
Constraint-based analysis of business process models
Changizi, B.

Citation
Changizi, B. (2020, February 21). Constraint-based analysis of business process models. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/85677

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/85677

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/85677

Cover Page

The handle http://hdl.handle.net/1887/85677 holds various files of this Leiden University
dissertation.

Author: Changizi, B.
Title: Constraint-based analysis of business process models
Issue Date: 2020-02-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/85677
https://openaccess.leidenuniv.nl/handle/1887/1�

6
A Constraint-Based Semantics Framework

for Reo

6.1 Introduction

In Chapter 5, we presented our approach for automatic transformation of business

process models into Reo [CKA10]. This enables the use of Reo analysis methods

and tools on these processes that originally were not expressed in Reo. Performing

analysis on a Reo connector requires the behavior of the connector expressed in one

of the formal semantics of Reo.

Each of these formal semantics comes with a set of de�nitions and operators,

which enable calculating semantics of a Reo connector. The straight-forward al-

gorithms of supporting tools for automating this process are developed based on

these de�nitions. These custom algorithms are computationally expensive and not

optimized. As a result, in practice the size of a connector they can support is small.

Another inherent limitation of these algorithms stem from that they model data

explicitly. As a consequence, in practice the set of input data needs to be limited

to a prede�ned small set. This holds even for connecters with no data-sensitive

81

components, which shows the same behavior for each data item.

Even though di�erent formal semantics of a Reo connector describe the behavior

of the same model, since each of them focuses on some behavioral aspects such as

context-sensitivity or data-awareness, and ignores some other aspects, it is possible

that one aspects of its semantics describes some behavior that another semantics

considers invalid. A classical example of this case is when a lossySync channel is

connected to a FIFO1 channel. The constraint automata and the coloring semantics

for this example describe di�erent behavior.

In this chapter, we present a constraint-based framework to derive formal se-

mantics of a Reo connector. We form a constraint by encoding the behavior of

constructs of the connector.

Our framework eliminates the result of expressiveness gap among Reo formal

semantics by incorporating more than one semantics in deriving the behavior of a

Reo connector. This way, we transform problem of calculating formal semantics

of a Reo connector into a constraint satisfaction problem, for which e�cient and

optimized methods and tools exist. We use the symbolic approach to deal with

data, i.e, rather than dealing with concrete values, we split the data domain to

ranges for which the connector exhibits di�erent behavior.

This work is a necessary step for providing fully automated model checking for

data-aware and context-dependent Reo connectors. It can be seen as a generaliza-

tion of the constraint-based framework presented in [Pro11], that is used as a base

for Reo's distributed execution engine. However, there are major di�erences be-

tween them. For instance, the framework for the Reo execution engine only provide

support for synchrony and context-sensitivity, while our method deals with priority

and data-constraints as well.

6.2 Reo constraint satisfaction problem (RCSP)

In this section, we extend the constraint-based framework in [Pro11] to incorporate

all behavioral dimensions addressed by various semantic models for Reo. In our

framework, we denote each of these elements by variables over their proper domains.

We relate these variables to each other and restrict possible values they can

assume using constraints whose solutions give the underlying formal semantics of

the network. In this section, we deal only with connectors whose semantics can be

expressed in CASM or CC. Later, we extend our framework to also support priority.

Let N = N src ∪ Nmix ∪ N snk be the global set of nodes, M the global set of

state memory variables, and D the global set of numerical data values. The set

82

of primitive ends P consists of all primitive ends p derived from N by marking its

elements with superscripts c and k, according to the following grammar:

p ::= rc | sk

where r ∈ N src ∪Nmix and s ∈ N snk ∪Nmix. Observe that the primitive ends nc

and nk connect on the common node n.

Let p ∈ P, n ∈ N and m ∈ M be a primitive end, a node, and a state memory

variable, respectively. A free variable v that occurs in the constraints encoding the

behavior of a Reo network has one of the following forms:

� ñ ranges over {>,⊥} to show presence or absence of �ow on the node n.

� n̂ ranges over D to represent the data value passing through the node n.

� m̊, m̊′ range over {>,⊥} to denote whether or not the state memory variable

m is de�ned in, respectively, the source and the target states of the transition

to which the encoded guard belongs.

� m̂, m̂′ range over D to represent the values of the state memory variable m

in, respectively, the source and the target states of the transition to which the

encoded guard belongs.

� p. ranges over {>,⊥} to state that the reason for lack of data-�ow through

the primitive end p originates from the primitive to which p belongs or the

context (of this primitive).

Note that not all of the introduced variables are required for encoding the behav-

ior of every Reo network. In presence of context-dependent primitives like lossySync

or in priority-sensitive networks, constraints include variables of the form p.. For

the stateful elements such as FIFO1, variables like m̊, m̊
′, m̂, and m̂′ appear in the

constraints.

Observe that the interpretation of some of the mentioned variables depends on

the values of other variables. Referring to the variable p. makes sense only if ñ = ⊥,
where p = nc or p = nk (i.e., the primitive end p belongs to the node n); and n̂, m̂

and m̂′ make sense only if ñ = >, m̊ = > and m̊′ = >, respectively.
The grammar for a constraint Ψ encoding the behavior of a Reo network is as

follows:

83

t ::= n̂ | m̂ | m̂′ | d | t~ d (terms)

a ::= ñ | p. | m̊ | m̊′ | t = t | t < t (atoms)

ψ ::= > | a | ¬ψ | ψ ∧ ψ (formulae)

where d ∈ D is a constant, ~ ∈ {+,−, ∗, /,%, ˆ}, and p is either of the form nc or

nk.

A solution to a formula ψ is de�ned over the variable sets V × Vd, where the

variables in V are mapped to a value in {⊥,>} and values in Vd are mapped to

subsets of D. The satisfaction rules for a solution 〈δ, δd〉 are de�ned as follows:

〈δ, δd〉 � > always

〈δ, δd〉 � ñ i� δ(ñ) = >
〈δ, δd〉 � p. i� δ(p.) = >
〈δ, δd〉 � m̊ i� δ(m̊) = >
〈δ, δd〉 � m̊′ i� δ(m̊′) = >
〈δ, δd〉 � P (t1, t2, ..., tn) i� (δd(t1), δd(t2), ..., δd(tn)) ⊆ I(P (t1, t2, ..., tn))

〈δ, δd〉 � ψ1 ∧ψ2 i� 〈δ, δd〉 � ψ1 ∧ 〈δ, δd〉 � ψ2

〈δ, δd〉 � ¬ψ i� 〈δ, δd〉 6� ψ
There exists an associated interpretation, I(P) ⊆ 2D

n
, for each n-ary predicate

P .

De�nition 6.2.1 (Reo constraint satisfaction problem) A Reo constraint sat-

isfaction problem (RCSP) is a tuple 〈P,M,M0,V, C〉, where:

� P is a �nite set of primitive ends.

� M is a �nite set of state memory variables.

� M0 ⊆M is a set of state memory variables that de�ne the initial con�guration

of a Reo network.

� V is a set of variables v de�ned by the grammar

v ::= ñ | p. | m̊ | m̊′ | n̂ | m̂ | m̂′

for n ∈ N , p ∈ P, and m ∈ M. The values that the variables of the forms

n̂, m̂, and m̂′ can assume are subsets of D, and the other variables are Boolean,
with values in {>,⊥}.

84

� C = {C1, C2, ..., Cm} is a �nite set of constraints, where each Ci is a constraint

given by the grammar Ψ involving a subset of variables Vi ⊆ V.

Example 6.2.1 The RCSP of a sync channel with the source end a and the sink

end b is 〈{a, b}, ∅, ∅, {ã, b̃, â, b̂}, ã ⇔ b̃ ∧ ã ⇒ (â = b̂)〉. The solutions for this

constraint problem give the behavior of the sync channel as the channel allows data-

�ow on its source end i� its sink end can dispense it simultaneously (which agrees

with the semantics of this channel as de�ned in other formal models of Reo). In case

of data-�ow, the values of the data items passing through the ends of this channel

are equal.

We obtain the constraints corresponding to a Reo network by composing the

RCSPs of its constituents as de�ned below.

De�nition 6.2.2 (Composition) The composition of two RCSPs ρ1 = 〈P1,M1,

M0,1,V1, C1〉 and ρ2 = 〈P2,M2,M0,2,V2, C2〉 is de�ned as follows:

ρ1 � ρ2 = 〈P1 ∪ P2,M1 ∪M2,M0,1 ∪M0,2,V1 ∪ V2, C1 ∧ C1〉

However, connecting two Reo networks must not introduce incorrect data-�ow

possibilities. This is done by enforcing a restriction on the possible solutions through

the following axiom:

Axiom 6.2.1 (Mixed node axiom) When two Reo networks connect on the com-

mon node x, where xc is a source end in one network and xk is a sink end in the

other, the following constraint must hold:

¬x̃⇔ (xc. ∨ xk.)

The mixed node axiom, which applies to all mixed nodes in a network, states that

a node x cannot produce the reason for no-�ow all by itself.

6.2.1 Encoding Reo elements in RCSPs

Table 6.2.2 summarizes the constraint encodings associated with commonly used

Reo elements. If a Reo network does not contain any context-dependent channel, the

variables encoding the context-dependency can be ignored in its RCSP. Table 6.2.1

shows the encoding of Reo elements from Table 6.2.2 where the context variables

are removed. Note that in these tables, a and b denote the source and the sink ends

of a primitive, respectively, and that dom refers to the domain of the given function

85

Table 6.2.1: Context-independent encoding of Reo primitives

Channel Constraints

ψSync(a, b) : ã⇔ b̃ ∧ ã⇒ (â = b̂)
ψSyncDrain(a1, a2) : ã1 ⇔ ã2

ψAsyncDrain(a1, a2) : ¬(ã1 ∧ ã2)

ψLossySync : b̃⇒ ã ∧ b̃⇒ (â = b̂)
ψMerger(a0..i, b) : b̃⇔ (

∨
i ãi)

∧
j,j 6=i ¬(ãi ∧ ãj) ∧ ãi ⇒ (âi = b̂)

ψReplicator(a, b0..i) : ã⇔ (
∧

i b̃i) ∧ ã⇒ (
∧

i(b̂i = â))

ψRouter(a, b0..i) : ã⇔ (
∨

i b̃i)
∧

j,j 6=i ¬(b̃i ∧ b̃j) ∧ b̃i ⇒ (b̂i = â)

ψFIFO1(a, b,m) : ã⇒ (¬m̊∧ m̊′ ∧ (m̂′ = ã))∧ b̃⇒ (m̊∧¬m̊′ ∧
(m̂ = b̃)) ∧ (¬ã ∧ ¬b̃)⇒ (m̊⇔ m̊′ ∧ m̊⇒ (m̂ = m̂))

p
ψFilter(a, b, P) = b̃⇒ (ã ∧ b̂ ∈ dom(P) ∧ P (â) ∧ (â = b̂))

f
ψTransformer(a, b, f) = b̃⇒ (ã ∧ b̂ ∈ dom(f)) ∧ b̃⇒ (b̂ = f(â))

Table 6.2.2: Context-dependent encoding of Reo primitives

Channel Constraints

ψSync(a, b) : ã⇔ b̃ ∧ ã⇒ (â = b̂) ∧ ¬(ac. ∧ bk.)
ψSyncDrain(a1, a2) : ã1 ⇔ ã2 ∧ ¬(ac1

. ∧ ac2.)
ψAsyncDrain(a1, a2) : ã1 ⇒ (¬ã2 ∧ ac2.) ∧ ã2 ⇒ (¬ã1 ∧ ac1.)

ψLossySync(a, b) : b̃⇒ ã ∧ b̃⇒ (â = b̂) ∧ ¬ac. ∧ ¬ã⇒ bk
.

ψMerger(a0..i, b) : ãi ⇔ b̃ ∧ ãi ⇒ (âi = b̂) ∧ ¬b̃ ⇒
((¬bk.

∧
i a

c
i
.) ∨ (bk

. ∧ ¬aci .
∧

j,j!=i a
k
j
.
))

ψReplicator(a, b0..i) : ã ⇔
∧

i b̃i ∧ (ã ⇒
∧

i(b̂i = â)) ∧ ¬ã ⇒
((¬ac.

∧
i b

k
i
.
) ∨ (¬bki

. ∧
j,j 6=i b

k
j
. ∧ ac.))

ψRouter(a, b0..i) : ã ⇔ (
∨

i b̃i)
∧

j,j 6=i ¬(b̃i ∧ b̃j) ∧ b̃i ⇒ (b̂i =

â) ∧ ã⇔ (¬ac. ∨ ¬(
∨

i b
k
i
.
))

ψFIFO1
(a, b,m) : ã⇒ (¬m̊∧ m̊′ ∧ (m̂′ = â))∧ b̃⇒ (m̊∧¬m̊′ ∧

(m̂ = b̂)) ∧ (¬ã ∧ ¬b̃) ⇒ (m̊ ⇔ m̊′ ∧ m̊ ⇒ (m̂ = m̂′)) ∧ ¬m̊ ⇒
bk

. ∧ m̊⇒ ac.p ψFilter(a, b, P) = b̃ ⇒ (ã ∧ â ∈ dom(P) ∧ P (â)) ∧ b̃ ⇒ (â =

b̂) ∧ (¬ã⇒ (¬ac. ⇔ bk
.
)) ∧ (ã ∧ ¬b̃⇒ bk

.
)

f ψTransformer(a, b, f) = b̃ ⇒ (ã ∧ â ∈ dom(f)) ∧ b̃ ⇒ (b̂ =

f(â)) ∧ ¬(ac. ∧ bk.)

or predicate. In the case of elements with more than one source or sink ends, we

use indices.

86

The intuition behind these constraints is that their solutions re�ect the semantic

model of each element as given by CASM and CC.

Example 6.2.2 Figure 6.2.1 shows a Reo network that consists of a transformer

channel with the function 3 ∗ â, whose domain is the set of numbers Number and a

�lter channel with the condition b̂%2 = 0 and domain Number.

a
3 ∗ â b

c
b̂%2 = 0

Figure 6.2.1: A data-aware Reo connector

Since none of the Reo primitives in Figure 6.2.1 is context-dependent, we use

the constraints corresponding to the primitives in this network as de�ned in Table

6.2.1.

ψTransformer(a, b, 3 ∗ â) = ã⇔ b̃ ∧ ã⇒ (â ∈ Number ∧ b̂ = 3 ∗ â)) (6.1)

ψFilter(b, c, b̂%2 = 0) = c̃⇒ (b̃ ∧ b̂ ∈ Number ∧ (b̂%2 = 0)) (6.2)

Equation 6.1 states that �ow occurs on the source end of the transformer channel

i� it occurs on its sink end. In addition, �ow can exist only if the data item that

enters the source end of the channel is a number. In this case, the data item written

on the sink end is three times the value of the source data item.

Equation 6.2 expresses that �ow on the source end of the �lter channel leads

to �ow on its sink end, i� the data item belongs to the channel's accepting pattern

(which is b̂%2 = 0).

In this case, the value of data items passing through the ends are equal. No

�ow through the sink end c is either due to no �ow on b or that the incoming data

item does not satisfy the accepting pattern. As mentioned, the conjunction of these

constraints (subject to Axiom 7.2.1, which trivially holds in this case) encodes the

behavior of the given Reo network.

6.2.2 Solving RCSPs

In this section, we show how to obtain the solutions of RCSPs. Since Reo Constraint

Satisfaction Problems (RCSPs) have predicates with free variables of types Boolean

87

({>,⊥}) and data (D), a SAT-solver or a numeric constraint solver cannot solve

them alone. Satis�ability Modulo Theories (SMT) [BSST09] solvers �nd solutions

for propositional satis�ability problems where propositions are either Boolean or

constraints in a speci�c theory.

However, SMT-solvers are not applicable in our case either, because unlike SAT-

solvers they �nd only an instance of a solution as opposed to the complete set of

answers. Another drawback of most SAT- and SMT-solvers is that they work only

on quanti�er-free formulae, while we use existential quanti�es to implement the

hiding operator of constraint automata (see Section 6.3).

To generate the CASM corresponding to a given Reo network, we need all solu-

tions and thus resort to a hybrid approach that uses both SAT-solvers and Computer

Algebra Systems (CASs), namely, REDUCE [Ray87], which is a system for general

algebraic computations.

First, we form a pure Boolean constraint system by substituting data dependent

constraints with new Boolean variables and �nd all solutions for the new constraints

using a SAT-solver. Then, by substituting each such solution into the original con-

straints, we obtain a data dependent constraint satisfaction problem that a CAS can

solve symbolically. From these solutions, we extract a CASM corresponding to the

Reo network encoded by the original set of constraints. Our approach avoids state

explosion by treating data constraints symbolically. In the following, we elaborate

on our approach.

In an RCSP 〈P,M,M0,V, C〉, let VB and VD be the sets of free Boolean and

free data variables of C, respectively, where V = VB ∪ VD, and let AD be the set

of atomic predicates of C containing data variables. The following is our procedure

for solving C.

1. We obtain CB from C by replacing every occurrence of x ∈ AD with a unique

new Boolean variable y /∈ V. For example, for C = (c̃ ⇒ b̃) ∧ (c̃ ⇒ (b̂ ∈
Number ⇒ b̂%2 = 0)) in Figure 6.2.1, we obtain CB as (c̃⇒ b̃)∧ (c̃⇒ (y1 ⇒
y2)) where y1 and y2 replace b̂ ∈ Number and b̂%2 = 0, respectively.

2. An o�-the-shelf SAT-solver can �nd the set of solutions SB for CB . We de�ne

the �nite set of constraints C [SB] = {C [v1, v2, . . . , vn \ z1, z2, . . . zn] | for all
distinct vi ∈ VB , 1 ≤ i ≤ n = |VB |, zi ∈ S (vi) , S ∈ SB}.

3. Every CD ∈ C [SB] is a numerical constraint satisfaction problem, which we

(symbolically) solve using a Computer Algebra System. Every solution to

each CD along with the SAT solution S ∈ SB that produced CD ∈ C [SB] in

the previous step, constitute a solution to the RCSP.

88

Using the presented technique, we obtain the solutions for the RCSP correspond-

ing to Examples 6.2.2 as follows:

1. 〈{ã = ⊥, b̃ = ⊥, c̃ = ⊥},>〉,

2. 〈{ã = >, b̃ = ⊥, c̃ = ⊥}, â 6∈ Number〉,

3. 〈{ã = >, b̃ = >, c̃ = ⊥}, â ∈ Number ∧ b̂ = 3 ∗ â ∧ b̂%2 6= 0〉,

4. 〈{ã = >, b̃ = >, c̃ = >}, â ∈ Number ∧ b̂ = 3 ∗ â ∧ b̂%2 = 0 ∧ b̂ = ĉ〉.

a
b

c

Figure 6.2.2: A context-dependent Reo connector

Example 6.2.3 Figure 6.2.2 depicts a Reo network that consists of a lossySync

channel and a FIFO1 channel connecting on the node b.

Since the Reo network in Figure 6.2.1 contains a lossySync that is a context

dependent channel, we use the context-aware RCSP encoding from Table 6.2.2:

ψLossySync(a, b) = b̃⇒ (ã ∧ (â = b̂)) ∧ ¬ac. ∧ ¬ã⇒ bk
.
. (6.3)

ψFIFO1
(b, c,m) = b̃⇒ (¬m̊∧m̊′∧(m̂′ = b̂))∧c̃⇒ (m̊∧¬m̊′∧(m̂ = ĉ))∧(¬b̃∧¬c̃)⇒

((m̊⇔ m̊′) ∧ m̊⇒ (m̂ = m̂′)) ∧ ¬m̊⇒ cc. ∧ m̊⇒ bk
.
.

(6.4)

Equation 6.3 states that �ow on the sink end of the lossySync is due to �ow

on its source end. If there is �ow on the sink end of the lossySync, the data items

exchanged at the source and the sink ends are the same. However, it is possible

that the source end has �ow, but the sink end does not. In this case, the reason for

no �ow comes from the environment with which the sink end communicates. The

third possible behavior of the channel is that there is no �ow on the source end due

to the environment, in which case the channel provides a reason for no �ow on its

sink end.

Equation 6.4 expresses the behavior of the FIFO1 channel as follows: The �ow

on the source end of the channel states that the value of the variable representing

the state memory (of the current state) is unde�ned. The �ow on the source end

de�nes the state memory variable for the next state to contain the value of the

89

incoming data item. On the other hand, �ow on the sink end means that the value

of the state memory variable is de�ned. The data item leaving the sink end is

equivalent to the bu�er's data item. In addition, the value of the state memory

variable becomes unde�ned in the next state. If there is no �ow on the ends, the

variables related to the states stay the same. Being empty, the FIFO1 channel

provides a reason for no �ow on its sink end, while being full does so on the source

end of the channel.

The solutions for the RCSP 6.4, (where for brevity, we omit the values of the

variables representing the context, such as bc.) are as follows:

1. 〈{ã = ⊥, b̃ = ⊥, c̃ = ⊥, m̊ = ⊥, m̊′ = ⊥},>〉,

2. 〈{ã = >, b̃ = >, c̃ = ⊥, m̊ = ⊥, m̊′ = >}, â = b̂ ∧ m̂′ = b̂〉,

3. 〈{ã = >, b̃ = ⊥, c̃ = ⊥, m̊ = >, m̊′ = >}, m̂ = m̂′〉,

4. 〈{ã = ⊥, b̃ = ⊥, c̃ = ⊥, m̊ = >, m̊′ = >}, m̂ = m̂′〉,

5. 〈{ã = >, b̃ = ⊥, c̃ = ⊥, m̊ = >, m̊′ = ⊥}, m̂ = ĉ〉,

6. 〈{ã = ⊥, b̃ = ⊥, c̃ = >, m̊ = >, m̊′ = ⊥}, m̂ = ĉ〉.

6.2.3 Constructing CASM

In order to construct the CASM from the set of solutions S for an RCSP 〈P,M,M0,V, C〉,
we �rst de�ne

� N = {n | nc ∈ P ∨ nk ∈ P}

and then map each solution 〈s, sd〉 ∈ S into a transition q
N,g−−→ p as follows:

� q = 〈{m | m ∈M, s (m̊) = >}〉,

� p = 〈{m | m ∈M, s (m̊′) = >}〉,

� N = {n | n ∈ N , s (ñ) = >},

� The data constraint g is (a syntactic variant of) sd.

We obtain the CASM A = (Q,N ,→, q0,M) from the set −→ of all transitions

generated above, where:

� Q = {q | q N,g−−→ p ∨ p N,g−−→ q},

� q0 = 〈{m | m ∈M0, s(m̊) = >}〉,

90

∅, true
{a, b, c},

â ∈
Number∧

b̂ = 3 ∗ â ∧
b̂ = ĉ ∧
b̂%2 = 0

{a, b},
â ∈
Number∧
b̂ = 3 ∗ â ∧
b̂%2 6= 2

{a}, â 6∈
Number

mstart
∅, true

{a, b, c}, â = b̂ ∧ b̂ = ĉ ∧ m̂′ = ĉ

{a}, true

∅, true

{a, d}, m̂ = d̂

{d}, m̂ = d̂

Figure 6.2.3: CASMs generated for Figures 6.2.1 and 6.2.2

� M is the sameM as in the RCSP.

Applying the above procedure to the solutions of RCSPs constraints generates

their corresponding CASMs. For instance, the �rst solution for the constraints in

Example 6.2.2 generates the transition q
∅,true−−−−→ q, where q is the only state of the

CASM, which has no state memory variable. This is so because the set of variables

of the form m̊ is empty. Also, the transition has no synchronizing port, because the

value of every one of the variables ã, b̃ and c̃ is ⊥. Figures 6.2.3a and 6.2.3b show

the CASMs derived from the RCSPs in Examples 6.2.1 and 6.2.2.

Our approach deals with data in a symbolic fashion, where we partition the

global set of data values to equivalence classes toward which a Reo network behaves

di�erently. This is in contrast with the traditional way of dealing with data in the

formal semantics of Reo (and other models), where they consider a di�erent state

for each possible value that can be stored in bu�ers and a distinct transition for

each data value passing through the ports.

Our symbolic approach allows working with an in�nite data domain. In addition,

rather than implementing the highly time- and memory-demanding custom-made

algorithms to generate Reo formal semantics, we use the e�cient SAT-solvers and

computer algebra systems to solve constraints whose solutions are equivalent to

these models.

An experimental study done on the e�ciency of using SAT-solvers to generate

91

start m

{A}, true

{A,B},
dA = dB ∧ dA = m′

{C},
dC = m

{A}, true

Figure 6.2.4: CASM for Figure 6.2.2

Ac Bk Bc Ck

I . . / .
II . / / .
III − − − .

L0

Ac Bk Bc Ck

1 . . / /
2 . / / /
3 . . / −
4 . . / −

L1

3

4

III

I

II 2

1

Figure 6.2.5: CC for Figure 6.2.2

Reo formal semantics [Pro11] compares two prototypes based on constraint satisfac-

tion techniques and connector coloring semantics, without taking data constraints in

consideration. The results illustrate that the approach based on constraint solving

scales better and is more e�cient. In chapter 7 we present an evaluation through a

case study, which a�rms this conclusion.

6.3 Hiding

We use hiding to abstract from internal transitions. This is a mechanism to support

hierarchy and is used to create components.

The author in [Pro11] proposes applying the existential quanti�er to the con-

straints encoding of the behavior of a network to abstract from internal ports and

their corresponding data variables. Similarly, we use existential quanti�ers such as

∃ẽ, ê, e. : C, where C is the RCSP of a Reo network and e is an internal node to

hide.

Although several algorithms exist for the problem of quanti�er elimination in

Boolean algebra and �rst order logic [BZ07] [Abd02] [Dav88], we are not aware of

92

any working tool that does quanti�er elimination on Boolean algebraic formulae.

Therefore, our tool implements the hiding operator as de�ned for CASM.

Hiding the internal nodes on some transitions can make the set of their syn-

chronized nodes empty. Here, we refer to such a transition as an empty transition,

if the free variables of its guard are merely state memory variables. Under some

circumstances, we can merge the source and the target states of empty transitions.

Let q and p be two states in a CASM such that q
∅,g−−→ p. The following are the

conditions under which the state p can merge into the sate q:

1. The states q and p have the same number of state memory variables.

2. The guard g consists of the conjunction of the predicates of the form of x = y′,

for x, y ∈M. This way, g de�nes a correspondence relation between the state

memory variables of the state q and those of the state p.

3. For each transition q
N,g′−−−→ r where r /∈ {p, q}, there is a transition p

N,g′′−−−→ r

such that g′ ⇔ g′′g , where g
′′
g is obtained from g by replacing all occurrences

of the next state memory variable y′ with the next state memory variable x′,

if g contains x = y′ for state memory variables x, y ∈M.

4. For each transition r
N,g′−−−→ p where r /∈ {p, q}, there is a transition r

N,g′′−−−→ q

such that g′′ ⇔ g′g, where g
′
g is derived from g by substituting all occurrences

of the state memory variable x in g with the state memory variable x, if g

contains x = y′ for state memory variables x, y ∈M.

Provided that the above conditions hold, the state p merges into the state q as

follows:

1. We eliminate the transition q
∅,g−−→ p.

2. We remove the state p after substituting y, y′, and p with x, x′, and q in

all transitions. Observe that such substitutions convert the non-eliminated

transitions between the states q and p into loops over the state q.

Example 6.3.1 Figure 6.3.1 shows a FIFO2 derived from composing two FIFO1s.

The CASM corresponding to the FIFO2 is in Figure 6.3.2a. Figure 6.3.2b depicts

the CASM resulting from hiding the mixed node b. Figure 6.3.2c presents the result

of eliminating the empty transitions.

93

a
b

c

Figure 6.3.1: Two FIFO1s forming FIFO2

start m

n m,n

∅, true
∅, true

∅, true
∅, true

{a}, m′ = â

{b}, b̂ = m ∧ n′ = b̂

{a}, m′ = â ∧ n′ = n

{c}, m′ = m
∧ ĉ = n

{c}, ĉ = n

{a, c}, m′ = â ∧ ĉ = n

(a) CASM of Figure 6.3.1

start m

n m,n

∅, true
∅, true

∅, true ∅, true

{a}, m′ = â

∅, n′ = m

{a}, m′ = â∧ n′ = n

{c}, m′ = m
∧ ĉ = n

{c}, ĉ = n

{a, c}, m′ = â ∧ ĉ = n

(b) Hiding internal ports

start m
m,
n

∅, true

∅, true

∅, true
{a},
m′ = â

{a},
m′ = â ∧
n′ = m

{c}, m′ = m∧ ĉ = n{c},
ĉ = m

{a, c},m′ = â ∧
ĉ = m

(c) Merging the states

Figure 6.3.2: Hiding the empty transition and merging its source and target states for the
CASM of FIFO2 in Figure 6.3.1

94

d

a
b

c

Figure 6.4.1: A sample Reo network

start m

{a, b}, â = b̂ ∧ m̂′ = b̂

{b, d}, b̂ = d̂ ∧
m̂′ = d̂

{c}, ĉ = m̂

Figure 6.4.2: CASM corresponding to Figure 6.4.1

6.4 Correctness and compositionality

CASM and CC model the presence and the absence of data �ow on a Reo network

at di�erent levels of granularity. For instance, Figure 6.4.2 and Figure 6.4.3 are

the CASM and CC semantics for the Reo network in Figure 6.4.1. As the �gures

show, the node b in CASM is mapped to three primitive ends in CC, which do not

necessarily have the same coloring.

In this section, we formally investigate the relation between the solutions of the

RCSP for a given Reo network and its CC and CASM semantics. However, we �rst

need to present some de�nitions.

For a given networkR withA = (Q,N ,→, q0,M), its CASM and C = 〈P,L, L0, η〉,
its CC, we de�ne the function OR : P → N as it maps each CC port to its corre-

sponding node in CASM.

De�nition 6.4.1 (Correlation ∼) Let A = (Q,N ,→, q0,M) be a CASM and

C = 〈P,L, L0, η〉 be a CC. We de�ne the relation ∼: Q× L, as follows:

� q0 ∼ L0, if N =
⋃

p∈P OR(p).

� For each p ∈ Q and L′ ∈ L, p ∼ L′ if the following conditions hold:

1. There exists q ∈ Q and L ∈ L such that q
N,g−−→ p and L′ = η(L, l), where

l ⊂ L,

2. For all n ∈ N,n = OR(p)⇔ l(e) = −,

3. q ∼ L.

95

d

a
b

c

Figure 6.4.3: A coloring annotated state of the CC corresponding to Figure 6.4.1

If a relation ∼ exists between Q and L, then we say that A correlates to C, written

as A ∼ C.

It is easy to see that if A and C belong to the same Reo network, then q0 ∼ L0.

Therefore, A ∼ C.

De�nition 6.4.2 (id mapping) For the CASM A = (Q,N ,→, q0,M) and the

coloring semantics C = 〈P,L, L0, η〉 such that A ∼ C, the function id : L → 2Q

correlates coloring tables with subsets of Q such that id(L) returns the set of all

q ∈ Q wherein the data-�ow possibilities resulting from the outgoing transitions of

q correspond to the data-�ow possibilities prescribed by the coloring table L.

The following example illustrates De�nition 6.4.2.

Example 6.4.1 Figure 6.2.4 and Figure 6.2.5 are, respectively, the CASM and the

CC of the Reo network of Figure 6.2.2.

Note that we have modi�ed the presentation of the CC to resemble the CASM

structure. For instance, the transition L1
i−→ L2 represents L2 = η (L1,

colsL1
[i]), where the colsL1

is the possible colorings for each coloring table as shown

in the example.

Let q designate the state without a state memory variable in the CASM of Fig-

ure 6.2.5, and let p designate the state with the state memory variable m. Then,

according to De�nition 6.4.1, q ∼ L0 and p ∼ L1.

De�nition 6.4.3 (Memory cells of a state) We use Mq to denote the set of

all m ∈ M that syntactically appear as m in a data constraint g on an outgoing

transition q
N,g−−→ p of the state q. Analogously, we use M′q to denote the set of

all m ∈ M that syntactically appear as m′ in a data constraint g on an incoming

transition p
N,g−−→ q of the state q. We call Mq and M′q, respectively, the accessed

and the updated memory cells of the state q.

De�nition 6.4.4 (Encoding a Reo network) For the semantics for a Reo net-

work R as A = (Q,N ,→, q0,M) and C = 〈P,L, L0, η〉, the RSCP Ψ = 〈P,M,

M0,V, C〉 encodes R in terms of its CASM and CC semantics i� the following con-

ditions hold:

96

1. For all solution pairs 〈s, sd〉 � Ψ, there exist a transition q
N,g−−→ p and a

colorings l ∈ L ∈ L such that

(a) for all m ∈M, m ∈Mq i� s(m̊) = >

(b) for all m ∈M, m ∈Mp i� s(m̊′) = >

(c) for all n ∈ N , n ∈ N i� s(ñ) = >

(d) for all v̂ ∈ V, [g] v̂\sd(v̂)

(e) for all p ∈ P, s(p̃) = > i� l(n) = − coloring

(f) for all p ∈ P, s(e.) = > where e is either pc or pk i� l(n) = /

(g) for all p ∈ P, s(e.) = ⊥ where e is either pc or pk i� l(n) = .

(h) for all p ∈ P such that pc ∪ pk ⊂ P, if sol(p̃) = ⊥, then pc. ∨ pk..

2. For all transitions q
N,g−−→ p, and colorings l ∈ L ∈ L such that q ∼ L and

p ∼ η(L, l), there exists a solution 〈s, sd〉 such that

(a) for all m̊ ∈ V, s(m̊) = > i� q ∈ id(L) and m ∈Mq

(b) for all m̊′ ∈ V, s(m̊′) = > i� p ∈ id(η(L, l)) and m ∈M′p
(c) for all ñ ∈ V i� n ∈ N and l(n) = −

(d) for all v̂ ∈ V, g [v] \sd (v̂)

(e) for all e. ∈ V, where e is either nc or nk, s(e.) = > i� n /∈ N and

l(n) = /

(f) for all e. ∈ V, where e is either nc or nk, s(e.) = ⊥ i� n /∈ N and

l(n) = .

The purpose of this encoding is to obtain the behavior of the Reo network as

speci�ed in both its CASM and CC semantics by solving the RCSP ψ.

Theorem 6.4.1 (Correctness) For the CASM A = (Q,N ,→, q0,M) and the

CC C = 〈P,L, L0, η〉 such that A ∼ C, let Ψ be the RCSP encoding A and C. The

CASM A′ = (Q′,N ′,→′, q′0,M′) and the CC C ′ = 〈P ′,L′, L′0, η′〉 extracted from

the solutions of Ψ are re�nements of A and C and A′ ∼ C ′.

Proof For all solution s � Ψ, there is a coloring l′ and a transition q′
N ′,g′−−−→ p′ such

that the �rst part of De�nition 6.4.4 holds:

� l′ ∈ L,

� q′
N ′,g′−−−→ p′,

97

� q′ ∈ Q,

� p′ ∈ Q.

We construct A′ = (
⋃

(q′ ∪ p′) ,N ′,→′, q′0,M′) and C ′ = 〈P ′,L′, L′0, η′〉 from
the solutions, where A′ v A and C ′ v C.

Lemma 6.4.1 Assume the condition (1) of De�nition 6.4.4 holds for two RC-

SPs Ψ1 = 〈P1,M1,M0,1,V1, C1〉 and Ψ2 = 〈P2,M2,M0,2,V2, C2〉 for automata

A1 = (Q1,N1,→1,q01
,M1) and A2 = (Q2,N2,→2,q02

,M2) and colorings C1 =

〈P1,L1, L01
, η1〉 and C2 = 〈P2,L2, L02

, η2〉. Then the condition (1) of De�nition

6.4.4 holds for Psi1 � Psi2, A1 ./ A2 and C1 • C2.

Proof Assume 〈s, sd〉 � Ψ1 and 〈s, sd〉 � Ψ2. Let 〈s1, sd1〉 and 〈s2, sd2〉 be the

images of 〈s, sd〉 over V1 and V2, respectively. Then 〈s1, sd1〉 � Ψ1 and 〈s2, sd2〉 � Ψ2

and for each v ∈ V1 ∩ V2, s1(v) = s2(v) and sd1(v) = sd2(v).

Therefore, there exist transitions q1
N1,g1−−−−→1p1 and q1

N2,g2−−−−→2p2 and colorings l1 ∈
L1 ∈ L1 and l2 ∈ L2 ∈ L2 such that the condition (1) of De�nition 6.4.4 holds.

For each ṽ ∈ V1∩V2, s1(ṽ) = > i� v ∈ N1 and v ∈ N2. Therefore, N1∩N2 = N2∩N1,

which means 〈q1, q2〉
N1∪N2,g1∧q2−−−−−−−−−→ 〈p1, p2〉.

For each ṽ ∈ V1 ∩ V2, s1(ṽ) = > i� l1(OR(n)) = − and l2(OR(n)) = −, s1(ṽ) =

⊥ ∧ s1(v.) = > i� l1(OR(n)) = . and l2(OR(n)) = ., and s1(ṽ) = ⊥ ∧ s1(v.) = ⊥
i� l1(OR(n)) = . and l2(OR(n)) = /.

On the other hand,

� for all m ∈M, m ∈Mq i� s(m̊) = >

� for all m ∈M, m ∈Mp i� s(m̊′) = >

� for all n ∈ N , n ∈ N i� s(ñ) = >

� for all v̂ ∈ V, [g] v̂\sd(v̂)

� for all p ∈ P, s(p̃) = > i� l(n) = −

� for all p ∈ P, s(e.) = > where e is either pc or pk i� l(n) = /

� for all p ∈ P, s(e.) = ⊥ where e is either pc or pk i� l(n) = .

Therefore, the condition (1) of De�nition 6.4.4 holds for Ψ1�Ψ2, A1 ./ A2 and

C1 • C2.

98

Lemma 6.4.2 Assume the condition (2) of De�nition 6.4.4 holds for two RCSPs

Ψ1 = 〈P1,M1,M0,1,V1, C1〉 and Ψ2 = 〈P2,M2,M0,2,V2, C2〉 and for CASMs A1

and A2 and CCs C1 and C2. Then the condition (2) of De�nition 6.4.4 holds for

Ψ1 �Ψ2, A1 ./ A2 and C1 • C2.

Proof Consider the solutions 〈s1, sd1〉 � Ψ1 and 〈s2, sd2〉 � Ψ2 such that 〈s1, sd1〉
encodes q1

N1,g1−−−−→1p1 and l1 ∈ C1 and 〈s2, sd2〉 encodes q2
N2,g2−−−−→2p2 and l2 ∈ C2.

Then, 〈s, sd〉 � Ψ1 � Ψ2, where 〈s, sd〉 = 〈s1 ∪ s2, sd1 ∪ sd2〉. Here, we distinguish

between two cases:

� For all v ∈ dom(s1) ∩ dom(s2) and for all v̂ ∈ dom(sd1
) ∩ dom(sd2

), s1(v) =

s2(v) and sd1
(v̂) = sd2

(v̂).

� Otherwise.

The former case describes valid solutions. For two transitions q1
N1,g1−−−−→1p1 and

q2
N2,g2−−−−→2p2, we have 〈q1, q2〉

N1∪N2,g1∧g2−−−−−−−−−→ 〈p1, p2〉 i� N1 ∪N2 = N2 ∪N1.

For two colorings l1 and l2, the coloring l = l1 � l2 is valid i� either ec ∈ dom(l1)

and ek ∈ dom(l2) and ¬(l1(ec) = / ∧ l2(ek) = /) or ek ∈ dom(l1) and ec ∈ dom(l2),

¬(l1(ek) = / ∧ l2(ec) = /).

For all n ∈ N1 and n ∈ N2, s1(n) = >, s2(n) = >, n ∈ N1∩N2 and N1∩N2 = N2∩
N1 means that {n|ñ ∈ P1∧s1(ñ) = >∧ ñ ∈ P2} = {n|ñ ∈ P2∧s2(ñ) = >∧ ñ ∈ P1}.
So, {n|ñ ∈ P1 ∪ P2 ∧ s1(ñ) = >} = {n|ñ ∈ P1 ∩ P2 ∧ s2(ñ) = >}. This means that

for all ñ ∈ P1 ∩ P2, s1(ñ) = s2(ñ).

For all q1 ∈ Q1, m ∈ M(q1) i� s1(m) = > and q2 ∈ Q2, m ∈ M(q2) i� s2(m) = >.
Since M1 ∩M2 = ∅, M(〈q1, q2〉) = M(q1) ∪M(q2), m ∈ M(〈q1, q2〉) i� s1(m) =

> ∨ s2(m) = >.
If sd1

⇒ g1 and sd2
⇒ g2, then sd1

∪ sd2
⇒ g1 ∧ g2.

The latter gives invalid solutions, which are impossible. Therefore, the condition

(2) of De�nition 6.4.4 holds for Ψ1 �Ψ2, A1 ./ A2 and C1 • C2.

Theorem 6.4.2 (Compositionality) If Ψ1 encodes the automaton A1 and the

CC C1 and Ψ2 encodes the automaton A2 and the CC C2, then Ψ1 � Ψ2 encodes

the automaton A1 ./ A2 and the CC C1 • C2.

Proof It follows directly from Lemmas 6.4.1 and 6.4.2.

99

BA C D E F

H G

Figure 6.4.4: 7-Sequencer

6.4.1 Performance evaluation

In the remainder of this section, we perform an evaluation on the performance of

the presented constraint-based approach along with a brief comparison with the

existing approaches, namely, connector coloring and constraint automata.

The execution time of the algorithm depends on the number of states of the

given RLTS and the time required to solve the constraints encoding of the network.

Thus, to study the performance of our framework and to compare it with the existing

approaches in computing operational semantics of Reo networks, we choose the case

of N-Sequencer, which consists of N FIFO channels that are circularly connected.

In this example, adding each FIFO1 channel doubles the number of the states in

the corresponding semantics model and increases the complexity of the constraints

encoding the behavior of the network by adding new variables and new assertions

on them.

This makes the network a good choice for our benchmarking, where we would

like to compare the solutions on state explosion.

Since we are interested in comparing our approach with the existing tools, we

do not include priority in our case study. This is justi�ed by the fact that incor-

porating priority does not a�ect the number of states in the model and only will

in�uence the size of the constraint. In addition, adding more FIFO1 channels to

the network increases both the number of the states and the size of the constraint

capturing the semantics of the network. Since we are using optimized third-library

tools to solve the constraints, we do not distinguish between the various form of

constraints obtained from di�erent channels and instead we are just interested in

the approximate growth of the constraints.

Figure 6.4.4 shows a 7-sequencer. Though the size of the operational semantics

model of this network grows in a linear fashion in relation with N, the number of

intermediate states to compute the �nal results grows exponentially.

The benchmarks have been performed on Mac Book Pro OS X El Capitan with

100

2.8 GHz Intel Core i7 and 16 GB MHz DDR3 memory. The implementation of our

approach is in Java 8. We have used Reduce Algebra System[Ray87] to compute

the conjunctive normal form of the constraints and to solve them. We have also

experimented with an optimization on the number of the variables used in the

constraints by substituting equal variables with a single variable. The result of

the original and the optimized approaches are presented with red and blue square

markers, respectively.

Figure 6.4.5a presents the average time required for computing a single solution

of the RCSP of a N-Sequencer. Figure 6.4.5b demonstrates the relation between

N and the size of the RCSP's constraints of a N-Sequencer. This is an indication

of complexity of the constraint that needs to be solved. Note that the number of

solutions for RCSP of a N-Sequencer is 2N, which equals to the number of transitions

in the corresponding RLTS. Finally, Figure 6.4.5c illustrates the total time required

to compute all solutions of a RCSP's constraint of a N-Sequencer. Figure 6.4.5d

shows the time consumed to calculate the coloring semantics and the constraint

automata semantics of N-Sequencers using the ECT tool-set. For N = 16, the

computation of coloring semantics fails with the stack over�ow error. The same

happens while computing the constraint automata semantics for N = 21.

As the results show our approach can handle bigger models compared to the

existing ECT tools. It is interesting to observe that the di�erence between the

original and optimized approaches becomes more signi�cant for bigger values of N .

Another possible optimization point is the call to Reduce program that is currently

implemented by invoking the program externally. We expect a better performance

due to reduction of external invocation overhead by including the source code of

the Reduce Algebra System in our tool.

6.5 Conclusions

In this chapter, we have presented a constraint-based framework that encodes the

semantics of Reo networks as constraint satisfaction problems whose predicates

are either Boolean propositions or numerical constraints. We presented a hybrid

approach to �nd the solutions for these problems.

An advantage of our approach is that it treats data constraints symbolically to

mitigate the state explosion problem. From this solution, we construct the semantic

model corresponding to a Reo network in the form of constraint automata with state

memory.

Our framework supports product and hiding operations on constraint automata.

101

0 100 200 300
0

10

20

N

T
im

e
(S
ec
o
n
d
s)

Optimized approach
Original approach

(a) Time (s), single solution

0 100 200 300
0

50,000

100,000

N
C
o
n
st
ra
in
t
si
ze

(b
y
te
s) Optimized approach

Original approach

(b) Size of the RCSP

0 100 200 300
0

2,000

4,000

6,000

8,000

N

T
im

e
(S
ec
o
n
d
s)

Optimized approach
Original approach

(c) Time (s), calculating the RLTS

0 5 10 15 20
0

10

20

30

N

T
im

e
(S
ec
o
n
d
s)

CC (seconds)

CA (seconds)

(d) Time (s), building CA and connector
coloring table

Figure 6.4.5: Performance evaluation based on N-Sequencer network

102

We have implemented and integrated our approach as a tool in the ECT. In the

next section, we use this framework to encode priority. It makes our work the most

expressive framework that exists to analyze Reo networks.

103

104

