plausible to assume that the recovery rates on mixed types of moderators will be in-

between the ones on binary variables and continuous variables. Future study is needed

to obtain a solid conclusion about the performance of meta-CART on mixed types of

moderator variables.

Another limitation is that the designed models that were used to generate data did

not take linear relationship between effect size and continuous moderators into account. If

the effect size is linearly related to continuous moderators, meta-CART will have difficul-

ties to decide the split points, which is a well-known disadvantage of tree-based methods

(Friedman, Hastie, & Tibshirani, 2001). One way to solve this problem is to first adjust

for the linear relationship (e.g., fit a meta-regression model with main effects of contin-

uous moderators), and then fit a meta-CART model using the adjusted effect size (i.e.,

the residuals from the first step) as the response variable. Furthermore, for data gener-

ated from the designed tree models, meta-CART has lower recovery rates for continuous

moderators than binary, nominal, and ordinal moderators. This might be because the

greedy search algorithm of meta-CART may mistakenly select a local spike when the

number of possible split points to be evaluated is large. One possible solution can be

using a smooth function to approximate the threshold indicator, for example, the sigmoid

smooth function (see Su et al., 2016). It will be interesting to improve the performance
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of meta-CART for continuous moderators for both linear and non-linear relationship in

future.

A final limitation is that the simulation study did not examine the coverage of the

confidence intervals of the effect size estimates for all combinations of the design factors

due to the computation cost and the difficulty to compare subgroups for equivalent trees

with different expressions (for an example, see in Supporting Material Figure 3.7). The

analysis results from one cell of the design showed that FE meta-CART results in too

narrow confidence intervals while RE meta-CART results in confidence intervals with

coverage close to the nominated probability. This is because FE meta-CART ignores the

uncertainty introduced by the residual heterogeneity.

One advantage of meta-CART is that it can deal with multiple moderators and identify

interactions between them. In addition, the simulation results show that the performance

of meta-CART is not (largely) influenced by the number of moderators, and the corre-

lation between the moderators. Meta-CART also has the potential to be extended and

integrated into other advanced meta-analytic techniques such like multiple group model-

ing (Schoemann, 2016) and meta-analytic structural equation modeling (Cheung & Chan,

2005). Multiple group modeling is a powerful tool for testing moderators in meta-analysis,

but it can only be used to test for categorical moderators; continuous moderators cannot

be assessed with this technique. Meta-CART can create a subgrouping variable based

on continuous moderators, which could be used as a categorical moderator to be tested

in a multiple group model. Meta-analytic structural equation modeling (MASEM) is an

increasingly popular technique for synthesizing multivariate correlational research. An ex-

tended approach of MASEM by Wilson, Polanin, and Lipsey (2016) uses meta-regression

to generate covariate-adjusted correlation coefficients for input to the synthesized corre-

lation matrix capable of reducing the influence of selected sources of heterogeneity. Since

meta-CART can be used to identify multiple moderators that account for the sources of

heterogeneity, it will be interesting to incorporate meta-CART into MASEM and evaluate

the performance in future work. A final advantage is that meta-CART can keep good

control of Type I error (≤ 0.05) by the pruning procedure with cross-validation. Higgins

and Thompson (2004) observed high rates of false-positive findings from meta-regression

as it is typically practiced. They found that the Type I error rate of FE meta-regression is

unacceptable in the presence of heterogeneity. In addition, the Type I error problems are

compounded for both FE and RE meta-regression when multiple moderators are assessed.

Compared to meta-regression, FE meta-CART has acceptable Type I error rates even in

presence of residual heterogeneity. And the Type I error rates are not largely influenced

by the number of moderators for both FE meta-CART and RE meta-CART.

Although meta-CART has a good control of the risk of spurious findings, caution

is needed for the interpretation of the significance test. Because the moderator effects

are explored and tested on the same data set, the test based on the between-subgroups
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Q-statistic is a pseudo Q-test. The test only gives information when the moderator

effects are not significant. But it does not confirm the significance of the moderator

effects. The Type I error of meta-CART is mainly controlled by the pruning procedure

rather than the Q-test. Therefore, meta-CART should be used as a hypothesis generating

tool (i.e., an exploratory method) rather than a hypothesis testing method. To confirm

the generated hypothesis, standard meta-analytical methods such as meta-regression and

subgroup meta-analysis can be employed to test the influential moderator (interaction)

effects on new data.

An interesting phenomenon is that FE meta-CART had higher recovery rates for

model E than model D, but RE meta-CART showed the opposite. A possible explanation

is the difference between model D and the models A, B, C, and E. In contrast to other

tree models, the tree size of model D is sensitive to the first splitting variable that the

algorithm chooses. For example, if the algorithm chooses the moderator x2 instead of x1

as the first splitting variable, the final tree will end up with six instead of four terminal

nodes. An illustration of the two equivalent trees can be found in Supporting Material

Figure 3.7. Since RE meta-CART employs the sequential partitioning procedure, it could

be more sensitive to the order of the chosen splitting variables than FE meta-CART,

which employs a recursive partitioning procedure.

As a recursive partitioning method and a sequential partitioning method respectively,

both FE meta-CART and RE meta-CART use local optimization procedures. Thus, the

algorithm may find a local optimum solution rather than a global optimum. For exam-

ple, when applying to the illustrative data set (see section 3.2), FE meta-CART results

in a local optimum solution with “T1: provide information about behavior-health link”

being the first splitting variable and “T4: prompt intention formation” being the second

splitting variable. However, if we apply a “look-ahead” procedure that searches through

all possible combinations of two splitting variables on the same data set, the resulting

solution will have “T4: prompt intention formation” as the first splitting variable and

“T1: provide information about behavior-health link” as the second splitting variable.

It results in a higher FE between-subgroups Q-statistic (QB = 41.78) compared to the

FE meta-CART solution (QB = 40.59). To overcome this local optimum problem, one

promising improvement of meta-CART would be to develop a global optimization algo-

rithm. Such an algorithm for both FE and RE models can improve meta-CART from

several aspects: 1) to avoid local optimum solutions, 2) to reduce the sensitivity of RE

meta-CART to the sequence of the partitioning as mentioned above, 3) to make the two

different partitioning procedures of FE meta-CART and RE meta-CART more similar.

Thus, it will be worthwhile to develop a global optimization method in future work.

In this study, the ordinal and nominal moderators were generated with three levels.

Because in meta-analytic practice most ordinal moderators commonly have three levels

such like “low”, “medium” and “high”, and categorical moderators commonly have two
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or three levels, we did not examine the performance of meta-CART on moderators with

larger number of levels. If there are moderators with different numbers of levels, the

greedy search property of meta-CART might induce a selection bias towards variables

that have more possible split points (Doyle, 1973). A solution to address this selection

bias is to adapt the GUIDE (Generalized, Unbiased Interaction Detection and Estimation)

algorithm by Loh (2002) to the framework of meta-CART.

3.8.2 The guideline for application of meta-CART

Based on the simulation results, the recommended pruning rule (expressed as a c*SE rule)

depends on the type of research at hand and the number of studies. A higher value of

c indicates more pruning. If higher power and recovery rates are more important than

strict control of Type I error for a specific research problem, a smaller pruning parameter

c can be used. For example, researchers may apply meta-CART with a liberal pruning

rule using c = 0 or 0.5 to gain more power by risking higher Type I error rates. If a

strict control of the Type I error (≤ 0.05) is required, a stricter pruning rule using c = 1

can be applied when the number of studies K < 80, and c = 0.5 when K ≥ 80 for FE

meta-CART. For RE meta-CART, the pruning rule c = 1 can be used when K < 120 and

c = 0.5 when K ≥ 120. To perform a meta-CART analysis with satisfactory performance

(i.e., with power and recovery rates both higher than 0.80), a minimum number of studies

K = 40 is required to detect main effect or simple interaction effect such as one two-way

interaction, and K = 80 is required to detect more complex interaction effects.

The choice of whether to use FE or RE meta-CART should be based on the assumption

of the residual heterogeneity and the research question, but not on the power and the

recovery rates. General discussion and guidelines about the choice between FE model and

RE model in meta-analysis can be found in Borenstein, Hedges, Higgins, and Rothstein

(2010), and Schmidt, Oh, and Hayes (2009). For meta-CART analysis, heterogeneity

is likely to exist when the number of studies is large (i.e., K ≥ 40). In addition, FE

meta-CART may result in over-optimistic confidence intervals when residual heterogeneity

exists. To conclude, RE meta-CART is generally recommended, unless there is a priori

grounding for the fixed effect assumption.

3.9 Supporting Materials

3.9.1 The effect sizes of the design factors

The partial η2s of the design factors in the ANOVA are shown in Tables 3.5-3.10. Only

the ten most influential factors are shown for each analysis.
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Table 3.5: Five most influential factors in the ANOVA on Type I error rate for FE meta-
CART

The name of predictor variable generalized partial η2

K 0.70
c 0.39
K × c 0.06
M 0.04
σ2
τ 0.03

Table 3.6: Five most influential factors in the ANOVA on Type I error rate for RE
meta-CART

The name of predictor variable generalized partial η2

K × c 0.57
K 0.27
Variable type 0.04
c 0.04
M 0.03

3.9.2 Two representations for model D

In the simulation study, a model with two two-way interactions (model D) was used to

generate data with complex interaction effects. This tree model can be represented in two

trees with different number of splits (see Figure 3.7). The number of the splits depends

on the first splitting variable.
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Table 3.7: Ten most influential factors in the ANOVA on power rate for FE meta-CART

The name of predictor variable partial η2

Tree complexity 0.97
δI 0.95
K 0.92
σ2
τ 0.85
n̄ 0.75
Variable type 0.71
Variable type × Tree complexity 0.60
K × δI× Tree complexity 0.52
Variable Types ×δI× Tree complexity 0.50
δI × σ2

τ 0.49

Table 3.8: Ten most influential factors in the ANOVA on power rate for RE meta-CART

The name of predictor variable partial η2

Tree complexity 0.98
δI 0.96
K 0.91
Variable type 0.88
σ2
τ 0.86
n̄ 0.82
K × σ2

τ× Tree complexity 0.64
Variable type × Tree complexity 0.64
δI × σ2

τ 0.44
δI× Tree complexity 0.43

Table 3.9: Ten most influential factors in the ANOVA on recovery rate of moderators for
FE meta-CART

The name of predictor variable partial η2

Tree complexity 0.99
K 0.96
δI 0.95
σ2
τ 0.88

Variable type 0.85
n̄ 0.79
M 0.70
Variable type × Tree complexity 0.70
δI × σ2

τ 0.63
K× Tree complexity 0.60
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Table 3.10: Ten most influential factors in the ANOVA on recovery rate of moderators
for RE meta-CART

The name of predictor variable partial η2

Tree complexity 0.99
δI 0.96
K 0.94
Variable type 0.90
σ2
τ 0.89
n̄ 0.85
Variable type× Tree complexity 0.73
M 0.63
δI × σ2

τ 0.55
δI× Tree complexity 0.50

Table 3.11: Ten most influential factors in the ANOVA on difference in average recovery
rates between FE meta-CART and FE meta-regression

The name of predictor variable partial η2

Tree complexity 0.96
K 0.69
σ2
τ 0.65

Variable type 0.62
K × δI 0.58
M 0.48
K × n̄ 0.35
n̄ 0.19
δI 0.18
R 0.01

Table 3.12: Ten most influential factors in the ANOVA on difference in average recovery
rates between RE meta-CART and RE meta-regression

The name of predictor variable partial η2

Tree complexity 0.93
Variable type 0.76
M 0.31
K × δI 0.30
K × n̄ 0.09
K 0.08
δI 0.03
n̄ 0.01
R 0.00
σ2
τ 0.00
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Figure 3.7: Two equivalent expressions for model D. The different number of splits depend
on the first splitting variable.
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Chapter 4

Multivariate moderator

meta-analysis with the R-package

metacart

abstract

In meta-analysis, heterogeneity often exists between studies. Knowledge about study fea-

tures (i.e., moderators) that can explain the heterogeneity in effect sizes can be useful for

researchers to assess the effectiveness of existing interventions and design new potentially

effective interventions. When there are multiple moderators, they may amplify or attenu-

ate each other’s effect on treatment effectiveness. However, in most meta-analysis studies,

interaction effects are neglected due to the lack of appropriate methods. The method

meta-CART was recently proposed to identify interactions between multiple moderators.

The analysis result is a tree model in which the studies are partitioned into more homo-

geneous subgroups by combinations of moderators. This paper describes the R-package

metacart, which provides user-friendly functions to conduct meta-CART analyses in R.

This package can fit both fixed- and random-effects meta-CART, and can handle dichoto-

mous, categorical, ordinal and continuous moderators. In addition, a new look ahead

procedure is presented. The application of the package is illustrated step-by-step using

diverse examples.
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4.1 Introduction

Methodology for synthesizing findings from multiple studies addressing the same research

question has a long history (Hedges, 1981; Hedges & Olkin, 1985). The typical goals of

meta-analysis are to estimate the overall effect size (i.e., a weighted average of study effect

sizes), to quantity the heterogeneity in the study effect sizes, and to investigate the study

characteristics that explain the heterogeneity (i.e., moderators). The relationship between

moderators and the study effect sizes can be of high interest for behavioral scientists to

evaluate existing interventions and to design new potentially effective interventions. In the

meta-analysis framework, moderator analysis can be conducted with several stand-alone

software programs such as Comprehensive Meta-Analysis (Borenstein et al., 2009),

Meta-Analyst (Wallace, Schmid, Lau, & Trikalinos, 2009), and the Cochrane Collabo-

ration’s RevMan (Collaboration, 2008). Also, there are add-ins/macros/packages that

can be used to conduct moderator analysis in many software languages such as Stata

(StataCorp 2017, for details, see Sterne, Bradburn, and Egger 2008), SAS (Inc 2002,

for details, see Wang and Bushman 1999, Arthur Jr, Bennett, and Huffcutt 2001, and

Sheu and Suzuki 2001), SPSS (Corp 2013, for details, see Lipsey and Wilson 2001), and

R (Team 2017, e.g., package rmeta by Lumley 2012, mvmeta Gasparrini, Armstrong,

and Kenward 2012, and metafor by Viechtbauer 2010). Most of these programs/add-ins

are based on meta-regression, which is the most commonly used method for moderator

analysis in meta-analysis.

In practice, behavioral scientific meta-analyses often have multiple moderators to be

examined. For example, interventions to change health-related behavior generally include

various behavior change techniques (BCTs), and researchers are interested in investigat-

ing the influence of BCTs on the effectiveness of interventions (see Michie, Abraham, et

al., 2009). However, meta-regression has several limitations in such cases. First, when

the number of included studies is small, meta-regression suffers from low statistical power

to examine all moderators simultaneously (Tanner-Smith & Grant, 2018). Second, meta-

regression has difficulties in exploring interaction effects among moderators since it re-

quires moderators and their interactions to be specified beforehand. When there is no a

priori hypotheses available, the number of all possible interaction terms are usually too

large to be included in one model. The interaction effects, however, can provide valuable

information to answer questions such like “does these intervention components amplify

or attenuate each other’s effectiveness?” and “which combination of study characteristics

results in the highest effectiveness?”.

To overcome the aforementioned limitations, tree-based models can be integrated into

the framework of meta-analysis. Tree-based methods were introduced for the first time by

Morgan and Sonquist (1963) in a method called automatic interaction detection (AID),

and were fully developed in classification and regression trees (CART) by Breiman et al.
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(1984). Trees are good at dealing with many predictor variables that may interact, and

produce results that can be easily interpreted. Tree-based methods have been used in

the field of behavioral and medical sciences (e.g, Finch et al., 2011; Leach et al., 2016;

Trujillano, Badia, Serviá, March, & Rodriguez-Pozo, 2009), but the idea of using trees

in the meta-analysis framework is relatively new. For individual patient data (IPD)

meta-analyses, Mistry, Stallard, and Underwood (2018) proposed a recursive partitioning

method called IPD-SIDES that identifies patient subgroups by individual characteristics

that may be related to the response to intervention. For aggregated data meta-analyses,

a method called meta-CART was proposed to identify interaction effects among study-

level characteristics (Dusseldorp et al., 2014; Li, Dusseldorp, & Meulman, 2017, 2019).

This paper focuses on moderator analyses on aggregated meta-analysis by meta-CART.

Compared to meta-regression, meta-CART has several advantages: first, it excels at deal-

ing with interaction effects, and the interactions can be easily interpreted; second, it has

automatic variable selection and does not require model selection; third, it is able to han-

dle non-linear associations between moderators and effect size. Furthermore, since tree

models are invariant to monotone transformation of predictors, meta-CART can keep the

ordering information of ordinal moderators, whereas meta-regression usually codes ordinal

variables the same as categorical variables. Li et al. (2019) showed via a simulation study

that meta-CART can achieve satisfactory power and recovery rates (i.e., ≥ 0.80) with a

sufficiently large sample size (i.e., n ≥ 40 for simple interactions and n ≥ 80 for complex

interactions). The meta-CART method has been acknowledged as a potential alternative

statistical method for meta-regression to understand the combined effects of moderators

(Michie et al., 2015; O’Brien et al., 2015; Tipton et al., 2018), and it has been applied in

several meta-analytic studies (e.g., Bull et al., 2018; van Genugten, Dusseldorp, Webb, &

van Empelen, 2016).

In the present paper, we introduce the R package metacart, which implements the

meta-CART method. This package provides user-friendly functions to perform meta-

CART analysis for various types of moderators (i.e., continuous, ordinal, and categorical

variables), and includes various additional options such as tuning the pruning of the tree

model, restricting the minimum number of studies in a subgroup, and so on. In addition,

we developed a new option to apply a “look-ahead” strategy specifically focusing on

interaction detection. This paper aims to provide a general overview of the capabilities

of the metacart package for conducting multivariate moderator meta-analysis with R.

Section 2 introduces the meta-CART method. Section 3 describes the main functions in

the metacart package, and Section 4 illustrates their practical usage with examples of

real meta-analyses. Section 5 contains concluding remarks.
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4.2 Meta-CART Method

4.2.1 The goal of meta-CART analysis

The underlying goal of meta-CART analysis is to identify subgroups defined by the mod-

erators that can explain the heterogeneity in the study effect sizes. Appropriate data for

meta-CART include an outcome variable of interest (i.e., study effect size), the within-

study sample variance of the effect size, and the potential moderator variables that may

influence the effect size. Depending on the type of study, there is a variety of different

effect size measures, including the odds ratio, the relative risk, the correlation coefficient,

and (the standardized) mean difference. Meta-CART can deal with all these effect size

measures as long as all the studies are using the same measure1. To identify influential

moderators, meta-CART partitions the studies into subgroups that are more homoge-

neous with respect to their study effect sizes. The result is a tree model with the terminal

nodes as the identified subgroups and the splitting variables as the influential modera-

tors. Figure 4.1 shows an example of a tree model fitted by the package metacart. The

root node (i.e., the node at the top) represents all the studies that are included in the

analysis. From the root node, the studies are partitioned into two subgroups by applying

a threshold on the values of a moderator. For example, the root node in Figure 4.1 is

partitioned into two child nodes based on the moderator “eye assess”. This moderator is

categorical, and the studies of which “eye assess” equals to “E.1.a.ii”, “E.1.b”, or “E.1.c”

fall into the left child node and the other studies fall into the right child node. If the

moderator is an ordinal or a continuous variable, a binary question such as “is the value

of the moderator smaller than the split point?” will be asked to introduce a split. Note

that the moderators and the corresponding split points are automatically selected by the

algorithm. How the moderators and split points are selected will be explained in Section

4.2.2.

The resulting subgroup memberships are defined by a hierarchically nested set of

decision rules such as “does the intervention include certain treatment components?” or

“is the average age of the patients smaller than 25?”. In the identified subgroups, the

summary effect sizes and their confidence intervals are estimated. The analysis results

can be used by researchers to predict the effect size given the study characteristics, or

to identify the combination of study characteristics that results in the highest/lowest

effect size. Note that meta-CART has an exploratory nature, since the subgroups are not

predefined but identified from the data. Thus, meta-CART should be used as a hypothesis-

generating tool, and we recommend testing the identified moderators by confirmatory

methodology in further studies.

1Most effect size measures can be converted to one another (see Hedges & Olkin, 1985).
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Figure 4.1: The meta-CART analysis results of 54 samples examining the influence of
moderators on the association between handedness and eye-dominance. The figure shows
the main effect of the method to assess eye-dominance, which partitions the samples in
two subgroups. The two solid lines show the range of the effect sizes of all the studies. The
diamonds between the solid lines present the 95% confidence intervals of the summary
effect sizes.

4.2.2 Meta-CART algorithm

There are two types of meta-CART algorithms: fixed-effect (FE) meta-CART, a recursive

partitioning algorithm that ignores the residual heterogeneity unexplained by the mod-

erators, and random-effects (RE) meta-CART, a sequential partitioning algorithm that

takes into account the residual heterogeneity. As in standard meta-analysis, the choice

between FE and RE assumptions should be based on a researcher’s prior belief; in other

words, a researcher should decide on which assumption to use before analyzing the data.

In general, if a researcher believes that given the study characteristics the variance of the

study effect sizes is merely due to the sampling variance2, FE meta-CART can be chosen.

If there is no a priori information about the residual heterogeneity, RE meta-CART is

recommended. A more general discussion about FE model and RE model in meta-analysis

can be found in Borenstein et al. (2010) and Schmidt et al. (2009).

In this section, we describe the FE and RE meta-CART algorithms, which underly

the metacart package.

2This implies that differences between the studies are all accounted for by moderators, and sampling
variance accounts for the variance of the study effect sizes adjusted for moderator effects.
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Fixed effect meta-CART

FE meta-CART splits the studies into more homogeneous subgroups under the FE as-

sumption; that is, moderator effects and the within-study sampling variance are the only

two sources of the variation in study effect sizes. Denote the true effect size in the kth

study by δk, and denote the observed effect size in the kth study by dk.
3 Under the FE

assumption, the observed effect size is given by

dk = δk + εk = β0 + β1x1k + β2x2k + ...+ βMxMk + εk, (4.1)

where xmk (m = 1, ...,M) specify the values on the M moderators of the kth study, and the

βs are the corresponding coefficients. The sampling error εk is assumed to be distributed

as N (0, σ2
εk

), where σ2
εk

is the sampling variance.

The summary effect size is computed as the weighted mean, with weights wk = 1/σ2
εk

:

d+ =

∑
dk/σ

2
εk∑

1/σ2
εk

. (4.2)

The measure of heterogeneity, the Q-statistic, is given by

Q =
K∑
k=1

(dk − d+)2

σ2
εk

. (4.3)

Starting from one group including all the studies (i.e., the root node), FE meta-CART

partitions the root node into two subgroups (i.e., offspring nodes), by searching through all

possible splits and finds the moderator with corresponding split point that maximizes the

between-subgroups heterogeneity. Denote the summary effect size of the tth subgroup (i.e.,

tth node in the tree) by dt+, the between-subgroups heterogeneity measure is computed

as

QB =

|T |∑
t

∑
k∈t

(dt+ − d++)2

σ2
εk

, (4.4)

where |T | is the total number of subgroups4, and d++ is the weighted grand mean of the

parent node.

To grow a tree, FE meta-CART recursively searches the split that maximizes the het-

erogeneity QB between the left and right child nodes. After each split, the algorithm

partitions a parent node into two child nodes. The tree-growing process is a recursive

partitioning procedure since the same operation can be applied to any child node itself

3Note that we focus here on the d-family of effect sizes, that is, measures of the standardized mean
outcome difference between treatment and control groups (e.g., Cohen’s d or Hedges’ g). However, meta-
CART can also be used for other effect size measures.

4|T | = 2 when only considering the heterogeneity between left and right child nodes after a split of
the parent node.
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Initialize: put all studies in one group (i.e., root node).
Specify: the mininal number of studies K0 in a parent node to

attempt a split.

In the current tree, for each terminal node with at least K0 stud-
ies (i.e., candidate parent node):
• for each moderator, find the split point that results in the

highest value of QB (FE model) or Q∗B (RE model);

• identify the optimal combination of splitting moderator and
the split point that results in the highest value of QB (FE
model) or Q∗B (RE model).

Optimal combination
found for at least one

parent node?
stop

FE: For each parent node, partition the studies into two child
nodes by the selected splitting moderator and split point.
RE: Select the optimal triplet of parent node, splitting modera-
tor and the split point that results in the highest value of Q∗B.a

Partition the selected parent node into two child nodes by the
corresponding splitting moderator and split point.

The number of
studies larger than
K0 for at least one

terminal node?

stop

no

yes

no

yes

Figure 4.2: Flowchart of tree growing process of meta-CART algorithms for fixed-effect
(FE) model and random-effects (RE) model.
a Note that this substep is not needed for recursive partitioning method like ordinary CART
and FE meta-CART, but necessary for RE meta-CART due to the re-estimation of σ2τ .
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without taking the other nodes in the current tree into account. A flowchart of the tree

growing process of FE meta-CART is shown in Figure 4.2. The splitting process continues

until all terminal nodes contain fewer than K0 studies, where K0 is a user-specified thresh-

old (see section 4.3). To prevent overfitting, the initial tree will be iteratively pruned to

a nested sequence of subtrees, from which a best-sized tree is chosen via cross-validation.

Different rules can be applied to determine the best-sized tree. To generalize the rules, a

parameter c is introduced to select the “optimal” tree by using the c ·SE rule (Dusseldorp

et al., 2010). The c · SE rule selects the smallest tree with cross-validation error within

the minimum cross-validation error plus its standard error multiplied by c.

The final analysis results consist of the selected tree model that represents the inter-

actions between moderators, the estimates of the summary effect sizes dt+ within each

subgroup, and the between-subgroups QB with df = |T | − 1. It should be noted that the

significance test based on the between- subgroups Q-statistic is an overoptimistic pseudo

Q-test. Given pre-defined subgroup membership, the between-subgroups Q-statistic fol-

lows a chi-square distribution with df = |T |−1 under the null hypothesis that there is no

significant heterogeneity between the subgroups. However, in meta-CART the subgroup

membership is not pre-defined, but identified by the tree-growing and cross-validation

procedures. Therefore, over-optimism exists in the Q-test, and the p-value should not

be interpreted as the face value. It only gives information when the moderator effects

are not significant. In other words, a non-significant p-value indicates that the influence

of the identified moderator(s) on study effect sizes is not significant, but a significant

p-value does not confirm the significance of the moderator effects. It is also worth to

note that despite the over-optimism in the Q-test, the Type I error rate of meta-CART

(i.e., defined as the rate of finding a nontrivial tree with a significant between-subgroups

Q-statistic while there is no moderator effect in the true structure underlying the data)

is not inflated, because the Type I error of moderator effects is mainly controlled by the

pruning procedure (for details, see Li et al., 2019).

RE meta-CART

RE meta-CART takes the residual heterogeneity unexplained by moderators into account.

The RE model is expressed as below:

dk = β0 + β1x1k + β2x2k + ...+ βMxMk + τk + εk, (4.5)

where τk is the variation introduced by the residual heterogeneity. Denote the residual

heterogeneity by σ2
τ , with τk distributed as N (0, σ2

τ ). There are various estimators for σ2
τ ,

including the Hunter-Schmidt estimator (Schmidt & Hunter, 2014), the Hedges estimator

(Hedges & Olkin, 1985), the DerSimonian-Laird estimator (DerSimonian & Laird, 1986),

the Sidik-Jonkman estimator (Sidik & Jonkman, 2005), and the maximum-likelihood or
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restricted maximum-likelihood estimator (Viechtbauer, 2005). In the metacart package,

we use the DerSimonian-Laird estimator for its lower computational cost.5

With the estimated residual heterogeneity, the summary effect size can be computed

with the RE weights w∗k = 1/(σ2
εk

+ σ2
τ ):

d∗+ =

∑
dk/(σ

2
εk

+ σ2
τ )∑

1/(σ2
εk

+ σ2
τ )
. (4.6)

The RE heterogeneity is given by

Q∗ =
K∑
k=1

(dk − d∗+)2

σ2
εk

+ σ2
τ

. (4.7)

Similar to FE meta-CART, RE meta-CART starts from the root node, and searches

for the split that maximizes the between-subgroups heterogeneity. The difference is that

before searching for the split, RE meta-CART needs to estimate the residual heterogeneity

(σ2
τ ) first, since the RE between-subgroups heterogeneity is given by

Q∗B =

|T |∑
t

∑
k∈t

(d∗t+ − d∗++)2

σ2
εk

+ σ2
τ

. (4.8)

To continue the splitting process, RE meta-CART updates the estimate for σ2
τ and

searches for the new split maximizing the partitioning criterion. A flowchart of the tree-

growing process of RE meta-CART is also given in Figure 4.2. Note that a split of a

node will globally affect the estimation of σ2
τ and the value of Q∗B. Thus, in contrast to

FE meta-CART, RE meta-CART considers heterogeneity between all the terminal nodes

rather than only between the resulting left and right child nodes after a split. As a result,

the tree-growing process of RE meta-CART is not fully recursive, since the algorithm

needs to take all terminal nodes of the current tree into account to introduce a new split.

In other words, the estimate of σ2
τ and the optimal choice for a new split depend on the

sequence of previous splits. Instead, RE meta-CART applies a sequential partitioning

algorithm. 6

As in FE meta-CART, the splitting process of RE meta-CART continues until a

large tree is grown. Then an optimally-sized subtree is selected using cross-validation

with the c · SE rule. The associated between-subgroups Q∗B, the estimates for residual

heterogeneity σ2
τ , and the within-subgroup summary effect sizes d∗j+ are obtained as the

final tree is selected.

5In our pilot simulation study, it was found that the different choices of the estimator led to similar
trees.

6A sequential tree-growing algorithm is defined as an algorithm that only splits a node in the tree if
the reduction in the partitioning criterion at the proposed node exceeds some value, regardless of what
might happen lower in the tree (?, Chapter 4). Recursive partitioning can be seen as a restricted form
of sequential partitioning where at each node, exactly the same splitting procedure is repeated.
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Look-ahead strategy for RE meta-CART

The growing algorithms of both FE and RE meta-CART are fully greedy. Although the

approach guarantees a locally optimal solution at each split, it does not guarantee a glob-

ally optimal solution for the whole tree. That is, the tree-growing procedure chooses each

optimal split with no regard of future splits. Because the estimated residual heterogeneity

is influenced by the sequence of partitioning, the RE meta-CART is more sensitive to this

local optimization problem. To alleviate this problem, we propose a look-ahead strategy

for RE meta-CART, which examines two steps ahead instead of one at the split of the

root node. This look-ahead strategy is applied only to the top level of a tree.

Starting the algorithm at the root node, a standard RE meta-tree chooses the single

split (i.e., one split point on one moderator) that maximizes the between-subgroups het-

erogeneity. In contrast, a look-ahead strategy searches for the combination of two splits

(i.e., single split points on two moderators or two split points on one moderator) that

maximizes the partitioning criterion. As a result, the entire growing procedure that ap-

plies a look-ahead strategy consists of two sub-procedures. The first sub-procedure grows

a tree with two splits, which searches for the optimal combination of a split of the root

node and a split of one of its child nodes. The combination that maximizes Q∗B is cho-

sen. In the second sub-procedure, the resulting offspring nodes of the first two splits are

split following a fully greedy procedure for maximizing Q∗B at each split. This complete

splitting procedure grows a large tree, which will be pruned using the pruning procedure

mentioned above.

It should be noted that such a strategy does not guarantee a globally optimal solution,

and only partially addresses the local optimization issue. Although more steps to look

ahead can be beneficial, we chose the number of steps as two because the computational

burden of a look-ahead procedure grows exponentially as the number of steps increases

(Esmeir & Markovitch, 2007).

4.3 The metacart package

The metacart package provides functions to perform both FE and RE meta-CART

analysis. The package is available via the Comprehensive R Archive Network (CRAN) at

https://cran.r-project.org/package=metacart, and can be directly installed within

R by typing install.packages("metacart"). The current version is 2.0-0.

4.3.1 Functions for FE meta-CART

The function FEmrt is the main function to perform a fixed effect meta-CART analysis.

Both the tree growing and pruning processes in the function FEmrt() are based on the

function rpart() in the rpart package (Therneau, Atkinson, & Ripley, 2017), with adap-

https://cran.r-project.org/package=metacart
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tations to fit a tree model applying appropriate weights on meta-analytic data (see section

4.2.2) and automatically compute subgroup meta-analysis results within the function. We

now describe the different arguments of the function.

FEmrt(formula, data, vi, subset, c = 1, control = rpart.control(

minsplit = 6, minbucket = 3, cp = 1e-04, xval = 10), ...)

The argument formula defines the outcome variable (i.e., effect size) and the pre-

dictor variables (i.e., moderators).

The argument data specifies the name of the data set to be analyzed. The argument

vi requires the column name of the sampling variance of the effect size.

The argument subset is an optional expression to select a subset of the data to

fit the model. The subset argument can either be a logical or a numeric vector

indicating the indices of rows (i.e. studies) to be included.

The argument c refers to the pruning parameter (described in section 4.2.2) to be

used for the analysis. The default value c = 1 corresponds to the one-standard-

error rule recommended by Breiman et al. (1984). For meta-CART analysis, the

recommended value of c depends on the type of research at hand and the number

of studies. In general, if a strict control of the Type I error (less than or equal to

0.05) is required, a pruning rule using c = 1 can be applied when the number of

studies K < 80, and c = 0.5 when K ≥ 80 (for more guidelines about the value of

the pruning parameter c, see Li et al. (2019))

The argument control specifies the options to control the growing and pruning

processes. As mentioned above, both the tree growing and pruning processes are

based on the function rpart, and therefore the control argument should be an

rpart.control object (see details in Therneau et al. 2017). Within the rpart.control

object, minsplit specifies the minimum number of studies that must exist in a par-

ent node for a split to be attempted; minbucket specifies the minimum number

of studies in any terminal node; cp specifies the minimal improve of complexity

parameter (i.e., QB divided by Q) to make a split in the growing process; xval

specifies the number of cross-validations in the pruning process. The default value

of minbucket is chosen as 3, because a sample size of one or two is too small to

produce reliable subgroup meta-analysis results. Consequently, the default value of

minsplit is chosen as 6. The default value xval = 10 corresponds to the ten-fold

cross-validation recommended by Breiman et al. (1984).

The output of the FEmrt function is an S3 object of class "FEmrt". The corresponding

print and summary methods can be used to display and inspect the elements of the
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object. The plot method can be used to present the main effects of identified moderators

and interaction effects between them in a tree model. The predict method of the S3 object

allows the user to predict effect size given the value of moderators. Examples to apply

these methods will be described in section 4.4.

4.3.2 Functions for RE meta-CART

The function REmrt is the main function to perform random effects meta-CART analysis.

Both the tree growing and pruning processes in the function REmrt are entirely new R-code

combined with C++ that implements the sequential partitioning algorithm described in

section 4.2.2. The different arguments of the function REmrt are described below.

REmrt(formula, data, vi, c = 1, maxL = 5, minsplit = 6, minbucket = 3,

cp = 1e-4, xval = 10, lookahead = FALSE, ...)

The arguments formula, data, vi, and c are similar to the corresponding arguments

in the function FEmrt.

The argument maxL is an option to define the maximum number of splits in the tree

growing process.

The arguments minsplit, minbucket, cp, and xval are other options to control the

growing and pruning processes. These options are not given in an rpart.control

object, because the REmrt is an entirely new function and does not depend on the

rpart function. The specifications of these options are the same as those from the

function FEmrt.

The argument lookahead is a logical indicator to specify whether to apply the

look-ahead strategy described in section 4.2.2.

The output of the REmrt function is an S3 object of class "REmrt". Similar to FEmrt,

there are corresponding print, summary, plot, and predict methods for "REmrt" objects .

Examples will be described in section 4.4.

4.4 Examples

4.4.1 New approach meta-CART compared to meta-regression

In this example, we re-analyze the data "dat.bourassa1996" included in the metafor

package (Viechtbauer, 2010). The data set contains the meta-analytic data from Bourassa,

McManus, and Bryden (1996), including results from 47 studies on the association between

handedness and eye-dominance. Some studies included multiple (independent) samples,
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resulting in 54 samples in total. Furthermore, for some studies, the combined data of the

males and females were further broken down into the two subgroups. As a result, the data

set contains 96 (sub)samples in total. We only selected the independent samples with the

combined data of both males and females (K = 54). The results of each of these samples

were given in terms of the number of left-handed left-eyed, left-handed right-eyed, right-

handed left-eyed, and right-handed right-eyed individuals. We use the log odds-ratio as

the measure of effect size, which is the same as in Bourassa et al. (1996). A higher log

odds-ratio indicates a higher association between handedness and eye dominance. First,

we compute the effect size and sampling variance by using the escalc function in the

metafor package.

R> library(metafor)

R> data("dat.bourassa1996")

R> dat.handedness <- escalc(measure = "OR", subset = (sex == "combined"),

+ ai = lh.le, bi = lh.re, ci = rh.le, di = rh.re,

+ data = dat.bourassa1996, add = 1/2, to = "all")

R> head(dat.handedness)

study sample author year selection investigator hand_assess

1 1 1 Mills 1925 no other questionnaire

2 2 2 Downey 1927 yes psychologist questionnaire

5 3 3 Miles 1930 no psychologist questionnaire

6 4 4 Quinan 1931 no other performance

7 5 5 Jasper 1932 yes psychologist questionnaire

8 6 6 Lund 1932 no psychologist performance

eye_assess mage lh.le lh.re rh.le rh.re sex yi vi

1 E.1.d NA 93 17 130 760 combined 3.4384 0.0768

2 E.1.b 37 140 91 305 697 combined 1.2544 0.0228

5 E.1.a.ii 22 16 14 43 114 combined 1.0970 0.1613

6 E.1.b 25 102 97 597 1898 combined 1.2061 0.0222

7 E.1.a.ii 20 17 14 38 80 combined 0.9257 0.1645

8 E.1.a.ii 20 10 2 52 170 combined 2.6130 0.5202

The computed effect size ("yi") and variance ("vi") are added to the data set. The

data set provides information about the following moderators: the publication year

("year"), whether the selection of subjects was based on eye-dominance or handedness

("selection", with two categories), the type of investigator ("investigator", with three

categories7), the method to assess handedness ("hand assess", with two categories), the

methods to assess eye-dominance ("eye assess", with six categories), the average age

("mage").

7The three categories are ”psychologist”, ”educationalist”, ”and other”
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Both meta-regression and meta-CART are applied to re-analyze this data set. The

analyses results are compared to illustrate the different research questions that can be

answered by these approaches. For both analyses, the moderators “selection”, “investi-

gator”, “hand assess”, and “eye assess” are selected. The random effects model is chosen

and the DerSimonian-Laird estimator is used to estimate the residual heterogeneity. We

use “set.seed(2018)” so that the analysis results described in this paper can be repli-

cated.

First, to answer the question “which moderators affect hand-eye association?”, we fit

a meta-regression model with the main effects of the selected moderators.

R> set.seed(2018)

R> regHAND.re <- rma(yi = yi, vi = vi, method = "DL",

+ mods = ~ eye_assess + investigator + hand_assess +

+ selection, data = dat.handedness)

R> regHAND.re

Mixed-Effects Model (k = 54; tau^2 estimator: DL)

tau^2 (estimated amount of residual heterogeneity): 0.1268 (SE = 0.0726)

tau (square root of estimated tau^2 value): 0.3561

I^2 (residual heterogeneity / unaccounted variability): 60.39%

H^2 (unaccounted variability / sampling variability): 2.52

R^2 (amount of heterogeneity accounted for): 58.26%

Test for Residual Heterogeneity:

QE(df = 44) = 111.0699, p-val < .0001

Test of Moderators (coefficient(s) 2:10):

QM(df = 9) = 51.3955, p-val < .0001

Model Results:

estimate se zval pval ci.lb

intrcpt 1.3564 0.4468 3.0356 0.0024 0.4806

eye_assessE.1.a.ii -0.6513 0.3222 -2.0214 0.0432 -1.2828

eye_assessE.1.b -0.9618 0.3585 -2.6829 0.0073 -1.6645

eye_assessE.1.c -0.8967 0.3486 -2.5718 0.0101 -1.5800

eye_assessE.1.d 0.6733 0.4381 1.5369 0.1243 -0.1854

eye_assessE.2.a 0.2246 0.3898 0.5762 0.5645 -0.5394

investigatorother 0.4302 0.3774 1.1400 0.2543 -0.3094
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investigatorpsychologist 0.4222 0.3510 1.2027 0.2291 -0.2658

hand_assessquestionnaire 0.0595 0.1913 0.3108 0.7559 -0.3156

selectionyes 0.0117 0.2392 0.0491 0.9609 -0.4571

ci.ub

intrcpt 2.2322 **

eye_assessE.1.a.ii -0.0198 *

eye_assessE.1.b -0.2592 **

eye_assessE.1.c -0.2133 *

eye_assessE.1.d 1.5320

eye_assessE.2.a 0.9887

investigatorother 1.1698

investigatorpsychologist 1.1101

hand_assessquestionnaire 0.4345

selectionyes 0.4806

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The output shows that three contrasts derived from the method to assess eye-dominance

are significant: contrasted with the eye-dominance assessment method “E.1.a.i” (i.e., the

reference method), “E.1.a.ii”, “E.1.b”, and “E.1.c” result in significantly lower hand-eye

association. The remaining two methods, “E.2.a” and “E.1.d” do not differ significantly

from the reference method. Note that the interpretation of these contrasts depends highly

on the choice of reference method.

Further analyses are needed if we are interested in whether some categories of a moder-

ator can be combined and whether interaction effects between the moderators are present.

Alternatively, meta-CART can be performed to answer the question “which combinations

of (categories of) moderators are influential?”. The combinations can be either combi-

nations of multiple moderators, or combinations of multiple categories of one moderator.

We fit a RE meta-CART model by

R> library(metacart)

Loading required package: rpart

Loading required package: ggplot2

Loading required package: gridExtra

R> modHAND.re <- REmrt(yi ~ eye_assess + investigator + hand_assess

+ + selection, data = dat.handedness, vi = vi,

+ c = 0.5, maxL = 10L, minsplit = 10L, cp = 1e-04,

+ minbucket = 3, xval = 10, lookahead = FALSE)

R> summary(modHAND.re)
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Random Effects meta-tree (K = 54 studies);

metacartv2::REmrt(formula = yi ~ eye_assess + investigator +

hand_assess + selection, data = dat.handedness, vi = vi,

c = 0.5, maxL = 10L, minsplit = 10L, cp = 1e-04, minbucket = 3,

lookahead = FALSE, xval = 10)

A tree with 2 terminal nodes was detected

Moderators were detected as: eye_assess

Test for Between-Subgroups Heterogeneity under RE assumption:

Qb = 46.293 (df = 1), p-value < 1e-04;

The estimate for the residual heterogeneity tau2 = 0.120;

Subgroup Meta-analysis Results:

K g se zval pval ci.lb ci.ub

2 39 0.988 0.086 11.553 0.000 0.821 1.156 ***

3 15 2.071 0.134 15.438 0.000 1.808 2.334 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The plot function can be used to inspect the influence of eye-dominance assessment

methods on the association between handedness and eye-dominance.

R> plot(modHAND.re)

The plot can be found in Figure 4.1, which shows a tree with one split and two ter-

minal nodes. Note that this tree results from pruning an initially large tree based on

cross-validation (see 4.2.2). According to the summary results and the plot, the mod-

erator “eye assess” has a strong influence on the association between handedness and

eye-dominance (Q∗B = 46.29, df = 1, p-value < 0.0001). When the eye-dominance is

assessed using the methods “E.1.a.ii”, “E.1.b”, or “E.1.c”, the observed association be-

tween handedness and eye-dominance is lower (log odds-ratio = 0.988, 95% CI: 0.821

to 1.156). When the eye-dominance is assessed using the methods “E.1.a.i”, “E.1.d” or

“E.2.a”, the observed association is generally higher (log odds-ratio = 2.071, 95% CI:

1.808 to 2.334). This is in accordance with the claims in Bourassa et al. (1996) that

the methods to assess eye-dominance can be partitioned into two subgroups: 1) unbiased

methods including “E.1.a.ii: monocular procedure with object/instrument held in both

hands”, “E.1.b: binocular procedure”, and “E.1.c: a combination of the previous meth-

ods”, 2) biased methods including “E.1.a.i: monocular procedure with object/instrument

held in one hand”, “E.2.a: assessment based on a questionnaire”, and “E.1.d: some other

method”. The methods “E.1.a.ii”, “E.1.b”, or “E.1.c” were symmetric in the sense that
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both hands are used equivalently during the process of measurement, and therefore are

less likely to have measurement bias.

Comparing to meta-regression, which estimates the coefficients and tests the signif-

icance for the contrasts derived from “eye assess”, meta-CART partitions the multi-

categorical moderator “eye assess” into subgroups, and tests the heterogeneity between

the resulting subgroups. The subgrouping membership can be used to verify prior hy-

potheses8, or to generate hypotheses if no a priori hypotheses exist.

4.4.2 Identify interaction effects using FE/RE assumptions

In this example, we perform a meta-analysis to identify the most effective combination

of treatment components by exploring the interactions between them. The metacart

package provides the data object dat.BCT2009 as a subset of the meta-analytic data from

Michie, Abraham, et al. (2009). The meta-analysis by Michie, Abraham, et al. (2009)

aimed to assess the effectiveness of interventions designed to promote physical activity

and health eating, and investigated whether theoretically specified behavior change tech-

niques (BCTs) improve the effectiveness. The subset used in this example consists of 106

interventions that included at least one of the motivation-enhancing BCTs.

R> data("dat.BCT2009")

R> head(dat.BCT2009, n = 5)

study g vi T1 T2 T3 T4 T25

1 ALDANA 2005 (PA) 0.60751 0.02469612 1 1 0 1 0

2 ANDERSON 2006 0.74651 0.05116192 0 0 0 1 0

3 ARAO 2007 (PA) 0.73090 0.06694639 0 0 0 1 0

4 BABAZONO 2007 (PA) 0.88197 0.09911163 0 0 0 1 0

5 BAKER 2008 0.73575 0.05308416 0 1 0 0 0

R> summary(dat.BCT2009)

study g vi T1

ALDANA 2005 (PA) : 1 Min. :-0.1696 Min. :0.00129 0:69

ANDERSON 2006 : 1 1st Qu.: 0.1291 1st Qu.:0.01533 1:37

ARAO 2007 (PA) : 1 Median : 0.3033 Median :0.02796

BABAZONO 2007 (PA): 1 Mean : 0.3308 Mean :0.04985

BAKER 2008 : 1 3rd Qu.: 0.4932 3rd Qu.:0.06188

BENNETT 2008 : 1 Max. : 1.2831 Max. :0.45788

(Other) :100

8If the subgroup membership is tested as a categorical moderator, meta-regression yields the same
results as meta-CART.
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T2 T3 T4 T25

0:42 0:106 0:33 0:89

1:64 1:73 1:17

As displayed above, the data set contains information about the name and the publication

year, the estimated effect size (g = Hedges’ g, which denotes the standardized mean

difference in treatment outcome), the sampling variance of the effect size, and whether

specific BCTs were applied or not in a study (“0” for absent and “1” for present). In this

example, we will re-analyze this data set focusing on the motivation-enhancing BCTs that

may explain the heterogeneity in the effect sizes of the interventions. We use the pruning

parameter c = 0.5 for both FE and RE meta-CART analyses (for more guidelines about

the value of the pruning parameter c, see Li et al. 2019). Four moderators “T1: Provide

information about behavior-health link”, “T2: Provide information on consequences”,

“T4: Prompt intention formation”, and “T25: Motivational interviewing” are included

in the meta-CART analysis. The moderator “T3: Provide information about other’s

approval” is excluded since none of the studies applied this BCT.

If we have prior knowledge that the FE assumption is reasonable here, a FE meta-

CART model can be fitted using the following code

R> modBCT.fe <- FEmrt(g ~ T1 + T2 + T4 + T25, data = dat.BCT2009,

+ vi = vi, c = 0.5, control = rpart.control(xval = 10,

+ minbucket = 5, minsplit = 10, cp = 1e-04))

To obtain the summary output, we use

R> summary(modBCT.fe)

Fixed Effects meta-tree (K = 106 studies);

FEmrt(formula = g ~ T1 + T2 + T4 + T25, data = dat.BCT2009, vi = vi,

c = 0.5, control = rpart.control(xval = 10, minbucket = 5,

minsplit = 10, cp = 1e-04))

A tree with 3 terminal nodes was detected

Moderators were detected as: T1, T4

Test for Between-Subgroups Heterogeneity under FE assumption:

Qb = 40.589 (df = 2), p-value < 1e-04;

Subgroup Meta-analysis Results:

K Qw g se zval pval ci.lb ci.ub

2 69 168.397 0.202 0.014 14.521 0.000 0.175 0.229 ***
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6 15 20.195 0.191 0.037 5.115 0.000 0.118 0.264 ***

7 22 23.855 0.438 0.035 12.534 0.000 0.369 0.506 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

This output shows that a tree with three terminal nodes was detected. The studies are

partitioned into three subgroups based on two influential moderators “T1” and “T4”.

The between-subgroups heterogeneity is significant (QB = 40.589, df = 2, p-value <

0.0001). The subgroup analysis results show the number of studies (K), the within-

subgroup Q-statistic, the summary effect sizes (g) in each subgroup, the standard errors

of the summary effect sizes (se), Z-test statistics of the summary effect sizes, and the

confidence intervals of the summary effect sizes. The plot function can be used to inspect

the final tree, in this case, the interaction between the two moderators “T1” and “T4”.

R> plot(modBCT.fe)

The plot is shown in Figure 4.3. If an intervention does not include “T1” (i.e., T1 = 0 is

true), then the intervention ends up in the left terminal node (with K = 69). For those

that include “T1” but not include “T4”, they end up in the middle terminal node (with

K = 15). Interventions including both “T1” and “T4” end up in the right terminal node

(with K = 22). Combined with the other results, we can see that the summary effect size

is the highest when ”T1” and ”T4” are both present in the intervention (g = 0.438, 95%

CI: 0.369 to 0.506).

If a new intervention is designed with three BCTs “T1”, “T2” and “T25” (thus without

“T4”), the prediction of its effect size based on this tree (modBCT.fe) can be obtained by

the predict function.

R> newStudy <- data.frame(T1 = factor(1, levels = 0:1),

+ T2 = factor(1, levels = 0:1),

+ T4 = factor(0, levels = 0:1),

+ T25 = factor(1, levels = 0:1))

R> predict(modBCT.fe, newStudy)

g ci.lb ci.ub T1 T2 T4 T25

1 0.1906789 0.1176188 0.263739 1 1 0 1

When interpreting the FE meta-CART analysis results, it is important to realize that the

FE assumption ignores the uncertainty introduced by the residual heterogeneity. As a

result, the confidence intervals of the summary effect sizes are more narrow than those

estimated by using the RE model.

If we would like to take into account the residual heterogeneity, a RE meta-CART

model can be fitted using the following commands
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Figure 4.3: The meta-CART analysis result of 106 studies that examine the influence of
motivation-enhancing BCTs on healthy eating and physical activities. The figure shows
the FE meta-CART structure with splitting information at each internal node and the
number of studies in each subgroup implied by a terminal node. The two solid lines show
the range of the effect sizes of all the studies. The diamonds between the solid lines
present the 95% confidence intervals of the summary effect sizes.
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R> modBCT.re <- REmrt(g ~ T1 + T2 + T4 + T25, data = dat.BCT2009, vi = vi,

+ c = 0.5, maxL = 10L, minsplit = 10L, cp = 1e-04,

+ minbucket = 3, xval = 10, lookahead = FALSE)

Warning message:

In REmrt(g ~ T1 + T2 + T4 + T25, data = dat.BCT2009, vi = vi, c = 0.5, :

no moderator effect was detected

R> summary(modBCT.re)

Random Effects meta-tree (K = 106 studies);

REmrt(formula = g ~ T1 + T2 + T4 + T25, data = dat.BCT2009, vi = vi,

c = 0.5, maxL = 10L, minsplit = 10L, cp = 1e-04, minbucket = 3,

xval = 10, lookahead = FALSE)

No moderator effect was detected

Test for Heterogeneity

Q = 253.0357 (df = 105), p-value < 1e-04;

The estimate for the residual heterogeneity tau2 = 0.023;

Random Effects Meta-analysis Results:

K g se zval pval ci.lb ci.ub

106 0.270 0.022 12.344 0.000 0.227 0.313 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The output shows that no influential moderators were identified. In this case, the summary

method shows the standard RE meta-analysis results instead of the subgroup analysis

results. The heterogeneity among the studies is significant (Q∗B = 253.036, df = 105,

p−value < 0.0001). The estimated summary effect size for all studies (K = 106) is 0.270

(95% CI: 0.227 to 0.313).

4.4.3 Look-ahead strategy

The metacart package provides a simulated data set dat.balanced to illustrate the look-

ahead strategy for RE meta-CART analysis. The simulated data set contains K = 60

studies with four moderators: x1, x2, x3, x4, among which x1, x2, and x4 are randomly

sampled dichotomous variables and x3 is sampled from a uniform distribution U(0, 1).

The sample size n was generated from a normal distribution N (160, (160
3

)2). The residual

heterogeneity was set as σ2
τ = 0.01. The true model used to generate data was

dk = 0.5 · I(x1 = 0, x2 = 1) + 0.5 · I(x2 = 0, x1 = 1) + τk + εk. (4.9)
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This model is similar to the simulated example used by Tibshirani and Knight (1999).

This model is shown by Tibshirani and Knight (1999) to be difficult for greedy search

procedures like CART because there is no information on where to split at the top level.

Due to the same reason, standard meta-CART is likely to end up with a local optimum

solution in such case. In this example, we would like to show that the look-ahead strategy

described in Section 4.2.2 can alleviate this problem.

First, we inspect the data and fit a RE meta-CART model without using the look-

ahead strategy.

R> data("dat.balanced")

R> head(dat.balanced)

g vi x1 x2 x3 x4

1 0.08365950 0.02791743 0 0 0.03468667 1

2 -0.07713184 0.01252533 0 0 0.66439264 1

3 0.65561074 0.07416912 0 1 0.01766560 1

4 0.28081322 0.02305076 0 1 0.29408049 1

5 0.29945301 0.01215463 0 1 0.42494663 1

6 0.02193797 0.01452387 1 1 0.68668759 1

R> res <- REmrt(g ~ x1 + x2 + x3 + x4, vi = vi, data = dat.balanced,

+ c = 1, maxL = 5L, minsplit = 6L, cp = 1e-04,

+ minbucket = 3L, xval = 10, lookahead = FALSE)

Warning message:

In REmrt(g ~ x1 + x2 + x3 + x4, vi = vi, data = dat.balanced, :

no moderator effect was detected

The output shows that meta-CART failed to detect any moderator. The reason is that

the algorithm got stuck at a local optimum in the splitting procedure. This can be verified

by inspecting the initial tree, unpruned by cross-validation.

R> res$initial.tree

Qb tau2 split mod pnode

1 0.000000 0.09243657 <NA> <NA> NA

2 3.040267 0.08828453 x3 < 0.91 x3 1

3 7.317024 0.08224968 x3 < 0.27 x3 2

4 18.303908 0.06847671 x3 < 0.072 x3 4

5 22.521824 0.06555919 x3 < 0.035 x3 6

6 24.970538 0.06449154 x4 = 1 x4 3
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This output shows the between-subgroups Q-statistic, the residual heterogeneity, the cho-

sen split point (by default the values are shown in two decimal places), the chosen moder-

ator, and the parent node to be partitioned at each split, with the first row presenting the

root node when no split occurs. From the output we can see that the algorithm falsely

chose the first splits at x3 and ended up with QB = 24.97 after five splits.

Then we fit a RE meta-CART model using the look-ahead strategy.

R> res2 <- REmrt(g ~ x1 + x2 + x3 + x4, vi = vi, data = dat.balanced,

+ c = 1, maxL = 5L, minsplit = 6L, cp = 1e-04,

+ minbucket = 3L, xval = 10, lookahead = TRUE)

R> summary(res2)

Random Effects meta-tree (K = 60 studies);

metacartv2::REmrt(formula = g ~ x1 + x2 + x3 + x4, data = dat.balanced,

vi = vi, c = 1, maxL = 5L, minsplit = 6L, minbucket = 3L,

lookahead = T, cp = 1e-04, xval = 10)

A tree with 4 terminal nodes was detected

Moderators were detected as: x1, x2

Test for Between-Subgroups Heterogeneity under RE assumption:

Qb = 145.004 (df = 3), p-value < 1e-04;

The estimate for the residual heterogeneity tau2 = 0.017;

Subgroup Meta-analysis Results:

K g se zval pval ci.lb ci.ub

4 16 -0.054 0.044 -1.244 0.214 -0.140 0.031

5 17 0.516 0.045 11.413 0.000 0.427 0.605 ***

6 12 -0.017 0.051 -0.334 0.738 -0.117 0.083

7 15 0.518 0.046 11.358 0.000 0.429 0.607 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> plot(res2)

The results show that the RE meta-CART model with look-ahead strategy successfully

recovered the true model as in (4.9). A tree with four terminal nodes was detected. As

shown in Figure 4.4, the terminal node with x1 = 0 and x2 = 1 (K = 17) and the terminal

node with x1 = 1 and x2 = 0 (K = 15) have higher effect sizes with CIs (presented by

the diamonds) covering 0.5, whereas the terminal node with x1 and x2 both equal to 0

(K = 16) and the terminal node with x1 and x2 both equal to 1 (K = 12) have lower

effect sizes with CIs covering 0.
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Figure 4.4: The analysis results of simulated data generated by fitting a RE meta-CART
model with look-ahead strategy. The analysis successfully recovered the true model that
was used to generate the simulated data.

The initial tree obtained with look-ahead strategy can be inspected by

R> res2$inital.tree

Qb tau2 split mod pnode

1 0.0000000 0.092436572 <NA> <NA> NA

2 0.2548616 0.092830849 x1 = 0 x1 1

3 42.0137849 0.049149501 x2 = 0 x2 2

4 145.0037965 0.016652079 x2 = 1 x2 3

5 188.0117000 0.011161345 x3 < 0.26 x3 6

6 213.7011113 0.008802224 x3 < 0.6 x3 4

Comparing this tree to the initial tree obtained from the previous model without the look-

ahead strategy, the look-ahead strategy correctly finds the first two splits, and obtains a

solution with much larger between-subgroups Q-statistic (QB = 213.70 after five splits).

4.5 Conclusions

This paper presents the metacart package written in R to perform meta-CART analysis

both for fixed effect and random effects models. The algorithms and the main functions

of the package metacart are described in sections 2 and 3, respectively. Applications
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of the R-package metacart were illustrated through example analyses on two real-world

data sets and one simulated data set in section 4.

One strength of the package metacart is that it can easily explore the interaction

effects among multiple moderators using an interpretable tree model. Furthermore, for

multi-categorical variables, it creates automatically the contrasts between (combinations

of) categories that account for the highest amount of heterogeneity. Another strength

is that metacart provides researchers various options for the tree growing and pruning

processes. For example, researchers can choose the minimum number of studies in parent

nodes and the minimum number of studies in terminal nodes based on the total sample

size. In general, it is recommended to have at least three studies in each terminal nodes.

The pruning parameter can be chosen based on the balance between power and Type I

error. A detailed guideline for choosing the pruning parameter can be found in Li et al.

(2019). The look-ahead strategy is recommended to partially relieve the local optimization

problem when fitting a RE meta-CART model.

In conclusion, this paper and the developed metacart package introduce researchers

to the implementation of meta-CART analysis, to facilitate exploring interaction effects

between multiple moderators in the framework of meta-analysis.
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Chapter 5

Interventions to promote healthy

eating, physical activity and smoking

in low-income groups: a systematic

review with meta-analysis of

behavior change techniques and

delivery/context

abstract

Purpose: Healthy eating, physical activity and smoking interventions for low-income

groups may have small, positive effects. Identifying effective intervention components

could guide intervention development. This study investigated which content and de-

livery components of interventions were associated with increased healthy behavior in

randomised controlled trials (RCTs) for low-income adults.

Method: Data from a review showing intervention effects in 35 RCTs containing 45

interventions with 17,000 participants were analysed to assess associations with behavior

change techniques (BCTs) and delivery/context components from the template for in-

tervention description and replication (TIDieR) checklist. The associations of 46 BCTs

and 14 delivery/context components with behavior change (measures of healthy eating,

physical activity and smoking cessation) were examined using random effects subgroup

meta-analyses. Synergistic effects of components were examined using classification and

regression trees (meta-CART) analyses based on both fixed and random effects assump-

tions.

Results:
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For healthy eating, self-monitoring, delivery through personal contact, and targeting

multiple behaviors were associated with increased effectiveness. Providing feedback, in-

formation about emotional consequences, or using prompts and cues were associated with

reduced effectiveness. In synergistic analyses, interventions were most effective without

feedback, or with self-monitoring excluding feedback. More effective physical activity in-

terventions included behavioral practice/rehearsal or instruction, focussed solely on phys-

ical activity or took place in home/community settings. Information about antecedents

was associated with reduced effectiveness. In synergistic analyses, interventions were most

effective in home/community settings with instruction. No associations were identified

for smoking.

Conclusion:

This study identified BCTs and delivery/context components, individually and syn-

ergistically, linked to increased and reduced effectiveness of healthy eating and physical

activity interventions. The identified components should be subject to further experi-

mental study to help inform the development effective behavior change interventions for

low-income groups to reduce health inequalities.
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5.1 Background

People of lower socioeconomic status are less likely to eat healthily (Drewnowski &

Specter, 2004) or be physically active and (Stamatakis, 2006) more likely to smoke (Gov-

ernment, 2008) compared to those of higher socioeconomic status. These behaviors may

be mediators of the well-established link between social position and morbidity and mor-

tality outcomes (Gruer, Hart, Gordon, & Watt, 2009; Hart, Gruer, & Watt, 2011; Whitley,

Batty, Hunt, Popham, & Benzeval, 2013). Amongst many socioeconomic indicators in-

cluding education levels, measures of job status and access to healthcare, personal or

household income is a direct economic indicator which is strongly positively correlated

with health outcomes (Drewnowski & Specter, 2004). In trials of interventions for the

general population, people with a lower income may experience poorer behavior change

outcomes than more affluent participants potentially leading to intervention-generated in-

equalities (Chesterman, Judge, Bauld, & Ferguson, 2005; Hiscock, Judge, & Bauld, 2010;

Niederdeppe, Fiore, Baker, & Smith, 2008; White, Adams, & Heywood, n.d.). Targeting

health promotion efforts at people facing deprivation may prevent ill health and contribute

towards reducing health inequalities (Gruer et al., 2009).

A previous review of interventions targeted at low-income participants found that ap-

proximately half were effective (Michie, Jochelson, Markham, & Bridle, 2009). Further-

more, a more recent systematic review with meta-analysis found positive, but small and

variable effects on healthy eating (standardised mean difference (SMD) 0.22, I2 = 48%,

physical activity (SMD 0.21, I2 = 76%) and smoking (relative risk (RR) 1.59, I2 = 40%),

smaller than other similar interventions with participants of mixed income (Bull, Dom-

browski, McCleary, & Johnston, 2014). Initial explorations of heterogeneity were con-

ducted in that review but associations between specific intervention components with

variation in intervention effectiveness were not examined. Understanding this variability,

including identifying potentially underutilised effective components with these groups, is

important when health inequalities continue to widen (White et al., n.d.).

Behavioral medicine researchers have recently developed several frameworks and tools

to help us accurately and comprehensively describe intervention components and accumu-

late evidence of ‘what works’. The template for intervention description and replication

(TIDieR) checklist specifies 12 elements of healthcare interventions which study authors

should report, including aspects of delivery and context (Hoffmann et al., 2014). These

include describing ‘how’ they took place, i.e. the mode of delivery (e.g. face-to-face,

telephone), ‘where’, or the setting (e.g. at home, in a school, or in a health facility) and

‘what’ content was delivered. For further characterising this, researchers have developed a

shared language known as the behavior change technique taxonomy (BCTTv1) (Michie et

al., 2013), including 93 active ingredients of behavior change interventions called behav-

ior change techniques (BCTs). Better understanding the content, delivery and context of



98

existing behavior change interventions for low-income groups and exploring which seem

effective and ineffective could prove timely and useful.

Recently, a promising new statistical method called Meta-CART has been developed

to help analyse the effectiveness of combinations of BCTs and other intervention features

(Dusseldorp et al., 2014; Li, Dusseldorp, & Meulman, 2017). Most health behavior change

interventions are complex (Boutron, Moher, Altman, Schulz, & Ravaud, 2008) containing

many BCTs and delivery/context components which can amplify or attenuate each other’s

effect (Dusseldorp et al., 2014). It has been argued that analyses must consider or control

for this ‘co-occurrence of methods’ to advance behavior change science (Peters, Ruiter,

& Kok, 2013). For instance, healthy eating interventions could involve combinations of

goal setting, self-monitoring of behavior, and/or practical social support delivered by a

health coach on the telephone or via a mailed leaflet. Traditional moderator analysis only

examines the effect of each moderator individually, whereas meta-CART can use subgroup

meta-analysis to identify interactions between moderators across interventions, such as to

explore whether goal setting may be best delivered on the telephone or via a leaflet.

5.2 Aim and Objectives

This study aimed to conduct a new analysis of data from a previously published system-

atic review of health promotion interventions for low-income groups (Bull et al., 2014),

applying behavioral science frameworks and new statistical methods to understand more

about their effectiveness. While the previous paper found interventions to have small,

positive effects, the current paper investigates which critical features of intervention con-

tent and delivery may contribute to their effectiveness. The association between a range of

intervention components, individually and in combination, with variability in intervention

effect sizes was examined. There were two specific objectives:

• To explore which individual BCTs and delivery/context features such as those from

the TIDieR checklist are associated with effectiveness by applying moderator anal-

yses.

• To explore synergistic effects between BCTs and delivery/context components and

identify combinations associated with effectiveness by applying the new method

meta-CART.

5.3 Methods

The study was registered in the PROSPERO database (CRD42015017468) and completed

as per protocol. We applied moderator analyses to the data from a previously published

systematic review with meta-analysis. For clarity, the original review’s eligibility criteria,
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search strategy and data collection processes are summarised below in this section, but

further detail can be found in the published paper http://bmjopen.bmj.com/content/

4/11/e006046 (Bull et al., 2014).

5.4 Original Review Method Summary

The original review by Bull et al. (2014) included studies meeting the following inclusion

criteria: (i) population: currently healthy adults described in the study as ‘low-income’;

(ii) interventions: aiming to change healthy eating, physical activity and/or smoking be-

havior in any combination; (iii) study design: RCTs or Cluster RCTs, with no limits on

control condition design; (iv) outcomes: behavioral outcomes relevant to healthy eating,

physical activity or smoking (e.g. self-reported portions of fruit per day, accelerometer-

measured steps walked per week, or self-reported abstinence from smoking for seven con-

secutive days); (v) date: primary search carried out January 2006 to July 2014; (vi)

language: English.

Bull et al. (2014) searched eight databases for studies with terms relating to low-income

groups, terms for healthy eating, physical activity and smoking behaviors, and terms

relating to interventions and health programs. In addition, in Bull et al. (2014) studies

published between 1995 and 2006 were identified from another previously published review

without meta-analysis on the topic (Michie, Jochelson, et al., 2009) rather than through

a primary search and screened against the inclusion criteria listed above, since Michie,

Jochelson, et al. (2009)used similar but broader search criteria which should have included

all the relevant articles. Finally, in addition to these searches, Bull et al. (2014) checked

each included study’s bibliography for potentially relevant articles to screen.

In Bull et al. (2014), three authors screened titles and abstracts; one author screened

full texts. In both stages, double screening of a random 10% yielded high inter-rater

reliability. Data were collected using a piloted data extraction form based on Davidson et

al. (2003). Three authors jointly extracted design, methods and results data. Proportions

were extracted for dichotomous smoking outcomes; means and standard deviations were

extracted for continuous healthy eating and physical activity outcomes. Where there was

a choice, the outcome extracted was the primary measure specified by authors measured

as objectively as possible, adjusted for baseline if the authors had thought this necessary.

Risk of bias in individual studies was assessed based on standard criteria adapted from

Avenell et al. (2004) and publication bias inspected visually using a funnel plot, reported

in Bull et al. (2014).

http://bmjopen.bmj.com/content/4/11/e006046
http://bmjopen.bmj.com/content/4/11/e006046
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5.5 Current Review Methods

In the new analysis, content and delivery/context component data were extracted from

intervention descriptions in studies. Two authors jointly coded 14 components of each

intervention, including 12 components based on the TIDieR checklist (Hoffmann et al.,

2014) with the addition of ‘WHO RECEIVED’ the intervention and the outcome measure

type (see Fig. 5.1 for the list of 14 components). A trained coder extracted each interven-

tion’s BCTs using BCTTv1 (Michie et al., 2013). Two expert coders extracted the BCTs

in a random subset of 16 studies’ intervention descriptions to assess coding reliability.

Prevalence and bias-adjusted kappa (PABAK) (Byrt, Bishop, & Carlin, 1993) was 0.87

and 0.83 respectively, suggesting high inter-rater agreement (Orwin & Vevea, 2009). Pub-

lished online supplementary materials were used where available and the corresponding

author was contacted in the case of missing data.

Figure 5.1: Fourteen delivery/context components based on the TIDieR checklist.

5.6 Statistical Analysis

5.6.1 Moderator Analysis

For continuous healthy eating and physical activity outcomes, standardised mean dif-

ferences (SMDs) were calculated using Hedges g. For dichotomous smoking outcomes,
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we calculated relative risk (RR) of smoking abstinence and applied the Cochran-Mantel-

Haenszel test (Mantel & Haenszel, 1959). To minimise chance impact of single trials,

we only examined BCTs and intervention delivery components identified as present or

absent in at least three interventions as potential moderators, following Dombrowski et

al. (2012). Each BCT and categorical delivery/context variable was examined testing

subgroup differences using a mixed effects model (i.e., a random effects model for the

within-subgroup effect sizes, and a fixed effect model for testing the between-subgroups

heterogeneity, as recommended by Borenstein et al., 2009). Three continuous intervention

components (intervention intensity, duration and number of BCTs) were analysed using

meta-regression. We used comprehensive meta-analysis (v.2) for these analyses.

5.6.2 Meta-CART Analysis

To explore interaction effects and identify effective combinations of BCTs and deliv-

ery/context components, meta-CART was applied. Meta-CART is a tree-based method

that combines the machine learning technique CART (Classification And Regression

Trees) with meta-analysis (Breiman et al., 1984). Meta-CART uses study effect sizes

(e.g. the study SMDs for healthy eating) as outcome variables, and potential modera-

tors as predictor variables (e.g. BCTs). The method divides the study effect sizes into

homogeneous subgroups of interventions based on influential moderators. The result of a

meta-CART analysis is a tree, and the leaves (the end nodes) of the tree are subgroups of

studies with similar combinations of moderators. In each subgroup, a pooled effect size is

computed (i.e. a weighted average effect size). The pooled effect sizes of these subgroups

are as different as possible since meta-CART maximises the between-subgroups hetero-

geneity (i.e. Q-statistic) (Li, Dusseldorp, & Meulman, 2017). At each split of the tree, the

meta-CART algorithm searches for the moderator (i.e. a BCT/delivery or context vari-

able) that maximises the between-subgroups differences. Initially, a large tree is grown

with as many splits as possible. The best tree size is selected by ‘pruning’, removing

the spurious splits of the tree based on the cross-validation error (Breiman et al., 1984).

The final tree usually involves a smaller number of splits, for example a tree with two

moderators (e.g. Fig. 5.3). The tree represents synergistic effects between the modera-

tors involved in the splits of the tree. To test whether the synergistic effects significantly

explain the heterogeneity between interventions, a new moderator variable is computed

with categories referring to the end nodes (i.e. subgroups) of the tree, with each study

belonging to one specific subgroup. Finally, a standard subgroup meta-analysis is per-

formed using the new moderator variable to investigate whether the subgroup membership

accounts for the heterogeneity in the study effect sizes.

Meta-CART analyses were performed using both random effects (RE) and fixed effect

(FE) approaches to explore effective combination(s) of moderators. Both methods have
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advantages: RE methods are more conservative, maximising control of type 1 error [16]

whereas the more liberal FE method favours power, so applying both was seen as appro-

priate offering complementary information in this exploratory study. The RE meta-CART

takes into account the residual heterogeneity unexplained by the individual BCTs and de-

livery/context components, whereas FE meta-CART assumes that the heterogeneity in

study effect sizes is fully explained by the moderators. For both approaches, initial trees

are grown with nodes of at least two interventions, before pruning. We used the half-

standard-error pruning rule for the RE meta-CART analyses (i.e., selecting the smallest

tree that has a cross-validation error within the minimum cross-validation error plus half

times the standard error) [16]. The FE meta-CART used the minimum cross-validation

error pruning rule, selecting the tree with minimum cross-validation error to increase

power. Since the number of interventions was relatively small in our meta-analytic data

sets, we performed leave-one-out cross-validation for pruning, although for larger data

sets a tenfold cross-validation is generally recommended.

In total, six meta-CART analyses were performed: FE and RE analyses for healthy

eating, physical activity and smoking interventions. Due to the relatively small number

of interventions, for the meta-CART analyses we included the BCTs and delivery/context

components which had shown significant effects in the univariate moderator analysis. All

meta-CART analyses were performed using R (v.3.3.2).

5.7 Results

5.7.1 Original Review Study Selection and Characteristics

In the original review (Bull et al., 2014), 2569 titles and abstracts and 133 full texts

were screened. Thirty-five trials were included with 17,000 adult participants with a

low income. Thirty trials were conducted in the USA; three in the UK; one in Aus-

tralia and Chile. Eleven studies recruited participants with a specific ethnic background

(African-American, Latina or Chinese and Korean). The majority of participants were

women (72.4%) living in the USA (77.2%) with a mean age of 38.6 years. The 35 studies

contained 45 interventions: some studies targeted multiple behaviors or tested multiple

interventions. In all, there were 16 interventions targeted at healthy eating; 12 at physical

activity; 17 at smoking.

5.7.2 Current Review Study Characteristics

Of the 93 BCTs in the taxonomy and the 14 delivery/context components, 46 BCTs and

all 14 delivery/context components were identified from the 45 published intervention

descriptions. Each intervention contained between 2 and 20 BCTs (mean per interven-

tion 6.62). Of the three delivery/context components which were continuous moderators
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(WHEN AND HOW MUCH: Intervention duration, Intervention intensity and Number

of BCTs delivered; Fig. 5.1), none were associated with effectiveness for any behavior,

so here we present results for the categorical BCTs and 11 remaining delivery/context

components only. Amongst these, four delivery/context components were not applicable

to interventions without personal contact (use of a facilitator delivery manual; facilitator

type; facilitator training; group or individual format) so were only examined for interven-

tions with personal contact. In total, 23 BCTs and seven delivery/context components

were present or absent in at least three interventions (see methods statistical analysis

section) and analysed as potential moderators.

5.7.3 Healthy Eating: Individual Moderator Analysis

Sixteen BCTs and seven delivery/context components could be analysed within the 16

healthy eating interventions. Interventions including the BCT 2.3 Self-monitoring of be-

havior were associated with more healthy eating, while those with the BCTs 2.2 Feedback

on behavior, 7.1 Prompts and cues or 5.6 Information about emotional consequences, were

associated with less healthy eating (Supplementary Table 1). Amongst delivery/context

components, including a face-to-face component (rather than remote contact, e.g. by

telephone, or no personal contact) and a multi-behavioral focus (aiming to change both

healthy eating and another behavior) were also associated with increased effectiveness

(Supplementary Table 1). Figure 5.2 displays the statistically significant findings of the

individual moderator analysis visually.

Figure 5.2: Diagram representing univariate moderator analyses for healthy eating. BCTs
are presented with their original labels and number from BCTv1 (Michie et al., 2013).
ĝ represents effect size and 95% CIs statistical significance. This figure indicates that
healthy eating interventions were significantly more effective where they did include the
BCT 2.3 Self-monitoring of behavior, or if there were multiple behavioral targets or a
face-to-face component, or did not include BCTs 2.2 Feedback on behavior, 7.1 Prompts
and cues or 5.6 Information about emotional consequences.
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5.7.4 Healthy Eating: Meta-CART Analysis of Synergistic Ef-

fects

Meta-CART was conducted to identify effective combinations of the four BCTs and two

delivery/context components identified above in individual moderator analyses (Supple-

mentary Table 1). The tree that resulted from the RE meta-CART analysis represented

a synergistic effect between 2.2 Feedback on behavior and face-to-face component (Fig.

5.3). The interventions that excluded 2.2 Feedback on behavior showed the highest pooled

effect size (i.e., ḡ = 0.36, 95% CI 0.26–0.46). When 2.2 Feedback on behavior was in-

cluded, the interventions that also included a face-to-face component had a larger pooled

effect size (ḡ = 0.23, 95% CI 0.14–0.31) than the interventions without (ḡ = 0.10, 95%

CI 0.03–0.17). In the mixed effects subgroup meta-analysis, subgroups were significantly

different from each other (between-subgroups Q- statistic = 17.49, p = .002).

Figure 5.3: Results from random effects meta-CART meta-analysis for healthy eating
(K = 16). This figure indicates random effects meta-CART analysis of effective combi-
nations of the four BCTs and two delivery/context components identified as individually
significant moderators in Fig. 5.2. Healthy eating interventions were more effective if
they did not include the BCT 2.2 Feedback on behavior, but if they did, then those with
a Face-to-face delivery component were more effective than those without.

Compared with the RE meta-CART analysis results, the tree resulting from the FE

meta-CART analysis included one additional split: a synergistic effect between 2.2 Feed-

back on behavior and 2.3 Self-monitoring of behavior (Fig. 4). The interventions that
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used 2.3 Self-monitoring of behavior but excluded 2.2 Feedback on behavior were most ef-

fective (ḡ = 0.48, 95% CI 0.29–0.66). The interventions using both 2.3 Self-monitoring of

behavior and 2.2 Feedback on behavior were least effective (ḡ = 0.31, 95% CI 0.19–0.43).

The synergistic effect between 2.2 Feedback on behavior and face-to- face component

was the same as the RE meta-CART result. In the FE subgroup meta-analysis, again

subgroups were significantly different from each other (between-subgroups Q-statistic

= 19.68, p = .002).

Figure 5.4: Results from fixed effects meta-CART meta-analysis for healthy eating
(K = 16). This figure indicates fixed effects meta-CART analysis of effective combi-
nations of the four BCTs and two delivery/context components identified as individually
significant moderators in Fig. 5.2. Results were similar to Fig. 5.3, but also indicated
that interventions excluding the BCT 2.2 Feedback on behavior but including 2.3 Self-
monitoring of behavior were most effective.

5.7.5 Physical Activity: Individual Moderator Analysis

Fourteen BCTs and six delivery/context components could be analysed within the 12

physical activity interventions. Interventions including 8.1 Behavioral practice/rehearsal,

or 4.1 Instruction on how to perform behavior) were associated with increased physical

activity; interventions including the BCT 4.2 Information about antecedents with less

physical activity. In addition, intervention delivery in a community or home setting

(rather than in a health setting) and a sole focus on physical activity was associated

with greater effectiveness (Supplementary Table 2). Figure 5.5 displays the statistically
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significant findings visually of the individual moderator analysis.

Figure 5.5: Diagram representing univariate moderator analyses for physical activity.
This figure indicates that physical activity interventions were significantly more effective
where they did include the BCTs 8.1 Behavioral practice/rehearsal or 4.1 Instruction on
how to perform the behavior, or had a sole focus on physical activity, or were delivered
in a community or home (rather than health) setting, or did not include the BCT 4.2
Information about antecedents.

5.7.6 Physical Activity: Meta-CART Analysis of Synergistic Ef-

fects

Meta-CART was conducted to identify effective combinations of the three BCTs and two

delivery/context components identified as individual moderators above (Supplementary

Table 2). RE meta-CART resulted in a tree with only one node: the root node: no com-

bination of BCTs or delivery/context components was able to explain the heterogeneity

in the effect sizes.

The tree resulting from the FE meta-CART analysis represented a synergistic effect

between 4.1 Instruction on how to perform behavior and study setting. The interven-

tions delivered in health settings had the lowest pooled effect size (ḡ = −0.002, 95% CI

−0.079 − 0.075). Interventions delivered in community or home settings which included

4.1 Instruction on how to perform behavior had the highest pooled effect size (ḡ = 0.42,

95% CI 0.32–0.53). Interventions delivered in community or home settings but not in-

cluding 4.1 Instruction on how to perform behavior had a pooled effect size in the middle

of the other subgroups (ḡ = 0.21, 95% CI 0.02− 0.40). All of the interventions delivered

in community or home settings applied either both 4.1 Instruction on how to perform

behavior and 8.1 Behavioral practice /rehearsal or neither, none included just one. In

the FE subgroup meta-analysis, subgroups were significantly different from each other

(between-subgroups Q-statistic = 43.18, p < .001). Figure 5.6 displays this visually.
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Figure 5.6: Results from fixed effects meta-CART meta-analysis for physical activity K =
12. This figure indicates fixed effects meta-CART analysis of effective combinations of
the three BCTs and two delivery/context components identified as individually significant
moderators in Fig. 5.5. Physical activity interventions were more effective if they were
delivered in a community setting or at home and included the BCT 4.1 Instruction on
how to perform the behavior, and were least effective if delivered in a health setting

5.7.7 Smoking: Individual Moderator Analysis

Eleven BCTs and five delivery/context components were analysed within the 17 smok-

ing interventions, none of which were statistically associated with smoking intervention

effectiveness (Supplementary Table 3).

5.7.8 Smoking: Meta-CART Analysis of Synergistic Effects

Both RE meta-CART and FE meta-CART detected no effective combination of BCTs or

delivery/context components that could explain the heterogeneity in the effect sizes.

Table 5.1, summarises the individual BCTs and delivery/context components associ-

ated with increased or decreased effectiveness in healthy eating and physical activity with

examples from the interventions included in the review.

Table 5.1: Definitions and examples of BCTs and delivery/context components associated
with increased or decreased effectiveness.
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BCT or de-

livery/context

component

Definition*BCT num-

bers, labels and defi-

nitions are taken from

BCTV1 [14]

Example from interventions

included in the review

Increased effectiveness

DIET

2.3 Self-

monitoring

of behaviour*

Establish a method

for the person to mon-

itor and record their

behaviour(s) as part

of a behaviour change

strategy*

In Keyserling et al. (2008),

participants recorded daily

fruit and vegetables con-

sumed each day using a di-

ary to help them increase

this

HOW: Face-to-

face component

included (yes)

For studies with

personal contact,

whether or not this

personal contact was

conducted face-to-face

(instead of e.g. over

telephone)

Emmons et al. (2005) in-

cluded a counselling ses-

sion in-person with a health

advisor using motivational

interviewing approaches to

help support them to eat

more healthily

Number of

behaviours tar-

geted (multiple

focus)

Whether the study

aimed to change one

behaviour (e.g. diet

only) or multiple be-

haviours (e.g. diet

and physical activity)

Jackson, Stotland,

Caughey, and Gerbert

(2011) focused on par-

ticipants making healthy

changes to both diet and

physical activity

Decreased effectiveness

DIET

2.2 Feedback on

behaviour*

Monitor and provide

informative or eval-

uative feedback on

performance of the

behaviour (e.g. form,

frequency, duration,

intensity)*

of Clinical Excellence.

(2014) provided individ-

ualised written feedback

to participants from an

earlier assessment e.g. their

current diet compared to

national norms
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7.1 Prompts and

cues*

Introduce or define en-

vironmental or social

stimulus with the pur-

pose of prompting or

cueing the behaviour.

The prompt or cue

would normally occur

at the time or place of

performance*

Participants in Tessaro,

Rye, Parker, Mangone, and

McCrone (2007) received a

portion magnet and wheel

to put in their kitchen to

remind them of healthy

portion sizes

5.6 Information

about emotional

consequences*

Provide information

(e.g. written, verbal,

visual) about emo-

tional consequences

of performing the

behaviour*

Gans et al. (2009) included

a video with testimonials

from members of the tar-

get audience, who empha-

sised that eating healthier

helps in feeling good about

yourself and feeling better

Increased effectiveness

PHYSICAL ACTIVITY

8.1 Behav-

ioral practice/

rehearsal*

Prompt practice or re-

hearsal of the per-

formance of the be-

haviour one or more

times in a context or

at a time when the

performance may not

be necessary, in order

to increase habit and

skill*

Marcus et al. (2013) in-

cluded tailored written

mailings which advised

participants, for example,

to make time for a ten

minute walk one or two

times each week, to help

them build confidence that

they can make exercise part

of their weekly routine

4.1 Instruc-

tion on how

to perform a

behavior*

Advise or agree on

how to perform the

behaviour (includes

‘Skills training’)*

Dangour et al. (2011)’s

physical activity program

for older adults included

physical activity group

training sessions where

trained instructions guided

participants in how to con-

duct activities e.g. warming

up, chair stands, modified

squats and arm pull-ups

with rubber bands.
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WHERE: Study

setting (commu-

nity or at home,

not in health set-

ting)

Whether the study

was set in the com-

munity, a health set-

ting or at participants’

home

Olvera et al. (2010)’s 12

week exercise program took

place in community cen-

tres in the park, park play-

grounds and grocery stores,

as well as at school facilities,

e.g. the school gym, play-

ground or cafeteria

Number of be-

haviors targeted

(single focus)

Whether the study

aimed to change one

behavior (e.g. physi-

cal activity only) or

multiple behaviours

(e.g. diet and physical

activity)

Dutton, Martin, Welsch,

and Brantley (2007)’s inter-

vention focused solely on in-

creasing women’s physical

activity

Decreased effectiveness

PHYSICAL ACTIVITY

4.2 Informa-

tion about

antecedents*

Provide information

about antecedents

(e.g. social and

environmental situ-

ations and events,

emotions, cognitions)

that reliably predict

performance of the

behaviour*

Chang, Nitzke, and Brown

(2010) provided examples of

triggers relating to eating

and being active in the envi-

ronment as part of their be-

haviour change intervention

5.8 Discussion

In this study, we explored active components of interventions (BCTs) and the context and

methods of delivery associated with effectiveness in health behavior change interventions

for low-income adults, applying both individual moderator analyses and meta-CART to

explore combinations of components. The content, context and delivery of effective inter-

ventions appeared different for healthy eating and physical activity behaviors. For healthy

eating behavior, individual moderator analysis suggested that effective techniques could

be to encourage self-monitoring, provide face-to-face contact with a facilitator or work
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on physical activity simultaneously, without providing feedback on behavior, use prompts

and cues or provide information about emotional consequences of healthy eating. Table

5.1 includes examples of each within the studies. These could substantially increase effec-

tiveness: healthy eating interventions with self-monitoring had an SMD of 0.48 compared

with the overall SMD of 0.22. Meta-CART analyses exploring combinations tended to

confirm that interventions were more effective without feedback, especially when combined

with self-monitoring, yet suggested that for interventions which did include feedback, then

effects could be stronger when combined with face-to-face contact.

In individual moderator analyses, physical activity interventions tended to be more

effective where they had a sole focus on participants being active or were delivered at

home or in a community rather than health setting. Activity interventions were more

effective where they included direct instruction or opportunities to practice and rehearse

active movements but less effective when they included information about antecedents (see

Table 5.1, for examples). Meta-CART suggested that a particularly effective combination

could be instruction on how to perform the behavior within the community or home (not

health) setting.

It may seem surprising that feedback on behavior was associated with lower healthy

eating change, despite key behavior change guidance recommending it as a ‘proven tech-

nique’ (of Clinical Excellence., 2014). Yet the two healthy eating interventions with lowest

effect sizes(Elder et al., 2006; Gans et al., 2009) provided feedback in a similar, non face-

to-face way, through mailed written statements of previously reported healthy eating

behavior, and meta-CART suggested that face-to-face delivery could mitigate against the

lower effect size. In this review, mailed delivery formats were popular, and e-health tech-

nology is increasingly being employed to increase the reach of public health interventions

(Norman et al., 2007) but our review suggested ‘a personal touch’ may be important to

support low-income communities in their healthy eating efforts. The finding that self-

monitoring without feedback was an effective combination was also surprising given that

Control Theory (Carver & Scheier, 1982) would advocate their combination, and may

oppose meta-regression findings that self-monitoring was more effective in healthy eating

and physical activity interventions if combined with another Control Theory technique

(Michie, Abraham, et al., 2009). Again this may be explained by other factors associated

with studies where feedback was included.

The strong effect of instruction on physical activity behavior has been found in previous

research (Williams & French, 2011), although this study adds that delivery of this BCT

in a community or home rather than health setting is desirable. Thus, a behavior should

be taught in the context that is likely to be (a) easy for participants to attend and

(b) as similar as possible to real life to facilitate further performance as associating a

behavior with the context is essential to building habits (Gardner, 2015). Additionally,

recent evidence suggests that habit mediates the effects of planning on behaivour change
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(Potthoff et al., 2017).

It may also seem counter-intuitive that interventions with a multi-behavior focus (tar-

geting both healthy eating and physical activity) led to increased changes in healthy

eating, but that in physical activity a single focus was preferable. Amongst several ex-

planations, it could be assumed that most participants taking part in a multi-component

intervention were aiming for weight loss. Since initial weight loss is more easily achieved

by calorie restriction than by increased burning through exercise (Kushner, 2007), healthy

eating may have been the core focus for both intervention facilitators and participants in

these studies.

Another finding in this review was that the inclusion of information-focussed BCTs

often used in public health interventions such as 4.2 Information about antecedents for

physical activity and 5.6 Information about emotional consequences for healthy eating re-

sulted in a less successful outcome. This builds on similar findings in different populations

(Dombrowski et al., 2012), further evidence that information (particularly when directed

at fear-arousing consequences) is likely to be ineffective without additional BCTs aimed

at increasing self-efficacy or planning (Peters et al., 2013). A further possibility is that

information-giving may dwarf the other more effective components; in a meta-analysis

of combinations of components of internet-based interventions for the general public, van

Genugten and colleagues (Van Genugten, Dusseldorp, Webb, & Van Empelen, 2016) found

that interventions that were quick to deliver and easy to understand were more effective.

No BCTs or delivery/context variables were associated with smoking intervention

effectiveness, in contrast to reviews with pregnant women and people with lung disease

respectively which found positive effects for action planning amongst other BCTs(Bartlett,

Sheeran, & Hawley, 2014; Lorencatto, West, & Michie, 2012). This may reflect the lower

heterogeneity in smoking compared to healthy eating and physical activity effects in this

review, study authors including a limited range of BCTs in interventions or perhaps poor

intervention description (Lorencatto, West, Stavri, & Michie, 2012). We also found no

association between theory use and effectiveness in this review, contrary to some reviews

of behavioral interventions (Prestwich et al., 2014; Webb, Sniehotta, & Michie, 2010)

but in line with recent diabetes intervention analyses [24, 53]. Similar to other reviews,

employing a greater number of techniques was also not linked with increased effectiveness

(Michie, Jochelson, et al., 2009; Webb et al., 2010).

Many BCTs and delivery/context components could not be analysed as they were

seemingly rarely used (e.g. BCT 7.1: Prompts and cues, identified in one physical activity

intervention) or used in all interventions: this could reflect poor reporting of behavioral

intervention content (Hoffmann, Erueti, & Glasziou, 2013; McCleary, Duncan, Stewart, &

Francis, 2013). Indeed in the smoking interventions, only 11 BCTs could be analysed. The

smoking cessation field may be more extensively developed than others and so perhaps

greater consensus has been reached on necessary components of stop smoking support
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(Tobacco et al., 2008).

5.9 Supplementary material
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2Fs12529-018-9734-z/MediaObjects/12529 2018 9734 MOESM1 ESM.docx

Supplementary table 2: see https://static-content.springer.com/esm/art%3A10

.1007%2Fs12529-018-9734-z/MediaObjects/12529 2018 9734 MOESM2 ESM.docx

Supplementary table 3: see https://static-content.springer.com/esm/art%3A10

.1007%2Fs12529-018-9734-z/MediaObjects/12529 2018 9734 MOESM3 ESM.docx

https://static-content.springer.com/esm/art%3A10.1007%2Fs12529-018-9734-z/MediaObjects/12529_2018_9734_MOESM1_ESM.docx
https://static-content.springer.com/esm/art%3A10.1007%2Fs12529-018-9734-z/MediaObjects/12529_2018_9734_MOESM1_ESM.docx
https://static-content.springer.com/esm/art%3A10.1007%2Fs12529-018-9734-z/MediaObjects/12529_2018_9734_MOESM1_ESM.docx
https://static-content.springer.com/esm/art%3A10.1007%2Fs12529-018-9734-z/MediaObjects/12529_2018_9734_MOESM2_ESM.docx
https://static-content.springer.com/esm/art%3A10.1007%2Fs12529-018-9734-z/MediaObjects/12529_2018_9734_MOESM2_ESM.docx
https://static-content.springer.com/esm/art%3A10.1007%2Fs12529-018-9734-z/MediaObjects/12529_2018_9734_MOESM2_ESM.docx
https://static-content.springer.com/esm/art%3A10.1007%2Fs12529-018-9734-z/MediaObjects/12529_2018_9734_MOESM3_ESM.docx
https://static-content.springer.com/esm/art%3A10.1007%2Fs12529-018-9734-z/MediaObjects/12529_2018_9734_MOESM3_ESM.docx
https://static-content.springer.com/esm/art%3A10.1007%2Fs12529-018-9734-z/MediaObjects/12529_2018_9734_MOESM3_ESM.docx


114

Chapter 6

Advanced tree-based subgroup

identification in meta-analysis

abstract

Background: In meta-analysis, heterogeneity often exists between studies. In such cases,

it is essential to investigate the sources of heterogeneity and understand the relationship

between effect size and study characteristics (i.e., moderators). Applying tree-based meth-

ods in meta-analysis is a promising alternative for conventional meta-regression, since

trees excel at modeling interactions and non-linear relationships and provide easily inter-

pretable results. In particular, a recently proposed method called meta-CART integrates

classification and regression trees (CART) into the framework of meta-analysis. This

method identifies subgroups of homogeneous studies by searching influential moderators

that can explain the heterogeneity, and performs subgroup analysis to test the significance

of the identified moderators and estimate the subgroup effect sizes.

Methods: Meta-CART has the common limitations of tree-based methods: 1) the con-

struction of a tree employs greedy search strategy, which does not guarantee a globally

optimal solution and may lead to instable results; 2) the statistical inference in the iden-

tified subgroups is difficult, since the subgroups are not pre-defined but explored from the

data. In this article, we propose extensions to overcome these limitations. For the tree

construction, we propose using smooth sigmoid surrogate (SSS) and a look-ahead strat-

egy to alleviate the local optimum problem and speed up the splitting procedure. For the

statistical inference in the identified subgroups, we use permutation test to appropriately

assess the statistical significance of the heterogeneity between identified subgroups, and

propose a bootstrap procedure to correct the over-optimism in the confidence intervals of

the estimated subgroup effect sizes. All these extensions are not restricted to meta-CART,

and can be applied to any tree-based method that aims for subgroup identification.

Results: The simulation results show that applying both SSS method and the look-ahead
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strategy improves the performance of meta-CART by reducing the false positive rate and

improving the recovery rate. The permutation test improves the control of false positive

findings with little sacrifice in recovery rates. The bootstrap procedure works well in

correcting for the bias in the estimates of the residual heterogeneity.

Conclusion: This paper propose various extension for meta-CART to improve the stabil-

ity of the tree construction process for subgroup identification, and to correct for potential

bias in the statistical inference with respect to the identified subgroups. These extensions

improve the ability of meta-CART to find the influential moderators and to identify the

interaction effect among them, provide appropriate significance test for the moderator ef-

fects, and properly quantify the uncertainty in the estimates of effect sizes in the identified

subgroups.
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6.1 Introduction

In the last decades, the number of clinical trials has grown rapidly, and so did the need

for systematic reviews and meta-analyses to summarize the research findings (Bastian,

Glasziou, & Chalmers, 2010). Meta-analyses are typically used to assess the effective-

ness of some intervention, which is done by computing a weighted average of the study

effect sizes (i.e., an overall effect size). Furthermore, they can quantify the heterogene-

ity in the study effect sizes. For example, heterogeneity may be introduced by variation

in the implementations of an intervention. Michie, Abraham, et al. (2009) showed in a

meta-analysis that interventions designed to change health-related behaviors generally in-

clude various behavior change techniques that influence its effectiveness. Another possible

source of heterogeneity arises when study samples are recruited from different populations.

In a meta-analysis by Moyer, Rounds, and Hannum (2004) to examine the effectiveness

of massage therapy, the samples of participants showed a large variety between studies

such as pregnant women, surgery patients, healthy adults and so on. In these situations,

it is of high interest to identify the study characteristics that explain the heterogeneity

(i.e., moderators) and understand their influence on effect sizes. However, over the past

decades, statistical approaches in meta-analysis primarily focused on confirmatory anal-

yses, and method development aiming at explaining heterogeneity has been quite limited

(Tipton et al., 2018). Conventionally, the mainly used method to examine the relationship

between effect size and moderators is meta-regression. This method is based on linear

modeling, and has difficulties in simultaneously investigating multiple moderators and

examining interactions among them (Li, Dusseldorp, & Meulman, 2017). Therefore, as

an alternative, some recent works have begun to use tree-based methods to investigate

the source of heterogeneity (Bull et al., 2018; Dusseldorp et al., 2014; van Genugten et

al., 2016).

In many fields, tree-based methods are popular approaches for subgroup identifica-

tion purposes, because they excel at dealing with interactions and handling non-linear

relationships. In addition, a fitted tree model mimics a hierarchically nested set of deci-

sion rules, and therefore can be easily interpreted. The most commonly used tree-based

method is the classification and regression trees (CART) method proposed by Breiman

et al. (1984), and there are many advanced variants of CART (for examples, see Dus-

seldorp et al., 2010; Dusseldorp & Van Mechelen, 2014; Foster, Taylor, & Ruberg, 2011;

Lipkovich, Dmitrienko, Denne, & Enas, 2011; Loh, He, & Man, 2015; Su, Tsai, Wang,

Nickerson, & Li, 2009). However, most of the methods are in single study settings, and

the idea of applying tree-based methods in the framework of meta-analysis is relatively

new. Dusseldorp et al. (2014) proposed a method called meta-CART that applies CART

in meta-analysis for a health psychological study. This method was further developed by

Li, Dusseldorp, and Meulman (2017); Li et al. (2019). Mistry et al. (2018) integrate the
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subgroup identification based on different effect search (SIDES; Lipkovich et al., 2011)

into the framework of individual patient data (IPD) meta-analysis. In the current pa-

per we focus on the framework of aggregated meta-analysis and extend the meta-CART

method.

The existing meta-CART method consists of three components: a procedure of split-

ting data (i.e., tree construction), a procedure of determining the best tree model (i.e.,

tree pruning), and a procedure of summarizing the terminal node (i.e., subgroup analysis).

Some of the limitations of tree-based methods also apply to meta-CART, such as instabil-

ity in the tree structure and difficulties in statistical inference for the subgroup analysis.

Instability means that small variations in the data can result in very different trees. This

problem is due to the greedy algorithm that is used and the hierarchical structure of trees.

In the tree construction procedure, the greedy search algorithm optimizes the splitting

criterion locally at each separate split. This process is “short-sighted” and may end up

in a local optimum. If an error occurs in the top split, its influence will be propagated

down to all the splits below because of the hierarchical structure, and this constitutes an

inherent instability (see Friedman et al., 2001, p. 274). To reduce this variability, ensem-

ble learning methods such as Bagging (Breiman, 1996), Boosting (Friedman, 2001), and

Random Forests (Breiman, 2001) are often used in the field of data mining by combining

or averaging trees built, for example, on re-sampled data. However, the resulting model,

which is an ensemble of multiple trees, loses the interpretability of a single tree, and the

influence of the predictor variables becomes unclear. Besides, the sample size (i.e., the

number of studies) in meta-analysis is usually not large enough for ensemble learning.

Thus, ensemble learning methods do not serve well the purpose of meta-CART analysis

to understand the influence of moderators. The difficulties in statistical inference are

due to the fact that the identified subgroups are not pre-defined but explored from the

data. In the subgroup analysis procedure, the subgroup effect sizes are estimated and

the significance of between-subgroups heterogeneity (i.e., whether the identified subgroup

memberships account for a significant proportion of the variance in study effect sizes) is

tested. Since the subgroup memberships are identified and tested using the same data, it

raises post hoc issues and problems of statistical inference. Thus, the heterogeneity test

cannot be interpreted as its face value and only gives information when the test results

are not significant (see Li et al., 2019, Section 8.1). Also, due to the adaptive nature

of tree modeling, over-optimism exists in the confidence intervals of the subgroup effect

sizes, and the confidence intervals may be too narrow to have the desired coverage.

These limitations motivate us to extend the existing meta-CART method in four

aspects: two of these are in the tree construction stage to increase stability and computa-

tional efficiency, and two are in the subgroup analysis stage to correct for over-optimism.

These four extensions can also be applied to other tree-based methods aiming at sub-

group identification (e.g., Lipkovich, Dmitrienko, & B D’Agostino Sr, 2017). First, we
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use the smooth sigmoid surrogate (SSS) strategy (Su et al., 2016; Su, Peña, Liu, & Levine,

2018) as an alternative for the greedy search. Second, we propose a novel approach that

combines SSS with a look-ahead strategy. Third, we use a permutation test as a more

appropriate test to assess whether the identified moderators are spurious. Fourth, we pro-

pose a new bootstrap-based approach to estimate and correct the bias in the confidence

intervals of subgroup effect sizes.

The outline of this paper is as follows. First, we describe shortly the existing meta-

CART method. Second, we introduce the four new approaches to extend meta-CART.

Third, we evaluate the performance of the new approaches in a simulation study. Next we

illustrate the new extended meta-CART with a real-world data set. Finally, we summarize

and discuss the results.

6.2 The Existing meta-CART Method

In this section, we briefly describe the three components of meta-CART followed by a

description of the splitting criterion.

In a meta-CART analysis, the data consist of observations from K studies D =

{(gk, σ2
εk
, xk : k = 1, . . . , K)}, where gk and σ2

εk
are the estimated effect size and the

sampling variance in the kth study, and xk = (xk1, . . . , xkM)T ∈ RM is a M -dimensional

covariate vector corresponding to the characteristics of the kth study (i.e., potential mod-

erators). There are two general approaches to a meta-CART analysis: fixed effect (FE)

and random effects (FE) assumptions (Li et al., 2019). The main difference between

these two assumptions is that FE meta-CART ignores the residual heterogeneity unex-

plained by the moderators and weights the studies by the inverse of the sampling variance

(wk = 1/σ2
εk

), while RE meta-CART takes into account the residual heterogeneity σ2
τ and

defines weights as w∗k = 1/(σ2
εk

+ σ2
τ ).

In the tree construction procedure, meta-CART follows the paradigm of CART and

splits the data in such a way that the heterogeneity between offspring nodes is maximized

or, equivalently, the within-node heterogeneity is minimized. At each split, a parent node

is partitioned into two child nodes by applying a threshold on a selected moderator Xm

at the corresponding split point c. When Xm is an ordinal variable, a split of the data

is introduced by asking a binary question such as “Is Xm greater than c?”. When Xm is

a categorical variable, the binary question becomes “ Does Xm belongs to C?”, where C
is a subset of the variable levels. For computational efficiency, one common strategy is

to treat categorical levels as an ordinal variable by sorting the variable levels according

to the group means (see Breiman et al., 1984, Sections 4.2 and 9.4). To find Xm and c,

the greedy search compares all possible splits with respect to the splitting criterion and

selects the split that optimizes this criterion. The splitting algorithm is fully recursive

in FE meta-CART. But RE meta-CART applies a sequential splitting algorithm that
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refreshes the global estimate of σ2
τ after each split. The “global” estimate means that

σ2
τ is estimated across all terminal nodes rather than only within the resulting left and

right child nodes after a split. For both assumptions, the splitting process continues until

all terminal nodes contain only a few studies, and a large initial tree is constructed as a

result.

In the tree pruning procedure, the initial tree is pruned back to a smaller size to prevent

overfitting. This procedure consists of three steps. First, the initial tree is iteratively

pruned to a nested sequence of subtrees. Second, ten-fold cross-validation is performed

to estimate the prediction errors for each subtree. Then the final tree is selected as the

smallest tree with a cross-validation error that is within the minimum cross-validation

error plus half the standard error. 1

The terminal nodes of the final tree form the subgroups of the studies. In the final

step, a standard subgroup analysis is performed to assess the relationship between the

identified subgroup membership and the effect size. The subgroup analysis results consist

of two parts: an overall heterogeneity test for the identified subgroups, and the summary

effect size in each subgroup. The significance test is based on the between-subgroups

heterogeneity, which is also called the between-subgroups Q-statistic. The computation of

this Q-statistic will be described in Section 6.2.1. The subgroup effect sizes are estimated

as weighted means. Denote the final tree by T , and let T̃ be the set of all the terminal

nodes in the final tree T . For FE meta-CART, the within-node summary effect size is

computed as

gt+ =

∑
k∈twkgk∑
k∈twk

(6.1)

for each terminal node t ∈ T̃ .
The (1− α)× 100% confidence interval (CI) is constructed as:

gt+ ± z1−α/2 σt, (6.2)

where z1−α/2 is the (1−α/2)-th percentile of the standard normal N (0, 1) distribution and

σt denotes the standard error (SE) of the estimated effect size in node t. SE is computed

as σt = 1/
√∑

k∈t σ
2
εk

.

For RE meta-CART,

g∗t+ =

∑
k∈tw

∗
kgk∑

k∈tw
∗
k

. (6.3)

The (1− α)× 100% confidence interval (CI) is constructed as:

g∗t+ ± z1−α/2 σ
∗
t , (6.4)

1This half-standard-error rule is recommended by Li et al. (2019). Due to the relatively small sample
sizes (i.e., number of studies) in a meta analysis, the half-standard-error rule performs better than the
one-standard-error rule in meta-CART.
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where

σ∗t = 1/

√∑
k∈t

(σ2
εk

+ σ2
τ ). (6.5)

6.2.1 The Splitting Criterion

The splitting criterion differs for the FE and RE meta-CART algorithms. We start with

FE meta-CART, which maximizes the Q-statistic between the left and right child nodes

after each split. The Q-statistic is defined as

QB =
∑
k∈tL

wk(gtL+ − gt+)2 +
∑
k∈tR

wk(gtR+ − gt+)2, (6.6)

where gt+ is the weighted mean of the parent node t with weights wk = 1/σ2
εk

, and tL and

tR are the resulting left and right child nodes.

RE meta-CART estimates σ2
τ and selects the split that maximizes the Q-statistic

between all terminal nodes after each split. While several methods are available, we

choose to compute the residual heterogeneity σ2
τ by using the DerSimonian and Laird

method (DerSimonian & Laird, 1986):

σ2
τ =

∑
t∈T
∑

k∈twk(gk − gt+)2 −
∑

t∈T (Kt − 1)∑
t∈T Ct

, (6.7)

where T is the entire tree after the split, Kt is the number of studies in node t, and the

components Ct are computed as

Ct =
∑
k∈t

wk −
∑

k∈tw
2
k∑

k∈twk
. (6.8)

Given the estimated σ2
τ , the between-subgroups Q-statistic is computed as

Q∗B =
∑
t∈T

∑
k∈t

w∗k(g
∗
t+ − g∗++)2, (6.9)

where g∗++ is the grand weighted mean with weights w∗k = 1/(σ2
εk

+ σ2
τ ).

6.3 New Extensions for Meta-CART

6.3.1 The Smooth Sigmoid Surrogate to Identify the Best Split

Point

Since a split is made on a selected moderator Xm at its split point c, we can introduce

a binary variable δk = δ(xkm; c) = I(xkm > c), and write the summary effect size in the
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two resulting child nodes as 
gtL+ =

∑Kt
k=1(1−δk)wkgk∑Kt
k=1(1−δk)wk

,

gtR+ =
∑Kt

k=1 δkwkgk∑Kt
k=1 δkwk

.
(6.10)

The FE Q-statistic in (6.6) can be re-written as

QB = (gtL+ − gt+)2
Kt∑
k=1

(1− δk)wk + (gtR+ − gt+)2
Kt∑
k=1

δkwk. (6.11)

To find the best split point ĉ for Xm, a greedy search computes QB at all possible

values of c and selects the one resulting in the largest increase of QB. This discrete

process tends to produce large fluctuations with local spikes (Su et al., 2018). Also, a

greedy search can be time-consuming when Xm has many distinct values. To overcome

these difficulties, we use the smooth sigmoid surrogate (SSS) strategy (Su et al., 2016,

2018) as an approximation method for a greedy search. There are many choices of the

sigmoid function to approximate the threshold indicator function δk. Here we use the

logistic function

s(xkm; a, c) =
exp{a(xkm − c)}

1 + exp{a(xkm − c)}
, (6.12)

with scale parameter a > 0. Then the summary effect sizes dtL+ and dtL+ can be approx-

imated by 
d̃tL+ =

∑Kt
k=1(1−sk)wkdk∑Kt
k=1(1−sk)wk

,

d̃tR+ =
∑Kt

k=1 skwkdk∑Kt
k=1 skwk

.
(6.13)

We approximate the splitting criterion QB by

Q̃B = (g̃tL+ − gt+)2
Kt∑
k=1

(1− sk)wk + (g̃tR+ − gt+)2
Kt∑
k=1

skwk. (6.14)

The value of a can be fixed a priori, so the best split point ĉ is obtained by maximizing Q̃B,

which is a smooth object function for c only. Su et al. (2016, 2018) recommend to fix a at

a value in the range [10, 50]. In order to do so, moderator Xm needs to be standardized.

After solving the optimization problem, the identified ĉ can be transformed back to the

original scale for interpretability. We solve the one-dimensional smooth optimization

problem by using the Brent method (Brent, 2013), which is implemented in R in the

function optimize(). Options for multiple starts and constraining the search range are

available to come close to the global optimum and avoid the “end-cut preference” problem

(see Breiman et al., 1984, Section 11.8).

The SSS strategy is applied in RE meta-CART using the same idea as described above.
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The key difference is that the estimation of σ2
τ is also a function of the threshold indicator

function δk.

6.3.2 The Look Ahead Strategy

Look ahead with a greedy search

The tree construction process has a greedy nature: it chooses each split with no regard of

future splits. Thus, it does not guarantee a globally optimal solution for the entire tree.

To alleviate this problem, we propose a look-ahead strategy that looks one step further

when choosing the splits.

Starting the algorithm at the root node, a look-ahead strategy searches for the optimal

combination of a split of the root node and a split of one of its child nodes. The splitting

criterion is evaluated at all possible combinations of two split points (i.e., single split

points on any two moderators or any two split points on one moderator). The first split is

chosen based on the combination that maximizes the splitting criterion. Then the look-

ahead strategy can be repeated for the resulting child nodes. Because the computational

burden grows exponentially as the number of splits to be examined increases (see Esmeir

& Markovitch, 2007), we recommend applying this look-ahead procedure only for a few

initial splits (i.e., no more than five splits). After the look-ahead procedure, the resulting

offspring nodes can be further split following a fully greedy procedure for maximizing the

splitting criterion at each split.

Look ahead with SSS

As an alternative for a greedy search, SSS can be applied in the look-ahead strategy to

reduce the variability introduced by local spikes and the computational burden. Instead

of looking at all combinations of possible split points, the look-ahead with SSS strategy

estimates the optimal split points for each combination of moderators, and selects the

combination that results in the largest value of the splitting criterion.

When making two splits from the root node, there are two possible scenarios: (a) the

second split is from the left child node (Figure 6.1a), and (b) the second split is from the

right child node (Figure 6.1b). Denote the three grandchild nodes by tG1 , tG2 , tG3 . Let

X1 be the first splitting moderator and c1 its split point, and X2 and c2 be the second

splitting moderator and its split point. For scenario (a), the subgroup effect sizes are
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computed as

gtG1
+ =

∑K
k=1 I(xk1 ≤ c1;xk2 ≤ c2) · wkgk∑K
k=1 I(xk1 ≤ c1;xk2 ≤ c2) · wk

≈ g̃tG1
+ =

∑K
k=1{1− s(xk1; a, c1)}{1− s(xk2; a, c2)} · wkgk∑K
k=1{1− s(xk1; a, c1)}{1− s(xk2; a, c2)} · wk

,

gtG2
+ =

∑K
k=1 I(xk1 ≤ c1;xk2 > c2) · wkgk∑K
k=1 I(xk1 ≤ c1;xk2 > c2) · wk

≈ g̃tG2
+ =

∑K
k=1{1− s(xk1; a, c1)}s(xk2; a, c2) · wkgk∑K
k=1{1− s(xk1; a, c1)}s(xk2; a, c2) · wk

,

gtG3
+ =

∑K
k=1 I(xk1 > c1) · wkgk∑K
k=1 I(xk1 > c1) · wk

≈ g̃tG3
+ =

∑K
k=1 s(xk1; a, c1) · wkgk∑K
k=1 s(xk1; a, c1) · wk

.

(6.15)

The splitting criterion is approximated by

Q̃B = (g̃tG1
+ − g++)2

K∑
k=1

{1− s(xk1; a, c1)}{1− s(xk2; a, c2)} · wk

+(g̃tG2
+ − g++)2

K∑
k=1

{1− s(xk1; a, c1)}s(xk2; a, c2) · wk.

+(g̃tG3
+ − g++)2

K∑
k=1

s(xk1; a, c1) · wk. (6.16)

For scenario (b), the subgroup effect sizes can be computed by

gtG1
+ =

∑K
k=1 I(xk1 ≤ c1) · wkgk∑K
k=1 I(xk1 ≤ c1) · wk

≈ g̃tG1
+ =

∑K
k=1{1− s(xk1; a, c1)} · wkgk∑K
k=1{1− s(xk1; a, c1)} · wk

,

gtG2
+ =

∑K
k=1 I(xk1 > c1;xk2 ≤ c2) · wkgk∑K
k=1 I(xk1 > c1;xk2 ≤ c2) · wk

≈ g̃tG2
+ =

∑K
k=1 s(xk1; a, c1){1− s(xk2; a, c2)} · wkgk∑K
k=1 s(xk1; a, c1){1− s(xk2; a, c2)} · wk

,

gtG3
+ =

∑K
k=1 I(xk1 > c1;xk2 > c2) · wkgk∑K
k=1 I(xk1 > c1;xk2 > c2) · wk

≈ g̃tG3
+ =

∑K
k=1 s(xk1; a, c1)s(xk2; a, c2) · wkgk∑K
k=1 s(xk1; a, c1)s(xk2; a, c2) · wk

.

(6.17)

The splitting criterion is approximated by

Q̃B = (g̃tG1
+ − g++)2

K∑
k=1

{1− s(xk1; a, c1)} · wk

+(g̃tG2
+ − g++)2

K∑
k=1

s(xk1; a, c1){1− s(xk2; a, c2)} · wk.

+(g̃tG3
+ − g++)2

K∑
k=1

s(xk1; a, c1)s(xk2; a, c2) · wk. (6.18)

For each scenario, ĉ1 and ĉ2 are obtained by maximizing Q̃B. We solve this two-dimensional

optimization problem by using the limited-memory Broyden-Fletcher-Goldfarb-Shanno

box-constraints (L-BFGS-B) method (Byrd, Lu, Nocedal, & Zhu, 1995). The L-BFGS-B

method belongs to the quasi-Newton methods, and can solve large nonlinear optimization
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problems with simple box constraints. The method is implemented in R by the function

optim(), and options for multiple starts and constraining the search range are available.

After solving for the best split points in both scenarios, the look-ahead with SSS

strategy chooses the one that results in the higher value for Q̃B. Summarizing, a look-

ahead strategy with SSS consists of three sub-procedures. The first finds all possible

combinations of two moderators 2. Within each combination, the second sub-procedure

finds the best split points according to the two splitting scenarios, and selects the scenario

with higher values for the between-subgroups Q-statistic. Finally, the third sub-procedure

compares the selected scenario and split points across all combinations, and selects the

combination that results in the highest value for the between-subgroups Q-statistic.

6.3.3 A Permutation Test for Between-Subgroups Heterogene-

ity

After the tree model is pruned via cross-validation, a subgroup meta-analysis is performed

to estimate the subgroup effect sizes and to test the significance of the between subgroups

heterogeneity (i.e., whether the identified tree model accounts for a significant proportion

of the variance in study effect sizes). In a standard meta-analysis, the heterogeneity test,

often called Q-test, is based on the between-subgroups Q-statistic, which asymptotically

follows a chi-square distribution under the null hypothesis. However, this standard Q-test

is inappropriate in meta-CART analysis, since the subgroup membership results from the

tree model that maximizes the same Q-statistic. To solve this problem, we propose to

use a permutation test to correct for the over-optimism in the Q-test. This provides a

stricter way to determine whether moderators effects, represented by the tree model, are

spurious. This permutation test works as is shown in Algorithm 1.

6.3.4 Bias Correction via Bootstrapping

As addressed in the previous section, the subgroups obtained by a meta-CART analysis are

not pre-defined but found by the tree algorithm. Thus, the within-subgroup heterogeneity

is underestimated, and over-optimism exists in the standard errors of the subgroup effect

sizes. To appropriately quantify the uncertainty in the estimates for the subgroup effect

sizes, the bias in the within-node heterogeneity needs to be estimated. Note that this

is only necessary for RE meta-CART, since there is no within-node heterogeneity under

2Note that two splits on the same moderator are allowed.
3For FE meta-CART, if the optimal subtree with G terminal nodes is not available by pruning, we

select a smaller subtree that has the closest number of terminal nodes, and then further split the selected
subtree until the number of terminal nodes reaches G. For RE meta-CART, because of its non-recursive
nature, any pruning will change the estimate of residual heterogeneity and the Q-statistic for each subtree.
Therefore, we sequentially grow the tree until the number of terminal nodes reaches G, and no pruning
procedure is applied.



125

Data: Tree with terminal nodes t1, t2, ..., tG constructed from
D = {dk, σ2

εk
,Xk, k = 1, 2, ..., K}.

Result: p-value for the Q-statistic between the terminal nodes.
begin

compute Q between t1, t2, ..., tG;
γ ← 0;
for b← 1 to B do

permute D∗p = {d∗k, σ∗εk ,Xk, k = 1, 2, ..., K} from D with dk and σ2
εk

bounded

together and their correspondence with Xk under random permutation;
construct from D∗p the optimal subtree with terminal nodes t∗1, t

∗
2, ..., t

∗
G
3;

compute Q∗p between t∗1, t
∗
2, ..., t

∗
G;

if Q∗p ≥ Q then
γ ← γ + 1 ;

else
γ ← γ;

end

end
p = (γ + 1)/(B + 1)

end
Algorithm 1: Permutation significance test for between-subgroups heterogeneity.

the FE assumption; in other words, the optimism in the SE estimates of FE meta-CART

is due to the FE assumption. One common method for bias correction is the bootstrap

(Efron & Tibshirani, 1994). In this approach, the estimates from the bootstrap samples

are averaged and are compared to the original estimate to give an estimator of the bias.

However, there is one major obstacle to apply the bootstrap in tree-based methods. Trees

are unstable in the sense that a small perturbation of the data often results in a sub-

stantially different tree model. As a result, the tree models obtained by using bootstrap

samples are different from each other and from the final tree model constructed from the

original sample. To tackle this problem, we note that a tree model forms a natural group-

ing of the entire data. With two tree structures, observations in a node from one tree can

be distributed into different nodes of the other tree. Utilizing this property, we propose

an appropriate bootstrap bias correction procedure for the underestimated within-node

heterogeneity as outlined in Algorithm 2.
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input : data D = {dk, σεk ,Xk, k = 1, 2, ..., K}.
output: A tree model T with bias corrected within-node heterogeneity Qt for

each t ∈ T̃ .
initialize B = # bootstrap samples;

begin

construct a best-sized tree T from Db via pruning and cross validation;

obtain node membership vector m0 ∈ RK for all studies in D w.r.t. T ;

compute µt for each t ∈ T̃ based on D;

set bias bt = 0 for t ∈ T̃ ;

for b← 1 to B do

draw a bootstrap sample Db;
construct a best-sized tree Tb from Db via pruning and cross validation;

compute heterogeneity averaged over weights

{µbt′ =
∑

k∈t′ w
∗
k(dk − dt′+)2/

∑
k∈t′ w

∗
k : t′ ∈ T̃b} based on Db;

send D down to Tb and recompute compute weighted average of squares

{µ0t′ : t′ ∈ T̃b} on basis of D;

compute bias bbt′ = µ0t′ − µbt′ for t′ ∈ T̃b;
/* see how studies in t ∈ T̃0 are distributed over T̃b. */

obtain node membership vector mb ∈ Rn for all studies in D w.r.t. Tb;
form two-way contingency table of weights

{m∗tt′ =
∑

k∈t and k∈t′ w
∗
k : t ∈ T̃ and t′ ∈ T̃b} with m0 and mb;

compute weighted row proportions p∗tt′ = m∗tt′/m
∗
t·;

for t ∈ T̃ do

update bt := bt +
∑

t′∈T̃b p
∗
tt′bbt′ ;

end

end

average bias bt := bt/B for t ∈ T̃ ;

bias correction Qt := (µt + bt) ·
∑

k∈tw
∗
k for t ∈ T̃ .

end
Algorithm 2: Bias correction for within-node heterogeneity in tree modeling.

Specifically, let m0 ∈ RK denote the node membership vector that assigns a terminal

node of T to each observation in D. This node membership vector m0 is categorical with

levels {1, 2, . . . , |T̃ }. We takeB bootstrap samples {Db : b = 1, . . . , B}. For each bootstrap

sample Db, a best-sized tree Tb is constructed and we obtain the average weighted sum of

squares {µbt′ : t′ ∈ T̃b}. Sending D down to Tb and recomputing {µ0t′ : t′ ∈ T̃b}, based on

D, yields estimates of the bias {bbt′ = µ0t′ − µbt′ : t′ ∈ T̃b}.
To obtain bias estimates bt for each µt in {µt : t ∈ T̃ }, bbt′ is weighted by looking

at how observations in t ∈ T̃ are distributed over T̃b. To proceed, let mb ∈ RK denote
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the node membership vector that assigns a terminal node of Tb to each observation in D.
The two categorical vectors m0 and mb form a |T̃ | × |T̃b| two-way contingency table of

weights {m∗tt′ =
∑

k∈t and k∈t′ w
∗
k : t ∈ T̃ and t′ ∈ T̃b}. Weights are applied here to take the

accuracy of the estimated effect size in each study into consideration. Let p∗tt′ = m∗tt′/m
∗
t·

be the weighted row marginal proportions, where m∗t· =
∑

t′ m
∗
tt′ is the t-th row total.

Then an estimate of the bias from the bth bootstrap sample Db is given by
∑

t′∈T̃b p
∗
tt′bbt′ .

Averaging over B bootstrap samples leads to the bias estimate for µt and bias correction

on µt can be made accordingly. Put together, the bias-corrected within-node heterogeneity

Qt is given by

Qt := {µt −
1

B

B∑
i=1

∑
t′∈T̃b

p∗tt′(µ0t′ − µbt′)} ·
∑
k∈t

w∗k. (6.19)

With the bias-corrected Qt, the residual heterogeneity σ2
τ is re-estimated using (6.7).

And the SEs of subgroup effect sizes are corrected using (6.5).
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Figure 6.1: Two possible scenarios to grow a tree with two splits from the root node.
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6.4 Design of the Simulation Studies

In the following simulation studies, we aim at evaluating the performance of the pro-

posed extensions for meta-CART. First, we compare the ability to retrieve the true model

underlying the data for four implementations of meta-CART: 1) the standard FE meta-

CART, 2) FE meta-CART applying SSS and the look-ahead strategy, 3) the standard RE

meta-CART, and 4) RE meta-CART applying SSS and the look-ahead strategy. Second,

we apply the permutation test in the four implementations of meta-CART and evalu-

ate its influence on the recovery performance. Third, we apply the bootstrap correction

procedure and evaluate whether the over-optimism is properly reduced.

The simulation studies are performed in the R language (Team, 2017). The meta-

CART analyses are performed using our R-package metacart3, which is available at

https://github.com/XinruLI/metacartv3.

6.4.1 Data Generation

In the previous studies by Li, Dusseldorp, and Meulman (2017); Li et al. (2019), it was

shown that the performance of meta-CART can be influenced by many design factors,

such as the number of studies K, the within-study sample size n̄, the number of potential

moderators M , the magnitude of the interaction effect size gI , the common correlation

between the moderators ρ, the residual heterogeneity σ2
τ , and the complexity of the true

model underlying the data. In this study, we focus on three design factors: the number

of studies K = {40, 120}, the residual heterogeneity σ2
τ = {0, 0.025, 0.05}, and the five

models (A-E) to generate the data differing in complexity as shown in Table 6.1. We

include the number of studies because it is the most interested factor in practice. The

residual heterogeneity is included because this factor is essential to compare the FE and

RE models. The complexity of the true model to generate the data is included because

it has the largest influence on the ability of meta-CART to retrieve the true structure

underlying the data. The other design factors are fixed at the medium level: n̄ = 80,

M = 10, gI = 0.5, ρ = 0.3. For each cell of the design, 1000 data sets were generated

as training sets. As a result, 2× 3× 5× 1000 = 30, 000 training sets were generated. In

addition, to estimate the prediction performance and the over-optimism in the subgroup

analysis results, a test set with K = 2000 studies is generated for each cell of the design.

For each data set, 10 moderators are generated from the uniform distribution (xm ∼
uniform[0,1] for m = 1, . . . , 10) with a common correlation ρ = 0.3. To achieve this,

first multivariate normal vectors with the common correlation ρ are simulated, and then

the probability integral transform is applied to the simulated vectors (Gilli, Maringer, &

Schumann, 2011).

Five models are used to generate true effect sizes given a selection of moderators.

The models vary in the number of moderators involved. Note that we generated ten

https://github.com/XinruLI/metacartv3
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Table 6.1: The five models used to generate data sets.

Model Form
A g(x) = 0.5
B g(x) = 0.5 · I(x1 > 0.5)I(x2 > 0.5)
C g(x) = 0.5 · I(x1 > 0.5)I(x2 ≤ 0.5) + 0.5 · I(x1 ≤ 0.5)I(x2 > 0.5)
D g(x) = −0.5 + 0.5x1 + 0.5x2
E g(x) = −1.5 + sin(πx1x2) + 2(x3 − 0.5)2 + x4 + 0.5x5

moderators in each data set. Therefore, the moderators that are not involved in the true

model are just noise factors. Model A is a null model to assess the false positive rate

(meta-CART falsely identifies moderator effects when there is no moderator in the true

model). Models B and C are used to evaluate the ability of meta-CART to identify the

interaction effect(s) when the underlying structure can be fully expressed by a binary

tree. Model B is a two-way interaction effect between two moderators. Model C includes

two balanced two-way interactions, which is similar to the simulated example used by

Tibshirani and Knight (1999). This model is shown by these authors to be difficult for

greedy search procedures like CART because there is no information on where to split

at the top level. Thus, the standard meta-CART is likely to suffer a local optimum

problem in this case. Models D and E are used to evaluate the ability of meta-CART to

identify influential moderators when the underlying structure cannot be fully captured

by a binary tree. Model D is a linear model with main effects of two moderators. Model

E is a nonlinear model derived from Friedman (1991). The coefficients in model E are

rescaled so that the resulting effect size ranges between −1.2 and 1.2, which is commonly

encountered in practice.

For a single study, the effect size was sampled from a normal distribution with mean

ḡ(xk), computed as in Table 6.1 and variance σ2
τ . We use the same method as in Viecht-

bauer (2007b) to generate the within-study sample size nk from a normal distribution

with mean n̄ and standard deviation n̄/3. Finally, given the values of nk and ḡ(xk),

the observed effect size gk was sampled from a non-central t-distribution (for details, see

Appendix A.1).

6.4.2 Evaluation of recovery performance

The four implementations of meta-CART are applied to the data sets that were generated.

Once a non-trivial tee is identified, a permutation test with 500 permuted samples (P =

500) is performed to evaluate the significance of the heterogeneity between the identified

subgroups (i.e., the Q-between). Due to the computational cost, the look-ahead strategy

is only applied to the root node (i.e., for the first two splits). For all implementations

of meta-CART, the half-standard-error rule is applied in the pruning procedure. The
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following criteria are used to evaluate the recovery performance:

Criterion 1. Meta-CART falsely detects the presence of (a) moderator effect(s) in the

data sets generated from model A (false positive rate). This criterion is computed

as the percentage of meta-CART solutions within a cell where a non-trivial tree is

found and if the heterogeneity test is significant.

Criterion 2. Meta-CART successfully selects all moderators used in the true model (full

recovery rate). This criterion examines if the true model is fully recovered with all

the true moderators and if no spurious moderators are selected. It is computed as

the percentage of the true moderators being correctly identified by meta-CART to

have significant heterogeneity test results.

Criterion 3. Meta-CART selects part of the moderators used in the true model (partial

recovery rate), and does not select any spurious moderators. Criterion 3 is computed

as the percentage of the true moderators being partially identified by meta-CART

to have significant heterogeneity test results.

Criterion 4. The trained meta-CART models are applied to predict the study effect

sizes for the test set, and the prediction errors, measured by mean squared error

(MSE), are computed.

6.4.3 Evaluation of the bootstrap correction

Due to the computational cost, we use a part of the generated data sets to investigate

the performance of the bootstrap correction. Among the training sets that resulted in

non-trivial trees, we randomly select 100 non-trivial solutions to estimate the residual

heterogeneity in both training and the corresponding test sets that are generated from

the same underlying structure. Then we applied Algorithm 2 to each selected training

set D, and the resulting tree model T , with the number of bootstrap samples B = 50,

as LeBlanc and Crowley (1993) suggest using 25 ≤ B ≤ 100. As a result, for each of

the four selected cells, we obtain 100 estimates of residual heterogeneity in the training

sets, 100 estimates of residual heterogeneity in the test sets, and 100 estimates of residual

heterogeneity after bootstrap correction in the training sets. If the residual heterogeneity

is properly estimated, the latter estimates in the training sets should be close to their

corresponding estimates in the test sets.
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6.5 Results of the Simulation Studies

6.5.1 SSS and Look-ahead strategy

The false positive rates of the four implementations of meta-CART can be found in

Table 6.2. It is shown that the false positive rates are mainly influenced by the number

of studies K, and the various implementations of meta-CART. The false positive rates

decrease with the increase of K. Before correction by the permutation test, the two

implementations of RE meta-CART have larger false positive rates than FE meta-CART.

After the correction, the difference is small. For both FE and RE meta-CART, applying

with SSS and look-ahead strategy reduces the rates of identifying non-trivial trees when

there is no moderator effect in the true model (model A).

Figure 6.2 presents the full recovery rates and the partial recovery rates of the four

implementations of meta-CART. In general, RE meta-CART applying SSS and the look-

ahead strategy results in the highest recovery rates in most scenarios, and it outperforms

FE meta-CART even when σ2
τ = 0. In particular, applying SSS and the look-ahead

strategy largely increases the recovery rates for model C, where standard meta-CART

algorithms suffer from the local minimum problem and instability. For RE meta-CART,

applying SSS and the look-ahead strategy also results in higher full recovery rates for

models B, D and E. However, for FE meta-CART, applying SSS and the look-ahead

strategy does not improve the recovery rates for models B and E. For model D, it seems

that applying SSS and the look-ahead strategy may slightly decrease the recovery rate of

FE meta-CART. The recovery performance of RE meta-CART with SSS and the look-

ahead strategy is satisfactory (i.e., full recovery rates are larger than 0.80) for models

B and C when the number of studies is large enough (K = 120). For models D and

E, where the underlying structures are difficult to be fully captured by tree models, the

partial recovery rate of RE meta-CART with SSS and look-ahead is higher than 0.60 for

cases with large sample size (K = 120) or no residual heterogeneity (σ2
τ = 0).

Figure 6.3 presents parallel boxplots of the prediction errors of the four implementa-

tions of meta-CART compared with the null model (i.e., predicting the study effect sizes

as the overall effect size in the training set) when σ2
τ = 0.025. Again, RE meta-CART

applying SSS with look-ahead has the best performance in most scenarios, and the pre-

diction performance of model C is largely improved by applying SSS with look-ahead.

The results are similar when σ2
τ = 0 or 0.05.
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Figure 6.2: The recovery rate of four implementations of meta-CART algorithms: the
standard FE meta-CART (FE0), FE meta-CART applying SSS with look-ahead (FE+),
the standard RE meta-CART (RE0), and RE meta-CART applying SSS with look-ahead
(RE+).
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Figure 6.3: The prediction errors of the null model (Null) and the four implementations of
meta-CART algorithms: the standard FE meta-CART (FE0), FE meta-CART applying
SSS with look-ahead (FE+), the standard RE meta-CART (RE0), and RE meta-CART
applying SSS with look-ahead (RE+). The y-axes of the plots for the various models
differ due to the difference in the range of the prediction errors.

Figure 6.4: Plots of the residual heterogeneity estimates in the training samples (vertical
axis) versus the test samples (horizontal axis). The axes of the various models differ due
to the difference in the estimated residual heterogeneity. The bias-corrected (blue dots)
and uncorrected (red circle) estimates of the residual heterogeneity for the same study
are connected by a gray line. The reference line (in green) is y = x.
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Table 6.2: The false positive rates of the four implementations of meta-CART: the stan-
dard FE meta-CART (FE0), FE meta-CART applying SSS with look-ahead (FE+), the
standard RE meta-CART (RE0), and RE meta-CART applying SSS with look-ahead
(RE+). The rates of identifying non-trivial trees, the rates of non-trivial trees with sig-
nificant moderator effects tested by theQ-test (p-value< 0.05), and the rates of non-trivial
trees with significant moderator effects tested by the permutation test are displayed.

K σ2
τ FE0 FE+

non-trivial trees Q-test permutation non-trivial trees Q-test permutation
40 0 .046 .046 .026 .016 .016 .007

0.025 .046 .046 .027 .024 .024 .011
0.05 .058 .058 .029 .013 .013 .008

120 0 .011 .011 .011 .002 .002 .002
0.025 .021 .021 .019 .004 .004 .001
0.05 .023 .023 .017 .002 .002 .002

RE0 RE+
40 0 .081 .079 .031 .050 .043 .015

0.025 .081 .081 .031 .051 .046 .018
0.05 .077 .077 .031 .054 .047 .016

120 0 .030 .030 .018 .019 .017 .005
0.025 .053 .053 .028 .030 .025 .011
0.05 .040 .040 .024 .019 .015 .007

6.5.2 Permutation Test

Table 6.2 presents the false positive rates before and after correction by the permutation

test. It shows that the Q-test without permutation test correction has little influence

on the control of the false positive rate. Once a non-trivial tree is identified after the

cross-validation procedure, the Q-test produces significant results in most cases (p-value

< 0.05). In contrast, the permutation test does help with reducing the false positive rates,

especially when the number of studies is small (K = 40). In addition, when signals do

exist, the decrease in the recovery rates after the permutation test correction is small.

When K = 40, the decrease in the full recovery rate ranges between 0.000 and 0.074 with

median = 0.000, and the decrease in the partial recovery rate ranges between 0.000 and

0.082 with median = 0.008 . When K = 120, the decrease in the full recovery rate ranges

between 0.000 and 0.003 with median = 0.000, and the decrease in the partial recovery

rate ranges between 0.000 and 0.011 with median 0.000. Thus, the study results show that

the permutation test improves the control of the false positive rate, with little sacrifices

in the recovery rate.



136

6.5.3 Bootstrap Correction

Since the bootstrap correction is only necessary for the RE model (see section 6.3.4), and

RE meta-CART applying SSS and the look-ahead strategy has better recovery perfor-

mance than the standard RE meta-CART, we performed the bootstrap correction only

for the subgroup analysis results obtained by RE meta-CART applying SSS and the look-

ahead. Figure 6.4 shows the estimated residual heterogeneity in the test sets versus the

estimated residual heterogeneity in the training sets when K = 120, σ2
τ = 0.025. It is

shown that the uncorrected residual heterogeneity estimates (i.e., the red circles) are sys-

tematically underestimated in the training sets (i.e., the circles are all below the green

line). After bias correction, the residual heterogeneity estimates (i.e., the blue dots) be-

come reasonably close in most cases to the estimated values in the test sets (i.e., closer

to the green line). The results are similar for the other cells of the simulation design.

6.6 An Illustrative Application

For further illustration of the extended meta-CART, we apply the method to the meta-

analytic data collected by Levine et al. (2017). The data consists of 244 samples from 185

studies that report human sperm count. As some studies report more than one sample,

the number of samples K = 244 is larger than the number of studies. In this application,

we are interested in whether the sperm concentration (i.e., the number of sperm cells

per micro liter in a semen sample) is influenced by moderators such as time period,

fertility status and geographic group, and whether interactions between these moderators

play a role. RE meta-CART with the SSS and look-ahead strategy has been applied to

the data using the sperm count measure as the effect size, and three moderators: the

midpoint of the sample collection period, a binary variable indicating whether the sample

has been selected by fertility status (i.e., “Fertile” samples are men that were known to

have conceived a pregnancy, and “Unselect” samples are men not selected by fertility

status), and a binary variable indicating whether the sample was collected from Western

countries such as North America, Europe, Australia, and New Zealand or not. A total of

P = 1000 samples have been used for the permutation test to assess the significance of

the moderator effects. The confidence intervals of the subgroup estimates are computed

with bias correction, using B = 50 bootstrap samples.

The analysis identifies three subgroups characterized by two moderators: geographic

group and time period (see Figure 6.5). The first subgroup consists of 87 studies that

are collected from Western countries, and the midpoints of the sample collection period

are earlier than 1990. The weighted mean of sperm concentration is highest in this

subgroup (ḡ = 90.63, CI: [86.69, 94.56]). The second subgroup consists of 88 studies

that are collected from Western countries, and the midpoints of the sample collection
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period are later than 1990. This subgroup has the lowest sperm concentration (ḡ = 70.76,

CI: [67.14, 74.39]). The third subgroup consists of 69 studies that are collected from

non-Western countries. The weighted average sperm concentration of this subgroup is in

between the other two subgroups (ḡ = 76.53, CI: [72.33, 80.73]). The permutation test

indicates significant heterogeneity between these three subgroups (Q∗b = 61.371, p-value

< 0.001). To summarize the analysis results, the sperm concentration is associated with

two moderators: the geographic group of the samples, and the time period when the

samples were collected. The interaction effect between geographic group and time period

reveals that there is a decline of sperm concentration over time in the Western countries,

but not in the non-Western countries. These findings are similar to the meta-regression

analysis results reported in Levine et al. (2017).

Figure 6.5: The RE meta-CART analysis results on the meta-analytic data collected by
Levine et al. (2017). Three subgroups are defined by two splits: 1) whether the sample
is collected from Western countries (werstern = 1), and 2) whether the midpoint of the
data collection period is earlier than 1995 (midpointyear < 1995). The height of the
diamonds between the solid lines represents the 95% confidence intervals of the weighted
subgroup means of sperm concentration.

.

6.7 Discussion

The meta-CART methodology identifies subgroups of homogeneous studies by searching

for influential moderators that can explain the heterogeneity in effect sizes. In this paper,

we have proposed several extensions for meta-CART to tackle the problems of instabil-

ity and over-optimism in the subgroup analysis results. Sigmoid smooth surrogate (SSS)
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and look-ahead strategies are introduced to alleviate the local optimum problem resulting

from the greedy search procedure and to improve the stability of the tree-based model.

A permutation test has been developed as an appropriate significance test of the het-

erogeneity between the identified subgroups. We propose a special bootstrap procedure

for meta-CART to correct for the over-optimism in the estimates of the residual hetero-

geneity unexplained by the moderators, and thereby to correct for the over-optimistic

confidence intervals of the subgroup effect sizes. The performance of these extensions are

evaluated in extensive simulation studies. These simulation results show that applying

SSS and the look-ahead strategy improves the performance of random effects (RE) meta-

CART by reducing the false positive rate and improving the recovery rate, especially in

the scenario where standard meta-CART suffers from the local optimum problem. Also,

the permutation test improves the control of false positive findings with little sacrifice in

recovery rates. Finally, the bootstrap procedure works well in correcting for the bias in

the estimates of the residual heterogeneity.

Regarding the improvement of the recovery performance, it is no surprise that the

combination of SSS and look-ahead works better for RE meta-CART than for FE meta-

CART. Because the tree-growing procedure of RE meta-CART is a sequential partitioning

algorithm, compared to the recursive partitioning algorithm of FE meta-CART, it is more

sensitive to non-optimal splits at the top levels, and thus is more likely to encounter the

instability problem. It is also worth to mention that RE meta-CART outperforms FE

meta-CART in most scenarios, even in cases of no residual heterogeneity. The reason

could be that residual heterogeneity exists unless all the sources of heterogeneity are

identified. Thus, the FE assumption is seldom satisfied in the tree construction process.

The strength of the simulation studies is that the models used to generate data sets

include both models that can be expressed by trees and models that are difficult for trees

to fully recover. One limitation of the simulation studies is that due to the computational

cost the look-ahead strategy was applied only to the first two splits. Another limitation

is that the simulation studies only focused on continuous moderator variables, because

the mechanism of dealing with ordinal or categorical moderators is very similar to dealing

with continuous moderators. In addition, Li et al. (2019) showed that standard meta-

CART did not perform well for continuous moderators. Therefore, we focused in this

study on the improvement of the method with regard to continuous moderators.

An alternative solution for solving the local optimum problem is so-called bumping.

Bumping is a bootstrap-based method that can be used to find a better local minimum

while preserving the structure of the estimator (Tibshirani & Knight, 1999). The result of

bumping is only a single tree, which preserves the interpretatbility of the tree structure.

However, the main difficulty of applying bumping is that the tree complexity parameter

needs to be pre-defined so that the trees built from different bootstrap samples are of

the same complexity and can be compared. The prior knowledge of the tree complexity
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parameter is usually unavailable in practice. But if domain knowledge is available to

pre-define the number of subgroups, bumping can be another attractive tool to avoid the

local optimum problem.

The contribution of the permutation test is not only to reduce the false positive rate,

but also to produce interpretable test results. The between-subgroups Q-test used in the

standard meta-CART is a pseudo test due to its post-hoc property. Thus, it only gives

information if the analysis results are not significant, and the resulted p-value cannot be

interpreted as face value. In contrast, the permutation test serves as a more appropri-

ate significance test for the between-subgroup heterogeneity, and the resulting p-value is

interpretable.

The idea underlying the bootstrap correction for meta-CART is comparable to the

bootstrap technique proposed by Loh et al. (2015) to construct confidence intervals for

tree-based methods in a single study setting. Both techniques construct trees using the

original data and bootstrap samples of the data, and estimate the within-node vari-

ance/heterogeneity by sending down the observations in a node from the original tree

into different nodes of the other trees constructed from the bootstrap samples. The main

difference is that in the framework of meta-analysis, the observations (i.e., the studies)

need to be weighted by the study accuracy. Another difference is that in a single study

setting, the correction for confidence intervals is achieved directly by correcting the within-

node variance, whereas in the framework of meta-analysis, the correction for confidence

intervals is achieved by first correcting for the estimate of the residual heterogeneity.

To summarize, in this paper we proposed four extensions in the framework of meta-

CART analysis, and evaluated their performance. We showed that applying both the

smooth sigmoid surrogate method and the look-ahead strategy improves the recovery

performance of the meta-CART method. In addition, permutation test and bootstrap

correction work well in correcting for the over-optimism in the significance test and the

confidence intervals of the subgroup effect sizes, respectively. For future work, we suggest

that these extensions are also applied to other tree-based methods that aim for subgroup

identification (e.g., Dusseldorp & Van Mechelen, 2014; Loh, 2002). In practice, we rec-

ommend to use RE meta-CART in favor of FE meta-CART, and to apply both SSS and

the look-ahead strategy in the tree construction process. The permutation test and the

bootstrap correction are recommended to be applied for statistical inference with respect

to the identified subgroups.
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Chapter 7

Epilogue

In meta-analysis, heterogeneity often exists between studies, and it is important to identify

the sources of heterogeneity when summarizing the study results. Meta-CART is a use-

ful tool to explain seemingly contradictory findings. By identifying the influential study

characteristics (i.e., moderators), meta-CART partitions the studies into more homoge-

neous subgroups with regard to the effect size, and gives a clearer picture for the synthesis

of research findings. This dissertation focuses on the developments of the meta-CART

method, and aims at identifying homogeneous subgroups of studies in meta-analysis using

the moderators.

In Chapter 2, we extended the original meta-CART proposed by (Dusseldorp et al.,

2014) and investigated the performance of the extended options via an extensive simu-

lation study. The simulation study showed that meta-regression trees instead of meta-

classification trees should be used for a good control of Type I error rate and better per-

formance in retrieving the true structure underlying the data (i.e., recovery performance).

Therefore, the subsequent developments of meta-CART are based only on meta-regression

trees. In Chapter 3, in order to use the fixed or random effects assumption consistently

in both splitting and test procedures, two separate algorithms were proposed for fixed

effect (FE) and random effects (RE) meta-CART. The FE meta-CART algorithm is im-

plemented by applying FE weights (i.e, the inverse of sampling variance) in the CART

algorithm. The RE meta-CART uses a sequential partitioning algorithm that updates the

estimate of the residual heterogeneity each time when a new split is introduced. In Chap-

ter 4, an R-package was introduced to implement the meta-CART algorithms in the R

language. Also, a look-ahead strategy for the greedy search was proposed to improve the

performance of meta-CART. In Chapter 6, a combination of the smooth sigmoid surrogate

(SSS) and look-ahead strategies was proposed to alleviate the instability and local opti-

mum issues in the splitting procedure. In addition, permutation test and bootstrapping

were applied to correct the over-optimism in the test procedure.

The simulation studies in Chapters 2 and 3 examined the performance of meta-CART

on data generated from models that can be expressed by trees. The results showed that
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the performance of meta-CART depends on various design factors. In summary, the

performance of meta-CART is positively related to the number of studies, the within-

study sample size, and the magnitude of interaction effect size. On the other hand, the

performance of meta-CART is negatively influenced by the number of moderators, the

residual heterogeneity, and the complexity underlying the data. The simulation study in

Chapter 6 investigated the performance of the extended meta-CART implementations on

data generated from more complex models, including both models that can be expressed

by trees and models that cannot be fully captured by trees. The results showed that in

situations that are difficult for meta-CART to fully retrieve the underlying structure, the

method is still able to identify (part of) the true moderators with no spurious findings. In

addition, when there is a severe local optimum problem, applying the SSS and look-ahead

strategies can largely improve the performance of meta-CART.

Based on the simulation results, guidelines for the practical use of meta-CART have

been formulated. RE meta-CART should be used in favor of FE meta-CART, because the

RE assumption takes into account the residual heterogeneity unexplained by the identified

moderators, and this is more realistic in practice. As mentioned above, we recommend

using SSS and look-ahead strategies in the tree construction process to alleviate the

local optimum problem. Also, to correct for possible over-optimism in the subgroup

analysis results, a permutation test and bootstrap correction are recommended to be

applied. Regarding the pruning rule, the half-standard-error rule results in a better

balance between Type I error and power compared to the minimum-standard-error rule

and the one-standard error rule. To perform a meta-CART analysis with satisfactory

performance (i.e., with power and recovery rates both higher than 0.80), a minimum

number of 40 studies is required to detect main effects or simple interaction effects such as a

two-way interaction, and a minimum number of 80 studies is required for the identification

of more complex interaction effects (e.g., multiple two-way interactions or higher-order

interaction).

The applications of meta-CART have been illustrated by several real-world data sets

in Chapters 4, 5 and 6. Different measures of effect size were used in these meta-analytic

studies, such as standardized mean difference, log-odds ratio, and counts. In general,

meta-CART can be applied to any measure of effect size that satisfies the Central Limit

Theorem. That is, the distribution of the effect size measure should approach normality

eventually for large enough within-study sample size, as the effect size is commonly mea-

sured by sample averages. If the distribution of the effect size measure is highly-skewed,

transformation can be used. For example, Fisher’s Z transformation is used for correlation

coefficient (see Fisher, 1915).

In single study settings, tree-based methods are popular tools for prediction, subgroup

identification, and explanatory purposes. However, in the framework of meta-analysis,

there are several difficulties in applying meta-CART in practice. First, studies in a meta-
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analysis are often restricted to published studies that satisfy certain inclusion criteria

(e.g., English publications, randomized controlled trials). Thus, the sample sizes of meta-

analyses (i.e., the number of studies) are often small. In such cases, meta-CART analysis

can be under-powered. As mentioned above, we learned that meta-CART requires at least

40 studies for identification of simple moderator effects and 80 studies for identification of

complex moderator effects to achieve good performance. However, in practice the prior in-

formation about whether the moderator effects are complex or not is usually unavailable.

This makes it difficult for researchers to decide whether the sample size is large enough to

conduct a meta-CART analysis. In addition, unlike the data collection process in single

study settings, the number of studies in a meta-analysis is not known until the collection

process is completed. This also makes it difficult for researchers to decide whether to

apply a meta-CART analysis when they pre-register for a meta-analysis. Second, there

are often missing values in the potential moderator variables. Since meta-analytic data

are usually collected from independent studies, the interested potential moderators may

not have been reported in all studies. Although tree-based methods can deal with missing

values easily by treating the missing values as a new class “missing” for categorical vari-

able, and randomly assigning the studies with missing values into the children nodes for

continuous variable, a large number of missing values can deteriorate the performance of

meta-CART by decreasing the stability and the power of the analysis. A possible solution

for this problem could be using common guidelines in certain fields for researchers to re-

port their scientific findings with a list of well-defined interested moderators variables. For

example, in the field of health psychology, Abraham and Michie (2008) proposed a tax-

onomy of behavior change techniques (BCT) used in health psychological interventions.

This taxonomy is used to improve the specification of behavior change interventions, and

was further refined by Michie et al. (2011) for interventions that aim to support people

who change their physical activity and healthy eating behaviors. The taxonomy has been

used by many health psychologist when reporting their research findings. This makes it

easier for researchers who conduct meta-analyses to synthesize these research findings by

coding the BCTs that were used in different interventions as potential moderators (for an

example of BCT meta-analyses, see van Genugten et al., 2016). Third, it is often argued

that publication bias exists in many fields (Rothstein, Sutton, & Borenstein, 2005), and

such bias in the primary studies will lead to biased results in meta-analysis (Borenstein

et al., 2009). Publication bias refers to the phenomenon that studies with non-significant

effect sizes have less probability to get published than those with significant effect sizes.

For a standard meta-analysis, van Aert, Wicherts, and van Assen (2016); Van Assen, van

Aert, and Wicherts (2015) proposed to use the p-uniform and p-curve methods to correct

for publication bias. How to correct for the publication bias in meta-CART analysis re-

mains a challenging question, and this issue has not been addressed in this thesis. One

possible direction is to fit a tree including both potential moderators and the variables
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that could possibly be related to the publication bias, such as within-study sample size,

or dummy variables that indicate whether the study effect size is significant or not. It

would be interesting in future work to investigate the influence of publication bias on mod-

erator analysis, especially moderator analysis by meta-CART, and to evaluate whether

including additional variables in tree modeling can improve the detection or correction

for publication bias.

Another interesting avenue for future research would be the application of the proposed

extensions in other tree based methods. Although this thesis mainly focuses on the meta-

CART method, some of the proposed extensions can be also applied to other single-

tree-based methods that aim at interpretable results. The SSS strategy and look ahead

strategies can be applied to other greedy search methods to alleviate the local optimum

problem, and the permutation test and the bootstrapping correction can be applied to

draw statistical inferences in other subgroup identification methods. For example, it

might be interesting to apply these extensions to the IPD-SIDES proposed by Mistry

et al. (2018), which integrates the subgroup identification based on different effect search

(SIDES; Lipkovich et al., 2011) into the framework of individual patient data (IPD) meta-

analysis.

In conclusion, meta-CART is a promising alternative of meta-regression to explain the

heterogeneity between studies by exploring the relationship between moderator variables

and study effect sizes. The potential of applying tree-based methods in meta-analysis

has not been fully explored. This is partly due to the facts that the researchers are

seldom in a data-rich situation when conducting a meta-analysis, and the quality of the

data highly depends on the included primary studies. In this thesis, several extensions

have been proposed to overcome the limitations from the methodology aspect, and the

performance of the extended meta-CART implementations has been evaluated. The meta-

CART method is able to identify homogeneous subgroups of studies, by searching for the

moderators that influence study effect sizes. It can deal with various types of moderators,

including dichotomous, nominal, ordinal and continuous variables. The heterogeneity

between subgroups is tested by the between-subgroups Q-statistic, and the uncertainty

in the estimates for the subgroup effect sizes are quantified by confidence intervals. I

hope that my work will increase other researchers’ interest in using tree-based methods

in the field of meta-analysis, and that the proposed extensions can also be applied to

other tree-based methods in future. Furthermore, although the data collection process in

meta-analysis is not a focus in this thesis, I hope that there would be a larger awareness

of how to improve the quality of meta-analytic data by improving the quality of reporting

primary publications.
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Chapter 8

Appendix

8.1 The SMD effect size in meta-analysis

In studies that compare treatment and control groups with respect to some continuous

response variable, standardized mean difference (SMD) is commonly chosen as the mea-

sure of effect size. Several measures are available to compute the SMD, of which the most

popular one is Cohen’s d (Cohen, 1988). It is computed as the mean difference between

the treatment and control group divided by the pooled standard deviation leading to the

estimator:

dk =
Y
T

k − Y
C

k

Sk
, (8.1)

where Y
T

k and Y
C

k denote, respectively, the mean of the treatment group and control

group of the kth study, for k = 1, . . . , K, with K being the total number of studies in

the meta-analysis. Sk is the pooled standard deviation of the kth study. This standard

deviation is computed as

Sk =

√
(nTk − 1)(STk )2 + (nCk − 1)(SCk )2

nTk + nCk − 2
, (8.2)

where nTk , nTk , STk , and STk are, respectively, the treatment and control group sample sizes

and standard deviations of the kth study (also see Cohen (1988)).

When sample sizes of the individual studies are not sufficiently large, the SMDs are

positively biased. Therefore, Hedges (1981) introduced a modified estimator for the SMD

with a correction for small sample size. This modified estimator is sometimes referred as

Hedges’ g (Hedges, 1981), and it is given by

gk = dk · c(mk), (8.3)

where mk = nTk + nCk − 2. c(mk) only depends on mk and can be computed by
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c(mk) =
Γ(mk/2)√

mk/2Γ((mk − 1)/2)
. (8.4)

The constant c(mk) is less than unity and approaches unity when mk is large. It can

be closely approximated by

c(mk) ≈ 1− 3

4mk − 1
. (8.5)

The SMD is not normally distributed. In fact, it is closely related to a non-central

t-distribution

c(mk)
−1(ñk)

1/2gk ∼ tmk
(δk
√
ñk), (8.6)

where δk is the true effect size of the kth study, and ñk = (nTk n
C
k )/(nTk + nCk ).

8.2 Test of Heterogeneity

8.2.1 Testing heterogeneity of effect sizes across studies

Denote the true effect size in the kth study by δk. And denote the sampling variance in the

kth study by σ2
εk

. The observed effect size in the kth study gk is distributed as N (δk, σ
2
εk

).

The sampling variance σ2
εk

depends on the within-study sample sizes and the effect size

of the kth study. It can be estimated by

σ̂2
εk

=
nTk + nC

nTk n
C
k

+
g2k

2(nTk + nCk )
. (8.7)

Under the null hypothesis δ1 = δ2 = ... = δK , the weighted estimator of effect size is given

by g+ =
∑K

k=1wkgk, where wk is computed by

wk =
1

σ̂2
εk

/

K∑
k=1

1

σ̂2
εk

. (8.8)

Then the test statistic

Q =
K∑
k=1

(gk − g+)2

σ̂2
εk

(8.9)

has an asymptotic chi-square distribution with K−1 degrees of freedom. The null hypoth-

esis will be rejected if the value of Q exceeds the 100(1−α)th percentile of the chi-square

distribution with K − 1 degrees of freedom (see in Hedges, 1981).

8.2.2 Testing heterogeneity of effect sizes between subgroups

For subgroup meta-analysis, the generally advocated model is a mixed effects model

(Borenstein et al., 2009). In a mixed effects meta-analysis, the within-subgroup effect



146

sizes are computed by using the random effects assumption. Then a fixed effects model

is employed to test the heterogeneity between subgroups. Denote the effect size of the

kth study in the bth subgroup by gbk, the summary effect size of the bth subgroup can be

computed as

gb+ =

Kb∑
k=1

gbk
σ̂2
εbk

+ σ2
τb

/

Kb∑
k=1

1

σ̂b
2
εbk

+ σ2
τb

, (8.10)

where Kb is the number of studies in the bth subgroup, and σ̂2
εbk

and σ2
τb

are the sampling

variance and the residual heterogeneity (see Section 2). The variance of the summary

effect size is estimated as

σ̂2
gb+

= 1/

Kb∑
k=1

1

σ̂2
εbk

+ σ2
τb

. (8.11)

The weighted mean of the within-subgroup summary effect sizes is computed as

g+ =
B∑
b=1

gb+
σ̂2
gb+

/

B∑
b=1

1

σ̂2
gb+

, (8.12)

where B is the number of subgroups. The between-subgroup Q statistic can be computed

as

Qbetween =
B∑
1

(gb+ − g+)2

σ̂2
gb+

. (8.13)

8.3 Partitioning criterion in CART

Starting from one group including all subjects (i.e., root node), CART algorithm partitions

the root node into two subgroups (i.e., offspring nodes), by searching all possible splits

across all predictor variables to find the split that best satisfies the partitioning criterion.

Then the splitting process is repeated on the offspring nodes to grow the tree. There are

various impurity function that can be used as partitioning criterion.To generalize, consider

a proposed split s of a node t, into two offspring nodes l and r with the proportion pl of

the data cases in t to l and the proportion pr to r. Let i(t) be some impurity function of

node t. Then the decrease in impurity by split s of node t will be

∆i(s, t) = i(t)− pli(l)− pri(r). (8.14)

∆i can be used as a goodness of split: a high value of ∆i(s, t) means the proposed split

s is good.

For regression tree, the within-node sum of squares is often used as the impurity function.

It can be written as

i(t) =
1

N

∑
(vn,zn)∈t

(zn − z̄(t)), (8.15)
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where (vn, yn) are the data cases with vn being the predictor vector and zn being the

response variable; z̄(t) is the mean of zn for all cases (vn, zn) that fall into the node t.

For classification tree, one of the most frequently used impurity function is the Gini index,

which can be written as

i(t) =
∑
f 6=h

p(f |t)p(h|t), (8.16)

where p(f |t) is the probability that the subject belongs to the f th class given it falls in

node t. The Gini index is 0 when subjects from only one same class fall in a node, and it

achieves its maximum (0.5 in case of two classes) when each class has the same probability

to fall in a node.
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Chapter 9

Summary in Dutch (Samenvatting)

Dit proefschrift geeft de ontwikkeling weer van een nieuwe data-analyse methode op het

gebied van meta-analyse. De methode integreert op een inventieve manier twee bestaande

methoden, classificatie- en regressiebomen (CART) en meta-regressie, en draagt de naam

meta-CART.

Hoofdstuk 1

We schetsen in dit inleidende hoofdstuk het kader van de onderzoeken in dit proefschrift

en geven de motivatie weer voor het ontwikkelen van de nieuwe methode.

Meta-analyse is de analyse van gegevens van reeds uitgevoerde wetenschappelijke stu-

dies. Het voornaamste doel van een meta-analyse is het kwantitatief samenvatten van de

resultaten (i.e., effectgroottes) van deze studies, liefst in één enkele maat. Om deze maat

te berekenen, worden de effectgroottes van de afzonderlijke studies gemiddeld, rekening

houdend met de nauwkeurigheid van de schatting van de effectgrootte per studie. Het

berekenen van een dergelijke “gemiddelde” effectgrootte heeft zin als de studies een homo-

gene groep vormen. Echter, in de praktijk is dit meestal niet het geval. We spreken dan

van heterogeniteit in de effectgroottes van de studies. De uitdaging is vervolgens om deze

heterogeniteit te verklaren aan de hand van karakteristieken van de studies (e.g., kenmerk

van de steekproef, implementatie van de behandeling). De analyse die zich hierop richt

heet moderator-analyse.

De meest gebruikelijke methode voor moderator-analyse heet meta-regressie. De pre-

dictoren in meta-regressie zijn de karakteristieken van de studies (i.e., de moderatoren)

en de uitkomstmaat is de effectgrootte. Meta-regressie is minder geschikt in de volgende

situaties: a) Als er veel studiekarakteristieken zijn gemeten heeft de methode niet genoeg

”power” om een moderator-effect aan te tonen; b) Als onderzoekers gëınteresseerd zijn

in het effect van combinaties van karakteristieken (i.e., interacties tussen moderatoren)

wordt het aantal termen in de regressie-analyse al snel te veel om betrouwbare schattingen

te verkrijgen.
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Om bovengenoemde beperkingen van meta-regressie het hoofd te bieden, kwamen we

op het idee om classificatie- en regressiebomen (CART) toe te passen in het raamwerk

van meta-analyse. In de literatuur was dit nog niet eerder gedaan. Het resultaat van een

CART analyse zijn subgroepen van objecten (in ons geval: studies) die meer op elkaar

lijken. Dit is precies waar we naar op zoek zijn: studies die meer homogeen zijn met

betrekking tot hun effectgrootte. Het idee is als eerste ruwweg uitgewerkt door Dusseldorp

et al. (2014) en de voorgestelde nieuwe methode werd meta-CART genoemd. In deze

eerste uitwerking werd in een eerste stap een classificatieboom gefit op de gegevens en

vervolgens werd een subgroep analyse uitgevoerd (i.e., meta-regressie met één categorische

predictor). De studie van Dusseldorp et al. bracht een aantal knelpunten naar boven:

a) de methode werd slechts getest op één enkele bestaande dataset; b) de effectgrootte

werd eerst gedichotomiseerd op de mediaan, terwijl dit waarschijnlijk informatieverlies

opleverde en c) er werd geen rekening gehouden met de nauwkeurigheid van de schatting

van de effectgrootte per studie.

In dit proefschrift worden deze knelpunten opgelost en wordt de methode meta-

CART verder uitgewerkt in verschillende implementaties. Deze implementaties worden

vergeleken en getest in uitgebreide simulatiestudies en toegepast op bestaande datasets.

Daarnaast wordt er een gebruikersvriendelijk software pakket “metacart” voor de R-

omgeving ontwikkeld.

Hoofdstuk 2

In dit hoofdstuk vergelijken we meta-classificatiebomen (i.e., de eerste versie van meta-

CART waarbij de effectgrootte werd gedichotomiseerd) met meta-regressiebomen (i.e.,

zonder dichotomisatie). Daarnaast passen we gewichten toe die rekening houden met

de nauwkeurigheid van de schatting van de effectgrootte per studie. Voor de gewichten

ontwikkelen we drie versies. In de eerste versie worden alle gewichten gelijk gezet aan 1

(dus geen rekening houdend met de nauwkeurigheid). In de tweede versie zijn de gewichten

gebaseerd op het fixed-effect meta-analysemodel en in de derde versie op het random-

effects meta-analysemodel.

Om de beste grootte van de boom te bepalen maakt meta-CART gebruik van een

‘pruning’ regel. Door middel van kruisvalidatie wordt de goodness-of-fit (i.e., kwadraten-

som van de error) bepaald van bomen met verschillende groottes. De beste boomgrootte is

de kleinste boom met een gekruisvalideerde fit die voldoet aan de c∗SE-regel, waarbij c de

vooraf bepaalde pruning-parameter is en SE de standaardfout is van de laagste gekruis-

valideerde kwadratensom van de error. In CART wordt meestal ge-werkt met c = 1. In

de huidige studie onderzoeken we wat in meta-CART de beste waarde is voor de pruning

parameter. We onderzoeken de volgende drie waardes: 0, 0.5, of 1. Dit alles resulteert in

een 3 (waarde van c) bij 3 (type gewicht) bij 2 (type boom) ontwerp.
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In een uitgebreide Monte-Carlo simulatiestudie testen we de resultaten van deze meta-

CART ontwerpen. We creëren artificiële data aan de hand van verschillende ware modellen

(scenario’s). Deze scenario’s verschillen in de complexiteit van het moderator-effect. Ook

is er een scenario waarbij de studies een homogene groep vormen en er geen moderator

effect aanwezig is. In dit laatst genoemde scenario treedt er een Type I fout op als

meta-CART concludeert dat er wel sprake is van een moderator. Voor de overige ware

scenario’s, waarin één of meerdere moderator-effecten aanwezig zijn, bepalen we de power

en in hoeverre meta-CART de ware structuur kan vinden (m.b.t. het aantal subgroepen

en de gekozen moderatoren).

De conclusie van de simulatiestudie is dat een meta-regressieboom met random-effects

gewichten en een pruning parameter van 0.5 de beste resultaten oplevert. Zelfs met een

streng pruning parameter (c = 1) blijkt de Type I fout van meta-classificatiebomen niet

onder controle te krijgen en er wordt besloten om in het vervolg alleen meta-regressiebomen

te gebruiken.

Hoofdstuk 3

In Hoofdstuk 3 stellen we twee nieuwe algoritmes voor die het algoritme van CART com-

bineren met subgroep analyse: één voor het fixed-effect model en één voor het random-

effects model. Hierdoor is de twee-stappen-benadering van meta-CART overbodig gewor-

den.

In het eerste algoritme wordt het fixed-effect model gëıntegreerd in het partitioner-

ingsalgoritme. Op elegante wijze wordt aangetoond dat het toepassen van fixed-effect

gewichten gelijk is aan het minimaliseren van de som van de Q-statistiek in de kind-

knopen. Deze knopen ontstaan na een split van de ouderknoop op een drempelwaarde

van een moderator, waardoor de groep van studies in de ouderknoop wordt verdeeld in

twee kindknopen. Een knoop representeert dus een subgroep van studies. De binnengroep

Q-statistiek is een maat voor de heterogeniteit van de effectgroottes van de studies die tot

de knoop behoren. De studie laat zien dat door het minimimaliseren van de binnengroepen

Q-statistiek (na iedere split) de tussengroepen Q-statistiek wordt gemaximaliseerd. Deze

tussengroepen Q-statistiek is een maat voor de sterkte van het moderator-effect. Met

behulp van een χ2 test wordt getoetst of de tussengroepen Q-statistiek van de boom na

pruning significant is.

In het tweede algoritme wordt het random-effects model gëıntegreerd in het parti-

tioneringsalgoritme. In de stapsgewijze procedure (zoals toegepast in Hoofdstuk 2) wordt

de residuele variantie (σ2
τ ) aan het begin van de eerste stap (de boomconstructie) berek-

end voor het berekenen van de random-effects gewichten en σ2
τ wordt opnieuw berekend

aan het begin van de tweede stap voor de subgroep analyse. Echter, het vastzetten van

σ2
τ in de random-effects gewichten van de eerste stap is niet consistent omdat in feite σ2

τ
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verandert na iedere split van het partitioneringsalgoritme. In het nieuwe algoritme wordt

hiermee rekening gehouden en wordt de residuele variantie (van de tot dan toe gefitte

boom) opnieuw geschat na iedere split. Er wordt aangetoond dat in dit nieuwe algoritme

in iedere split de random-effects Q-statistiek wordt gemaximaliseerd.

De uitgebreide simulatiestudie toont aan dat indien de juiste pruning regel wordt

gebruikt en het aantal studies in de steekproef groot genoeg is, de nieuwe meta-CART

zeer goede resultaten laat zien (power > 0.80 en Type I fout < 0.05). Het minimum

benodigde aantal studies varieert tussen de 40 en 120, afhankelijk van de complexiteit en

de sterkte van de ware mderator-effecten. Ook de steekproefgrootte binnen de studies, het

type moderator (dichotoom, nominaal, of continu) en de grootte van de residuele variantie

spelen een rol.

Hoofdstuk 4

In dit hoofdstuk wordt nader ingegaan op het softwarepakket metacart, versie 2.0, voor

de R-omgeving. In deze versie zijn de nieuwe algoritmes van hoofdstuk 3 gëımplementeerd.

Bovendien wordt een nieuw aspect gëıntroduceerd in het algoritme van de random-effects

meta-regressiebomen: de “look-ahead” strategie.

Bij het bepalen van de eerste beste split (i.e., moderator en splitpunt) wordt in de

“look-ahead” strategie twee stappen vooruit gekeken. Dit betekent dat het partitiecri-

terium (de tussengroepen Q-statistiek) berekend wordt na twee splits voor iedere com-

binatie van moderatoren en voor ieder mogelijke split op ieder van deze moderatoren.

De combinatie die de hoogste tussengroepen Q-statistiek oplevert wordt gekozen als de

beste. Dit resulteert in twee splits tegelijk en dus in een boom met drie eindknopen

(subgroepen). Deze drie eindknopen functioneren vervolgens als mogelijke “ouder” voor

de volgende split, waarbij de gewone “greedy” zoekstrategie wordt gebruikt (geen look-

ahead). Het voordeel van de look-ahead strategie om de eerste twee splits te bepalen is

dat de boom niet gedomineerd wordt door een sterk hoofdeffect van een moderator. In

plaats daarvan zoekt de look-ahead naar de sterkste interactie.

In het hoofdstuk worden de twee hoofdfuncties van metacart uitgelegd: de functie

die een fixed-effect meta-regressieboom fit, FEmrt(), en degene die een random-effects

meta-regressieboom fit, REmrt(). De functie FEmrt() maakt gebruik van het bestaande

R-package rpart. De functie REmrt() is geheel nieuw. De input argumenten van beide

functies verschillen iets van elkaar en worden stuk voor stuk uitgelegd. De functies resul-

teren in een S3-object met bijbehorende “print”, “plot”, “summary” en “predict” functies.

Aan de hand van drie voorbeelden wordt metacart gëıllustreerd. In het eerste voor-

beeld met de dataset “dat.bourassa1996” wordt meta-CART met meta-regressie vergeleken.

De effectgrootte van de studies is een log odds ratio. Een hogere waarde geeft een sterker

verband weer tussen links of rechts handig zijn en linker of rechter oogdominantie. Meta-
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regressie wordt toegepast om de vraag “welke moderatoren hebben een invloed op de

hand-oog associatie” te beantwoorden. Vervolgens wordt met meta-CART de vraag beant-

woord “welke combinaties van (categorieën) van moderatoren hebben een invloed op de

hand-oog associatie?”. De oplossing van meta-CART laat in een oogwenk zien welke

categorieën van een invloedrijke multinominale moderator samengevoegd kunnen worden.

Het resultaat blijkt goed overeen te stemmen met de hypotheses in het artikel waarin de

data oorspronkelijk werden gepresenteerd.

In het tweede voorbeeld wordt metacart toegepast op een subset van de dataset

van Michie et al. (2009) met studies die het effect onderzoeken van een gezondheids-

bevorderende interventie (beweeg- of voedingsinterventie). De subset bevat vijf dichotome

moderatoren die aangeven of een bepaalde gedragsveranderingstechniek wel of niet is ge-

bruikt in de interventie. De effectgrootte is Hedges’ g, het gestandaardiseerde gemiddelde

verschil op de uitkomstmaat tussen de interventie- en controlegroep. De onderzoeksvraag

is “Welke combinaties van gedragsveranderingstechnieken zorgt voor het grootste interventie-

effect?”. Zowel een fixed-effect meta-regressieboom analyse als een random-effects meta-

regressieboom analyse worden toegepast op de data. Alleen de fixed-effect meta-regressieboom

analyse vindt moderator effecten: een interactie tussen twee gedragsveranderingstech-

nieken (T1: verschaft informatie over het verband tussen gedrag en gezondheid en T4:

stimuleert intentievorming). De studies die beide technieken toepassen resulteren in het

grootste gemiddelde effect van de interventie.

In het derde voorbeeld wordt het voordeel van de look-ahead strategie gëıllustreerd

aan de hand van een gesimuleerde dataset. Het ware model onder de data is gebaseerd

op Tibshirani en Knight (1999). DIt model bevat een disordinale interactie tussen twee

moderatoren die erg lastig te ontdekken is zonder look-ahead strategie.

De conclusie is dat de kracht van meta-CART ligt in het detecteren van combinaties

van moderatoren en combinaties van categorieën van moderatoren die zo goed mogelijk

de heterogeniteit in de effectgroottes kunnen verklaren. Het R-package metacart bevat

functies die voor fixed-effect meta-analyse en random-effects meta-analyse geschikt zijn,

met opties die de gebruiker gemakkelijk kan aanpassen.

Hoofdstuk 5

De systematische review en meta-analyse die beschreven is in dit hoofdstuk is uitgevoerd

in samenwerking met onderzoekers uit het Verenigd Koninkrijk en Canada. In de systema-

tische review zijn gerandomiseerde effect studies (RCTs) opgenomen waarin personen aan

een gezondheidsbevorderende interventie (gezonde voeding, fysieke activiteit, of stoppen-

met-roken interventie) werden toegewezen of aan een controle groep. De doelgroep van

de interventies zijn volwassenen met een laag inkomen. In totaal zijn 45 interventies

opgenomen, beschreven in 35 artikelen.
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In de meta-analyse wordt exploratief onderzocht welke (combinaties van) inhoudelij-

ke componenten en manieren-van-aanbieden van de interventies geassocieerd zijn met de

effectgrootte. De gebruikte effectgrootte is Hedges’ g voor de gedragsverandering in voe-

ding of bewegen. Hedges’ g is het gestandaardiseerde verschil in gemiddelde verandering in

gezondheidsgedrag tussen de interventie- en de controlegroep, waarbij een correctiefactor

wordt toegepast voor kleine steekproeven. Een positieve Hedges’ g betekent dat de inter-

ventiegroep het beter doet dan de controlegroep. Voor stoppen-met-roken is de gebruikte

effect grootte het relatieve risico op stoppen met roken (i.e., abstinentie).

In univariate random-effects meta-regressies (voor continue interventiekenmerken) en

subgroep analyses (voor categorische kenmerken) wordt het moderator effect geschat van

in totaal 46 verschillende gedragsveranderingstechnieken en 14 manieren-van-aanbieden.

De analyses worden uitgevoerd per type interventie (gezonde voeding, fysieke activiteit,

of roken) en alleen de moderatoren die door minstens drie interventies van dat type zijn

gebruikt worden onderzocht.

De meta-CART analyses richten zich op het detecteren van de meest invloedrijke

combinaties van moderatoren per type interventie. Omdat de steekproef van studies niet

zo groot is, worden in de meta-CART analyses alleen de moderatoren onderzocht die in de

univariate analyses een significant effect lieten zien. Zowel fixed-effect als random-effects

meta-regressiebomen worden gefit per type interventie. Hiervoor is gekozen omdat beide

voordelen hebben: fixed-effect meta-regressiebomen hebben een grotere power (zijn li-

beraler), terwijl random-effects meta-regressiebomen de controle van de Type I fout maxi-

maliseren (zijn conservatiever). Bij de fixed-effect meta-CART analyse is er een sterkere

aanname: de heterogeniteit in de effectgroottes van de studies wordt volledig verklaard

door de verschillende subgroepen (de moderatoren) en de binnenknopen steekproeffout,

er is geen residuele variantie. Dit brengt het totaal op zes meta-CART analyses. In deze

samenvatting gaan we in op de resultaten hiervan.

Voor de gezonde voedingsinterventies geeft de random-effects meta-CART analyse als

resultaat een boom met twee splits en de tussengroepen Q-statistiek is significant. Dit

suggereert dat de interactie van de twee moderatoren (gerepresenteerd door de boom

met twee splits) de heterogeniteit in de effect groottes van de studies kan verklaren.

Het blijkt dat interventies die geen “feedback op gedrag” geven gemiddeld de hoogste

effectgrootte hebben (ḡ = 0.36). Van de groep interventies die wel “feedback op gedrag”

geven resulteren de face-to-face interventies in een gemiddeld hogere effect-grootte (ḡ =

0.23) dan de interventies die niet face-to-face worden aangeboden (ḡ = 0.10).

De fixed-effect meta-CART analyse resulteert in een meta-regressieboom met dezelfde

twee splits als de random-effects meta-regressieboom en voegt daaraan een split toe van de

groep interventies die “geen feedback geven”. De split is op de moderator “zelf-monitoren

van gedrag”. De interventies die geen feedback geven, maar wel het zelf-monitoren van

gedrag aanbieden, resulteren in een hogere gemiddelde effectgrootte (ḡ = 0.48) dan de
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interventies die geen feedback geven en geen zelf-monitoren aanbieden (ḡ = 0.31).

Voor de fysieke activiteitsinterventies resulteert de random-effects meta-CART analyse

in een meta-regressieboom met één knoop (i.e., de “root node”). Dit betekent dat er geen

moderator effect gevonden is. De fixed-effect meta-CART analyse resulteert in een meta-

regressieboom met twee splits, dus drie eindknopen. Interventies die aangeboden worden

in gezondheidscentra resulteren in de laagste gemiddelde effectgrootte (ḡ = −0.002).

Interventies die aangeboden worden in gemeenschapsruimtes (bijv. het park) of thuis

maar geen instructies geven over hoe een gedrag uitgevoerd moet worden resulteren in

een lagere gemiddelde effect grootte (ḡ = 0.21) dan interventies die in dezelfde omgeving

worden aangeboden en wel instructies geven over de uitvoering van een gedrag (ḡ = 0.42).

Voor de stoppen-met-roken interventies wordt er door zowel de fixed-effect als de

random-effects meta-CART analyse geen moderator effect gevonden.

De conclusie is dat bij volwassenen met een lager inkomen het wel of juist niet include-

ren van bepaalde gedragsveranderingstechnieken en de omgeving (waar een interventie

wordt aangeboden) een grote invloed kunnen hebben op het effect van interventies die

gericht zijn op het bevorderen van gezonde voeding en fysieke activiteit. Voor stoppen-

met-roken interventies kunnen we geen uitspraak doen over invloedrijke interventieken-

merken.

Hoofdstuk 6

De methode meta-CART heeft een tweetal minpunten die ook voorkomen bij sommige

andere partioneringsalgoritmen. Ten eerste maakt het algoritme gebruik van een “greedy

search” strategie, waarbij alle mogelijke moderatoren en splitpunten afgegaan worden

om tot een split te komen. Dit betekent dat meta-CART niet kan garanderen dat de

gevonden oplossing globaal optimaal is en de resultaten kunnen instabiel zijn. Ten tweede

is statistische inferentie in de gedetecteerde subgroepen (i.e., de eindknopen van de boom)

lastig omdat deze groepen niet vooraf gespecificeerd zijn, maar zijn verkregen door het

zoeken in de data.

Om aan deze minpunten het hoofd te bieden, stellen we in dit hoofdstuk de volgende

vier uitbreidingen van meta-CART voor:

i Voor de boomconstructie wordt de smooth sigmoid surrogate (SSS) methode gebruikt;

hierdoor verwachten we dat lokale optima minder vaak voorkomen;

ii Voor de boomconstructie wordt de look-ahead strategie die beschreven is in hoofdstuk

4 ook uitgewerkt voor fixed-effect meta-regressiebomen; dit zorgt voor een verlaging

van de kans op lokale optima;

iii Voor de statistische inferentie in de subgroepen wordt een permutatie-test gebruikt

om de significantie van de tussenknopen Q-statistiek te bepalen. Deze test wordt
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gebruikt om te bepalen of er sprake is van een moderatoreffect of niet.

iv Om in de subgroepen te corrigeren voor het overoptimisme in de schattingen van het

betrouwbaarheidsinterval van de gemiddelde effectgrootte is een nieuwe bootstrap

procedure ontwikkeld, die rekening houdt met de nauwkeurigheid van de effect-

groottes.

De resultaten van een uitgebreide simulatiestudie laten zien dat de bovengenoemde

uitbreidingen van meta-CART veelbelovend zijn. Het toepassen van de SSS-methode en

de look-ahead strategie verlagen de kans op fout-positieve resultaten (oftwel het vinden

van spurieuze moderatoreffecten) en verhogen de kans op het detecteren van de juiste

moderatoreffecten. De permutatietest verlaagt de kans op fout-positieve resultaten en de

bootstrap procedure geeft een juiste correctie van de schatting van de residuele variantie.

De conclusie van dit hoofdstuk is dat de vier voorgestelde uitbreidingen zorgen voor een

verbeterde prestatie van meta-CART. De uitbreidingen zullen worden gëımplementeerd

in metacart, versie 3.0.

Epiloog

In een meta-analyse is vaak sprake van heterogeniteit in de gevonden effectgroottes van

de studies. Meta-CART is een nuttige techniek om schijnbaar tegenstrijdige bevindingen

van studies te verklaren. Door invloedrijke studiekenmerken (i.e., moderatoren) op te

sporen, partitioneert meta-CART de studies in subgroepen die meer homogeen zijn met

betrekking tot hun effectgroottes. In dit proefschrift is meta-CART verder ontwikkeld

met als doel het zo goed mogelijk detecteren van homogene subgroepen in meta-analyse

door gebruik te maken van (combinaties van) moderatoren.

Door middel van simulatiestudies hebben we de prestaties van meta-CART getest.

In de simulatiestudies van hoofdstukken 2 en 3 zijn ware scenario’s gebruikt die door

een boom werden gerepresenteerd. Daarmee was het relatief gemakkelijk om de ware

structuur met meta-CART terug te vinden. In hoofdstuk 6 bevatten de ware scenario’s

ook andere, meer complexe modellen. Ook in deze modellen slaagt meta-CART erin om

(gedeeltes) van de ware moderatoren te ontdekken zonder spurieuze effecten te vinden.

Op basis van de resultaten van de simulatiestudies zijn er richtlijnen opgesteld voor het

gebruik van meta-CART. Over het algemeen zijn random-effects meta-regressiebomen te

verkiezen boven fixed-effect meta-regressiebomen omdat random-effects meta-regressiebomen

rekening houden met de variantie die niet verklaard wordt door de moderatoren. Daar-

naast wordt aangeraden de vier uitbreidingen van hoofdstuk 6 te gebruiken. Voor het

bepalen van de juiste boomgrootte raden we de 0.5 ∗ SE pruning-regel aan. Deze regel

geeft een goede balans tussen de Type I fout en de power. Om meta-CART toe te passen

met voldoende power (≥ .80) zijn de volgende randvoorwaarden geformuleerd:
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• een minimale grootte van 40 studies voor het detecteren van een hoofdeffect van een

moderator en een tweeweg-interactie tussen moderatoren (i.e., een boom met twee

of drie eindknopen);

• een minimale grootte van 80 studies voor het detecteren van meer complexe inter-

acties (i.e., een boom met vier of meer eindknopen).

Naast artificiële datasets is meta-CART in dit proefschrift toegepast op echte datasets.

Deze datasets verschilden in de gemeten effectgrootte, bijvoorbeeld het gestandaardiseerde

gemiddelde verschil (Hedges’ g) en de log odds ratio. Meta-CART kan toegepast worden

op ieder type effectgrootte die voldoet aan de centrale limietstelling. Als de verdeling van

de effectgrootte erg scheef is, kan een transformatie toegepast worden (bijv. Fisher’s Z

transformatie).

Er zijn een aantal praktische moeilijkheden bij het toepassen van meta-CART. Ten

eerste weet de onderzoeker meestal niet van te voren hoeveel studies er uiteindelijk gevon-

den worden die geschikt zijn voor de meta-analyse en of er sprake is van complexe mo-

deratoreffecten in de data. Daardoor is het lastig om te bepalen of de steekproef groot

genoeg is voor een meta-CART analyse (uitgaande van bovengenoemde randvoorwaar-

den). Dit maakt het lastig om een meta-CART analyse te pre-registreren (i.e., het vooraf

registreren van de studie in het kader van “open science”). Ten tweede bevatten de

studiekenmerken (de moderatoren) vaak missende waarden omdat niet alle studies de

kenmerken rapporteren. Een strategie kan zijn om in een onderzoeksveld een lijst op

te stellen met belangrijke moderatoren die studies dienen te rapporteren (bijv. in het

veld van de gezondheidspsychologie is de taxonomie van gedragsveranderingstechnieken

opgesteld). Ten derde wordt in meta-analyses vaak gewaarschuwd voor publicatie bias.

Dit fenomeen kan ook de resultaten van een meta-CART analyse bëınvloeden. Hoe hier-

voor te corrigeren in meta-CART is een uitdaging voor toekomstig onderzoek.

Een andere richting voor toekomstig onderzoek is het toepassen van de vier voorgestelde

uitbreidingen in hoofdstuk 6 op andere boomtechnieken, bijv. in het raamwerk van meta-

analyses van individuele patiëntgegevens.

De conclusie van dit proefschrift is dat meta-CART een veelbelovende techniek is om

subgroepen van studies op te sporen die meer homogeen zijn wat betreft hun effectgrootte.

De techniek kan worden toegepast op meta-analyse gegevens met meerdere moderatoren

die van verschillende aard mogen zijn (dichotoom, nominaal, ordinaal en numeriek). Ik

hoop dat mijn werk de interesse van andere onderzoekers aanwakkert om bomen in meta-

analyse te gaan gebruiken.
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