
Constraint-based analysis of business process models
Changizi, B.

Citation
Changizi, B. (2020, February 21). Constraint-based analysis of business process models. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/85677

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/85677

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/85677

Cover Page

The handle http://hdl.handle.net/1887/85677 holds various files of this Leiden University
dissertation.

Author: Changizi, B.
Title: Constraint-based analysis of business process models
Issue Date: 2020-02-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/85677
https://openaccess.leidenuniv.nl/handle/1887/1�

2
Business Process Model and Notation

2.1 Introduction

Business Process Model and Notation (BPMN) [Gro11], also known as Business

Process Modeling Notation, is a standard graphical representation of business pro-

cess models. BPMN bridges the gap between visualization of the business processes

and their actual implementation by providing an understandable notation for both

business stakeholders and technical experts.

BPMN is based on �owcharting techniques. It allows modeling complex business

processes using its diverse set of control structures, which covers concepts such as

sequencing, repetition, choice, concurrency, messaging, failure, transactions, etc.

BPMN has an expressive notion to de�ne events and to associate triggers to the

de�ned events. Furthermore, it provides means to form reusable units out of a set

of elements.

The �rst version of BPMN is developed by the Business Process Management

Initiative (BPMI) in 2004. In 2005, BPMI and the Object Management Group

(OMG) merged. BPMN is maintained by OMG since then. In 2006, the BPMN

speci�cation was adopted as an OMG standard. In 2011, the �nal edition of BPMN

9

2 speci�cation was released.

BPMN 1.2 presents a notation for modeling business processes and informally

expresses the semantics of the modeling primitives. This leads to ambiguity and

confusions in interpretation of a process. For instance, the authors in [vdADK02]

present a deadlock situation called vicious circle that is caused by using convergent

inclusive gateways. This is a class of situations where two inclusive gateways are

connected in a cyclical way. Moreover, BPMN 1.2 speci�cation provides no details

on model serialization format.

BPMN 2, the biggest revision of BPMN so far, presents a formal de�nition

in terms of a meta-model, that is a formal de�nition of the constructs and their

relations in a valid model. The meta-model speci�es a serialization format that

enables model exchange among di�erent BPMN 2 tools. In the context of modeling

elements, BPMN 2 o�ers the following enhancements over previous versions:

� It expands the set of BPMN gateways with exclusive and inclusive event-based

gateways.

� It enriches the set of activities by adding business rule task, sequential multi-

instance activity, event sub-process that handles events occurring in bounding

sub-process, and call activity that invokes a global sub-process.

� It enhances events by introducing escalation, and complex events, and the

concept of interrupting and non-interrupting events.

Although BPMN 2 provides an explicit execution semantic, the semantics are

expressed in informal fashion. This leaves rooms for interpretation for a number of

issues such as deadlocks and race conditions.

In this chapter, we provide an overview to BPMN. We also present examples of

process models containing semantical errors.

2.2 BPMN 2 elements

A BPMN diagram consists of a number of elements that fall into the categories of

�ow objects, connecting objects, swimlanes, and artifacts. A �ow object can be an

event, a gateway, or an activity.

2.2.1 Connecting objects

Connecting objects are used to connect the other BPMN elements:

10

� Sequence �ows represent the occurring order of processes in a business model.

� Message �ows are used to exchange messages between process participants.

� Association �ows associate modeling elements to each other. For instance, a

compensation task is associated to its task via an association �ow.

2.2.2 Events

Events represent triggers occurring during execution of business processes. Events

usually have a cause or a result. The representation of an event is a circle wherein

internal markers are placed to denote triggers or results. Based on the time that

events a�ect the �ow, they fall into three categories:

Start events, which start a process;

Intermediate events, which occur between start and end of a process;

End events, which terminate a process.

Each time a process receives a new start event trigger, a new instance of the process

begins to execute. Therefore, a process may have many process instances. Start

events and intermediate events are catching, meaning that they catch a trigger in

order to occur. End events and some of intermediate events are throwing as they

throw a result. Compared to the passive nature of catching events, throwing events

are active as they trigger themselves rather than waiting for a trigger to take place.

The following intermediate events can attach to the boundary of an activity:

message, timer, error, compensation, and signal. In this case, they can only occur

while the surrounding activity is active. Boundary events can either be interrupting

or non-interrupting.

Interrupting events stop the execution of the activity and direct the �ow out

of the boundary event, while non-interrupting events do not interfere with the ex-

ecution of the activity. Instead, they start the �ow out of the boundary event in

parallel. Another di�erence is that non-interrupting events can occur several times

while the surrounding activity is running.

Following is the list of event types in BPMN 2:

11

A none event has no de�ned trigger. It can indicate a start point,
a state change or a �nal state. Each process can only have one
none start event.

A message event is used to model exchange of messages. A mes-
sage has a speci�c receiver.

A signal is broadcasted between processes. It di�ers from message
in that a message has a speci�c target, but a signal is broad-casted.
A thrown signal can be caught multiple times.

A timer event indicates a waiting time within the process. A
timer trigger can be a speci�c date/time value or a duration.

A conditional event occurs when a business condition becomes
true.

A link is a mechanism for connecting two sections of a process. A
throwing link event is used at the exit point, while a catching link
event as the entrance point. Using link helps keeping the model
clean and prevents spaghetti models.

A cancel event is always used with a transaction sub-process. It
indicates that the transaction should be canceled. A cancel event
triggers a cancel intermediate event attached to the sub process
boundary.

A terminate event indicates that all activities in the process should
be immediately ended. In this case, the process is ended without
compensation or event handling.

A throwing compensation event indicates that a compensation is
needed. A catching compensation event states that a compensa-
tion will occur when the event is triggered. All other boundary
events occur only while the activity that they are attached to is
active. In contrary, an attached compensation takes place only if
the process triggers a compensation and if the activity to which
compensation is attached has been completed successfully.

A multiple event summarizes several events with a single event.
A catching multiple event occurs if at least one of its speci�ed
events occurs. However, a throwing multiple triggers all the de-
�ned events.

12

A parallel multiple event, which is added in BPMN 2, is a supple-
ment to multiple event. A parallel multiple event is only catching.
It indicates that all of the de�ned events are required in order to
trigger this event.

Escalation is new in the BPMN 2 speci�cation. An escalation
event is used to trigger a path in middle of a process �ow that
requires involvement of a higher responsibility.

Based on the types, event triggers are forwarded in �ve di�erent strategies:

� Publication: A published trigger can be caught by any catching event that

matches the trigger within any scope where it is published. Message and

signal events triggers are forwarded this way.

Messages are created out of the pool wherein they are published. In case that

a message should be received by a speci�c process instance, the particular

instance in referred by the message.

Signals are created inside the pool wherein they are published. In general,

signals are used to broadcast within and across processes, pools, and process

diagrams.

� Direct Resolution: The timer and conditional triggers are thrown implicitly.

These triggers wait for a de�ned time or a speci�c condition to trigger the

related catch event, respectively.

� Propagation: A propagated trigger is forwarded from its origin to the inner-

most enclosing level that has an attached catching event that matches the

trigger. Instances of events that propagate are error and escalation.

Unlike error triggers that are critical and suspend execution, escalations are

non-critical and allow execution to proceed normally. If there is no catching

event found for an error or an escalation trigger, the trigger is unresolved.

� Cancellation: When a cancellation occurs, all running activities terminate and

all activities in the sub-process wherein cancellation applies are compensated,

if they are completed successfully. In case that the sub-process is a transaction,

it needs to be rolled back.

� Compensation: A successfully completed activity is compensated by its com-

pensation handler, which is either user-de�ned or implicit. In latter case, the

13

compensation handlers of the enclosed activities are invoked in the reverse or-

der of their execution. If an activity has not completed successfully, nothing

happens and no error is raised.

2.2.3 Activities

An activity describes the type of work that needs to be done. An activity is either a

task, a sub-process, or a transaction. BPMN represents the activity in a high-level

of abstraction. It is not the BPMN responsibility to describe the activity details.

Tasks, which are atomic activities have several types:

A manual task is a task that is performed manually.

A user task is performed by a person with assistance of au-
tomation.

Service tasks are services such as web services or automated
applications.

A script task is executed by a business process engine.

Business rule tasks are introduced in BPMN 2. They are per-
formed by business rule engines.

A send task is a simple task with an outgoing message �ow,
which is used for sending messages. The task is completed
after the message is sent.

A receive task is a simple task with an incoming message �ow,
which waits for a message to arrive. Once it receives the mes-
sage, the task is completed.

A sub-process captures a set of activities, gateways, and �ows within a single

activity. It hides or reveals details of business process based on being expanded or

14

collapsed, which is denoted using a plus sign at the bottom of the sub-process. A

sub-process may only begin with a none start event and end with a none end event.

A transaction is a sub-process that all of its enclosed activities
constitute a logical unit of operation, meaning that all the activ-
ities must be completed successfully, and if one fails, all of them
need to be compensated.

Event sub-process are introduced in BPMN 2. An event sub-
process behaves like a boundary event, but it resides inside a
process or a sub-process rather than on their boundaries.
An event sub-process can be considered as an optional sub-process
that occurs when its start event is triggered.
Similar to boundary events, an event sub-process may interrupt
the containing process or run in parallel in a non-interrupting
fashion, depending on the type of its start event.
In addition, it is allowed to have only one start event that is
non-empty. The event types that can be used as a start event
for an event sub-process are: message, conditional, signal, timer,
escalation, error, multiple, and parallel-multiple. As mentioned,
the only way to run an event sub-process is by triggering its start
event. As a result, no incoming or outgoing sequence �ow can
connect to an event sub-process.

In BPMN 1.2, there are two types of sub-processes: embedded and reusable.

BPMN 2 sub-processes are inherently embedded. They can only be reused if they

are de�ned globally and are referenced by call activities.

An embedded sub-process can only contain a none start event. It cannot have

other types of start events such as timers or messages.

Furthermore, an embedded sub-process can only be found inside a process to

which it belongs. A global sub-process, on the other hand, can reside within di�erent

processes.

In BPMN 2, reusable task and sub-processes are invoked using a call activity.

According to the BPMN 2 speci�cation [Gro11], a call activity in BPMN 2 cor-

responds to the BPMN 1.2 reusable sub-process, while a sub-process in BPMN 2

corresponds to the BPMN 1.2 embedded sub-process.

A transaction has three possible outcomes:

� All the activities �nish successfully. In this case, the process proceeds with

the normal �ow.

� In case of a failure, the compensation tasks associated to the successfully

15

completed activities execute. The process continues through the cancel inter-

mediate event.

� In case that an unexpected error takes place, the sub-process activities are

interrupted without any compensation. The process then proceeds with the

intermediate error event.

An activity can be annotated using di�erent markers that indicate the nature

of the activity. The markers are as follows:

� The loop marker indicates that the attached activity executes multiple times

until the loop condition holds. The condition can be evaluated either in the

beginning or in the end of the activity depending on a speci�c attribute of the

activity.

� A compensation marker is used to undo a completed activity.

� A sequential multi-instance marker de�nes an activity that has multiple in-

stances created sequentially. The number of instances to be instantiated is

either de�ned as an attribute of the activity or as the cardinality of input data

items.

� A parallel multi-instance marker represent activities that can be executed in

parallel as multiple instances. Each instance can have a di�erent set of input

parameters.

� An ad-hoc marker is used to represent an activity, whose inner tasks have

no required order. Each task can start at any time. There is no dependency

among the activities.

2.2.4 Gateways

Gateways manage the control �ows within a process or sub-process by specifying

the interaction among sequence �ows as they converge and diverge. The list of

BPMN 2 gateways follows:

2.2.5 Swimlanes and artifacts

A swimlane is used for organizing and categorizing activities inside a business pro-

cess. A swimlane can be either a pool or a lane. A pool represents a participant in

a business. Lanes are partitions inside a pool.

16

Data-based exclusive gateways are used to create alternative paths
based on the conditions that are set on the incoming data �ow. A
diverging exclusive gateway, also called decision, routes the incoming
�ows to one of the mutually exclusive alternative outgoing �ows. A
converging exclusive gateway directs one of its incoming �ows to its
only outgoing �ow.

Data-based inclusive gateways create alternative but also parallel
paths within a process �ow. A diverging inclusive gateway directs
its incoming �ow to one or more outgoing �ows based on conditions.
A converging inclusive gateway, on the other hand, awaits incoming
�ows to complete.

Parallel gateways are used to create and also to combine parallel
�ows. A diverging parallel gateway creates parallel �ows, while a
converging one merges the incoming �ows into one outgoing �ow.

Event-based gateway routes based on occurrence of events rather than
on data. In addition to events, it also works with receive message
task. An event-based gateway is always followed by catching events
or receive tasks.

A parallel event-based Gateway is similar to a parallel data-based
gateway with the di�erence that it depends on occurrence of events
rather than on data.

A complex gateway models complex synchronization behavior. An
expression is used to describe the behavior of the gateway.

Artifacts are used for adding information into the model. The followings are

three types of artifacts:

� Data objects, which describe the required or the produced data in an activity.

� Groups are used to categorize di�erent activities.

� Annotations are providing information about the model.

Example 2.2.1 Figure 2.2.1 depicts a BPMN model consisting of two processes.

The receiver process starts, waits till receiving a message from the sender process

before it ends. While the sender process starts, evaluates a condition based on which

it chooses to end or to send a message to the receiver process, and returns back to

the condition evaluation step.

17

Figure 2.2.1: An example of messaging in BPMN

The desired behavior of this model is that the processes start, the message ex-

change occurs, and they end. However, it is possible that the sender process �nishes

without sending any message. In this case, the receiver process keeps waiting for a

message that will never arrive. This is an example of deadlock.

In addition, the model contains a livelock, which occurs if after the receiver

process receives a message from the sender process and �nishes, the sender keeps

going back to the sending step and does not end.

18

