
Constraint-based analysis of business process models
Changizi, B.

Citation
Changizi, B. (2020, February 21). Constraint-based analysis of business process models. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/85677

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/85677

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/85677

Cover Page

The handle http://hdl.handle.net/1887/85677 holds various files of this Leiden University
dissertation.

Author: Changizi, B.
Title: Constraint-based analysis of business process models
Issue Date: 2020-02-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/85677
https://openaccess.leidenuniv.nl/handle/1887/1�

4
Formal Semantics for Reo

4.1 Introduction

A bene�t of employing coordination languages in general and Reo in particular

is that they express the coordination patterns explicitly and separate them from

the computational part of the code. This opens up possibilities for performing

various types of analysis and automation such as model checking, code generation,

automated test generation, etc.

To be able to perform such tasks, it is insu�cient to describe the behavior of

Reo models in a verbal manner. We need a more rigorous way to unambiguously

specify semantics of Reo models.

Several formal semantics have been proposed in the recent years that express

the behavior of Reo connectors. Jongmans et al. [JA12] present a comprehensive

overview of thirty models. They grouped these models into the following categories:

� Coalgebraic models: Two coalgebraic semantics of Reo, Timed Data Streams

[Arb02] [AR02] [RKNP04] and Record Streams [IB08] [IBC11] rely on the coal-

gebraic concept of stream, which refers to an in�nite sequence of elements of a

given set. This class of semantics are di�cult to use for analysis purpose, for

27

instance, as an underlying model to apply model checking techniques [JA12].

� Automata-based semantics: A big number of Reo operational semantics are

based on automata. States in these automata correspond to the states of a

Reo network, while the transitions denote I/O operations.

A list of automata based semantics for Reo are: port automata (PA) [KC09],

Constraint Automata [BSAR06], Labeled Constraint Automata (LCA) [KB09],

Timed Constraint Automata (TCA) [ABBR04], Probabilistic Constraint Au-

tomata [Bai05], Quantitative Constraint Automata (QCA) [ACMM07] [MA09],

Continuous Time Constraint Automata (CTCA) [BW06], Resource Sensitive

Timed Constraint Automata (RSTCA) [MA07a], Transactional Constraint

Automata (TNCA) [MA10], Behavioral Automata (BA) [Pro11], Buchi Au-

tomata [IB08] [IBC11] [IBC08] [IBC11], Guarded Automata [BCS12] [Mar09],

Stochastic Guarded Automata [MSKA10] [MSKA14], Intentional Automata

[Cos10], Quantitative Intentional Automata [ACvdM+09], and Action Con-

straint Automata [KCA10].

� Structural operational semantics: Some of the semantics proposed for Reo

are expressed in terms of structural operational semantics. Sun Meng et al.

[MAA+12] model Reo networks in terms of the Unifying Theories of Pro-

gramming (UTP) [Hoa13]. A UTP design consists of predicates that express

assumptions on inputs and commitments on outputs.

Another work in this �eld is done by Mousavi et al. [MSA06]. They present a

Structural Operational Semantics (SOS) for some of Reo primitives in Gordon

Plotkin's style [Plo04]. In the proposed semantics, data-�ow of a Reo connec-

tor is represented by a set of rules, which pair the structure of the connector

with functions that map the nodes to potentially in�nite sequences of data

items.

Tile Model [ABC+09] is a more recent SOS-based formal semantics for Reo

that extends Gordon Plotkin's SOS inference rules. In this model, transitions

are described as movements from an initial state to a �nal state upon �ring

related triggers.

Tile Model de�nes composition in three ways:

� horizontal composition that models synchronization, where the e�ect of

one tile is a trigger for another tile,

� vertical composition, which is a composition occurring in time. This is

when the �nal state of one tile matches the initial state of another tile,

28

� parallel composition that captures concurrency.

� Semantics based on graph-coloring. Connector coloring (CC) [CCA07] is a for-

mal semantics for Reo that describes the behavior of a connector by assigning

di�erent colors to its ports.

The colors designate presence or absence of data-�ow. This model accounts

for synchronization and context dependency. It captures context dependency

by propagating negative information about the absence of data-�ow inside a

Reo network.

The most important types of semantics that have in�uenced and provided basis for

the other classes of semantics are constraint automata and coloring semantics. These

models are the underlying models of several tools for Reo ranging from animation

to testing and model checking.

In this chapter, we present the de�nition and examples for Reo semantics that

are relevant to this thesis. In addition, we brie�y discuss the time complexity of

obtaining formal semantics of a Reo network using the computation rules de�ned

by the formal semantics.

4.2 Constraint automata

De�nition 4.2.1 (Constraint automaton [BSAR06]) A constraint automaton

is a tuple A = (Q, N , →, q0), where

� Q is a set of states,

� N is a set of port names,

� → ⊆ Q× 2N ×DC ×Q is a transition relation, where DC is the set of data

constraints over a �nite data domain Data,

� q0 ∈ Q is an initial state.

We write q
N,g−−→ p instead of (q,N, g, p) ∈ →. Table 4.2.1 depicts the CA

corresponding to the most common Reo elements.

Constraint automata have a compositional nature. Therefore, the semantics of

a whole model can be obtained through the composition of the given semantics of

its participant elements.

Following is the de�nition of the product operator, which performs the compo-

sition.

29

Table 4.2.1: Constraint automata for basic Reo primitives

{a, b} ,
da = db

∅,
true

{a, b} ,
da = db

∅,
true

{a} ,
true

{a, b} ,
true

∅,
true

CA corresponding to
a b

CA corresponding to
a b

CA corresponding to
a b

{a, b} ,
true

∅,
true

{b} , true

∅,
true

{a} ,
true

{a, b} ,
expr(da)
∧da = db

{a} ,
¬expr(da)

∅, true

CA corresponding to
a b

CA corresponding to
a b

CA corresponding to
p

a b

{a, b} ,
db = f(da)

∅,
true

{a} ,
da = d

{b} ,
db = d

∅,
true

∅,
true

{a, b, c} ,
da = db = dc

∅, true

CA corresponding to
f

a b

CA corresponding to
a b

CA corresponding to

a
b

c

{a, b} ,
da = db

{a, c} ,
da = dc

∅, true {a, b, c} ,
dc =< da, db >

∅,
true

CA corresponding to

a
b

c

CA corresponding to

c
a

b

30

De�nition 4.2.2 (Product on constraint automata) The product of constraint

automata A1 = (Q1,N1, →1, q0,1) and A2 = (Q2,N2, →2, q0,2) is de�ned as:

A1 ./ A2 = (Q1 ×Q2,N1 ∪N2,→, q0,1 × q0,2)

where the following rules de�ne the transition relation →:

q1
N1,g1−−−−→ p1, q2

N2,g2−−−−→ p2, N1 ∩N2 = N2 ∩N1

< q1, q2 >
N1∪N2,g1∧g2−−−−−−−−−→< p1, p2 >

q1
N1,g1−−−−→ p1, N1 ∩N2 = ∅

< q1, q2 >
N1,g1−−−−→< p1, q2 >

q2
N2,g2−−−−→ p2,N1 ∩N2 = ∅

< q1, q1 >
N2,g2−−−−→< q1, q2 >

We can abstract from the data-�ow on certain Reo nodes using the hiding op-

erator de�ned as follows:

De�nition 4.2.3 (Hiding on constraint automata) Let A = (Q,N , →, q0) be

a CA and C ∈ N .

The constraint automaton that results from hiding the node C in automaton A
is ∃C [A] = (Q,N\{C}, →C , q0) and the transition relation −→C is de�ned as

follows:

p
N,g−−→ q,N ′ = N\{C}, g′ = ∃C [g]

p
N ′,g′−−−→C q

, where

∃C [g] =
∨
d∈D

g [d (C) /d] .

Example 4.2.1 Figure 4.2.2 depicts the CA semantics of the Reo network of Figure

4.2.1. According to CA, it is possible that the lossySync channel loses the incoming

data in the state q, where the FIFO1 channel is empty. This is an example of

undesired behavior that is the result of the fact that CA is not a context-dependent

semantics.

a
b1 b2

c

Figure 4.2.1: A context-dependent Reo connector

31

qstart p

{a, b1, b2}, d(a) = d(b1) ∧ d(b2) = d(c)

{a}, true
{a, c}, true

{a}, true

{c}, true

Figure 4.2.2: Constraint automaton of the Reo network of Figure 4.2.1

Example 4.2.2 Figure 4.2.4 illustrates the CA of the Reo network of Figure 4.2.3.

Since, CA is data-aware it can describes the correct behavior of this data-aware

network.

a

p

b1 b2
c

¬p

Figure 4.2.3: A data-aware Reo connector

q

{a, b1, b2},
d(a) = d(b1) ∧
d(b1) = d(b2) ∧
p(a) ∧ p(b1)

{a},
p(a)

∅, true

Figure 4.2.4: Constraint automaton of the Reo network of Figure 4.2.3

4.3 Constraint automata with state memory

Constraint automata with state memory (CASM) [PSHA12] extends CA with vari-

ables that represent local memory cells of automata states. Because CASM elabo-

rates on state information, we choose to use CASM instead of CA, in our work.

De�nition 4.3.1 (Constraint automaton with state memory) A constraint

automaton with state memory (CASM) is a tuple A = (Q,N ,→, q0,M) where

� Q is a �nite set of states.

� N is a �nite set of names.

� →, a �nite subset of Q × 2N ×DC(N ,M,D) ×Q, is the transition relation

of A, where DC(N ,M,D) is the set of data constraints, de�ned below.

32

� q0 ∈ Q is an initial state.

� M is a set of memory cell names, where N ∩M = ∅.

Every n ∈ N represents a node in a Reo connector. The set N is partitioned

into three mutually disjoint sets of source nodes N src, mixed nodes Nmix, and sink

nodes N snk.

Because we make the replication and merge inherent in Reo nodes explicit as

replicator and merger primitives, at most two primitive ends coincide on every node

n ∈ N . Thus, it follows that a source or a sink node contains only a single (source

or sink) primitive end, and a mixed node contains exactly one source and one sink

primitive ends.

We write q
N,g−−→ p instead of (q,N, g, p) ∈→. For every transition q

N,g−−→ p, we

require that g ∈ DC(N,M,D), where D is the global set of numerical data values

and DC(N,M,D) is the language de�ned by the following grammar:

g ::= true | ¬ g | g ∧ g | u = u | u < u,

u ::= d(n) | m′ | m | v.

In this grammar,

� = is the symmetric equality relation,

� < is a total order relation,

� n ∈ N ⊆ N denotes a node name,

� d(n) represents the data item exchanged through the node n,

� m ∈M correspond to a memory cell in the current state, which is the source

state of the transition,

� m′ stands for the memory cell m ∈ M in the next state, which is the target

state of the transition,

� v ∈ D.

As usual, false stands for ¬true, x > y stands for y < x, and other logical

operators, such as ∨ and ⇒ (the implication symbol) can be built from the given

operators.

Transitions with data constraints that can be reduced to false using the Boolean

laws are impossible and we omit them. A data constraint g that is always true can

be left out.

33

We use Mg to represent the set of all m ∈ M that syntactically appear as m

in a data constraint g; andM′g to refer to the set of all m ∈M that syntactically

appear as m′ in g.

The valuation function Vq : M → 2D designates the set of values Vq(m) of a

memory cell m ∈M in a state q ∈ Q, where Vq0(m) = ∅ for all m ∈M.

A transition q
N,g−−→ p in a given constraint automaton with state memory is

possible only if there exists a substitution for every syntactic element d(n), m, and

m′ that appears in g to satisfy g.

A substitution simultaneously replaces in g:

- every occurrence of d(n) with the data value exchanged through the node

n ∈ N ;

- every occurrence of m′ of every m ∈M with a value v ∈ D;

- every occurrence m ∈M with:

� the special symbol ′◦′ if Vq(m) = ∅,

� a value v ∈ Vq(m), otherwise.

The guard g is satis�ed if proper replacement values can be found to make g

true. Making this transition, the automaton de�nes the valuation function Vp for

the target state p, as follows:

� For every m ∈ M′g, Vp(m) is the set of all v ∈ D whose replacements for m′

satisfy g.

� For every other m ∈M, Vp(m) = ∅.

A relational operator evaluates to true only if the values of its operands are in

its respective relation. Thus, any operator with one or more ◦ as an operand always

evaluates to false.

We call a CASM, normalized i�

� It does not have two states with the same set of state memory variables.

� Every two transitions di�er at least in their start states, their target states,

or their sets of synchronizing ports.

For any arbitrary CASM that is not normalized, we can normalize it by

� introducing auxiliary variables, to make the set of state memory variables

unique for each state,

34

� by merging the transitions that have the same start and target states and

synchronize the same ports.

In the sequel, we consider only normalized CASMs.

Following are the de�nitions for product and hiding operations on CASM. Both

de�nitions are adapted from [BSAR06].

De�nition 4.3.2 (Product automaton on CASM) The product of CASMs A1

= (Q1, N1, →1, q0,1, M1) and A2 = (Q2,N2,→2, q0,2,M2) is de�ned as:

A1 ./ A2 = (Q1 ×Q2,N1 ∪N2,→, q0,1 × q0,2,M1 ∪M2)

where the following rules de�ne the transition relation →:

q1
N1,g1−−−−→1p1, q2

N2,g2−−−−→2p2, N1 ∩N2 = N2 ∩N1

〈q1, q2〉
N1∪N2,g1∧g2−−−−−−−−−→ 〈p1, p2〉

q1
N1,g1−−−−→1p1, N1 ∩N2 = ∅

〈q1, q2〉
N1,g1−−−−→ 〈p1, q2〉

q2
N2,g2−−−−→2p2,N1 ∩N2 = ∅

〈q1, q2〉
N2,g2−−−−→ 〈q1, p2〉

Similar to CA, we can abstract from the data-�ow on certain Reo nodes using

the hiding operator de�ned as follows:

De�nition 4.3.3 (Hiding on CASM) Let A = (Q,N , →, q0,M) be a CASM

and C ∈ N .

The constraint automaton that results from hiding the node C in automaton A
is ∃C [A] = (Q,N\{C}, →C , q0,M) and the transition relation −→C is de�ned as

follows:

p
N,g−−→ q,N ′ = N\{C}, g′ = ∃C [g]

p
N ′,g′−−−→C q

, where

∃C [g] =
∨
d∈D

g [d (C) /d] .

To facilitate our further reasoning with CASM, we provide the following de�ni-

tion that gives the set of state memories used in each state.

De�nition 4.3.4 (State variables) Given the CASM A = (Q,N , →, q0,M), we

de�ne the function S : Q → 2M as for each q
N,g−−→ p, m ∈ Vg ⇒ m ∈ S (q) and

m′ ∈ Vg ⇒ m ∈ S (p).

35

Example 4.3.1 Figure 4.3.2 depicts the CASM for the Reo shown network in Fig-

ure 4.3.1. CASM provides an explicit representation for the stored values using its

state variables.

a
b1 b2

c

Figure 4.3.1: FIFO2

start m

n m, n

∅, true

∅, true

∅, true ∅, true

{a}, m′ = â

∅, n′ = m

{a}, m′ = â ∧ n′ = n

{c},m′ = m ∧ ĉ = n{c}, ĉ = n

{a, c},m′ = â ∧ ĉ = n

Figure 4.3.2: Constraint automaton of the Reo network of Figure 4.3.1

4.4 Constraint automata with priority

De�nition 4.4.1 (Constraint automaton with priority) A constraint automa-

ton with priority is a tuple P = (A,R,S, T) where

� A = (Q,N ,Nmix,N src,N snk,−→,Q0) is a constraint automaton,

� R ⊂ 2N : ∀R ∈ R is a subset of N , such that if a node n ∈ R connects to the

priority imposing channel, PrioritySync, the priority a�ects n̄ ∈ R.

� S ⊂ R×R is the set pairs of subsets of N , such that ∀(X,Y) ∈ S, the priority
imposed on the region X can propagate to the region Y ,

� T =def (t, /) : t ∈ R and / ⊆−→ × −→ is a binary relation on the transitions

of A such that q
N,g−−→ p / q̄

N̄,ḡ−−→ p̄ implies q = q̄ and (N, g) 6= (N̄ , ḡ).

36

Table 4.4.1: Priority constraint automata of commonly used Reo primitives

q

{a, b}, da = db

∅, true

q

{a, b}, da = db

∅, true

Q0 = {q}, Q0 = {q},
R = {{a, b}}, R = {{a}, {b}},

S = 1, S = 1 ∪ {({b}, {a})},
T = {{a, b} : T = ∅

q
{a,b},da=dB−−−−−−−−→ q C q

∅,true−−−−→ q}
CAP corresponding to

a b!

CAP corresponding to

a b)

q

{a, b}, da = db

∅, true

q

{a, b}, da = db

∅, true

Q0 = {q}, Q0 = {q},
R = {{a, b}}, R = {{a}, {b}},

S = 1 ∪ {({a}, {b})}, S = 1 ∪ {({a}, {b}), ({b}, {a})},
T = ∅ T = ∅

CAP corresponding to

a b(

CAP corresponding to

a b)(

q
{a, b} ,
da = db

∅, true

q

{a, b} ,
da = db

∅, true{a} ,
true

Q0 = {q}, Q0 = {q},
R = {{a, b}}, R = {{a, b}},

S = 1, S = 1,

T = ∅ T = {∅ : q
{a,b},da=db−−−−−−−−→ q C q

{a},true−−−−−→ q,

∅ : q
{a,b},da=db−−−−−−−−→ q C q

∅,true−−−−→ q,

∅ : q
{a},true−−−−−→ q,C q

∅,true−−−−→ q}
CAP corresponding to

a b
CAP corresponding to

a b

37

{a, b} ,
true

∅, true

q {a, b} ,
true

∅, true

Q0 = {q}, Q0 = {q},
R = {{a, b}}, R = {{a, b}},

S = 1, S = 1,

T = ∅ T = ∅
CAP corresponding to

a b

CAP corresponding to

a b

q

{b} , true

∅, true{a} ,
true

q

{b} , true

∅, true{a} ,
true

Q0 = {q}, Q0 = {q},
R = {{a, b}}, R = {{a, b}},

S = 1, S = 1,

T = ∅ T = ∅
CAP corresponding to

a b

CAP corresponding to

a b

q

{a, b} ,
expr(da)∧
da = db

{a} ,
¬expr(da)

∅, true

q
{a, b} ,
db = f(da)

∅, true

Q0 = {q}, R = {{a, b}}, Q0 = {q}, R = {{a, b}},
S = 1, T = ∅ S = 1, T = ∅

CAP corresponding to
p

a b

CAP corresponding to
f

a b

qstart p

{a} ,da = d

{b} ,db = d∅, true
∅, true

q
{a, b, c} ,
da = db = dc

∅, true

Q0 = {q}, R = {{a}, {b}}, Q0 = {q}, R = {{a, b, c}},
S = 1, T = ∅ S = 1, T = ∅

CAP corresponding to

a b

CAP corresponding to

a
b

c

38

q
{a, b} ,
da = db

{a, c} ,
da = dc

∅, true

q
{a, b, c} ,
dc =< da, db >

∅,
true

Q0 = {q}, Q0 = {q},
R = {{a, b, c}}, R = {{a, b, c}},

S = 1, S = 1,

T = ∅ T = ∅
CAP corresponding to

a
b

c

CAP corresponding to

c
a

b

Observe that the nodes in R connect to each other by priority propagating

channels such as Sync, PrioritySync, SyncDrain. The connections of the regions

paired in S is, however, via priority blocking channels like BlocingSinkSync, Block-

ingSourceSync and AsyncDrain. The sets R, S and the tag t in T are auxiliary

concepts for composition of CAPs. Table 4.4.1 shows CAPs corresponding to Reo

elements.

Similar to CA, the product-automaton operator (./) computes the CAP corre-

sponding to a Reo network from CAPs of its substituent elements.

Let P1 and P2 be the two CAPs, τ1, λ1 ∈−→1, τ1 / λ1 and τ2, λ2 ∈−→2. If τ1

and τ2 synchronize to form a transition τ ∈−→P1./P2
, λ1 and λ2 synchronize to

form a transition λ ∈−→P1./P2
, the relation of τ / λ is full lifting of the τ1 / λ1.

Since the priority blocking channels can a�ect the propagation of the priority,

the priority relations that full lifting de�nes are not always valid on the product of

the automata. We need to eliminate invalid transitions that are results of improper

propagation of the priority.

The following three cases are the only valid propagation of the priority [ABS15]:

� Propagation over empty transitions: If λ is an empty transition, then λ1 and

λ2 are also empty transitions. In this case, full lifting brings a new priority

imposition as: τ / λ.

� Propagation by containment : If λ1 is a proper transition, then λ is a proper

transitions, which contains λ1. Therefore, full lifting is a natural growth of

the previously imposed priority that preserves the priority relation as: τ / λ.

� Propagation by seepage: If λ1 is an empty transition, but λ is a proper tran-

sition, then λ2 is also a proper transition. Under this condition, full lifting

39

is not always valid. Therefore, we need more restriction to preserve the new

priority relation that full lifting impose that is τ / λ. The seepage relation

S and the tag t of the transition help to check the validity of full lifting for

this case. So, the full lifting is valid if there exists a �nite sequence of regions

r0, .., ri, ri+1, .., rn such that ri ∈ R, (ri, ri+1) ∈ S, r0 = t and rn includes all

nodes involved in the transition λ2. Note that S is the seepage relation that

de�nes the allowed propagation of the priority through regions. Observe that

if t1 = ∅ , then t = ∅. Since ∅ /∈ R, such a sequence does not exist and the

full lifting is not valid.

Following is the de�nition of the CAP product operator.

De�nition 4.4.2 (Product-automaton) Let Pi = (Ai,Ri,Si, Ti), i = 1, 2 be

two CAPs, where Ai = (Qi,Ni,Nmix
i ,N src

i ,N snk
i ,−→,Q0,i), such that:

N1 ∩N2 ⊆ N src
1 ∩N snk

2 ∪N snk
1 ∪N src

2

The de�nition of the product-automaton P1 ./ P2 = (A1 ./ A2,R,S, T) follows:

Listing 4.1: Calculating R

R := ∅
for each r1 ∈ R1

if ∃ r2 ∈ R2 : r1 ∩ r2 6= ∅
R := R ∪ r1 ∪ r2

else

R := R ∪ r1

for each r2 ∈ R2

if 6 ∃r1 ∈ R1 : r1 ∩ r2 6= ∅ then
R = R ∪ r2

Listing 4.2: Calculating seepage relation S

S := ∅
for each (u1, v1) ∈ S1

S + = (big(u1), big(v1))

for each (u2, v2) ∈ S2

S + = (big(u2), big(v2))

S + = I

40

Let (t1, τ1 /1 λ1) ∈ T1. The transition λ1 is either empty or proper:

∀ τ2 ∈ −→2 : τ1 ∩ τ2 6= ∅ if λ1is empty

big(r1) : τ1 || τ2 / ∅
∀ τ2 ∈ −→2 : τ1 ∩ τ2 = ∅
if exists a sequence such that otherwise

∀ τ2 : τ1 ∩ τ2 6= ∅ λ1 is proper

∀ λ2 : λ1 ∩ λ2 6= ∅
big(r1) : τ1 || τ2 / λ1 || λ2

(4.1)

4.5 Connector coloring

The connector coloring semantics [CCA07] denote the existence or absence of data-

�ow through the primitive ends by marking them with di�erent colors.

Let Colors be a set of colors. In a set of two colors, Colors = {—, - -}, —

denotes an occurrence and - - represents an absence of data-�ow. Two colors are

adequate to express the formal semantics of many Reo networks. However, they

cannot express the semantics of context-dependent Reo networks.

Such a network presented in Example 4.2.2 is when the sink end of a lossySync

channel connects to an empty FIFO1 channel; in this case, the semantics of this

network according to the two-color set includes the case where the lossySync loses

its incoming data item, while the FIFO1 channel is empty. This is an unacceptable

behavior for a so-called context-dependent lossySync channel: it must lose its in-

coming data only if its sink end cannot dispense it. In the sequel, when we refer to

a lossySync we mean its context sensitive version.

The three coloring semantics, Colors = {–, /, .}, addresses this problem by

propagating negative information regarding the absence of data-�ow. It replaces - -

with / and . meaning that the associated primitive end, respectively, provides or

requires a reason for no-�ow.

Considering that no-�ow can occur only when at least one of the involved primi-

tive ends provides a reason for it, and that an empty FIFO1 cannot provide a reason

for no-�ow on its source end, the invalid behavior described above does not arise in

the three coloring semantics.

De�nition 4.5.1 (Coloring) A coloring l : P → Colors is a total function from

the primitive ends to a set of colors. We refer to the global set of colorings as L.

De�nition 4.5.2 (Coloring composition) The composition of colorings l1 and

l2, denoted l1 • l2, is de�ned as:

41

l1 • l2 = {
c1 ∪ c2|c1 ∈ l1, c2 ∈ l2, p1 ∈ dom(c1), p2 ∈ dom(c2),

p1 and p2 are the source and sink ends of a node n,

¬ (c1(p1) = / ∧ c2(p2) = .)

}

De�nition 4.5.3 (Coloring table) A coloring table over the primitive set

P ⊆ P is a set of colorings with the domain P .

De�nition 4.5.4 (Next function) The next function η : L × 2L → 2L maps a

pair of a coloring and a coloring table to a colorings table.

De�nition 4.5.5 (Coloring semantics) A coloring semantics of a Reo network

is a tuple CC = 〈P, 2L, l0, η〉, where:

� P is the set of primitive ends,

� l0 ∈ L is the initial set of possible colorings,

� 2L is a set of colorings,

� η is a next function that maps a pair of a coloring and a coloring table into a

coloring table.

Example 4.5.1 Table 4.5.1 depicts the CC for the network shown in Figure 4.5.1.

The two �ows described in the table correspond to the cases; i) when there is a write

request of the end a, then the ends a, b1 and b2 have a �ow, but the end c provides a

reason for no �ow, ii) when there is no write request present on the end a, therefore

the ends a and b2 require a reason for no �ow and the ends b1 and c provides a

reason for no �ow. Since CC is context-sensitive, it can capture the semantics of

the given network correctly.

a
b1 b2

c

Figure 4.5.1: A context-dependent Reo connector

42

Table 4.5.1: Connector coloring semantics of the Reo network of Figure 4.5.1

a b1 b2 c
− − − .
. . . .

Table 4.5.2: Connector coloring semantics of commonly used Reo primitives

a b

× ×
◦ •
• ◦

CC corresponding to
a b

a b

× ×
◦ ×
× ◦

CC corresponding to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

Example 4.5.2 Table 4.5.3 shows the CC of the Reo network shown in Figure

4.5.2. The absence of data constraints in the CC, leads to incorrect behavior, as

shown in the �rst row of the table, where there is �ow on both b1 and c.

a

p

b1 b2
c

¬p

Figure 4.5.2: A data-aware Reo connector
43

Table 4.5.3: Connector coloring semantics of the Reo network of Figure 4.5.2

a b1 b2 c
− − − −
− − − .
− . . .
. . . .

4.6 Reo automata

Bonsangue et al. [BCS12] present Reo automata (RA), an automata-based formal

model, to deal with context-dependency in Reo.

Intuitively, a Reo automaton is a non-deterministic automaton whose transitions

are labeled in the form of g|f , where g is a binary predicate, called guard, and f a

set of nodes that �re synchronously. A transition can be taken only when its guard

g is true.

Let Σ = {σ1, ..., σk} be a set of nodes, σ̄ be the negation of σ, and BΣ be the

free Boolean algebra generated by the following grammar:

g ::= σ ∈ Σ | > | ⊥ | g ∨ g | g ∧ g | ḡ

The above grammar produces guards. Often g1∧g2 is written as g1g2. A natural

order ≤ is de�ned between two guards g1,g2 ∈ BΣ as

g1 ≤ g2 ⇒ g1 ∧ g2 = g1

The intended interpretation of ≤ is logical implication: g1 =⇒ g2. An atom of

BΣ is a guard a1...ak such that ai ∈ ¯Sigma ∪ Σ with

Σ = {σi | σi ∈ Σ}, 1 ≤ i ≤ k

De�nition 4.6.1 (Reo automaton [BCS12]) A Reo automaton is a triple (Σ, Q, δ)

where:

� Σ is the set of nodes,

� Q is a set of states,

44

Table 4.6.1: Reo automata for basic Reo primitives

ab|ab
ab|ab
ab̄|a ab|ab

RA corresponding to
a b

RA corresponding to
a b

RA corresponding to
a b

ab|ab
āb|b
ab̄|a

a|a

b|b
RA corresponding to

a b
RA corresponding to

a b
RA corresponding to

a b

ac|ac
ābc

ac|ac
bc|bc

RA corresponding to

a
b

c

RA corresponding to

a
b

c

� δ ⊆ Q×BΣ×2Σ×Q is the transition relation such that for transitions labeled

as BΣ × 2Σ such that for each q
g|f−−→ p ∈ δ:

� g ≤ f̂

� g ≤ g′ ≤ f̂ . ∀α ≤ g′. ∃ q g′′|f−−−→ p ∈ Σ. α ≤ g′′

Table 4.6.1 depicts the Reo automata corresponding to the most common Reo

elements.

4.7 Complexity

Analyzing the complexity of the calculations on CAP or other formal semantics of a

Reo network in a formal fashion is beyond the scope of this dissertation. However,

here we roughly estimate the time complexity of the product of CA. We have chosen

CA because it is one of the most basic formal semantics for Reo. Calculating the

complexity of CA product can provide an insight into the complexity of composing

more sophisticated automata based semantics such as CAP.

45

Let R be a Reo network that is constructed by connecting n smaller

networks in a step-wise fashion, meaning that one join occurs at a time,

A1..i−1 = (Q1..i−1, N1..i−1, →1..i−1, q01..i−1) be the CA of R1..i−1 network at the

i-th step before the i-th network is added, and Ai = (Qi, Ni, →i, q0i) be the CA

of Ri, the i-th network.

Note that at the �rst step, only A1 exists. At the second step A1 is connected

to A2 to form A1..2.

Computing A1..i−1 ./ Ai requires all transitions of A1..i−1, t1..i−1, to be checked

against the transitions of Ai, ti. For each ti, the common ports of the transition

and N1..i−1 need to be found. The time complexity of this operation is O(T1..i−1 ×
P1..i−1 × Pi), where T1..i−1 is the number of transitions of A1..i−1, P1..i−1, and Pi

are the number of elements in N1..i−1 and Ni, respectively.

In addition, for the each t1..i−1 all the common ports of the transition with Ni

is calculated. With a similar complexity of O(Ti × P1..i−1 × Pi), where Ti is the

number of transitions of Ai.

Based on the outcome of these operations, we may need to create a couple of

new states by merging the source and target states of t1..i−1 and ti. We assume

that the creating these states takes a constant time. This assumption is based on

the fact that constraint automata states are atomic entities.

However, in the case of CASM, the time complexity of creating a new state in

the product of two CASMs depends on the number of state variables. Without

considering transition guards, the complexity of computing A1..i is:

O(T1..i−1 × P1..i−1 × Pi + Ti × P1..i−1 × Pi + T1..i−1 × Ti) =

O(

i−1∏
j=1

Tj ×
i∏

k=1

Pk +

i∏
l=1

Pl × Ti +

i∏
m=1

Tm)

Assuming that the number of transitions and the port names in each Ai is T
and P, respectively, the complexity can be written as O(T n ×Pn). As the formula

shows the CA product is a very computationally expensive operation.

The problem of solving transition guards is a constraint satisfaction problem,

which is a known NP-Complete problem. It is known that verifying a solution to

an NP-complete problem is possible in polynomial time, but the time to �nd the

solutions increases rapidly by the growth in the size of constraints.

Later in this dissertation, we provide an alternative approach for obtaining the

formal semantics of a Reo network using constraint solvers. Our approach enables

us to bene�t from all the advances in research to keep this problem tractable for

46

practical use.

47

48

