4 Universiteit
%45 Leiden
The Netherlands

Constraint-based analysis of business process models
Changizi, B.

Citation

Changizi, B. (2020, February 21). Constraint-based analysis of business process models. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/85677

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/85677

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/85677

Cover Page

The handle http://hdl.handle.net/1887/85677 holds various files of this Leiden University
dissertation.

Author: Changizi, B.
Title: Constraint-based analysis of business process models
Issue Date: 2020-02-25


https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/85677
https://openaccess.leidenuniv.nl/handle/1887/1�

Conclusion

Despite long-term efforts, analyzing business processes is still a challenge. Creat-
ing tools for analyzing business processes requires expressing the behavior of the
processes in an accurate way. Most of the business process management notations,
particularly Business Process Model and Notation (BPMN), are based on Petri nets.

While Petri nets can be used to automate process analysis, they are not com-
positional. This makes analyzing the behavior of large and complex models based
on Petri nets challenging.

The Reo coordination language is an alternative theory to Petri nets that has
been used to formalize semantics of BPMN. Reo has a compositional nature, which
enables adding semantic models for individual components to the semantic models
of existing processes.

In this dissertation, we used the Reo coordination language to capture the behav-
ior of BPMN processes. We presented an automated mapping of business process
models expressed in BPMN 2 to Reo networks in order to create the possibility of
using various types of analysis on business process models. Our mapping takes data
into account. Thus, it enables verification of data flow. We not only deal with basic
BPMN 2 constructs, but also with compound elements such as transactions and
exception handling. Formalizing the behavior of these elements requires modeling
priority.

Reo is an extensible language that comes with various formal semantic models.
This makes it possible to perform different kinds of analysis by focusing on specific

121



behavioral aspects of a given network. However, there is a gap between the behavior
that each of the semantics can express. This can introduce incompatibilities among
these operational models. In addition, these formal semantics are computed using
their own specialized algorithms, which are directly implemented.

Such algorithms are computationally expensive. As a result, the Reo models
(and consequently business models) whose operational semantics can be efficiently
calculated are limited to those of relatively small size.

Each of these formal semantics constrain the possible I/O operations through
the nodes to those allowed by the semantics. Therefore, we convert the problem of
finding behaviors accepted by a given semantic model into a constraint satisfaction
problem for which many efficient supporting tools exist.

We developed a unified constraint-based framework to compute formal semantics
of a Reo network given the semantics of its parts in a compositional fashion. Since we
have included various existing formal semantics of Reo in our framework, behavior
specifications that are considered invalid according to any of these formal semantics
are ruled out. The tool we implemented to realize this framework relies on constraint
solvers. Therefore, it benefits from the advances in the field of constraint solving.

Within this framework, the behavior of a Reo construct specified by a given se-
mantics model is expressed in terms of constraints. In order to obtain the semantics
of the whole Reo connector, the constraints of its constructs are concatenated. The
framework replaces data constraints with new binary predicates that represent the
logical value of the data constraint. The final constraint is then converted to the
acceptable format for an off-the-shelf constraint solver.

After the constraint solver finds the solutions, the solutions are mapped back to
the predicates. The data constraints and the value of their representative predicate
are sent to a numeric constraint solver that treats the data symbolically. This way
instead of obtaining distinct possible values for each variable denoting a data-item,
we have a range of values, which is a more compact representation. We compared
the performance of our approach to the existing ways of computing the formal
semantics of Reo.

We presented a constraint-based approach for calculating priority-aware se-
mantics of Reo models. This approach has been integrated into the mentioned
constraint-based framework as the first tool support for priority in Reo. Similarly,
this approach benefits from the shift of paradigm from custom direct implementa-
tion to using tools available in the well researched area of constraint solving. We
not only provide a way to model the binary notion of priority in Reo, but also we
deal with numeric priority. We demonstrated the application of our toolchain by
analyzing a BPMN process that could not be analyzed previously.

A limitation of our implemented toolchain is that it relies on the external BPMN
modeling tools to create the BPMN process to be analyzed. Since not all BPMN
tools support export the BPMN models in our expected format, the choice of BPMN
editor compatible with our tool set is limited.

As our future work, we plan to expand our constraint-based semantics frame-
work to include other formal semantics of Reo, for instance, those that incorporate
stochastic and quantitative aspects of the behavior of Reo circuits. In addition,
we plan to extend our constraint-based framework to generate data to be used for

122



simulation and testing purposes.

123



124



