
Constraint-based analysis of business process models
Changizi, B.

Citation
Changizi, B. (2020, February 21). Constraint-based analysis of business process models. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/85677

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/85677

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/85677

Cover Page

The handle http://hdl.handle.net/1887/85677 holds various files of this Leiden University
dissertation.

Author: Changizi, B.
Title: Constraint-based analysis of business process models
Issue Date: 2020-02-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/85677
https://openaccess.leidenuniv.nl/handle/1887/1�

7
Priority

7.1 Introduction

Priority is an important concept in modeling work�ows. For instance, modeling

compensation and error handling requires a mechanism to express priority of some

�ow alternatives over others. In the context of Reo, priority can be utilized as a

mechanism to impose preferences on the otherwise non-deterministic choices.

Arbab et al. in [ABS15] introduce a compositional approach to model priority

and a priority-aware formal semantics for Reo, named Constraint Automata with

Priority (CAP), which is an extension of constraint automata.

This approach, which distinguishes between where priority is originated from

and where it must be applied i.e. non-deterministic choices, consists of the following

elements:

� A primitive to impose priority that is prioritySync,

� A mechanism to propagate priority from the location it is imposed through

the network,

105

� A mechanism to block the propagation of priority in desired places using one

of the following primitives:

� BlockSourceSync, which stops propagation of priority coming from its

source end toward its sink;

� BlockSinkSync, which blocks propagation of priority from its sink end

toward its source;

� BlockSync that stops propagation of priority on both ends.

� Means to a�ect the otherwise non-deterministic choices by priority.

CAP is an expressive formalism for supporting priority in Reo. However, its

operations to manipulate CAPs are computationally expensive, if they are imple-

mented in a straight-forward fashion.

The practical needs for dealing with large models of realistic business processes

currently complicates direct use of automata-based semantic models. In this chap-

ter, we extend our constraint-based framework presented in Chapter 6 to support

priority in Reo. The rest of this chapter is organized as follows: In Section 7.2, we

introduce priority �ow in Reo along with a constraint-based semantics for it. In Sec-

tion 7.3, we extend our approach to support numeric priorities. In Section 7.4, we

show the application of our constraint-based approach. In Section 7.5, we overview

related work. Finally, in Section 7.6, we conclude the chapter and outline future

work.

7.2 Priority �ow

We distinguish between two types of priority on a node:

� when the node is imposing the priority to be propagated, which we call it

innate priority,

� when the node has obtained the priority through propagation, we refer to it

as acquired.

Both ends of prioritySync have innate priority. When an end with innate pri-

ority connects to another end that has no priority, the new end will obtain acquired

priority. When one end of a synchronous type channel (e.g., sync, syncDrain) has

acquired priority, the other end has innate priority.

106

However, in the case of non-synchronous channels (e.g., FIFO, asyncDrain) and

also the priority blocking channels, their ends can only have acquired priority. We

update the constraint-based framework for Reo presented in Chapter 6 to support

priority and the priority propagation mechanism, which we informally described

above. In the rest of this chapter, we omit data constraints when de�ning behavior of

Reo elements. Data constraints are irrelevant for priority �ow and were thoroughly

covered in Chapter 6.

Let N and M be global sets of ends and state memory variables, respectively.

A free variable v has one of the following forms, where n ∈ N and m ∈M:

� ñ ∈ {>,⊥} shows presence or absence of data-�ow on n;

� m̊, m̊′ ∈ {>,⊥} denotes whether or not the state memory variablem is de�ned

in the source and the target states of the transition, respectively;

� n. ∈ {>,⊥} indicates the reason for lack of data-�ow on n originating from

the primitive or the context (of this primitive), respectively;

� n!• , n!◦ ∈ {>,⊥} models priority �ow denoting whether n has acquired or

innate priority. An end n has priority i� n!• ∨ n!◦ = >.

A constraint Ψ, which encodes the behavior of a Reo network is de�ned as:

a ::= ñ | n!• | n!◦ | n. | m̊ | m̊′ (atoms),

ψ ::= > | a | ¬ψ | ψ ∧ ψ (formulae)

A solution to ψ is a map from the variable sets V to a value in {⊥,>}. The

satisfaction rules for a solution 〈δ〉 are satisfaction in propositional logic. We denote

the set of all solutions for Ψ as S(Ψ).

In Chapter 6 we have introduced RCSP. Here we extend the de�nition of RCSP

and its composition operator with the priority notion and some axioms, which assist

in incorporating priority in our constraint-based framework.

De�nition 7.2.1 (RCSP) A Reo Constraint Satisfaction Problem (RCSP) is a

tuple 〈N ,M,M0,V, C〉, where:

� N is a �nite set of ends. M is a �nite set of state memory variables.

� M0 ⊆M is a set of state memory variables that de�ne the initial con�guration

of a network.

� V is a set of variables v de�ned by the grammar

v ::= ñ | n. | m̊ | m̊′ | n!◦ | n!• for n ∈ N and m ∈M.

107

� C = {C1, C2, ..., Cm} is a �nite set of constraints, where each Ci is a

constraint given by the grammar Ψ involving a subset of variables Vi ⊆ V.

De�nition 7.2.2 (Composition �) The composition of two RCSPs ρ1 = 〈N1,

M1, M0,1, V1, C1〉 and ρ2 = 〈N2, M2, M0,2, V2, C2〉 is de�ned as follows:

ρ1 � ρ2 = 〈N1 ∪N2, M1 ∪M2, M0,1 ∪M0,2, V1 ∪ V2, C1 ∧ C2〉.

Axiom 7.2.1 (Join axiom) To propagate no-�ow reasons, when a source end c

and a sink end k from two networks, the following holds:

¬c̃⇔ ¬k̃ ⇔ (c. ∨ k.).

Axiom 7.2.2 (Priority join axiom) When a source end c and a sink end k from

two networks connect, this holds:

(c!
◦
∨ c!

•
⇔ k!◦ ∨ k!•) ∧ (c!

◦
∧ k!◦ ⇔ c!

•
∨ k!•).

Axiom 7.2.3 (Non-deterministic choice axiom) Let N be a set of ends from

which a Reo primitive chooses one for communication non-deterministically. The

following guarantees that a node y with no priority has �ow only if no prioritized

node, e.g., x, is ready to interact:

(¬x̃ ∧ (x!◦ ∨ x!•) ∧ ỹ ∧ ¬(y!◦ ∨ y!•))⇒ ¬x..

108

Table 7.2.1: Constraint encoding of Reo with priority

Channel Constraints

a b! ψPrioSync(a, b) : (ã⇔ b̃) ∧ ¬(a. ∧ b.) ∧a!• ∧ b!•

a b)
ψBlkSrcSync(a, b) : (ã⇔ b̃) ∧ ¬(a. ∧ b.) ∧¬b!•

a b(
ψBlkSnkSync(a, b) : (ã⇔ b̃) ∧ ¬(a. ∧ b.) ∧¬a!•

a b)(
ψBlkSync(a, b) : (ã⇔ b̃) ∧ ¬(a. ∧ b.) ∧¬a!• ∧ ¬b!•

a b ψSync(a, b) : (ã⇔ b̃)∧¬(a.∧ b.) ∧((¬a!• ∧¬a!◦ ∧¬b!• ∧¬b!◦)∨
(a!• ∧ ¬b!• ∧ b!◦) ∨ (¬a!• ∧ a!◦ ∧ b!•))

a b
ψLossySync(a, b) : b̃⇒ ã∧¬a.∧¬ã⇒ b.∧ ((¬a!• ∧¬a!◦ ∧¬b!• ∧
¬b!◦) ∨ (a!• ∧ ¬b!• ∧ b!◦) ∨ (¬a!• ∧ a!◦ ∧ b!•))

a b
ψSyncDrain(a1, a2) : ã⇔ b̃∧¬(a. ∧ b.)∧ ((¬a!• ∧¬a!◦ ∧¬b!• ∧
¬b!◦) ∨ (a!• ∧ ¬b!• ∧ b!◦) ∨ (¬a!• ∧ a!◦ ∧ b!•))

a b ψAsyncDrain(a1, a2) : ã⇒ (¬b̃∧b.)∧ b̃⇒ (¬ã∧a.)∧¬a!• ∧¬b!•

a b
ψFIFO1(a, b,m) : (ã⇒ ¬m̊∧m̊′)∧(b̃⇒ m̊∧¬m̊′)∧(¬ã∧¬b̃)⇒
(m̊⇔ m̊′) ∧ (¬m̊⇒ b.) ∧ (m̊⇒ a.) ∧ (¬a!• ∧ ¬b!•)

c
a

b

ψMerger(a, b, c) : (ã ∨ b̃) ⇒ c̃ ∧ ¬(ã ∧ b̃) ∧ ¬c̃ ⇒ ((¬c. ∧ a.) ∨
(c. ∧ ¬a. ∧ b.) ∨ (c. ∧ ¬b. ∧ a.)) ∧ b.)) ∧ (c!

◦ ∧ ¬c!• ⇒ (a!• ∧
b!
•
)) ∧ (¬a!• ∧ b!• ∧ (a!◦ ∨ b!◦)⇒ c!

•
)

a
b

c
ψReplicator(a, b, c) : ã ⇔ (b̃ ∧ c̃) ∧ ¬ã ⇒ ((¬a. ∧ b.) ∨ (¬b. ∧
c.) ∨ (¬c. ∧ b. ∧ a.)) ∧ c. ∧ a.)) ∧ (a!◦ ∧ ¬a!• ⇒ (b!

• ∧ c!•)) ∧
(¬b!• ∧ c!• ∧ (b!

◦ ∨ c!◦)⇒ a!•)

a
b

c

ψRouter(a, b, c) : ã⇔ (b̃∨ c̃)∧¬(b̃∧ c̃)∧ ã⇔ (¬a.∨¬(b.∨c.))∧
(a!◦ ∧ ¬a!• ⇒ (b!

• ∧ c!•)) ∧ (¬b!• ∧ c!• ∧ (b!
◦ ∨ c!◦)⇒ a!•)

109

In Chapter 6, we presented the constraints that a primitive imposes on a network

as a CSP. Here we extend these constraints with priority capturing variables.

If the variable p!• is true, the end p has innate priority. For example, in a

prioritySync channel, both ends have innate priority.

A primitive end can also obtain innate priority via propagation. For instance, if

one end of a sync channel has acquired priority, which means it is prioritized because

a primitive connected to it propagates priority, then the other end will have innate

priority. We denote acquired priority for a primitive end p as: p!◦ ∧ ¬p!• .

The priority capturing constraint for a sync channel with source end a and sink

end b can be speci�ed as follows:

¬(a!◦ ∨ a!• ∨ b!
◦
∨ b!

•
) ∨ (a!◦ ∧ ¬a!• ∧ b!

•
) ∨ (a!• ∧ b!

◦
∧ ¬b!

•
).

The assertion ¬p!• blocks the priority propagation on p. Though, p can still

have acquired priority through a potential connecting primitive when p!◦ = >.
Table 7.2.1 shows the constraint encoding of Reo channels and nodes in presence

of priority �ow. The solutions to the CSP expressing the behavior of a Reo network

encode possible data-�ow through its nodes.

Since a network may later connect to another network, the constraints should

account for priority imposed by potential future connections. This information can

be discarded when analyzing the behavior of a network in isolation. To exclude

such cases, we should restrict the possible values of boundary ends.

Axiom 7.2.4 (Grounding axiom) Let B ⊂ N be the set of boundary nodes in a

Reo network. We rule out the solutions that are only present for further expansion

of the network by:

∀b ∈ B : b!
◦
⇒ b!

•
.

De�nition 7.2.3 (RLTS) A Reo Labeled Transition System (RLTS) is a tuple

RLT S=(N , M, Q, →, q0), where:

� N is a set of ends,

� M is a set of state memory variables,

� Q is a (�nite) set of states of the form 〈M〉,

� M is the set of state memory variables that are valid in the given state, → ⊆
Q × 2N × 2N × 2N × Q is a transition relation, wherein N , R, and I in

(q, N, R, I, p) ∈→ represent the ends that have �ow, those without �ow

110

for which the reason for no �ow is the end not being ready for interaction,

and the ends with priority. Note that n 6∈ N does not always mean n ∈ R as

the reason for data �ow can be the network (then, n requires a reason for no

�ow).

� q0 ∈ Q is the initial state.

We write q
N, R, I−−−−−→ p instead of (q, N, R, I, p) ∈ →. For n ∈ I, n /∈ R⇔ n ∈

N .

De�nition 7.2.4 (Composition �) We de�ne the composition of L1 = (N1, M1,

Q1, →1, q01
) and L2 = (N2, M2, Q2, →2, q02

) as:

L1 � L2 = (N1 ∪N2, M1 ∪M2, →, q01
× q02

)

where → is de�ned as:

q1
N1,R1,I1−−−−−−→1t1 q2

N2,R2,I2−−−−−−→2t2N1 ∩N2 = N2 ∩N1R1 ∩N2 = R2 ∩N1I1 ∩N2 = I2 ∩N1

q1 × q2
N1∪N2,R1∪R2,I1∪I2−−−−−−−−−−−−−−→ t1 × t2

q1
N1,R1,I1−−−−−−→1t1q2

N2,R2,I2−−−−−−→2t2N1 ∩N2 = ∅

q1 × q2
N1,R1,I1−−−−−−→ t1 × t2

and its symmetric rule.

We de�ne few operations on a solution s for Ψ = 〈NΨ,MΨ, MΨ0, VΨ, CΨ〉:

- source(s)=〈{m|m◦∈MΨ : s(m◦) = >}〉,

- target(s)=〈{m|m′◦∈MΨ :s(m′◦)= >}〉,

- �ow(s)={n|n∈ NΨ: s(ñ) = >},

- reason-giving(s)={n|n∈NΨ :s(n.)= >},

- priority(s)={n|n ∈ NΨ : (s(n!◦) ∨ s(n!•)) = >}.

We say s v q
N,R,I−−−−→ p, where

- q = source(s),

- N = �ow(s),

111

- R=reason-giving(s),

- I = priority(s),

- p = target(s).

De�nition 7.2.5 (Visualization) The visualization function γ on Ψ = 〈 N , M,

M0, V, C〉 yields L=(N , M, Q, →, q0), where

� M = {m|s(m◦) = > ∨ s(m′◦) = >, s ∈ S(Ψ)},

� Q =
⋃

s∈S(Ψ){source(s), target(s)},

� →= {(source(s), f low(s), reason-giving(s), priority(s), target(s)) | s ∈ S(Ψ)},

� q0= source(s0).

Theorem 7.2.1 Let Ψ1 and Ψ2 be two RCSPs, we show that γ(Ψ1�Ψ2) = γ(Ψ1)�
γ(Ψ2).

Proof Let γ(Ψ1)=(N1,M1, Q1, →1, q01
), γ(Ψ2) = (N2, M2, Q2, →2, q02

), and

γ(Ψ1 � Ψ2) = (N, Q, →, q0).

It is trivial to see thatN = N1∪N2,M =M1∪M2, Q = Q1×Q2, q0 = q01×q02 .

Assume ∃s ∈ S(Ψ1�Ψ2), s1,∈ S1, s2 ∈ S2, t1 : q1
N1,R1,I1−−−−−−→1p1, t2 : q2

N2,R2,I2−−−−−−→2p2

s.t. s1 v t1 and s2 v t2, but @ t : q
N,R,I−−−−→ p ∈→ s.t. s v t.

Therefore, N1 ∩ N2 6= N2 ∩ N1 ∧ N1 ∩ N2 6= ∅ or (N1 ∪ N2) ∩ (R1 ∪ R2) 6= ∅.
The latter is impossible. For the former, either n ∈ N1, n /∈ N2 or n ∈ N2, n /∈ N1,

which is not possible as it means s(n) = >∧ s(n) = ⊥. Similarly, we can show it is

impossible to have a t in γ(Ψ1 �Ψ2), when there is no s ∈ S s.t. s v t.

RLTS is comparable with Reo automata [BCS12], a context-dependent formal

semantics of Reo. A transition in Reo automata is labeled with a guard, which is

a Boolean predicate in disjunctive normal form expressing positive and negative

information about presence or absence of I/O requests, and a �ring set that models

the occurring I/O operations in the transition. The second set in RLTS transitions

(the set of ends that provide reason for no �ow) correspond to the negated elements

of the guards in Reo automata, while the set of ends with �ow relates to both the

�ring set and the positive elements of the guards. Unlike Reo automata, RLTS

supports priority.

112

7.3 Numeric priority

Here, we extend our approach to support numeric priorities. This enables us to deal

with more than one level of priorities such as in a process where the normal �ow

may be interrupted by both exception and error.

In BPMN, an error event has the highest priority, and the exception has priority

over the normal �ow. In this extension, the range for priority variables of an end n,

n!◦ and n!• , is N (natural numbers) ∪ {0}, where 0 indicates no priority. The larger
number is the higher priority it represents. Each prioritySync channel comes with

a user de�ned priority value, which propagates through its ends. To propagation of

a higher priority over a lower priority or no priority, we constrain priority variables

to be greater than or equal to their initial values.

〈δ〉 � x ≥ P i� δ(x) ≥ P , 〈δ〉 � x > P i� δ(x) > P , 〈δ〉 � x = P i� δ(x) = P ,

where x ∈ {x!• , x!◦}, P ∈ N ∪ {0}.
The new constraint-based encodings of the replicator and router nodes in this

table are constructed in accordance with Axiom 7.2.3.

De�nition 7.3.1 (NPRLTS) A Numeric Priority Reo Labeled Transition System

is a tuple (N , M, Q, →, q0), where:

� N is a set of ends,

� M is a set of state memory variables, Q is a (�nite) set of states of the form

〈M〉, M is the set of state memory variables that are valid in the given state,

→ ⊆ Q× 2N × 2N ×N 7→ N×Q is a transition relation, wherein N , R, and

fI in (q, N, R, fI , p) ∈→ are the ends having �ow, those without �ow for

which the reason for no �ow is the end not being ready for interaction, and a

partial map of nodes with priority to their priority values, respectively.

� q0 ∈ Q is the initial state.

We write q
N,R,fI−−−−→ p instead of (q, N, R, fI , p) ∈ →. For all q

N,R,fI−−−−→ p:

f(n) > 0, n /∈ N ⇔ n ∈ R. We rede�ne priority(s) as {(n, p)|n ∈ NΨ : s(n!◦) =

p ∨ s(n!•) = p}.

De�nition 7.3.2 (Extended Visualization) The visualization function γ on Ψ =

〈NΨ, MΨ, MΨ0
, V, C〉 yields L = (NL, ML, Q, →, q0), where

� NL = {n|s(ñ) = >, s ∈ S(Ψ)},

� ML = {m|s(m◦) = > ∨ s(m′◦) = >, s ∈ S(Ψ)},

113

Figure 7.4.1: An example of a sales process modeled in BPMN

� Q =
⋃

s∈S(Ψ){source(s), target(s)},

� → = {(source(s), f low(s), reason-giving(s), priority(s), target(s)) | s ∈
S(Ψ)}, q0=source(s0).

7.4 Case study

In this section, we present the applications of our approach on a priority-aware

model. Figure 7.4.1 depicts a sales process, which starts by receiving an order from

a customer. It proceeds by reserving the ordered items for the customer. Then, the

customer's credit gets charged and the customer's account is updated, meanwhile if

the payment encounters a problem, a cancellation event is triggered, which causes

compensation for any of the performed actions. Finally, if no problem occurs, the

ordered items are shipped and the process ends.

Figure 7.4.2 shows a Reo network that simulates this process. Here, we use

alphabet characters to refer to nodes (e.g. B, C) and channels (e.g. BC, BD). To

address a node end or a channel end, we append a number to the name of an end,

unless it is the only end (e.g. it is a boundary end). For instance, the end BC2,

which is the source end of the channel BC connects to the end B2 on the node B. In

[CKA10], the authors de�ned a procedure to map BPMN models to Reo networks.

The process starts by reading a token from the writer W2, which resembles

114

W1

W2

R1

R2

R3

N

12

M

2 1

C

1 2

E

1 2
3

D

1 2

F

2

1 3

G

2

1
3

H

1 2

J1 2

3 4

I 21 K1 2

B
1

3

2

A

1 2
L

1
3

2

!

+

+

×

×

Figure 7.4.2: The process of a sample on-line shop modeled in Reo

receiving an order. Though a Reo network can be used for modeling in�nite data

�ow, in the BPMN standard, when a start event is triggered, a new instance of the

process is instantiated. Therefore, the Reo network is designed to handle only one

request. The end A1 reads a token from the writer W2 and duplicates it into the

BC and BD FIFO1 channels. The token continues to the CE FIFO1 channel. If

the payment succeeds, the token enters the EG FIFO1 channel waiting for a token

from the other input of the merge node G to enter the GH FIFO1 channel and

�nally to be consumed by the reader R3.

If the payment fails, performed actions need to be compensated. A token from

the writer W1 indicates a payment failure, so the process needs to be canceled. So,

the token leaving the CE FIFO1 channel goes through the EJ prioritySync channel.

The replicate node J duplicates the token to the JK FIFO1 and the JL lossySync

channel. The reader R2 consumes the token from the JK FIFO1 channel, while the

token from the JL lossySync channel moves forward to the MN FIFO1 channel.

The token from the BD FIFO1 channel goes through the DF FIFO1 channel for

a possible compensation. The token from the DF FIFO1 channel may either go to

the join node G to join the �ow of a successful payment, or to be consumed by the

LF syncDrain. In the latter case, it goes to the MN FIFO1 channel. Then, the

process ends by a read action of the reader R1.

We compute the behavior of the given Reo network using our constraint-based

framework. The steps for obtaining the RLTS are as follows: First, we form the

RCSP of the network by traversing through its primitives. Then, we solve the

obtained RCSP and extract transitions from obtained solutions.

To show how priority can a�ect the behavior of our example, we �rst investigate

115

the behavior of the network in absence of priority, wherein the normal �ow of the

process can continue even in case of a payment failure. This is because the router

nodes E chooses one of its outgoing �ows in a non-deterministic fashion.

We would like to check if for all transitions t, which belong to the RLTS of

the network, the following holds: {CE, DF} ⊆ source(t) ∧ E1 ∈ flow(t) ∧W1 /∈
reason− giving(t)⇒W1 ∈ target(t). To violate this property, it is enough to �nd

a transition from a state wherein both CE and DF FIFO1 channels are full, there

is �ow on end E1, W1 is ready to communicate, but W1 does not have �ow.

Abstraction: For checking this assertion, we abstract from the ends without �ow

on transitions with the same source (q), target (p), ends with �ow (N1), but di�erent

ends without �ow (N2) by replacing them with q
N1,N

′
2−−−−−→ p, where N ′2 = {W1} if

W1 ∈ N2, otherwise N
′
2 = {}. This abstraction reduces the number of transitions

in the RLTS without a�ecting the result of the veri�cation for the given assertion.

We can take this one step further and remove the information about ends without

�ow from all the states except the state wherein CE and DF FIFO1 channels are

full.

Figure 7.4.3 shows the abstract (with respect to the given assertion) RLTS of

the network of Figure 7.4.2 in absence of priority, where the transition t4 violates

the assertion. Here, we use short labels (e.g. t4) on transitions and states. The

original labels are represented in Table 7.4.1. In addition, the ends with a similar

name are grouped e.g. B1,2,3 (referring to ends B1, B2, and B3). This is only a

presentation modi�cation to save space. We show that the transition t4 can not

exist when the priority is considered in the model.

0 : C̊E ∧ D̊F ∧ Ẽ1 ∧ ¬W1
. ∧ ¬W̃1 (the assertion)

1 :
ΨPrioritySync(EJ2,4)

EF !•
2

2 :
1 &join of EJ2&E2

E!•
2

3 :
2; Ψrouter(E1,2,3)

Ẽ1 ∧ ¬Ẽ2 ⇒ E2
.

4 :
3 & coloring & join

E2
. ⇒W1

.

116

s1 s2 s3 s4 s6

s5

s7 s8

s9

s10
t1 t2

t3

t10

t5

t6

t7

t8 t9

t4
t11 t12

Figure 7.4.3: The RLTS corresponding to Reo network of Figure 7.4.2 with no priority chan-
nel

5 :
2 & 4 coloring & join

¬W̃1 ⇒W1
.

6 :
0&5

⊥

7.5 Related work

Several works, e.g., [FPHA02, BK92, Bau97] use priorities to model scheduling

policies. Many work�ow languages rely on Petri nets [vdAtH02, YSSW08]. Priority

�ow in Petri net-based process models is managed with the help of inhibitor arcs

and transition priorities [Pad15]. Inhibitor arcs allow a transition to �re only if the

adjacent place is empty. Prioritized Petri nets [Bal01] introduce a partial order on

transitions. Given a set of enabled transitions, the transitions with higher priority

�re before the transitions with lower priority. Others, e.g., [LP16, RMP+12] use

a partial order on transitions to model priority. Our earlier approach in modeling

priority using binary variables supports a limited form of priority compared to the

mentioned Petri nets approaches. However, the proposed extension bridges this gap

by de�ning priorities as non-zero natural numbers. An advantage of our model is its

compositionality. Compared to the aforementioned methods, Reo �ts in the realm

of component-based or service-oriented architecture in a compositional way. Reo is

an extensible language, where new behavioral aspects can be added. An e�ort to

express the behavior of Reo networks via constraints is reported in [CPLA10]. It

demonstrates the e�ciency of the constraint-based approach. It models synchro-

nization and data �ow constraints, but no priority �ow was considered. In [CKA12],

117

Table 7.4.1: The transition labels and prioritized ends (P) of the RLTS of Figure 7.4.3

s1 〈〉
s2 〈BC,BD〉
s3 〈CE,DF 〉
s4 〈EG,FG〉
s5 〈MN,JK〉
s6 〈GH〉
s7 〈JK〉
s8 〈MN〉
s9 〈〉
s10 〈〉
t1 N1 : {W2, A1,2, B1,2,3, AB1,2, BC2, BD3}, N2 : {}
t2 N1 : {BC1, BD1, C1,2, D1,2, CE2, DF2}, N2 : {}
t3 N1 : {W1, CE2, DF3, IJ2,3, I1,2, J1,2,3,4, JK2, JL1,3,

L1,2,3, LF2,3, LM1,2, F1,2,M1,2,MN2}, N2 : {}
t4 N1 : {EG3, FG3, E1,3, F1,3, CE1, DF1},

N2 : {W1}
t5 N1 : {R1, N1,2,MN1}, N2 : {}
t6 N1 : {R1,2, N1,2,MN1,K1,2, JK1}, N2 : {}
t7 N1 : {R2,K1,2, JK1}, N2 : {}
t8 N1 : {R2,K1,2, JK1}, N2 : {}
t9 N1 : {R1, N1,2,MN1}, N2 : {}
t10 N1 : {EG3, FG3, E1,3, F1,3, CE1, DF1},

N2 : {W1}
t11 N1 : {EG1, FG2, G1,2,3, GH3}, N2 : {}
t12 N1 : {R3, H1,2, GH1}, N2 : {}
P {W1, I1,2, J1,2,3,4, JK2, EJ2,4, E1,2, JL1,3, L1,2,3,

LF2,3, F2,3, LM1,2,M1,2,MN2}

a framework is presented to encode semantics of Reo networks as CSP with predi-

cates in the form of binary propositions and numerical constraints. An advantage

of this method is handling data constraints symbolically and, hence, mitigating the

state explosion problem of automata models. We extended this framework to han-

dle priority constraints, taking a step forward toward implementing a tool-set that

covers all behavioral aspects of Reo. Among the formal semantics of Reo, connector

coloring comes with a limited notion of priority based on the context information.

The context information a�ects otherwise non-deterministic data-�ow choices. In

[KAT16], an automata-based semantics is proposed, which associates a preference

for each transitions. A transition of lower preference is �red i� no more preferred

transition can occur.

118

7.6 Conclusions and future work

In this chapter, we addressed the problem of priority �ow modelling using the Reo

coordination language. We extended the uni�ed constraint-based semantics of Reo

with binary and numeric priority constraints. Furthermore, we showed correctness

of our approach for the binary case. We also illustrated the use of our framework

for modeling business processes with priority �ow.

As part of our ongoing work, we are using this framework to encode other aspects

of the semantics of Reo, speci�cally, timed behavior. A promising area for future

work is to use our framework for constraint-based model checking of Reo networks

with priority.

119

120

