
Swarm and Evolutionary Computation 44 (2019) 945–956

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Multi-Objective Bayesian Global Optimization using expected hypervolume
improvement gradient

Kaifeng Yang ∗, Michael Emmerich, André Deutz, Thomas Bäck
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A B S T R A C T

The Expected Hypervolume Improvement (EHVI) is a frequently used infill criterion in Multi-Objective Bayesian
Global Optimization (MOBGO), due to its good ability to lead the exploration. Recently, the computational
complexity of EHVI calculation is reduced to O(n log n) for both 2-D and 3-D cases. However, the optimizer
in MOBGO still requires a significant amount of time, because the calculation of EHVI is carried out in each
iteration and usually tens of thousands of the EHVI calculations are required. This paper derives a formula for the
Expected Hypervolume Improvement Gradient (EHVIG) and proposes an efficient algorithm to calculate EHVIG.
The new criterion (EHVIG) is utilized by two different strategies to improve the efficiency of the optimizer
discussed in this paper. Firstly, it enables gradient ascent methods to be used in MOBGO. Moreover, since the
EHVIG of an optimal solution should be a zero vector, it can be regarded as a stopping criterion in global
optimization, e.g., in Evolution Strategies. Empirical experiments are performed on seven benchmark problems.
The experimental results show that the second proposed strategy, using EHVIG as a stopping criterion for local
search, can outperform the normal MOBGO on problems where the optimal solutions are located in the interior
of the search space. For the ZDT series test problems, EHVIG still can perform better when gradient projection is
applied.

1. Introduction

Evolutionary Algorithms (EAs) and Bayesian Global Optimization
(BGO) are two main branches in the field of optimization. Both of
them share a similar structure: initialization, evaluation of a black
box function at a given search point, an update of the current search
point for seeking an improvement in the next loop and repetition of
the evaluation and adjustment loop. The difference lies in the update
mechanism. For EAs, this is accomplished by evolutionary operators,
such as recombination and mutation. For the Bayesian global opti-
mization, this is based on learning from the past evaluations and
determining the next search point by optimization of an infill criterion
formulated on that method. Compared to EAs, BGO requires only a
small budget of function evaluations. Therefore, it can be applied to
real-world optimization problems with expensive evaluations [1], e.g.,
evaluations occurring in computational fluid dynamics simulations or
process control simulation.

In the context of Bayesian Global Optimization, a pre-selection
or infill criterion is utilized to estimate the performance of the
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improvement for a new point. For single objective optimization,
Expected Improvement (EI) and Probability of Improvement (PoI) are
usually applied in BGO. The EI was introduced by Mockus et al.
[2] in 1978, and it exploits both the Kriging prediction and the
variance to give a quantitative measure of the improvement for
the points in the search space. Later, EI became more popular
due to the work of Jones et al. [3]. Currently, EI is widely used
in Bayesian Global Optimization and machine learning. In 2005,
Emmerich generalized EI into EHVI based on the hypervolume indi-
cator [4]. Similar to EI, the EHVI is the expected increment of
the hypervolume indicator, considering a Pareto-front approximation
set and a predictive multivariate Gaussian distribution at a new
point.

EHVI has been in existence for more than a decade, and it has the
property to achieve a good convergence and diversity to a true Pareto
front [5–8]. It also yields good results when applied as an infill criterion
in BGO and pre-selection criterion in Evolution Strategies in optimiza-
tion studies. However, it was frequently criticized for the high computa-
tional effort that seemed to be required when computing the underlying
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multi-variable integrals. The first method suggested for EHVI calcula-
tion was Monte Carlo integration and it was first proposed by Emmerich
in Refs. [4] and [9]. This method is simple and straightforward. How-
ever, the accuracy of EHVI highly depends on the number of the iter-
ations. The first exact EHVI calculation algorithm for a 2-D case was
derived in Ref. [10], with the computational complexity O(n3 log n).
Couckuyt et al. introduced exact EHVI calculation for d>2 in Ref. [5].
This method was also practically much faster than those discussed in
Ref. [10], although a detailed complexity analysis was missing. In 2015,
Hupkens et al. reduced the time complexity to O(n2) and O(n3) [11]
for the two and the three-dimensional case, respectively. These algo-
rithms also further improved the practical efficiency of EHVI on test
data. However, there still exists a large gap to use EHVI in applica-
tions. Considering the expensive computation of EHVI and inspired by
the EHVI, Couckuyt et al. proposed the Hypervolume based Probability of
Improvement in Ref. [5]. Luo et al. used an approximate algorithm to cal-
culate EHVI based on Monte Carlo sampling for high dimensional cases
(d>6) in Ref. [7], where d stands for the dimension in objective space.
Finally, Emmerich et al. proposed an asymptotically optimal algorithm
for the bi-objective case with time complexity Θ(n log n) in Ref. [12],
where n is the number of non-dominated points in the archive. More
recently, Yang et al. [13] proposed an algorithm to calculate 3-D EHVI
with computational complexity Θ(n log n).

However, compared to EAs, Multi-Objective Bayesian Global Opti-
mization still performs much slower with the infill criterion EHVI,
because EHVI needs to be called many times in the process of searching
for the optimal point based on the Kriging models. Since the calcula-
tion of the EHVI can be formulated in closed form, it is possible to
analyze its differentiability. It is easy to see, that all components of the
EHVI expression are differentiable. However, a precise formula of the
EHVIG has not been derived until now. By using the formula for the
EHVIG, it could speed up the MOBGO in the process of searching for
the optimal point by using the gradient ascent algorithm or using it as a
stopping criterion in EAs. This is the motivation of the research in this
paper.

This paper mainly discusses the computation of the 2-D EHVIG
and how to apply EHVIG in MOBGO, both for local search (gradient
ascent) and as a stopping criterion. The paper is structured as fol-
lows: Section 2 briefly describes Bayesian Global Optimization, some
basic infill criteria, and how to compute 2-D EHVI efficiently; Section
3 introduces the definition of the EHVIG, and proposes an efficient
algorithm to calculate 2-D EHVIG, including a computational perfor-
mance assessment of the proposed efficient exact calculation method
and numerical calculation method in 2-D EHVIG case; Section 4 intro-
duces the techniques on how to apply EHVIG in MOBGO; Section 5
shows some empirical, experimental results; Section 6 draws the main
conclusions of this paper and discusses some potential topics for future
research.

2. State of the art1

2.1. Bayesian Global Optimization

Bayesian Global Optimization (BGO), also known as Efficient Global
Optimization [3] or Expected Improvement Algorithm [14], was pro-
posed by the Lithuanian research group of Jonas Mockus and Antanas
Žilinskas ([2,15–17]) in the 1970s. In BGO, it is assumed that the objec-
tive function is the realization of a Gaussian random field, which is also
called Gaussian process (GP) or Kriging, in particular in 1-D.

Kriging is a statistical interpolation method. Being a Gaussian pro-
cess based modelling method, it is cheap to evaluate [18]. Kriging
has been proven to be a popular surrogate model to approximate

1 For the convenience of the visualization, this paper only considers mini-
mization problems.

noise-free data in computer experiments, where Kriging models are
fitted on previously evaluated points and then replace the real time-
consuming simulation model [19]. Given a set of n decision vectors X =
(x(1), x(2), · · · , x(n))⊤ in m dimensional search space, and associated
function values y(X) = (y(x(1)), y(x(2)),… , y(x(n)))⊤, Kriging assumes y
to be a realization of a random process Y and it is of the form [3,20]:

Y(x) = 𝜇(x) + 𝜖(x) (2-1)

where 𝜇(x) is estimated mean value over all given sampled points, and
𝜖(x) is a realization of a normally distributed Gaussian random process
with zero mean and variance 𝜎2. The regression part 𝜇(x) approximates
globally the function Y and Kriging/Gaussian process 𝜖(x) takes local
variations into account. Moreover, as opposed to other regression meth-
ods, such as supported vector machine (SVM), Kriging/GP also provides
an uncertainty qualification of a prediction. The correlation between
the deviations at two points (x and x′) is defined as:

Corr[𝜖(x), 𝜖(x′)] = R(x, x′) =
m∏

i=1
Ri(xi, x′i ) (2-2)

Here R(., .) is the correlation function, which can be a cubic or a spline
function. Commonly, a Gaussian function (also known as squared expo-
nential) is chosen:

R(x, x′) =
m∏

i=1
exp(−𝜃i(xi − x′i )

2) (𝜃i >= 0) (2-3)

where 𝜃 are parameters of correlation model and they can be inter-
preted as measuring the importance of the variable. Then the covari-
ance matrix can be expressed by the correlation function:

Cov(𝝐) = 𝜎2𝚺, where 𝚺i,j = R(xi, xj) (2-4)

When 𝜇(x) is assumed to be an unknown constant, this unbiased pre-
diction is called ordinary Kriging (OK). In OK, the Kriging model deter-
mines the hyperparameters 𝜽=[𝜃1, 𝜃2,…, 𝜃n] by maximizing the likeli-
hood of the observed dataset. The expression of the likelihood function
is:

L = − n
2

ln(𝜎2) − 1
2

ln(|𝚺|) (2-5)

The maximum likelihood estimates of the mean 𝜇 and the variance 𝜎2

are given by Ref. [3]:

𝜇 =
1⊤

n 𝚺
−1y

1⊤
n 𝚺

−11n
(2-6)

𝜎2 = 1
n
(y − 1n𝜇)⊤𝚺−1(y − 1n𝜇) (2-7)

Then the predictor of the mean and the variance at point xt can be
derived and they are shown as follows [3]:

𝜇(xt) = 𝜇 + c⊤𝚺−1(y − 𝜇1n) (2-8)

𝜎2(xt) = 𝜎2

(
1 − c⊤𝚺−1c + 1 − c⊤Σ⊤c

1⊤
n Σ

−11n

)
(2-9)

where c = (Corr[Y(xt),Y(x1)],… ,Corr[Y(xt),Y(xn)])⊤. The time com-
plexity of computing these values at an input vector x, once the
hyperparameters are fixed, is (O(mn)) per computation of 𝜇(.), and
O(n2 + mn) per computation of 𝜎(.).

The basic idea of BGO is to use a surrogate model based on Krig-
ing or a Gaussian process. A surrogate model reflects the relation-
ship between decision vectors and their corresponding objective val-
ues. This surrogate model is learned from previous evaluations. For
multi-objective problems, the family of these algorithms is called Multi-
Objective Bayesian Global Optimization (MOBGO). The scheme of a
MOBGO algorithm is to sequentially update a surrogate model, by the
optimal point searched by an optimizer and the corresponding objec-
tive function values. An optimizer in MOBGO is utilized to search for a
promising point x∗ by maximizing/minimizing an infill criterion with
respect to surrogate models, instead of using ‘true’ objective functions.
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2.2. Infill criteria

In Multi-Objective Bayesian Global Optimization, some common infill
criteria are: Hypervolume Indicator (HV) [21], Hypervolume Improvement
(HVI) [22],2 Hypervolume Contribution (HVC) [23], Lower Confidence
Bound (LCB) [9,24,25], EHVI [4,26], Probability of Improvement (PoI)
[27] and Truncated Expected Hypervolume Improvement (TEHVI) [28,29].
Many of these are based on the hypervolume indicator.

The HV was proposed by Zitzler and Thiele [30], and it measures
the size of the dominated subspace bounded from above by a refer-
ence point r. This reference point should be chosen by a user, and it
should satisfy the condition that it is dominated by all the elements of
the Pareto-front approximation sets which might occur during the opti-
mization process, if possible. The hypervolume can indicate the perfor-
mance of a Pareto-front approximation set  ⊂ ℝd, and the maximiza-
tion of HV can lead to a Pareto-front approximation set that is close to
the true Pareto front. In 2-D and 3-D cases, the hypervolume indicator
can be computed in time Θ(n log n) [31]. In more than 3 dimensions,

the algorithm proposed by Chan [32] achieves O
(

n
d
3 polylog n

)
time

complexity. The hypervolume indicator is defined as:

Definition 2.1. (Hypervolume Indicator) Given a finite approximation
to a Pareto front, say  = {y(1),… ,y(n)} ⊂ ℝd, the Hypervolume Indicator
(HV) of  is defined as the d -dimensional Lebesgue measure of the subspace
dominated by  and bounded from above by a reference point r:

HV( ) = 𝜆d(∪y∈ [y, r]) (2-10)

with 𝜆d being the Lebesgue measure on ℝd.

Two straightforward derived criteria are the HVI and the HVC.
Emmerich et al. proposed an asymptotically optimal algorithm to calcu-
late HVC with time complexity Θ(n log n) for d=2,3 in Ref. [33]. The
basic idea behind these two criteria is the same, that is to calculate the
difference of the hypervolume between two Pareto-front approximation
sets. The definition of HVC of a point y ∈  is the difference between
the hypervolume of  and the hypervolume of  ⧵ {y}. Hypervolume
Improvement is defined as:

Definition 2.2. (Hypervolume Improvement) Given a finite collection
of vectors  ⊂ ℝd, the Hypervolume Improvement of a vector y ∈ ℝd is
defined as:

HVI( ,y) = HV( ∪ {y}) − HV( ) (2-11)

In case we want to emphasize the reference point r, the notation HVI( ,y, r)
will be used to denote the Hypervolume Improvement. Note that HVI( ,y) =
0, in case y ∈  .

EHVI is a generalization of EI to the multi-objective case, based on
the theory of the HV. Similar to EI, the definition of EHVI is with respect
to the predictions in the Gaussian random field and it measures how
much hypervolume improvement could be achieved by evaluating the
new point, considering the uncertainty of the prediction. It is defined
as:

Definition 2.3. (Expected Hypervolume Improvement)3 Given
parameters of the multivariate predictive distribution 𝝁, 𝝈 and the Pareto-
front approximation  the expected hypervolume improvement (EHVI) is
defined as:

EHVI(𝝁,𝝈, , r) ≔ ∫
ℝd

HVI( ,y) · PDF𝝁,𝝈(y)dy (2.12)

where PDF𝝁 ,𝝈 is the multivariate independent normal distribution for mean
values 𝝁 ∈ ℝd, and standard deviations 𝝈 ∈ ℝd

+.

2 The HVI was called the most likely improvement (MLI) in Ref. [22].
3 The prediction of 𝛍 and 𝛔 depends on a Kriging model and a target point x

in the search space. Explicitly, EHVI is dependent on the target point x.

Fig. 1. EHVI in 2-D (cf. Example 2.1).

Example 2.1. An illustration of the EHVI is shown in Fig. 1. The
light gray area is the dominated subspace of  = {y(1) = (3,1)⊤, y(2) =
(2,1.5)⊤, y(3) = (1,2.5)⊤} cut by the reference point r= (4,4)⊤. The
bivariate Gaussian distribution has the parameters 𝜇1 =2, 𝜇2 =1.5,
𝜎1 =0.7, 𝜎2 =0.6. The probability density function (PDF) of the bivari-
ate Gaussian distribution is indicated as a 3-D plot. Here y is a sample from
this distribution and the area of improvement relative to  is indicated by
the dark shaded area. The variable y1 stands for the f1 value and y2 for the
f2 value.

For the convenience of expressing the formula of EHVI and EHVIG
in later sections, it is useful to define a function we call Ψ.

Definition 2.4. (Ψ function (see also [11])) Let 𝜙(s) =
1∕

√
2𝜋e−

1
2 s2 , s ∈ ℝ denote the PDF of the standard normal distribution and

Φ(s) = 1
2

(
1 + erf

(
s√
2

))
denote its cumulative probability distribution

function (CDF). The general normal distribution with mean 𝜇 and variance
𝜎 has the PDF 𝜙𝜇,𝜎(s) =

1
𝜎
𝜙( s−𝜇

𝜎
) and the CDF 𝛷𝜇,𝜎(s) = Φ( s−𝜇

𝜎
).

Moreover, a useful identity which we will frequently use is:

b

∫
−∞

(a − z) 1
𝜎
𝜙( z − 𝜇

𝜎
)dz = 𝜎𝜙( b − 𝜇

𝜎
) + (a − 𝜇)Φ

(
b − 𝜇
𝜎

)
(2-13)

. We define the function Ψ as follows:

Ψ(a, b, 𝜇, 𝜎)≔
b

∫
−∞

(a − z) 1
𝜎
𝜙( z − 𝜇

𝜎
)dz (2-14)

2.3. Efficient algorithm for 2-D EHVI calculation

This paper focuses on bi-objective problems. The calculation of
EHVIG in Section 3 shares the same partitioning method with 2-D EHVI
calculation and EHVIG is derived from EHVI. Therefore, it is neces-
sary to introduce an efficient algorithm for 2-D EHVI calculation, as
described in the recent work by Emmerich et al. [12].

The partitioning of the integration domain is done by the fol-
lowing steps: augment the current Pareto-front approximation  =
{y(1),… ,y(n)} by two more points y(0) = (r1,−∞)⊤ and y(n+1) =
(−∞, r2)⊤; sort the points in  in ascending order by the second coordi-
nate of the points. Then, the dominated space will be divided into n +1
disjoint rectangular stripes S1, …, Sn+1, and these stripes are defined
by:

Si =
(
(y(i)1 ,−∞)⊤, (y(i−1)

1 , y(i)2 )⊤
)

i = 1,… , n + 1 (2-15)

See Fig. 2 for an illustration.
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Fig. 2. Partitioning of the integration region into stripes.

For the convenience of computing EHVI, it is useful to define the
function Δ, which is defined as:

Definition 2.5. (Δ function (see also [12])) For a given vector of objec-
tive function values, y ∈ ℝd, Δ(y, , r) is the subset of the vectors in ℝd

which are exclusively dominated by a vector y and not by elements in  and
that dominate the reference point, in symbols

Δ( ,y, r) = 𝜆d{z ∈ ℝ | y ≺ z and z ≺ r and ∄q ∈  ∶ q ≺ z} (2-16)

For the simplicity, the notation Δ(y) will be used to express
Δ( ,y, r) in this paper.

Then, the hypervolume improvement of a point y ∈ ℝ2 can be
expressed by:

HVI( ,y, r) =
n+1∑
i=1

𝜆2[Si ∩ Δ(y1, y2)] (2-17)

Here, Δ(y1, y2) is the part of the objective space that is dominated
by y = (y1, y2). Recall the definition of EHVI, then the EHVI formula
can be derived that consists of n +1 integrals:

EHVI(𝝁,𝝈, , r) =
∞

∫
y1=−∞

∞

∫
y2=−∞

n+1∑
i=1

𝜆2[Si ∩ Δ((y1, y2))]

· PDF𝝁,𝝈(y1, y2)dy1dy2 (2-18)

It is observed that the intersection of Si with Δ(y1, y2) is non-empty
if and only if y = (y1, y2) dominates the upper right corner of Si, and it

is allowed to do the summation after integration since integration is a
linear mapping, therefore:

EHVI(𝝁,𝝈, , r) =
n+1∑
i=1

y(i−1)
1

∫
y1=−∞

y(i)2

∫
y2=−∞

𝜆2[Si ∩ Δ(y1, y2)]

· PDF𝝁,𝝈(y1, y2)dy1dy2 (2-19)

After some basic derivations, the final expression for the 2-D EHVI
is [12]

EHVI(𝝁,𝝈, , r) =
n+1∑
i=1

(y(i−1)
1 − y(i)1 ) · Φ

(
y(i)1 − 𝜇1

𝜎1

)
· Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2)

+
n+1∑
i=1

(
Ψ(y(i−1)

1 , y(i−1)
1 , 𝜇1, 𝜎1) − Ψ(y(i−1)

1 , y(i)1 , 𝜇1, 𝜎1)
)

· Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2) (2-20)

3. Expected hypervolume improvement gradient

This section will mainly introduce the definition of EHVIG, how to
calculate EHVIG and show some performance assessment between the
exact calculation method and the numerical calculation method.

3.1. Definition

Considering the definition of the EHVI in Equation (2.5) and the effi-
cient algorithm to calculate 2-D EHVI (minimization case), the EHVI is
differentiable with respect to the predictive mean and its correspond-
ing standard deviation provided, which is greater than zero. These two
parameters, predictive mean and standard deviation, are again differ-
entiable with respect to the input vector (or target point) in the search
space. The EHVIG is the first order derivative of the EHVI with respect
to a target point x under consideration in the search space. It is defined
as:

Definition 3.1. (Expected Hypervolume Improvement Gradient)4

Given parameters of the multivariate predictive distribution𝝁, 𝝈 at a target
point x in the search space, the Pareto-front approximation  , and a refer-
ence point r, the expected hypervolume improvement gradient (EHVIG) at x
is defined as:

EHVIG(x,𝝁,𝝈, , r) = 𝜕 (EHVI(𝝁,𝝈, , r))
𝜕x

=
𝜕
(∫ℝd HVI( ,y) · PDF𝝁,𝝈(y)dy

)
𝜕x

(3-1)

3.2. Formula derivation

According to the definition of EHVIG in Equation (3-1) and the effi-
cient algorithm to calculate EHVI in Equation (2-20), we can substitute
the Equation (2-20) into Equation (3-1), say that the formula of EHVIG
for 2-D case can be expressed as:

EHVIG(x,𝝁,𝝈, , r) = 𝜕(EHVI(𝝁,𝝈, , r))
𝜕x

=
𝜕

(∑n+1
i=1 (y(i−1)

1 − y(i)1 ) · Φ( y(i)1 −𝜇1
𝜎1

) · Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2)
)

𝜕x
(3-2)

+
𝜕
(∑n+1

i=1

(
Ψ(y(i−1)

1 , y(i−1)
1 , 𝜇1, 𝜎1) − Ψ(y(i−1)

1 , y(i)1 , 𝜇1, 𝜎1)
)
· Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2)

)
𝜕x

(3-3)

For the Terms (3-2) and (3-3), the prerequisite of calculating these
two Terms is to calculate the gradient of the Ψ function and of the

Φ( y−𝜇
𝜎

) function. The final expressions for 𝜕Ψ(a,b,𝜇,𝜎)
𝜕x and

𝜕Φ( y−𝜇
𝜎

)
𝜕x are

4 The prediction of 𝛍 and 𝛔 depends on a Kriging model and a target point x
in the search space. Explicitly, EHVIG is dependent on the target point x.
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shown in Equation (3-4) and Equation (3-5), respectively. For detailed
proofs, please refer to the Appendix of this paper.

𝜕Ψ(a, b, 𝜇, 𝜎)
𝜕x

=
(

b − a
𝜎

· 𝜙( b − 𝜇
𝜎

) − Φ( b − 𝜇
𝜎

)
)
· 𝜕𝜇
𝜕x

+ 𝜙( b − 𝜇
𝜎

) ·
(

1 + (b − 𝜇)(b − a)
𝜎2

)
· 𝜕𝜎
𝜕x

(3-4)

𝜕Φ( y−𝜇
𝜎

)
𝜕x

= 𝜙( y − 𝜇

𝜎
) · (𝜇 − y

𝜎2 · 𝜕𝜎
𝜕x

− 1
𝜎
· 𝜕𝜇
𝜕x

) (3-5)

By substituting Equations (3-4) and (3-5) into Term (3-2) and apply-
ing the chain rule, Term (3-2) can be expressed by:

𝜕

(∑n+1
i=1 (y(i−1)

1 − y(i)1 ) · Φ( y(i)1 −𝜇1
𝜎1

) · Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2)
)

𝜕x

=
n+1∑
i=1

(y(i−1)
1 − y(i)1 ) ·

𝜕

(
Φ( y(i)1 −𝜇1

𝜎1
) · Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2)

)
𝜕x

=
n+1∑
i=1

(y(i−1)
1 − y(i)1 ) ·

(
𝜙(

y(i)1 − 𝜇1
𝜎1

) · (
𝜇1 − y(i)1

𝜎2
1

· 𝜕𝜎1
𝜕x

− 1
𝜎1

· 𝜕𝜇1
𝜕x

) · Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2) +
(

0 −Φ(
(y(i)2 − 𝜇2)

𝜎2
· 𝜕𝜇2
𝜕x

)

+ 𝜙(
y(i)2 − 𝜇2

𝜎2
) · (1 + 0) · 𝜕𝜎2

𝜕x

)
· Φ(

y(i)1 − 𝜇1

𝜎1
)
)

=
n+1∑
i=1

(y(i−1)
1 − y(i)1 ) ·

(
𝜙(

y(i)1 − 𝜇1
𝜎1

) · (
𝜇1 − y(i)1

𝜎2
1

· 𝜕𝜎1
𝜕x

− 1
𝜎1

· 𝜕𝜇1
𝜕x

) · Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2) +
(
𝜙(

y(i)2 − 𝜇2
𝜎2

) · 𝜕𝜎2
𝜕x

−Φ(
y(i)2 − 𝜇2

𝜎2
) · 𝜕𝜇2

𝜕x

)
· Φ(

y(i)1 − 𝜇1

𝜎1
)
)

(3-6)

Similar to the derivation of Term (3-2), Term (3-3) can be expressed
by:

𝜕
(∑n+1

i=1

(
Ψ(y(i−1)

1 , y(i−1)
1 , 𝜇1, 𝜎1) − Ψ(y(i−1)

1 , y(i)1 , 𝜇1, 𝜎1)
)
· Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2)

)
𝜕x

=
n+1∑
i=1

⎛⎜⎜⎝
𝜕
(
Ψ(y(i−1)

1 , y(i−1)
1 , 𝜇1, 𝜎1) − Ψ(y(i−1)

1 , y(i)1 , 𝜇1, 𝜎1)
)

𝜕x
· Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2)

+
𝜕Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2)

𝜕x
·
(
Ψ(y(i−1)

1 , y(i−1)
1 , 𝜇1, 𝜎1) − Ψ(y(i−1)

1 , y(i)1 , 𝜇1, 𝜎1)
))

=
n+1∑
i=1

⎛⎜⎜⎝
𝜕
(
Ψ(y(i−1)

1 , y(i−1)
1 , 𝜇1, 𝜎1)

)
𝜕x

· Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2)

−
𝜕
(
Ψ(y(i−1)

1 , y(i)1 , 𝜇1, 𝜎1)
)

𝜕x
· Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2) +

𝜕Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2)
𝜕x

·
(
Ψ(y(i−1)

1 , y(i−1)
1 , 𝜇1, 𝜎1) − Ψ(y(i−1)

1 , y(i)1 , 𝜇1, 𝜎1)
))

=
n+1∑
i=1

((
𝜙(

y(i−1)
1 − 𝜇1

𝜎1
) · 𝜕𝜎1

𝜕x
−Φ(

y(i−1)
1 − 𝜇1

𝜎1
) · 𝜕𝜇1

𝜕x

)

· Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2) −
(
[
y(i)1 − y(i−1)

1
𝜎1

· 𝜙(
y(i)1 − 𝜇1

𝜎1
) − Φ(

y(i)1 − 𝜇1
𝜎1

)]

· 𝜕𝜇1
𝜕x

+ [𝜙(
y(i)1 − 𝜇1

𝜎1
) · (1 +

(y(i)1 − 𝜇1)(y
(i)
1 − y(i−1)

1 )
𝜎2

1
)] · 𝜕𝜎1

𝜕x

)

· Ψ(y(i)2 , y(i)2 , 𝜇2, 𝜎2) +
(
𝜙(

y(i)2 − 𝜇2
𝜎2

) · 𝜕𝜎2
𝜕x

−Φ(
y(i)2 − 𝜇2

𝜎2
) · 𝜕𝜇2

𝜕x

)
·

×
(
Ψ(y(i−1)

1 , y(i−1)
1 , 𝜇1, 𝜎1) − Ψ(y(i−1)

1 , y(i)1 , 𝜇1, 𝜎1)
))

(3-7)

Then, the EHVIG is the sum of Terms (3-6) and (3-7). In these two
Terms, 𝜕𝜇i

𝜕x and 𝜕𝜎i
𝜕x (i=1,2) are the first order derivatives of the Kriging

predictive means and standard deviations at a target point x, respec-
tively. These parameters can be precisely calculated by the following
equations [34,35]:

𝜕𝜇
𝜕x

= 𝜕c⊤
𝜕x

𝚺−1

(
y −

1⊤
n Σ

−1y
1⊤

n Σ
−11n

1n

)
(3-8)

𝜕𝜎
𝜕x

= − 1
𝜎
𝜕c⊤
𝜕x

𝚺−1

(
c −

1 − 1⊤
n Σ

−1c
1⊤

n Σ
−11n

1n

)
(3-9)

where 𝜕c
𝜕x

= 2 diag(𝜃1,… , 𝜃n) · [R(x, x1)(x1, x),… ,R(x, xn)(xn, x)]

(3-10)

Compared to the final expression of 2-D EHVI in Equation (2-20),
the final expression of 2-D EHVIG also consists of two terms, Term
(3-6) and Term (3-7). Moreover, the number of the integration stripes
both in EHVIG and EHVI is n +1, as we are using the EHVI partition-
ing method in EHVIG. Therefore, the computational complexity of 2-D
EHVIG is equal to the complexity of EHVI, that is O(n log n). For the
detailed proof of 2-D EHVI computational complexity, see Ref. [12].
Note, that this O(n log n) complexity does not include the time required
for computing 𝝁 and 𝝈, which was discussed earlier and depends on the
surrogate modelling approach.

3.3. Performance assessment

The performance assessment of the EHVIG will be illustrated by a
single numerical experiment. The bi-criteria optimization problem is:

y1(x) =∥x − 1∥ → min, y2(x) = ‖x + 1‖ → min, x ∈ [−1,6] × [−1,6] ⊂
ℝ2 [12]. Fig. 3 shows the landscape of EHVIG, in which the evalu-
ated points are marked by blue circles. The EHVIG calculated by the
exact method,5 which uses EHVIG formula in section 3.2, is indicated
by black arrows in the left figure. The EHVIG calculated by the numeri-
cal method, which meshgrids a search space and calculate the difference

5 The MATLAB source code for computing the EHVIG for 2-D case is available
on moda.liacs.nl or on request from the authors.
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Fig. 3. The landscape of EHVIG. Left: computed using exact calculation algo-
rithm, Right: computed using numerical calculation method.

of the EHVI values between numerical differential two points, is indi-
cated by the red arrows in the right figure. The landscapes of EHVIG
in both figures are very similar, however, there exist some slight differ-
ences between them, while very small and caused by numerical errors.

4. Multi-Objective Bayesian Global Optimization based on EHVIG

Similar to BGO, Multi-Objective Bayesian Global Optimization
(MOBGO) is also based on Kriging theory. MOBGO assumes that d
objective functions are mutually independent in an objective space. In
MOBGO, the Kriging method or Gaussian process can approximate the
objective functions and quantify the uncertainties of the prediction by
using Kriging models, which are determined by the existing evaluation
data D =

(
(x(1),y(1) = Y(x(1))),… , (x(𝜇),y(𝜇) = Y(x(𝜇)))

)
. Each objective

function at a given point x(t ) is approximated by a one-dimensional nor-
mal distribution, with mean 𝜇 and standard deviation 𝜎. Then MOBGO
can predict the multivariate outputs by means of an independent joint
normal distribution with parameters 𝜇1, … , 𝜇d and 𝜎1, … , 𝜎d at the
point x(t ).

These predictive means and standard deviations can be used to cal-
culate infill criteria. An infill criterion measures how promising a new
point is when compared to a current Pareto-front approximation. With
the assistance of a single objective optimization algorithm, the ‘optimal’
solution x∗ can be found according to the score of the infill criterion.
This score of the infill criterion is calculated by the predictions of the
Kriging models, instead of by the direct evaluations of the objective
functions. Subsequently, the algorithm evaluates the ‘optimal’ solution
x∗, and both the dataset D and the Pareto-front approximation set  are
updated.

The basic structure of the MOBGO algorithm is shown in Algo-
rithm 1. Note that only one criterion C is chosen in a certain MOBGO,
and this criterion defines the variations of MOBGO in Algorithm 1 line
8. Some common infill criteria are: Probability of Improvement (PoI),
EHVI and Hypervolume Improvement (HVI)·In this paper, the infill crite-
rion is EHVI. Here, opt is a search algorithm which finds the optimal
solution x∗ by maximizing the EHVI.

4.1. Gradient ascent algorithms

Previously, the optimizer opt in Algorithm 1 was chosen as CMA-ES
[36], which is a state-of-the-art heuristic global optimization algorithm.
Since the formula of 2-D EHVIG is derived in this paper, a gradient
ascent algorithm can replace CMA-ES to speed up the process of finding
a promising point x∗.

Many gradient ascent algorithms (GAAs) exist. The conjugate gra-
dient algorithm is one of the most efficient algorithms among them.
However, it cannot solve the constrained problems, and this is the rea-

son why we exclude it in this paper. For the other GAAs, the general
formula for computing the next solution is:

x(t+1) = x(t) + s · ∇F(x(t)) (4-1)

where x(t ) is the current solution, x(t+1) is the updated solution, s is the
stepsize, and ∇F(·) is the gradient of the objective functions or of the
infill criterion. In this paper, ∇F is EHVIG.

Another important aspect is that the starting point is crucial to the
performance of GAAs. To improve the probability of finding the globally
optimal location, CMA-ES was used to initialize the starting points in
this paper. The structure of gradient ascent based search algorithm is
shown in Algorithm 2.

4.2. EHVIG as a stopping criterion for CMA-ES

Traditionally, when EAs are searching for the promising point x∗,
convergence velocity and some other statistical criteria are used to
determine whether the EAs should stop/restart or not. These criteria
can balance the quality of the performance and efficiency of the execu-
tion time to some degree, but not optimally. Because all these criteria
are blind to whether an individual is already the optimal or not.

Considering that the gradient of the promising point in the search
space should be the zero vector and EHVIG can be exactly calculated,
EHVIG can be used as a stopping/restart criterion in EAs when they
are searching for the optimal point with the EHVI as the infill criterion.
Theoretically speaking, the EHVI should be maximized during the pro-
cedure. Therefore, for this method it is necessary to use, for instance,
information about the second derivative of the EHVI at this point, in
order to determine the optimality and the type of optimality. However,
this is omitted due to the complexities. The structure of CMA-ES assisted
by EHVIG is shown in Algorithm 3.

5. Empirical experiments

The benchmarks were well-known test problems: BK1 [37], SSFYY1
[38], ZDT1, ZDT2, ZDT3 [39], the generalized Schaffer problem [40]
with different parameter settings for 𝛾 (𝛾 in GSP and GSP12 were 0.4
and 1.2, respectively), and three proportional-integral-derivative (PID)
parameter tuning problems [41–43].

5.1. Test problem 1 - Robust PID parameter tuning

A PID controller is a control loop feedback mechanism, and it is
widely applied in industrial control applications. The structure of the
feedback controller is shown in Fig. 4, where R(s) is the reference input
signal, E(s) represents error signal, C(s) is the transfer function of the
controller, U(s) is control signal, P(s) stands for controlled plant, △P(s)
is the plant perturbation, d(t) is the external disturbance and Y (s) is
the output of the system. For the PID controller, three parameters are
part of C(s): proportionality B2, integral B1 and derivative B0, and the
transfer function of the PID controller for a continuous system can be
defined as: C(s) = B2s2+B1s+B0

s . The basic idea of a PID controller is to
attempt to minimize an error (E(s)) by adjusting the process control
inputs.

The benchmark for PID parameter tuning is taken from Ref. [41,44].
The transfer function of the plant is given as follows:

P(S) =
⎛⎜⎜⎜⎝

−33.98
(98.02s + 1)(0.42s + 1)

32.63
(99.6s + 1)(0.35s + 1)

−18.85
(75.43s + 1)(0.30s + 1)

34.84
(110.5s + 1)(0.03s + 1)

⎞⎟⎟⎟⎠ (5-1)

Two criteria were used in this paper: balanced performance criterion
J∞ = (J2

a + J2
b )

1∕2 [45] and interval squared error J2 = ∫ ∞
0 e⊤(t)e(t)dt.

For J∞, Ja and Jb are defined as follows: J2
a = ‖W1(s)T(s)‖∞, J2

b =
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Algorithm 1 MOBGO algorithm.

Algorithm 2 Gradient ascent based search algorithm.

‖W2(s)S(s)‖∞. Here, W1(s) is the assumed boundary of plant pertur-
bation △P(s), W2(s) is a stable weighting function matrix and they are
defined in Ref. [45]:

W1(s) =
100s + 1
s + 1000

× I2×2, (5-2)

W2(s) =
s + 1000
1000s + 1

× I2×2. (5-3)

T(s) and S(s) are the sensitivity and complementary sensitivity functions
of the system, respectively, and they can be calculated by:

S(s) = (I + P(s)C(s))−1, (5-4)

T(s) = P(s)C(s)(I + P(s)C(s))−1. (5-5)

5.2. Test problem 2 - PID parameter tuning problem

This benchmark on PID parameter tuning is taken from Ref. [43].
The three parameters for the PID controller are: proportionality Kp, inte-
gral Ki and derivative Kd. The transfer function of PID controller for a
continuous system can be defined as: Y(s) = U(s)

E(s) = Kp +
Ki
s + Kds. The

process of PID controller can be described as follows: when a setpoint
is set or E(s) exists, E(s) will be calculated by the difference between
the setpoint and actual output, and a PID controller will generate a new
control signal (U(s)) based on E(s). Then the new control signal U(s)
is applied to the plant model, and the new actual output and E(s) are
generated again. The structure of a PID control is shown in Fig. 5.

The chosen transfer functions modelling the plant in this paper are:

G1(s) =
25.2s2 + 21.2s + 3

s5 + 16.58s4 + 25.41s3 + 17.18s2 + 11.70s + 1
[42] (5-6)

Algorithm 3 CMA-ES assisted by EHVIG.
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Fig. 4. Feedback control system with plant perturbation and external disturbance.

Fig. 5. The structure of PID control.

G2(s) =
4.228

(s + 0.5)(s2 + 1.64s + 8.456) [43] (5-7)

The step response of these two plants is analyzed with the criteria of
settling time (ts) and percentage overshoot (PO). Settling time (ts) is defined
as time elapsed from the application of an ideal instantaneous step input
to the time, at which the output has entered error band with 2% in this
paper, while percentage overshoot (PO) refers to the percentage of an
output exceeding its final steady-state value.

5.3. Experimental settings

All the benchmarks in this paper were employed by using different
search strategies in MOBGO and some well-known evolutionary multi-
objective optimization algorithms (EMOAs), including NSGA-II [46],
SMS-EMOA [23] and MOEA/D [47]. All the parameter settings for both
MOBGO based algorithms and EMOAs are shown in Table 2. Here, the
termination criterion Tc refers to the number of function evaluations.
The hyperparameter 𝜃 for the correlation function in Equation (2-3) was
optimized by the simplex search method of Lagarias et al. (fminsearch)
[48], with the parameter of 1000 for the max evaluations of the like-
lihood functions and the search space of 0≤ 𝜃 ≤1010. In EMOAs, the
unmentioned parameters in Table 2 were set as the default.

The selection of a reference point is tricky. The Pareto-front approx-
imation set will focus on the extreme points if a large reference point
is selected, and it will concentrate on a knee point if a small reference
is set. All the reference points in this paper were chosen according to
the suggested reference points in the referenced articles, as indicated in
Table 1.

Each trail was repeated for ten times. All the experiments were fin-
ished on the same computer: Intel(R) i7-3770 CPU @ 3.40 GHz, RAM
16 GB. The operating system was Ubuntu 16.04 LTS (64 bit), and the
platform was MATLAB 8.4.0.150421 (R2014b), 64 bit.

In GAAs, one of the main tasks is how to control the stepsize s. A
major concern of this paper is to demonstrate GAAs can be utilized with
the assistance of EHVIG in MOBGO, instead of proposing a good GAA, a
fixed stepsize control strategy and the simplest parameters were applied
in GAA. The parameters of the GAA in Alg. 3 are: stepsize s=0.01 and
the max iteration number is 1000.

5.4. Results

Table 3 shows the final experimental results. The performances of
each algorithm are evaluated by HV and execution time. The highest
value of HV on each test problem is indicated in bold, and the smallest
value of the standard deviation of HV is also shown in bold. For the
execution time (ET, unit: minutes), both the least execution time and
smallest standard deviation of time, among Alg. 1, Alg. 2 and Alg. 3
are indicated in bold. If an execution time of an algorithm is less than
1 min, we didn’t calculate the standard deviation of the execution times
and we use ‘-’ to express this.

Here, Alg. 4 (original CMA-ES with no restart mechanism and with
a max iteration of 15) is a control group for Alg. 3 to test whether the
GAA works as predicted or not. Since there is no new mechanism added
to Alg. 4 and max iteration is too small, the performance of Alg. 4 is
indeed worse than the other three algorithms. Hence, there is no need
to compare the execution time of Alg. 4 with the other algorithms.

Compared to MOBGO based algorithms, EMOAs perform worse con-
cerning HV values in all test problems. This result is expected and rea-
sonable because EMOAs need a large mount of function evaluations and
can not generate a good Pareto-front approximation set when the num-
ber of function evaluations is only 200. Therefore, the analyses of the
experimental results focus on MOBGO based algorithms.

From Table 3, it can be seen that Alg. 3, using GAA to searching
for an optimal point and CMA-ES for the initialization of the starting
points, can improve the final performance a little bit, compared to Alg.
4. However, it can not outperform the original CMA-ES (Alg. 1). One
potential reason is related to the starting points in the GAA, that is: GAA
is very sensitive to the starting point, and the starting points generated
by CMA-ES with 15 iterations are located at the optimal local area.
Another potential reason is that the parameters of the stepsize and the
max iteration number in GAA are not well set, as no parameter tuning
was done.

Compared to the original CMA-ES (Alg. 1), Alg. 2 (CMA-ES using
EHVIG as the stopping criterion) outperforms Alg. 1 on BK1, SSFYY1,
GSP, and GSP12. Among these four test problems, the execution time
of Alg. 2 is much faster than Alg. 1 in the case of the SSFYY1 and
GSP problems. When applying EHVIG as a stopping criterion in Alg. 2,
algorithm CMA-ES can terminate the loop earlier when the EHVIG of
one individual is a zero vector, and therefore some execution time can
be saved. In other words, while the original CMA-ES does not know
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Table 1
Reference points.

BK1 SSFYY1 ZDT1 ZDT2 ZDT3 GSP GSP12 Robust_PID G1 G2

r (60, 60) (5, 5) (11, 11) (11, 11) (11, 11) (5, 5) (5, 5) (30, 2) (20, 20) (20, 20)

Table 2
Parameter settings.

MOBGOs 𝜖 Nr Stopping Criterion Max Iter. GAA Nc 𝜇 Tc ref.

Alg. 1 / 3 Default 2000 No / 30 200 [6]
Alg. 2 10–5 3 EHVIG 2000 No / 30 200
Alg. 3 / 0 Default 15 Yes 4 30 200
Alg. 4 / 0 Default 15 No / 30 200
Alg. 5 10–5 3 EHVIG projection 2000 No / 30 200

EMOAs 𝜇 Nr Stopping Criterion Max Iter. 𝜆 pc pm Tc ref.

NSGA-II 30 Default Default 200 30 0.9 1∕N 200 [46]
SMS-EMOA 30 Default Default 200 / 0.9 1∕N 200 [23]
MOEA/D 30 Default Default 200 / / / 200 [47]

whether a current individual is already the optimal solution or not,
EHVIG can be used as a criterion to check for this. For the BK1, GSP12
and PID problems, Alg. 2 needs more time, but the performance of Alg.
2 is better than Alg. 1.

On the ZDT series of problems, however, the performance of Alg.
2 is worse than Alg. 1. An explanation of this phenomenon is that the

optimal solutions for the ZDT series of problems are located on the
boundary of the search space. According to the definition of the gradi-
ent, EHVIG would be infeasible at these boundaries, and thus EHVIG
would mislead CMA-ES in search of the optimal solution. A remedy to
improve the performance of Alg. 2 is to apply the projection of EHVIG
to check whether an individual is optimal or not on the boundaries,

Table 3
Experimental results.

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 MOEA/D NSGA-II SMS-EMOA

BK1 ET mean 6.2817 13.4433 8.0933 < 1 / < 1 < 1 < 1
std. 0.6480 1.0280 0.8803 – / – – –

HV mean 3175.7582 3175.9683 3166.4668 3133.8960 / 3116.9535 2724.6070 2802.5662
std. 0.3620 0.2940 3.6840 6.0266 / 16.3347 184.2896 203.0055

SSFYY1 ET mean 13.1067 4.7667 7.2550 < 1 / < 1 < 1 < 1
std. 5.4001 0.3306 0.3705 – / – – –

HV mean 20.7096 20.7098 20.5474 20.0187 / 20.3103 15.3387 15.9825
std. 0.0069 0.0035 0.0361 0.1284 / 0.0884 4.5380 1.8841

ZDT1 ET mean 82.9317 76.9400 15.0667 6.6133 34.8383 < 1 < 1 < 1
std. 38.5988 12.1167 8.2437 4.2966 14.7293 – – –

HV mean 120.6491 120.6488 120.6275 120.6268 120.6498 117.7104 115.2243 115.1850
std. 0.0055 0.0052 0.0066 0.0069 0.0063 0.9239 0.6335 0.3815

ZDT2 ET mean 40.3233 39.6800 6.8889 2.0983 33.8407 < 1 < 1 < 1
std. 7.1394 6.1038 0.1332 0.1628 2.3391 – – –

HV mean 120.3025 120.2965 120.1151 119.2155 120.3159 113.2975 94.0143 91.4064
std. 0.0130 0.0067 0.3474 2.9890 0.0127 4.4121 8.8958 3.8514

ZDT3 ET mean 53.6267 45.9850 8.5450 2.8550 13.3067 < 1 < 1 < 1
std. 8.5955 8.8638 0.5120 0.4217 9.0423 – – –

HV mean 128.7486 128.4772 127.7556 127.4168 128.6857 118.9928 104.2878 109.3214
std. 0.0079 0.7747 1.2385 1.2383 0.1029 2.1111 6.2398 7.4549

GSP ET mean 46.4850 7.5017 13.3167 < 1 / < 1 < 1 < 1
std. 40.2517 0.3572 0.7771 – / – – –

HV mean 24.9066 24.9066 24.9055 24.9050 / 24.6423 24.6399 24.7962
std. 0.0001 0.0000 0.0001 0.0001 / 0.0685 0.1256 0.0454

GSP12 ET mean 20.3167 20.6650 13.7200 4.6867 / < 1 < 1 < 1
std. 0.4215 0.7123 0.4407 0.1403 / – – –

HV mean 24.3914 24.3930 24.3883 24.3848 / 24.0930 22.2701 22.5135
std. 0.0034 0.0019 0.0016 0.0013 / 0.2284 0.4931 0.4208

PID ET mean 129.8650 137.3000 38.9667 Failed / < 1 < 1 < 1
std. 16.8889 13.0257 5.3610 Failed / – – –

HV mean 52.0297 52.8901 42.6178 Failed / 27.8485 27.7715 25.6507
std. 2.1025 1.7566 2.6531 Failed / 0.1057 0.2081 3.5012

G1 ET mean 38.9667 41.3889 19.1167 Failed / < 1 < 1 < 1
std. 5.3610 3.7302 1 4.6981 Failed / – – –

HV mean 335.0914 375.4543 352.8091 Failed / 233.8351 228.1784 182.7330
std. 6.3093 15.2715 25.6120 Failed / 50.1712 48.8630 77.8912

G2 ET mean 19.7000 36.2500 17.0167 Failed / < 1 < 1 < 1
std. 4.7891 0.7507 2.3632 Failed / – – –

HV mean 299.5460 302.8426 229.5980 Failed / 180.9543 168.7046 177.4528
std. 3.0077 4.0221 5.8811 Failed / 29.2686 90.6174 74.8918
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instead of EHVIG. Here, the projection of EHVIG is the orthogonal pro-
jection of EHVIG onto the active constraint boundary. Since we are only
dealing with box constraints, all the components of the gradient that
correspond to active boundaries in the same dimension are set to zero.
In Table 3, compared to Alg. 2 in the ZDT series of problems, Alg. 5 is
assisted by the projection of EHVIG and can reach Pareto-front approx-
imations closer to the true ones with less execution time. For ZDT1 and
ZDT2 problems, the average HV values of Alg. 5 are even better than
Alg. 1 with less execution time.

The PID parameter (Robust_PID, G1, G2) tuning problems are much
more complex than the other benchmark problems in this paper. More-
over, there is no effective optimizer in the control group (Alg. 4), as
the only optimizer in Alg. 4 is CMA-ES and the maximum iteration
number of CMA-ES is only 15. The Pareto-front approximation sets can
not converge during the main loop of MOBGO, thus we used the word
‘Failed’ in Table 3 to express the failure of Alg. 4 on these problems.
In contrast, Alg. 1 and Alg. 3 produce feasible solutions on these three
problems, Alg. 2 outperforms the other MOBGO based algorithms.

Compared to the performance of Alg. 1, Alg. 2 and its extension (Alg.
5 for the ZDT series of problems) outperform Alg. 1 with respect to the
HV value and execution time on simple test problems. For the more
complex problems, Alg. 2 consumes more execution time than Alg. 1,
but can generate better Pareto-front approximation sets than Alg. 1.

6. Conclusions and future work

This paper introduced an efficient algorithm to exactly calculate the
2-D EHVIG and applied EHVIG in MOGBO using two different strate-
gies in the process of searching for the optimal solution: using EHVIG
as a stopping criterion in the original CMA-ES and applying it in a GAA

(CMA-ES used here to initialize the starting points).
The empirical, experimental results show that MOBGO based algo-

rithms perform much better than EMOAs, when a small amount of eval-
uations is considered. Among the different strategies of the optimizer
in MOBGO, the GAA is much faster than original CMA-ES, but it has
an obvious drawback: it gets easily stuck at stationary points, that are
local optima or saddle points. Compared to the original CMA-ES, the
GAA fails to outperform CMA-ES in most test problems because it is
very easy to get stuck at stationary points and the parameters of GAA
are not well tuned in this paper.

Another strategy proposed in this paper, is taking EHVIG as the
stopping criterion in CMA-ES. The experimental results show that this
method can improve the quality of the final Pareto front and reduce
some execution time, compared to the original CMA-ES on problems
whose optimal points are not at the boundaries in the search space. This
strategy does not work on the ZDT series of problems because EHVIG
cannot be calculated at the boundaries of the search space. However, a
useful remedy to these problems is the projection of EHVIG.

Considering the good performance of the second strategy, for the
optimizer in MOBGO, it is recommended to use EHVIG as a stopping
criterion in EAs (like CMA-ES, GA). For future works, extending EHVIG
from the 2-D case to higher dimensional cases is highly recommended,
and the GAA in MOBGO based algorithms using EHVIG should be
improved.
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Appendix

1.𝜙′(x) = −x𝜙(x) (A-1)

2.Φ′(x) = 𝜙(x) (A-2)

3.
𝜕Φ( y−𝜇

𝜎
)

𝜕x
= 𝜙( y − 𝜇

𝜎
) · (𝜇 − y

𝜎2 · 𝜕𝜎
𝜕x

− 1
𝜎
· 𝜕𝜇
𝜕x

) (A-3)

Using the chain rule and quotient rule, considering that y does not depend on x, we get the statement in (A-3):

𝜕Φ( y−𝜇
𝜎

)
𝜕x

= 𝜙( y − 𝜇

𝜎
) ·

𝜕( y−𝜇
𝜎

)
𝜕x

= 𝜙( y − 𝜇

𝜎
) ·

( 𝜕y
𝜕x − 𝜕𝜇

𝜕x )𝜎 − (y − 𝜇) 𝜕𝜎
𝜕x

𝜎2

After tidying up, we get statement in (A-3):

𝜕Φ( y−𝜇
𝜎

)
𝜕x

= 𝜙( y − 𝜇

𝜎
) · (𝜇 − y

𝜎2 · 𝜕𝜎
𝜕x

− 1
𝜎
· 𝜕𝜇
𝜕x

)

4.

𝜕Ψ(a, b, 𝜇, 𝜎)
𝜕x

=
(

b − a
𝜎

· 𝜙( b − 𝜇
𝜎

) − Φ( b − 𝜇
𝜎

)
)
· 𝜕𝜇
𝜕x

+ 𝜙( b − 𝜇
𝜎

) ·
(

1 + (b − 𝜇)(b − a)
𝜎2

)
· 𝜕𝜎
𝜕x

(A-4)

Using the product rule and considering a and b do not depend on x, we get the statement:

𝜕Ψ(a, b, 𝜇, 𝜎)
𝜕x

= 𝜕Ψ(a, b, 𝜇, 𝜎)
𝜕𝜇

· 𝜕𝜇
𝜕x

+ 𝜕Ψ(a, b, 𝜇, 𝜎)
𝜕𝜎

· 𝜕𝜎
𝜕x

(A-5)

Substituting Equation (2-14) into 𝜕Ψ(a,b,𝜇,𝜎)
𝜕𝜇

and 𝜕Ψ(a,b,𝜇,𝜎)
𝜕𝜎

, using the chain rule, quotient rule, and product rule, the expressions for 𝜕Ψ(a,b,𝜇,𝜎)
𝜕𝜇

and
𝜕Ψ(a,b,𝜇,𝜎)

𝜕𝜎
are:

𝜕Ψ(a, b, 𝜇, 𝜎)
𝜕𝜇

=
𝜕[𝜎 · 𝜙( b−𝜇

𝜎
) + (a − 𝜇) · Φ( b−𝜇

𝜎
)]

𝜕𝜇

= 𝜎 ·
𝜕𝜙( b−𝜇

𝜎
)

𝜕𝜇
+ (−1) · Φ( b − 𝜇

𝜎
) + (a − 𝜇) ·

𝜕Φ( b−𝜇
𝜎

)
𝜕𝜇
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= b − 𝜇

𝜎
· 𝜙( b − 𝜇

𝜎
) − Φ( b − 𝜇

𝜎
) + [−a − 𝜇
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𝜎
)]
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) (A-6)

𝜕Ψ(a, b, 𝜇, 𝜎)
𝜕𝜎

=
𝜕[𝜎 · 𝜙( b−𝜇

𝜎
) + (a − 𝜇) · Φ( b−𝜇

𝜎
)]

𝜕𝜎

= 𝜙( b − 𝜇
𝜎

) + 𝜎 ·
𝜕𝜙( b−𝜇

𝜎
)

𝜕𝜎
+ (a − 𝜇) ·

𝜕Φ( b−𝜇
𝜎

)
𝜕𝜎

= 𝜙( b − 𝜇
𝜎

) + ( b − 𝜇
𝜎

)2 · 𝜙( b − 𝜇
𝜎

) +
(
−(a − 𝜇) · (b − 𝜇)

𝜎2 · 𝜙( b − 𝜇
𝜎

)
)

= 𝜙( b − 𝜇
𝜎

) + (b − 𝜇) · (b − a)
𝜎2 · 𝜙( b − 𝜇

𝜎
)

= 𝜙( b − 𝜇
𝜎

)
(

1 + (b − 𝜇) · (b − a)
𝜎2

)
(A-7)

After substituting Equations (A-6) and (A-7) into (A-5), we get formula in (A-4):

𝜕Ψ(a, b, 𝜇, 𝜎)
𝜕x

=
(

b − a
𝜎

· 𝜙( b − 𝜇
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)
)
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(A-8)
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