
Constraint-based analysis of business process models
Changizi, B.

Citation
Changizi, B. (2020, February 21). Constraint-based analysis of business process models. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/85677

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/85677

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/85677

Cover Page

The handle http://hdl.handle.net/1887/85677 holds various files of this Leiden University
dissertation.

Author: Changizi, B.
Title: Constraint-based analysis of business process models
Issue Date: 2020-02-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/85677
https://openaccess.leidenuniv.nl/handle/1887/1�

5
Mapping BPMN to Reo

In this chapter, we present our approach in transforming BPMN 2 models into Reo

networks. Since the core of Extensible Coordination Tool-set (ECT) [AKM+08a]

and Eclipse BPMN 2 modeler [act] are based on Eclipse Modeling Framework (EMF)

[SBPM09], the BPMN 2 to Reo transformation can be carried out in the model-

driven paradigm. We use the Eclipse de-facto model transformation language and

toolkit called Atlas Transformation Language (ATL) [JK05].

ATL is a high level rule-based language dedicated to model transformation. By

using ATL we bene�t from the power of separation of concerns and focus only on

the required mapping rules, rather than matching patterns on the source models

and execution of the rules.

The mapping rules presented in this chapter are mainly based on the conceptual

mapping of BPMN primitives to Reo presented in [AKM08b] [AM08]. The following

is a brief summary of the mapping:

� A task or a collapsed sub-process is mapped to a FIFO1 channel, which

denotes a unit of work in a process. However, an expanded sub-processes is

modeled using a Reo connector whose inner elements are mapped from the

inner elements of the sub-process.

49

� In general, an event is mapped to a replicator node. For each start event, a

writer is created and connected to a source end of the node to simulate the

arrival of the event. Similarly, each end event is connected to a reader on one

of its sink ends. Throwing events are connected to the corresponding catching

events using FIFO1 and lossySync channels. So, they do not block the �ow

in case that the catching events are not yet ready to receive the event.

� For each conditional event, a �lter channel with the corresponding con-

dition is created and connected to the source end of the node.

� The terminate and throwing compensation are special cases, which their

mappings requires possible compensations. Therefore, they have more

sophisticated mappings, which we discuss in this chapter.

� Gateways are mapped to di�erent kinds of Reo nodes based on their types

and the number of their incoming and outgoing sequence �ows.

� A data-based exclusive gateway is mapped to a router node, while each

of its outgoing sequence �ows is mapped to a �lter channel with a corre-

sponding condition.

� A data-based inclusive gateway is mapped to a replicator node.

� A parallel event-based gateway with one incoming �ow is mapped to a

replicator. In case that it has more than one incoming �ows, it is mapped

to a join node.

� Sequence and message �ows are mapped to synchronous channels unless there

exists a more speci�c rule that describes the mapping in a given context.

Most BPMN 2 elements can be mapped to Reo constructs, which have relatively

similar granularity. One notable exception is that mapping of transactions requires

more e�ort than the other BPMN 2 elements do, and it creates many more Reo

constructs. This is due to the complex behavior of BPMN 2 transactions compared

to the other elements.

Tasks in a transaction should be compensated in the reverse order of their execu-

tion. In addition, the post compensation �ow cannot be taken unless all performed

compensatable tasks are compensated. Addressing these concerns requires more

elements to be added to the target model.

Since for mapping transactions requires more work compared with the rest of

elements. We re�ne them with groups of �ner grained elements, which collectively

deliver the same functionality. This is done prior to performing the transformation.

50

The rest of this chapter is organized as follows: Section 5.1 presents an algo-

rithm to re�ne BPMN 2 transactions in order to simplify the mapping procedure.

Section 5.2 is a brief introduction to Atlas Transformation Language (ATL). Our

proposed BPMN 2 to Reo mapping is given in Section 5.3. We show result of the

mapping using an example in Section 5.4. Section 5.5 overviews the related work

on transformation of BPMN models.

5.1 Transaction re�nement

To simplify mapping of BPMN transactions, we substitute them with a set of BPMN

2 elements that are easier to map to Reo, yet collectively expose the same func-

tionality. The correctness of this re�nement can be checked against the informal

behavioral description of the elements involved. We do not provide a formal proof.

The mechanism to trigger a compensation in BPMN 2 is either by using a cancel

event attached to the boundary of a transaction or by throwing a compensation

event. For simplicity, we assume that all compensations are triggered in the former

way. It is not a limiting assumption as it is possible to convert the latter to the

former.

In the re�nement process, we create complex gateways for two purposes: i)

to control the execution order of compensation tasks and ii) to delay the post

compensation �ow. We refer to them as compensation order and post compensation,

respectively.

We use these complex gateways as placeholders to be replaced by groups of

Reo elements, which implement the informally described behavior of the gateways.

Though the behavior of complex gateway is de�ned by its expression attribute,

for these gateways, we ignore their expression attribute. During the re�nement

process, though, we keep track of these gateways and pass their identi�ers to the

ATL mapping process in order to invoke the suitable mapping rules.

We carry out the re�nement as follows:

1. We create a send signal event for each compensatable task and place it after

the task (using an inclusive gateway if the task has a following element). This

is to notify when the task is completed.

2. When a compensatable task resides in a sequence of compensatable tasks,

only the last performed task can be compensated immediately upon receiving

the cancel event. The rest of the tasks should be compensated only if their

51

following tasks in the sequence are compensated. Therefore, for each com-

pensatable task in a sequence except for the last task, we create a send signal

event and place it after the compensation task corresponding to that task

(using gateways for connecting objects when it is necessary). These events

are �red after the corresponding compensatable tasks are compensated.

3. For a compensatable task Ta with a following compensatable task Tb in a

sequence of compensatable tasks, we create a complex gateway (of type com-

pensation order) with incoming sequence �ows originating from 1) the cancel

boundary event, 2) a newly created receive signal event, which catches the

signal corresponding to completion of Ta, 3) a newly created receive signal

event, which catches the signal corresponding to completion of Tb, and 4) a

newly created receive signal event, which catches the signal corresponding to

completion of the compensation of Tb. The complex gateway sends �ow to

the compensation task corresponding to Ta only if all incoming sequence �ows

are enabled.

The above steps assure that the compensation tasks are invoked in the right

order. In addition, we need to prevent that the outgoing sequence �ow of the cancel

boundary event is taken before all compensation tasks within the given transaction

are completed. The following step realizes this.

4. Let ce be the cancel boundary event of the given transaction, se be the outgo-

ing sequence �ow of ce, and fe be the target of se. We create a new complex

gateway ge (of type post compensation) and remove se. For each compensation

task tc and its corresponding componsatable task ta, we create a new receive

signal event to receive these signals. For each event, we create a sequence

�ow, which has the event as its source and gc as its target. This complex

gateway enables its outgoing sequence �ow if the cancel event is received and

after receiving each receive signal event corresponding to the compensatable

task ta, the receive signal event corresponding to the compensation of the task

tc is received, as well.

Listings 5.1, 5.2, and 5.3 depict our algorithm for transaction re�nement. To

reduce verbosity, we provide the following de�nitions:

� The objects property of a transaction is the set of its enclosed BPMN 2 �ow

objects (i.e. activities, gateways, and events).

� The compensation property refers to the compensation task corresponding to

the activity. If the task is not compensatable, this value is null.

52

� The nextFlowObjects property is the set of all the �ow objects that are directly

connected to an outgoing sequence �ow from the �ow object.

� The previousFlowObjects property is the set of all the �ow objects that are

directly connected to an incoming sequence �ow from the �ow object.

� The receivers, a property of a send signal event, is the set of the receivers of

the event.

� The getDoneSignal function maps a compensatable or a compensation task

to their corresponding send signal event.

� The getNextCompensatables function maps a compensatable task to its fol-

lowing compensatable tasks in sequences of compensatable tasks if they exist.

Otherwise, it returns null.

In addition, we assume that adding an object to the nextFlowObjects list creates

the required connecting objects.

The re�nement starts with the re�ne method, which goes through the transac-

tions in a given process and asserts that they have a single catching cancel boundary

event. If the event is found, a post compensation complex gateway is created in or-

der to delay the activation of the outgoing sequence �ow from the cancel boundary

event until all performed compensatable tasks inside the transaction are compen-

sated. Then, for each compensatable task the handleTaskCompletion and han-

dleCompensation methods are invoked.

The handleTaskCompletion method creates a send signal event and places it

after the given compensatable task (using a newly created gateway to connect it to

the other elements if it is needed). Additionally, it creates a receive signal event to

catch the generated signal event and adds it to the receivers attribute of the send

signal event.

The handleCompensation method starts by �nding the receive signal event,

which indicates the completion of the given compensatable task. Then, it �nds

the compensatable tasks that are immediate successors of the current compensa-

table task within sequences of compensatable tasks and creates the signal events

described in the third step.

Figure 5.1.1b demonstrates the result of applying the transaction re�nement

algorithm on a sample transaction shown in Figure 5.1.1a.

53

Listing 5.1: Re�nement of transactions

1 refine(BPMN2Process proc) {

2 foreach (Transaction tran in proc.objects.filter(e | e.isTypeOf(`

↪→ Transaction'))) {

3
4 Event[] cancels = tran.objects.filter(e | e.isTypeOf(`

↪→ CatchingCancelEvent'));

5 assert(cancels.length == 1);

6
7 Gateway postCompensation = new ComplexGateway();

8 postCompensation.nextFlowObjects = cancels[0].nextFlowObjects;

9 cancels[0].nextFlowObjects = {postCompensation};

10
11 foreach(Task start : tran.objects.filter(e | e.isTypeOf(`Task')

↪→ ∧ e.compensation != null) and tran.previousFlowObjects().

↪→ length == 0) {

12
13 // Allow post compensation flow only when all performed

↪→ compensatable tasks are compensated

14 Event taskDone = new CatchingSignalEvent();

15 getDoneSignal(task).receivers.add(taskDone);

16 taskDone.nextFlowObjects = {postCompensation};

17
18 Event compensationDone = new CatchingSignalEvent();

19 getDoneSignal(task.compensation).receivers.add(

↪→ compensationDone);

20 compensationDone.nextFlowObjects = {postCompensation};

21 }

22
23 foreach (CompensatableTask task in tran.objects.filter(e | e.

↪→ isTypeOf(`Task') ∧ e.compensation != null)) {

24 handleTaskCompletion(task);

25 handleCompensation(cancels[0], task);

26 }

27 }

28 }

54

(a) An example of BPMN 2 transaction (modi�ed from [Gro11])

(b) Re�ned transaction

Figure 5.1.1: BPMN 2 model of Figure 5.1.1a after performing the transaction re�nement

55

Listing 5.2: Re�nement of transactions (dealing with task completion)

1 handleTaskCompletion(CompensatableTask task) {

2 // A send signal event to indicate the task is done

3 Event doneSendEvent = new SendSignalEvent();

4 // A receive signal event to catch the signal above

5 Event doneReceiveEvent = new CatchingSignalEvent();

6 doneSendEvent.receivers = {doneReceiveEvent};

7 // Placing the signal event after the task

8 if (task.nextFlowObjects == null) {

9 task.nextFlowObjects = {doneSendEvent};

10 } else {

11 Gateway gateway = new InclusiveGateway();

12 gateway.nextFlowObjects = task.nextFlowObjects;

13 gateway.nextFlowObjects.add(doneSendEvent);

14 task.nextFlowObjects = {gateway};

15 }

16 }

5.2 Atlas Transformation Language

We have implemented the BPMN 2 to Reo transformation in ATL (ATLAS Trans-

formation Language), which is developed as a part of the ATLAS Model Manage-

ment Architecture (AMMA) platform [BJT05]. ATL is a hybrid language, meaning

that it supports both declarative and imperative programming styles.

A program in ATL consists of several rules that match against the source model

elements and generate target elements. Rules in ATL are of three types: matched

and lazy rules that are declarative, called rules, which are imperative.

The matched rules de�ne matching conditions for generating target elements

out of the source elements and the way to initialize them from the matched source

model element. A matched rule contains two mandatory sections, which are the

matching and generation patterns; and two optional parts that are local variables

de�nitions and an imperative section.

Local variables are de�ned by the keyword using. The scope of a local variable

is its enclosing rule. The source pattern of a matched rule is de�ned using the

from keyword. By de�ning an expression on the matching pattern, it is possible

to restrict the matching of the source elements to those of choice. A source model

element of an ATL transformation can only be matched by one matched rule.

The optional imperative section is de�ned by the keyword do. The generation

part of the rule is speci�ed by the to keyword. Unlike matched rules, a lazy rule is

56

Listing 5.3: Re�nement of transactions (dealing with compensations)

1 handleCompensation(CatchingCancelEvent cancel, CompensatableTask

↪→ task) {

2 Event receiver = getDoneSignal(task).receivers[0];

3 CompensatableTask[] nexts = getNextCompensatables(task);

4 if (nexts.length == 0) {

5 Gateway gateway = new InclusiveGateway();

6 cancel.nextFlowObjects.add(gateway);

7 receiver.nextFlowObjects = {gateway};

8 gateway.nextFlowObjects.add(task.compensation);

9 } else {

10 // A complex gateway that fires if either all or

11 // only the first two of its inputs have flow

12 Gateway order = new ComplexGateway();

13 cancel.nextFlowObjects.add(order);

14 receiver.nextFlowObjects.add(order);

15
16 foreach(CompensatableTask next in nexts) {

17 // Event associated with the next compensatable task

18 getDoneSignal(next).nextFlowObjects.add(order);

19
20 // Event associated with compensation of the next

21 // compensatable task

22 Event compensationDone = getDoneSignal(next.compensation).

↪→ receivers[0];

23 getDoneSignal(compensationDone).nextFlowObjects.add(order);

24 }

25 order.nextFlowObjects.add(receiver);

26 }

27 }

57

Listing 5.4: De�nition mapping rule

rule mapDefinition {

from

def : BPMN2!Definitions

to

mod : Reo!Module(

name <- def.name,

connectors <- def.rootElements->select(e | e.oclIsKindOf(

↪→ BPMN2!Process))

)

}

only �red when it is called through another rule.

Imperative programming in ATL is feasible using called rules. They can accept

parameters. In order to run a called rule, they need to be explicitly called from an

imperative code section.

ATL allows developers to de�ne auxiliary methods, called helpers, which can be

called from di�erent parts of the program. An ATL helper consists of a name, a con-

text type, a return type, an ATL expression de�ning the logic of the helper, and an

optional set of parameters de�ned as pairs of parameter name and parameter type.

5.3 Mapping BPMN 2 to Reo

We express the mapping in terms of the BPMN 2 and Reo meta-models. Meta-

models provide a precise and systematic way to describe valid models.

The conversion begins by matching the BPMN 2 top most element, which ac-

cording to the BPMN 2 meta-model is De�nition. De�nition is a container for other

BPMN 2 elements.

Similarly, a module serves as the top most container for Reo elements. Both

de�nition and module can be seen as logical elements that are added in the meta-

models in order to preserve the process structure. Neither of them exists in the

conceptual de�nition of the notations.

58

Listing 5.5: Process mapping rule

helper context BPMN2!SubProcess def : expanded : Boolean =

self.flowElements.size() > 0;

helper context BPMN2!FlowNode def : expandedSubProcess : Boolean =

if not self.oclIsKindOf(BPMN2!SubProcess)

then false

else self.expanded

endif;

rule mapProcess {

from

proc : BPMN2!Process

to

conn : Reo!Connector(

name <- proc.name,

nodes <- proc.flowElements->select(e | e.oclIsTypeOf(BPMN2!

↪→ Activity) or e.oclIsTypeOf(BPMN2!Event) or e.oclIsTypeOf

↪→ (BPMN2!Gateway)),

primitives <- proc.flowElements->select(e | e.oclIsTypeOf(BPMN2

↪→ !SequenceFlow) or (e.oclIsKindOf(BPMN2!SubProcess) and

↪→ not e.expanded())),

subConnectors <- proc.flowElements->select(e | e.

↪→ expandedSubProcess())

)

}

5.3.1 De�nition

We map a de�nition to a Reo module. The rule in Listing 5.4 carries out this

mapping. Similar to all of our mapping rules, it respects the nesting of elements,

meaning that the result of mapping an enclosed element is assigned to the mapped

parent element. The rule creates a Reo module for the BPMN 2 de�nition and

triggers rules matching the nested processes. The result of the triggered rules will

be assigned to connectors inside the created module.

59

Figure 5.3.1: The FlowNode and its related entities in BPMN 2 EMF meta-model

The select command in the rule collects the processes from the list of elements

nested within the rootElements attribute of the de�nition. RootElement is an

abstract type with Process as one of its subtypes. The select command applied on

rootElement guarantees that not any other subtype but process will go through this

assignment.

The function oclIsKindOf returns true, if it is invoked from either an instance

of the passed type or an instance of one of its subtypes. Similarly, the function

oclIsTypeOf returns true, if the element to which it is applied is an instance of the

passed type.

5.3.2 Process

We map a BPMN 2 process to a Reo connector in Listing 5.5. Besides creating a

connector, the rule initiates the set of nodes, primitives, and subconnectors from

the result of mapping the activity, gateway, and event elements, sequenceFlows,

and subprocesses, respectively.

When a mapping rule maps an BPMN 2 elements to a mixture of Reo nodes

and primitives those types that are the rules in Listing 5.5 does assign to the cor-

responding attribute in the Reo connector need to be manually assigned to their

target attribute of the connector. This is done in the do section of those rules,

where we place the recently created primitives inside the corresponding Reo con-

nector. Otherwise, these primitives would be �oating inside the model.

We assume that a subprocess is collapsed when it has no inner element. The

helper expanded returns true, when it is applied on a subprocess with at least one

60

Listing 5.6: Mapping tasks and collapsed subprocesses

rule mapTaskAndCollapsedSubprocess {

from

nod : BPMN2!FlowNode(nod.oclIsKindOf(BPMN2!Task) or (nod.

↪→ oclIsKindOf(BPMN2!SubProcess) and not nod.

↪→ expandedSubProcess()))

to

ndc : Reo!Node,

fif : Reo!FIFO(sourceEnds <- src, sinkEnds <- snk),

src : Reo!SourceEnd(node <- ndc),

snk : Reo!SinkEnd(node <- ndk),

ndk : Reo!Node

do {

ndc.connector.primitives.add(fif);

}

}

inner element. The helper expandedSubProcess serves the same purpose, but with

a di�erence that it is applicable on any �owNode.

As Figure 5.3.1 demonstrates FlowNode mentioned in the rule is the super type

of activity, gateway, and event types in the BPMN 2 meta-model.

5.3.3 Task and subprocess

Since a BPMN 2 task represents one unit of work in a process, we map it to a FIFO1

channel while preserving its incoming and outgoing sequence �ows.

Similarly, a collapsed subprocess represents a single step in a process by ab-

stracting away from its inner structure, it resembles a Reo FIFO1 channel. Listing

5.8 describes the mapping rule for a simple activity and a collapsed subprocess.

Unlike a collapsed subprocess, an expanded subprocess reveals its inner struc-

ture. Therefore, we map an expanded subprocess to a Reo subconnector that con-

tains Reo elements mapped from the inner elements of the source subprocess.

The rule in Listing 5.7 �rst creates a Reo connector, then invokes other rules to

map its inner elements, and assigns the result to the generated connector.

61

Listing 5.7: Mapping an expanded subprocess

rule mapExpandedSubprocess {

from

subp : BPMN2!SubProcess(subp.expandedSubProcess())

to

conn : Reo!Connector(

name <- subp.name,

nodes <- subp.flowElements->select(e | e.oclIsTypeOf(BPMN2!

↪→ Task) or e.oclIsTypeOf(BPMN2!Event) or e.oclIsTypeOf(

↪→ BPMN2!Gateway)),

primitives <- subp.flowElements->select(e | e.oclIsTypeOf(

↪→ BPMN2!SequenceFlow) or (e.oclIsKindOf(BPMN2!SubProcess)

↪→ and not e.expandedSubProcess())),

connector <- subp.flowElements->select(e | e.

↪→ expandedSubProcess()

)

}

5.3.4 Throw and catch events

A catch event catches a trigger from a throw event with the same event type.

The type of an event is de�ned in the eventDe�nitions attribute of the event. As

mentioned in Chapter 2, event triggers are resolved in one of the following mecha-

nisms:

� Publication: message and signal events,

� Propagation: escalation and error events,

� Direct Resolution: conditional event,

� Cancellation: cancel event,

� Compensation: compensation event.

We use FIFO channels to queue the event triggers emitted from throw events

to be processed by corresponding catch events. This is similar to the approach

proposed in [AKM08b] for mapping messages. While the FIFO channels are empty,

the throw event can emit a trigger and control �ow proceeds to the next step.

Meanwhile, the catch event can consume the trigger from the queue asynchronously.

62

Listing 5.8: Mapping tasks and collapsed subprocesses

rule mapTaskAndCollapsedSubprocess {

from

nod : BPMN2!FlowNode(nod.oclIsKindOf(BPMN2!Task) or (nod.

↪→ oclIsKindOf(BPMN2!SubProcess) and not nod.

↪→ expandedSubProcess()))

to

ndc : Reo!Node,

fif : Reo!FIFO(sourceEnds <- src, sinkEnds <- snk),

src : Reo!SourceEnd(node <- ndc),

snk : Reo!SinkEnd(node <- ndk),

ndk : Reo!Node

do {

ndc.connector.primitives.add(fif);

}

}

A limitation of this approach is that when the FIFO is full, the catch event is

blocked. To deal with this issue, a lossySync channel can be used to lose the new

event triggers if the previously generated events are still waiting to be processed.

When the maximum number of possible event triggers can be calculated, for

instance, when the catch event is not reachable from any loop or it is reachable

from loops with prede�ned repeating number, it is possible to use a FIFOn (which

is a sequence of n FIFO1 channels), where n is the maximum number of loop

repetitions.

Listing 5.9 shows the mapping rule for catch events. It creates a Reo node for

the source catch event. The name of the generated node is used in Listing 5.10

and 5.11 to connect the catch event to the corresponding throw event using the

resolveTemp operator.

Listing 5.10 maps published throw events. The using section �nds the corre-

sponding catch events. The to section connects the throw event to its corresponding

catch events using FIFO1 channels. Similarly, Listing 5.11 presents the mapping for

propagated throw events. The di�erence between the two using sections of these

rules is due to the di�erence in trigger forwarding for published and propagated

events in BPMN 2. As mentioned in Chapter 2, a propagated trigger is forwarded

from its origin to the innermost enclosing level that has an attached catching event

that matches the trigger, while propagated event triggers can be caught by any

catching event that matches the trigger within any scope where it is published.

63

Listing 5.9: Mapping non-conditional catch event

rule mapCatchingEvent {

from

cev : BPMN2!CatchingEvent(cev.eventDefinitions->select(e | tev.

↪→ eventDefinitions.size() < 2 and not e.oclIsTypeOf(BPMN2!

↪→ ConditionalEventDefinition)))

to

cme : Reo!Node(name <- cev.name)

}

The function refImmediateComposite is a special function in ATL, which returns

the immediate container. We use it to narrow the scope of search for catch events

for the propagated events.

The conditional is directly resolved. This means that there is no throw event

for conditional event type, and that such catch events are activated when the cor-

responding conditions are met.

The rule in Listing 5.12 maps a conditional event to a Reo writer with ability

to make in�nite I/O request (indicated by assigning -1 to the writer's request at-

tribute), two nodes that are used to connect the other elements, and a �lter channel

whose expression attribute matches the source model conditional event.

5.3.5 Gateway

The behavior of a parallel gateway is determined by the number of its incoming and

outgoing sequence �ows. If it has only one incoming sequence �ow, it acts similar

to a Reo replicate node. If the number of incoming sequence �ows is more that

one, the behavior of the gateway is as of a Reo join node as it merges the data

items from all the incoming sequence �ows and writes the result on the outgoing

sequences �ows.

The rule in Listing 5.13 generates a Reo node for the matched parallel gateway,

wherein the number of incoming sequence �ows of the gateway determines the type

of the generated Reo node.

64

Listing 5.10: Mapping published throw message event

rule mapPublishedThrowingEvent {

from

mte : BPMN2!ThrowingEvent(mte.eventDefinitions->select(e | e.

↪→ oclIsTypeOf(BPMN2!MessageEventDefinition) or e.oclIsTypeOf

↪→ (BPMN2!SignalEventDefinition)).size() = 1)

using {

cas: Sequence(BPMN2!CatchingEvent) = BPMN2!CatchingEvent.

↪→ allInstances()->select(e | e.eventDefinitions->first().

↪→ messageRef = mte.eventDefinitions->first().messageRef or e

↪→ .eventDefinitions->first().signalRef = mte.

↪→ eventDefinitions->first().signalRef)->asSequence();

}

to

nod : Reo!Node(name <- mte.name),

sc1 : Reo!SourceEnd(node <- nod),

sk1 : Reo!SourceEnd(node <- thisModule.resolveTemp(cat, 'cme')),

fif : Reo!FIFO(sourceEnds <- sc1, sinkEnds <- sk1)

do {

nod.connector.primitives.add(fif);

for (cat in cas) {

thisModule.connectByLossyFifo(nod, thisModule.resolveTemp(cat

↪→ , 'cme'));

}

}

}

65

Listing 5.11: Mapping propagated throw events

rule mapPropagatedThrowingEvent {

from

tev : BPMN2!ThrowingEvent(tev.eventDefinitions->select(e | e.

↪→ oclIsTypeOf(BPMN2!EscalationEventDefinition) or e.

↪→ oclIsTypeOf(BPMN2!ErrorEventDefinition)).size() = 1)

using {

cas : Sequence(BPMN2!CatchingEvent) = e.refImmediateComposite()

↪→ .flowElements->select((e | e.eventDefinitions->first().

↪→ escalationRef=tev.eventDefinitions->first().

↪→ escalationRef) or (e | e.eventDefinitions->first().

↪→ errorRef=tev.eventDefinitions->first().errorRef))

}

to

nod : Reo!Node(name <- tev.name)

do {

for (cat in cas) {

thisModule.connectByLossyFifo(nod, thisModule.resolveTemp(

↪→ cat, 'cme'));

}

}

}

rule connectByLossyFifo(nd1 : reo!Node, nd2 : reo!Node) {

to

los : Reo!LossySync(sourceEnds <- sc1, sinkEnds <- sk1),

sc1 : Reo!SourceEnd(node <- nd1),

sk1 : Reo!SinkEnd(node <- nd3),

nd3 : Reo!Node,

fif : Reo!FIFO(sourceEnds <- src, sinkEnds <- snk),

sc2 : Reo!SourceEnd(node <- nd3),

sk2 : Reo!SinkEnd(node <- nd2)

do {

nd1.connector.nodes.add(nd3);

nd1.connector.primitives.add(fif);

nd1.connector.primitives.add(los);

}

}

66

Listing 5.12: Mapping conditional event

rule mapConditionalEvent {

from

cde : BPMN2!CatchingEvent(cde.eventDefinitions->select(e | e.

↪→ oclIsTypeOf(BPMN2!ConditionalEventDefinition)).size() > 0)

using {

cnd : cde.eventDefinitions->select(e | e.oclIsTypeOf(BPMN2!

↪→ ConditionalEventDefinition).first().condition

}

to

nd1 : Reo!Node,

nd2 : Reo!Node,

wrt : Reo!Writer(sinkEnds <- sk1, requests <- -1),

sk1 : Reo!SinkEnd(node <- nd1),

sc1 : Reo!SourceEnd(node <- nd1),

sk2 : Reo!SinkEnd(node <- nd2),

fil : Reo!Filter(sourceEnds <- sc1, sinkEnds <- sk2, expression

↪→ <- cnd),

do {

nd1.connector.primitives.add(fil);

}

}

Listing 5.13: Mapping parallel gateway

rule mapParallelGateway {

form

gwy : BPMN2!ParallelGateway

to

nod : Reo!Node(

name <- gwy.name,

type <- if gwy.incoming.size()>0

then #JOIN

else #REPLICATOR

endif

)

}

67

Listing 5.14: Mapping inclusive gateway

rule mapInclusiveGateway {

form

gwy : BPMN2!InclusiveGateway

to

nod : Reo!Node(name <- gwy.name)

}

rule mapSequenceFlowOutOfInclusiveGateway {

from

seq : BPMN2!SequenceEdge(seq.sourceRef.oclTypeOf(BPMN2!

↪→ InclusiveGateway))

to

fil : Reo!Filter(sourceEnds <- sce, sinkEnds <- ske, expressions

↪→ <- seq.sourceRef.condition),

sce : Reo!SourceEnd(node <- seq.sourceRef),

ske : Reo!SinkEnd(node <- seq.targetRef)

}

A diverging inclusive gateway directs the incoming sequence �ow to its outgo-

ing sequences, whose conditions are evaluated to true. We can achieve the same

behavior using a replicate node whose sink ends are connected to �lter channels.

Each �lter channel and its expression corresponds to one of the outgoing sequence

�ows of the gateway. If the condition is met, then the �lter channel passes the

incoming data item through. Otherwise, the channel loses the data item. Listing

5.14 shows the rules that carry out the mapping of the inclusive gateway and its

outgoing sequence �ows.

A diverging exclusive gateway creates alternative paths, where only one path

can be taken. Similar to an inclusive gateway, we map an exclusive gateway using

a Reo router node and a �lter channel for each outgoing sequence �ow. Listing 5.15

presents the rule for mapping an exclusive gateway and its outgoing sequence �ows.

5.3.6 Transaction

In Listings 5.1, 5.2, and 5.3, we have presented an algorithm to re�ne BPMN 2

transactions, which introduces two kinds of complex gateways.

1. The compensation order complex gateway that ensures that an activity is

68

Listing 5.15: Mapping exclusive gateway

rule mapExclusiveGateway {

form

gwy : BPMN2!ExclusiveGateway

to

nod : Reo!Node(name <- gwy.name, type <- #ROUTE)

}

rule mapSequenceFlowOutOfExclusiveGateway {

from

seq : BPMN2!SequenceEdge(seq.sourceRef.oclIsTypeOf(BPMN2!

↪→ ExclusiveGateway))

to

fil : Reo!Filter(sourceEnds <- src, sinkEnds <- snk, expressions

↪→ <- seq.sourceRef.condition),

src : Reo!SourceEnd(node <- seq.sourceRef),

snk : Reo!SinkEnd(node <- seq.targetRef)

}

only compensated if a cancel event has occurred and the activity has been

executed, and in case that there is an activity that needs to be compensated

before this activity, it has been compensated.

2. The post compensation complex gateway, which prevents that the outgoing

sequence �ow of the cancel boundary event is taken before all compensation

tasks within the given transaction are completed.

For simplicity, we assume that the transaction re�nement step provides a list

of the generated complex gateways. Here, we use orderComplexGateways and

postComplexGateway to represent these complex gateways. Alternatively, we could

detect them programmatically based on their context in terms of their adjacent

elements.

Listing 5.16 presents the rule for mapping a compensation order complex gate-

way. In this rule and the followings, we capitalize some labels to make it easier

to �nd them later in the �gures and to track their usage cross rules. The helper

connectingNode de�ned in Listing 5.17 is used in the mapping of incoming sequence

�ows to compensation order complex gateway to connect each incoming sequence

to its corresponding node that is generated from the complex gateway. Listing 5.18

demonstrates mappings for the sequence �ows of the complex gateway.

To make these rules easier to be understood, Figure 5.3.2 illustrates the result of

69

!

A

B

C

)(

D

Cancel

Taski+1 done

Taski+1 compensated

Taski done

E

F

Taski to be compensated

!

Figure 5.3.2: Mapping of the compensation order complex gateway

applying them to control the �ow for compensating the compensatable Taski with

the following compensatable Taski+1.

Listing 5.19 shows the rule, which maps the post compensation complex gateway

to a join node in Reo. The complex gateway incoming sequence from the catching

cancel event is presented in Listing 5.20. Listings 5.21 and 5.22, presents rules,

which map the gateway incoming sequence �ows from the events signalling the task

compensation and the task completion, respectively. Due to lengthiness of these

rules, in Figure 5.3.3, we visualize the result of applying them on a transaction with

two compensatable tasks: Taski and Taskj that are in parallel path without any

other compensatable tasks ahead of them in a sequence.

5.3.7 Other elements

In general, we map sequence �ows to sync channels that coordinate the mapped

elements. We map the rest of BPMN 2 �ow nodes that are not mapped by the

aforementioned rules to Reo nodes.

Since ATL does not provide a mechanism to provide priority over the rules, the

70

Listing 5.16: Mapping the generated compensation order complex gateway

rule mapCompensationOrderComplexGateway {

from

cxg : BPMN2:ComplexGateway(thisModule.orderComplexGateways->

↪→ includes(cxg))

to

A : Reo!Node(type <- #ROUTE),

pab : Reo!PrioritySync(sourceEnds <- sca, sinkEnds <- skb),

sca : Reo!SourceEnd(node <- A),

skb : Reo!SinkEnd(node <- B),

B : Reo!Node(type <- #JOIN),

fbc : Reo!FIFO(sourceEnds <- scb, sinkEnds <- skc),

scb : Reo!SourceEnd(node <- B),

skc : Reo!SinkEnd(node <- C),

C : Reo!Node(type <- #JOIN),

fcd : Reo!FIFO(sourceEnds <- scc, sinkEnds <- skd),

scc : Reo!SourceEnd(node <- C),

skd : Reo!SinkEnd(node <- D),

D : Reo!Node(type <- #JOIN),

sae : Reo!SyncDrain(sourceEnds <- Sequence{sra, sre}),

sra : Reo!SourceEnd(node <- A),

sre : Reo!SourceEnd(node <- E),

E : Reo!Node,

sef : Reo!Sync(sourceEnds <- sce, sinkEnds <- skf),

sce : Reo!SourceEnd(node <- E),

skf : Reo!SinkEnd(node <- F),

F : Reo!SinkEnd(node <- F),

pdf : Reo!Sync(sourceEnds <- srd, sinkEnds <- snf),

srd : Reo!SourceEnd(node <- D),

snf : Reo!SinkEnd(node <- F)

do {

for (e in Sequence{pab, fbc, fcd, pdf, sae) {

A.connector.primitives.add(e);

}

}

}

71

Listing 5.17: Finding the connecting node to a complex gateway

helper context BPMN2!FlowNode def : connectingNode(gw :

↪→ ComplexGateway) : String =

if self.oclTypeOf(BPMN2!CatchingCancelEvent)

then 'A'

else if self.oclTypeOf(BPMN2!CatchingSignalEvent)

then if thisModule.compensatables.get(gw)->includes(self)

then 'B'

else if thisModule.nextCompensatables.get(gw)->includes(

↪→ self)

then 'C'

else if thisModule.nextCompensations.get(gw)->

↪→ includes(self)

then 'D'

endif

endif

endif

else 'UNKNOWN'

endif;

)(

)(!

!

Taski compensated
Ai Bi

G

Taski done
Ci

Di
Ei

Cancel F
Taski not done

Taskj not done

Taskj done

Taskj compensated

Cj

Aj

Dj

Bj

Ej

Figure 5.3.3: Mapping of the post compensation complex gateway

rule for mapping the non-speci�c elements need to have a condition to assure that

they do not match any of the existing rules. This is simply achieved by negating

the disjunction of the related rules.

72

Listing 5.18: Mapping incoming �ows of the compensation order gateway

rule mapSequenceFlowFromCompensatableToOrderComplexGateway {

from

seq : BPMN2!SequenceFlow(thisModule.orderComplexGateways->

↪→ includes(seq.targetRef) and thisModule.nextCompensations

↪→ .get(gw)->includes(seq.sourceRef))

to

fia : Reo!FIFO(sourceEnds <- sca, sinkEnds <- ska),

sca : Reo!SourceEnd(node <- seq.sourceRef),

ska : Reo!SinkEnd(node <- thisModule.resolveTemp(seq.targetRef,

↪→ seq.sourceRef.connectingNode(seq.targetRef))),

blk : Reo!BlockSync(sourceEnds <- scb, sinkEnds <- skb),

scb : Reo!SourceEnd(node <- seq.sourceRef),

skb : Reo!SinkEnd(node <- thisModule.resolveTemp(seq.targetRef,

↪→ 'E'))

}

rule mapSequenceFlowToOrderComplexGateway {

from

seq : BPMN2!SequenceFlow(thisModule.orderComplexGateways->

↪→ includes(seq.targetRef) and not thisModule.

↪→ nextCompensations.get(gw)->includes(seq.sourceRef))

to

fia : Reo!FIFO(sourceEnds <- sca, sinkEnds <- ska),

sca : Reo!SourceEnd(node <- seq.sourceRef),

ska : Reo!SinkEnd(node <- thisModule.resolveTemp(seq.targetRef,

↪→ seq.sourceRef.connectingNode(seq.targetRef)))

}

rule mapSequenceFlowFromOrderComplexGateway {

from

seq : BPMN2!SequenceFlow(thisModule.orderComplexGateways->

↪→ includes(seq.sourceRef))

to refined

syn : Reo!Sync(sourceEnds <- src, sinkEnds <- snk),

src : Reo!SourceEnd(node <- thisModule.resolveTemp(seq.

↪→ sourceRef, 'F')),

snk : Reo!SinkEnd(node <- seq.targetRef)

}

73

Listing 5.19: Mapping the post compensation complex gateway

rule mapPostCompensationComplexGateway {

from

cxg : BPMN2:ComplexGateway(cxg = thisModule.postComplexGateway)

to

G : Reo!Node(type <- #JOIN)

}

Listing 5.20: Mapping the cancel �ow to the post compensation gateway

rule mapCancelToPostCompensationComplexGatewaySequenceFlow {

from

seq : BPMN2!SequenceFlow(seq.sourceRef.oclTypeOf(BPMN2!

↪→ CatchingCancelEvent) and seq.targetRef = thisModule.

↪→ postComplexGateway)

to

fia : Reo!FIFO(sourceEnds <- sca, sinkEnds <- ska),

sca : Reo!SourceEnd(node <- seq.sourceRef),

ska : Reo!SinkEnd(node <- F),

F : Reo!Node

}

74

Listing 5.21: Mapping the compensation completion

rule mapCompensationToPostCompensationGatewaySequenceFlow {

from

seq : BPMN2!SequenceFlow(seq.targetRef = thisModule.

↪→ postComplexGateway and seq.sourceRef.oclIsKindOf(BPMN!

↪→ CatchingSignalEvent) and thisModule.nextCompensations.

↪→ get(seq.targetRef)->includes(seq.sourceRef))

to

fi1 : Reo!FIFO(sourceEnds <- sc1, sinkEnds <- sk1),

sc1 : Reo!SourceEnd(node <- seq.sourceRef),

sk1 : Reo!SinkEnd(node <- A),

A : Reo!Node(type <- #JOIN),

fi2 : Reo!FIFO(sourceEnds <- sc2, sinkEnds <- sk2),

sc2 : Reo!SourceEnd(node <- thisModule.resolveTemp(seq.

↪→ sourceRef, 'C')),

sk2 : Reo!SinkEnd(node <- A),

sab : Reo!Sync(sourceEnds <- sca, sinkEnds <- skb),

sca : Reo!SourceEnd(node <- A),

skb : Reo!SinkEnd(node <- B),

B : Reo!Node,

fi3 : Reo!FIFO(sourceEnds <- sce, sinkEnds <- snb),

sce : Reo!SourceEnd(node <- thisModule.resolveTemp(seq.

↪→ sourceRef, 'E')),

snb : Reo!SinkEnd(node <- B),

bbg : Reo!BlockSync(sourceEnds <- scb, sinkEnds <- skg),

scb : Reo!SourceEnd(node <- B),

skg : Reo!SinkEnd(node <- thisModule.resolveTemp(seq.sourceRef,

↪→ 'G'))

do {

fil.connector.nodes.add(A);

fil.connector.nodes.add(B);

}

}

75

Listing 5.22: Mapping the task completion

rule mapCompensatableToPostCompensationGatewaySequenceFlow {

from

seq : BPMN2!SequenceFlow(seq.targetRef = thisModule.

↪→ postComplexGateway and

seq.sourceRef.oclIsKindOf(BPMN!CatchingSignalEvent) and

thisModule.nextCompensatables.get(seq.targetRef)->

↪→ includes(seq.sourceRef))

to

fic : Reo!FIFO(sourceEnds <- scf, sinkEnds <- skc),

scf : Reo!SourceEnd(node <- seq.sourceRef),

skc : Reo!SinkEnd(node <- C),

C : Reo!Node,

pri : Reo!PrioritySync(sourceEnds <- scc, sinkEnds <- skd),

scc : Reo!SourceEnd(node <- ndc),

skd : Reo!SinkEnd(node <- D),

D : Reo!Node,

sdr : Reo!SyncDrain(sourceEnds <- Sequence{scf, scd}),

scf : Reo!SourceEnd(node <- thisModule.resolveTemp(seq.

↪→ targetRef, 'F')),

scd : Reo!SourceEnd(node <- D),

syn : Reo!Sync(sourceEnds <- sec, sinkEnds <- snd),

snd : Reo!SinkEnd(node <- D),

sec : Reo!SourceEnd(node <- E),

E : Reo!Node,

ffe : Reo!FIFO(sourceEnds <- sen, sinkEnds <- ske, full <- true

↪→),

sen : Reo!SourceEnd(node <- ndt),

ske : Reo!SinkEnd(node <- D),

ndt : Reo!Node

do {

for (e in Sequence{C, D, E, ndt}) {

fic.connector.nodes.add(e);

}

}

}

76

Figure 5.3.4: Mapping the re�ned BPMN 2 example of Figure 5.1.1b to Reo

5.4 Example

Figure 5.3.4 shows the result of applying the presented BPMN 2 to Reo transfor-

mation rules on the re�ned BPMN 2 model of Figure 5.1.1b.

5.5 Related Work

Several works on the topic of formal semantics of business processes propose a

mapping from BPMN to Petri nets [vdA98] e.g. [TSJ10], [DDO08], [DW11], and

[MBL+18]. Petri nets constitute a graph-based modeling language for describing

distributed systems. Similar to BPMN, Petri nets have a graphical syntax and its

execution semantics have exact mathematical de�nitions.

77

The obtained Petri nets model can be analyzed using Petri nets analyzing tools

such as ProM [vDdMV+05], Yasper [SOP+06], Wo�an [VvdAK04], Snoopy[HHL+12],

and CPN Tools [JKW07]. Each of these tools performs particular types of analyses.

Some tools can only analyze a subset of Petri nets.

Groote et al. in [GMR+06] propose converting the obtained Petri nets models to

the process speci�cation language mCRL2 to open up the possibility of automatic

veri�cation by the mCRL2 tool-set.

Alternatively, BPMN has been mapped to other formalisms. Wong et al. [WG08]

propose a mapping from BPMN to Communicating Sequential Processes (CSP)

[Hoa85], a type of process algebra.

Christiansen et al. [CCH11] use a token-based semantics to de�ne formal se-

mantics for BPMN processes. Authors of [ESB14] propose a formal semantics for

BPMN processes in Maude [CM02], a logical declarative language based on rewrit-

ing logic. Prandi et al. [PQZ08] suggest a translation of BPMN into the process

algebra COWS [LPT07].

Braghetto et al. in [BFV11] propose a mapping of BPMN processes into Stochas-

tic Automata Network (SAN) [PA91] - a compositionally built stochastic model. Au-

thors of [MSY14] present a formal model for BPMN processes in terms of Labelled

Transition Systems, which are obtained from process algebra encoding. Poizat et

al. in [PS12] propose a model transformation into the LOTOS NT process algebra

[GLS17].

A drawback of using aforementioned formalisms compared to Petri nets is that

they do not preserve the structure of the original BPMN model, as they are lower

level languages and at �ner granularity compared to BPMN. Reo has graphical

syntax and exact mathematical de�nitions of its execution semantics. It de�nes a

form of coordination in terms of synchronizing, bu�ering, retaining data, etc., along

with constraining its input and output data items. Reo allows hierarchical modeling

where arbitrarily complex models can be formed out of simpler ones.

The semantics of Reo is compositional. This means that complex networks can

be built by connecting simpler networks. Once a business model is transformed to

a Reo network, its behavior can be formally studied using various programs within

the Extensible Coordination Tools (ECT) [AKM+08a], a set of Eclipse plug-ins

that constitute an integrated development environment for the Reo coordination

language.

ECT contains tools for the design [AKM+08a], animation [Kra11], simulation

[Kan10], testing [AAA+09], stochastic analysis [ACMM07], veri�cation [KB09, KKdV10,

MSA04], execution [Pro11, AJ15, AKM+08a, JSS+12], and model transformation

78

[CKA10, MSTV07, KMLA11] for Reo networks.

79

80

