
Constraint-based analysis of business process models
Changizi, B.

Citation
Changizi, B. (2020, February 21). Constraint-based analysis of business process models. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/85677

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/85677

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/85677

Cover Page

The handle http://hdl.handle.net/1887/85677 holds various files of this Leiden University
dissertation.

Author: Changizi, B.
Title: Constraint-based analysis of business process models
Issue Date: 2020-02-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/85677
https://openaccess.leidenuniv.nl/handle/1887/1�

3
Reo Coordination Language

3.1 Introduction

In the realm of service-oriented programming that is a current trend in software

development, the behavior of a software system is not only de�ned by the function-

alities of its underlying services, but also in terms of their interactions. The code

written to realize the latter is often referred to as glue code.

Writing and maintaining glue code is a tedious task, especially in complex sys-

tems wherein the size and rigidity of the glue code tend to increase over time. This

makes these systems hard to modify and maintain. Coordination languages o�er a

more manageable alternative for generating glue code.

Reo [Arb04] is a channel-based coordination language for composition of software

components and services. Using a small and open-ended set of prede�ned and user-

de�ned constructs, Reo supports modeling of complex coordination behavior in

terms of synchronization, bu�ering, mutual exclusion, priority, etc.

The primitive constructs of Reo are channels. Each channel has two ends, also

called ports. Channel ends are either of type source that read data into the channel

or sink that write the channel's data out.

19

Channels can connect to each other on their ends to form compound elements.

Reo connectors, also called networks are constructed this way. A Reo node is formed

by one or more channel ends.

Furthermore, Reo provides a mechanism for hierarchical modeling and abstract-

ing from inner structures by means of components [Arb04]. A connector can turn

into a component. In this case it will exhibit (part of) its inner logic as an observable

behavioral interface.

Reo emphasizes on the connectors and their compositions rather than the entities

that connect to the connectors to coordinate with each others. A Reo connector

imposes a speci�c coordination pattern on interactions occurring between entities.

This happens without the entities controlling or being necessarily aware of this

pattern. This type of coordination is called exogenous, as it is performed from the

outside.

According to a survey of coordination languages [Arb06], Reo belongs to the class

of data�ow-oriented coordination languages, which is between the data-oriented and

the control-oriented classes.

While the main concern of data-oriented coordination languages is consistency

among shared data, control-driven languages focus on the �ow of control. In com-

parison, data�ow-oriented languages de�ne the communicating entities, the points

of data-�ow, and exchanging data-items.

3.2 Reo

In this section, we present an informal overview of the pre-de�ned set of Reo con-

structs. Following is the list of Reo channels:

A sync channel has a source and a sink end. It accepts data from
its source end i� it can dispense it simultaneously through its sink
end.

A lossySync has a source and a sink end. It reads a data-item
from its source end and writes it simultaneously to its sink end.
If the sink end is not ready to accept the data-item, the channel
loses it.

A syncDrain has two source ends and no sink end. It reads data
through its two source ends i� both ends are ready to interact
simultaneously. The channel discards the received data-items.

20

A syncSpout has two sink ends and no source end. For each
sink end, the channel generates a data-item out of the underlying
data domain and writes them simultaneously to the corresponding
ends.

An asyncDrain has two source ends and no sink end. It accepts
and discards a data-item from either of its source ends that o�ers
data. If both ends o�er data-items simultaneously, the channel
chooses one of the ends non-deterministically.

) A blockSourceSync channel is a Sync channel that blocks the prop-
agation of priority from its source end toward the sink end.
This channel and the two next priority blocking channels are used
to limit the scope a�ected by priority, which originates from a
PrioritySync channel.

(A blockSinkSync channel is a Sync channel that stop spreading of
priority from its sink end toward the source end.

)(A blockSync channel is a combination of BlockSourceSync and
BlockSinkSync. It stops the propagation of priority in both direc-
tions.

The following is a list of pre-de�ned Reo components that are abstracted con-

nectors.

A replicator has one source end and one or more sink ends. It
replicates data-items coming from its source to its sink ends si-
multaneously.

A merger has one or more source ends and a sink end. It chooses
one of its source ends that is ready to communicate in a non-
deterministic way, receives the incoming data-item, and writes it
to its sink end simultaneously.

A router has one source end and one or more sink ends. It accepts
a data-item from its source end and simultaneously replicates it
on one of its sink end that is non-deterministically chosen from
its set of sink ends, which are ready to accept data.

A cross-product has one or more source ends and a sink end. It
accepts a data-item from each of its source ends. Furthermore, it
forms a tuple of the data-items that are set in the counter-clock-
wise order with respect to the sink node. It writes the tuple on
its sink end. All of these operations occur simultaneously.

21

As mentioned, Reo nodes are created from channel ends. In case that the node

only consists of source ends, it is called a source node. A node is sink, if it is formed

by merely sink ends. Otherwise, if a mixture of source and sink ends collide, the

created node is called a mixed node.

A mixed node is an atomic combination of a replicator and a non-deterministic

merger. Each read and write action needs all of its involved source and sink ends

to be able to interact synchronously. Otherwise, the action cannot take place.

3.3 Examples

Example 3.3.1 Figure 3.3.1 shows a Reo network that is composed of a lossySync

and a FIFO1 channel. When the FIFO1 channel is empty, the lossySync reads a

value from its source end and passes it to its sink end that coincides with the source

end of the FIFO1 channel. Therefore, the FIFO1 channel becomes full. The data

stored in the FIFO1 channel can be read and consumed via its sink channel. Before

that the FIFO1 channel loses its data, the lossySync channel accepts but loses all

its incoming data.

a
b1 b2

c

Figure 3.3.1: An example of a context-dependent Reo network

Example 3.3.2 Figure 3.3.2 depicts a Reo network consisting of two �lter channels

with negating conditions. The �rst channel reads a data item from its source end

and writes it on its sink end if it matches its condition, otherwise it loses the data.

In the former case, the data item will not satisfy the condition corresponding to the

second channel, so it is lost by the second channel. In both cases, there won't be any

write operation on the sink end of the second channel.

a

p

b1 b2
c

¬p

Figure 3.3.2: An example of a data-aware Reo network

Example 3.3.3 Figure 3.3.3 illustrates a Reo network containing two FIFO1 chan-

nels. The network behaves as a FIFO2 bu�er. In the beginning, both channels are

empty. If there is an incoming data item on the source end of the �rst channel, the

22

channel accepts the data and becomes full. Then, by an internal transition the data

item is moved to the second channel. It makes it possible for the �rst channel to

read another data item and/or to writes out the stored data through the sink end of

the second channel.

a
b1 b2

c

Figure 3.3.3: A Reo network for a FIFO2 bu�er

3.4 Extensible Coordination Tools (ECT)

A variety of Reo related tools are bundled together in a common framework, called

Extensible Coordination Tools (ECT) [AKM+08a]. The tools in the framework

are integrated as Eclipse plugins and operate based on the operational semantics

of Reo, most notably, connector coloring and variations of constraint automata.

ECT includes tools to design, transform, animate, model check, test, perform QoS

analysis, and generate executable code from Reo connectors.

The ECT tools can be chained together to enable analysis on business process

models. Here, we brie�y overview these tools:

� Graphical editor : The graphical editor provides facilities to design Reo net-

works. The editor has been implemented based on the Eclipse Modeling

Framework (EMF) [SBPM09] and Eclipse Graphical Modeling Framework

(GMF). As a requirement of the model-driven approach and to work with

EMF, Reo meta-model has been de�ned in [Kra11] [KMLA11].

� Animation tool : The animation tool produces simulation of Reo networks in

the format of Adobe Flash [�a]. The tool is based on the animation semantics

introduced in [Cos10] and visualizes the token game in Reo connectors [Kra11].

� Veri�cation tool : Vereofy [BBK+10] is a model checker for Reo networks de-

veloped at the Technical University of Dresden. It can be used independently

or from the ECT.

� mCRL2 conversion tool : Another model checker for Reo networks that is in-

tegrated into ECT is the mCRL2 [GMR+06]. The mCRL2 to Reo converter

tool translates constraint automata speci�cations of Reo into mCRL2 speci�-

cations.

23

� Execution engines: ECT includes two execution engines: i) The centralized

execution engine of Reo is a code generation framework based on constrained

automata [BSAR06]. ii) The distributed execution engine for Reo is imple-

mented based on constraint-based semantics of Reo [Pro11].

� The Extensible Automata (EA) framework : Extensible Automata (EA) frame-

work is a uni�ed framework for generating automata-based semantics of Reo

networks. The framework comes with a graphical automata editor, which also

can be used outside of the context of Reo. It includes functionality to gener-

ate automata models with stochastic information from graphical Reo models.

From these models, it is possible to extract Continuous Time Markov Chains

(CTMCs) that can be analyzed by the external tools such as PRISM proba-

bilistic model checker [KNP02] or ECT stochastic simulation tool [Kan10].

� BPMN 2 to Reo conversion tool : In the context of this thesis, we have imple-

mented a plugin to convert BPMN 2 models into Reo connectors [CKA10].

The converter deals with transactions, whose behavior is relatively more com-

plex to map, in a two phases manner.

The �rst phase is re�nement, wherein transactions are substituted by a group

of BPMN 2 elements, which collectively presents the same behavior as the

transaction, yet they are easier to be mapped to Reo. In the second phase,

the BPMN 2 constructs are being matched against some patterns to generate

corresponding Reo elements. Chapter 5 elaborates on the converter.

� Constraint-based semantics calculator : As part of this thesis, we have im-

plemented a tool to generate data-dependent, context-sensitive, and priority-

aware formal semantics of Reo. To generate the automata-based formal se-

mantics of Reo networks, we express the behavior of the Reo network in term

of constraint satisfaction problem. From the solutions to this problem, we

build the automata model.

Our approach in using constraint solving to get the semantics of a Reo network

is similar to the one used to generate the distributed execution engine for Reo

[CPLA10]. However, unlike [CPLA10] [Pro11] , we support data, time, and

priority. Another di�erence is that we calculate the all the possible behavior,

while the mentioned tool has a step-wise approach that �nd the next possible

behavior at a time. In Chapter 6, we present our approach in details.

Our work is the �rst tool support for priority in Reo. Chapter 7 elaborates on

our approach in obtaining a priority-aware formal semantics of Reo from the

24

solutions of constraints generated from each of Reo elements in a compositional

manner.

25

26

