
Constraint-based analysis of business process models
Changizi, B.

Citation
Changizi, B. (2020, February 21). Constraint-based analysis of business process models. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/85677

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/85677

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/85677

Cover Page

The handle http://hdl.handle.net/1887/85677 holds various files of this Leiden University
dissertation.

Author: Changizi, B.
Title: Constraint-based analysis of business process models
Issue Date: 2020-02-25

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/85677
https://openaccess.leidenuniv.nl/handle/1887/1�

Constraint-Based Analysis of Business
Process Models

Proefschrift

te verkrijging van

de graad van Doctor aan Universiteit Leiden,

op gezag van Rector Magni�cus Prof. Mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen 25 February 2020

klokke 13:45

door

Behnaz Changizi

Geboren te Hamedan, Iran, in 1979

Promotor: Prof. Dr. F. Arbab

Copromotor: Dr. N. Kokash (Peoples' Friendship University of Russia)

Promotiecommissie:

Prof. Dr. F.S. de Boer

Prof. Dr. A. Plaat

Prof. Dr. M. Sirjani (Malardalen University)

Prof. Dr. A. Lazovik (University of Groningen)

Dr. M.M. Bonsangue

The work in this thesis has been carried out at Centrum Wiskunde & Informatica

and Leiden University, and under the auspices of the research school IPA: Institute

for Programming research and Algorithmics. The research was partially funded by

the EU project EU FP7 IST project COMPAS: Compliance-driven Models, Lan-

guages, and Architectures for Services.

Contents

1 Introduction 1

1.1 Contributions . 4

1.2 Outline . 5

1.3 Publications . 7

2 Business Process Model and Notation 9

2.1 Introduction . 9

2.2 BPMN 2 elements . 10

2.2.1 Connecting objects . 10

2.2.2 Events . 11

2.2.3 Activities . 14

2.2.4 Gateways . 16

2.2.5 Swimlanes and artifacts . 16

3 Reo Coordination Language 19

3.1 Introduction . 19

3.2 Reo . 20

3.3 Examples . 22

3.4 Extensible Coordination Tools (ECT) 23

4 Formal Semantics for Reo 27

4.1 Introduction . 27

4.2 Constraint automata . 29

4.3 Constraint automata with state memory 32

4.4 Constraint automata with priority 36

4.5 Connector coloring . 41

4.6 Reo automata . 44

4.7 Complexity . 45

i

5 Mapping BPMN to Reo 49

5.1 Transaction re�nement . 51

5.2 Atlas Transformation Language . 56

5.3 Mapping BPMN 2 to Reo . 58

5.3.1 De�nition . 59

5.3.2 Process . 60

5.3.3 Task and subprocess . 61

5.3.4 Throw and catch events . 62

5.3.5 Gateway . 64

5.3.6 Transaction . 68

5.3.7 Other elements . 70

5.4 Example . 77

5.5 Related Work . 77

6 A Constraint-Based Semantics Framework for Reo 81

6.1 Introduction . 81

6.2 Reo constraint satisfaction problem (RCSP) 82

6.2.1 Encoding Reo elements in RCSPs 85

6.2.2 Solving RCSPs . 87

6.2.3 Constructing CASM . 90

6.3 Hiding . 92

6.4 Correctness and compositionality . 95

6.4.1 Performance evaluation . 100

6.5 Conclusions . 101

7 Priority 105

7.1 Introduction . 105

7.2 Priority �ow . 106

7.3 Numeric priority . 113

7.4 Case study . 114

7.5 Related work . 117

7.6 Conclusions and future work . 119

8 Conclusion 121

Listings

4.1 Calculating R . 40

4.2 Calculating seepage relation S . 40

5.1 Re�nement of transactions . 54

5.2 Re�nement of transactions (dealing with task completion) 56

5.3 Re�nement of transactions (dealing with compensations) 57

5.4 De�nition mapping rule . 58

5.5 Process mapping rule . 59

5.6 Mapping tasks and collapsed subprocesses 61

5.7 Mapping an expanded subprocess . 62

5.8 Mapping tasks and collapsed subprocesses 63

5.9 Mapping non-conditional catch event 64

5.10 Mapping published throw message event 65

5.11 Mapping propagated throw events 66

5.12 Mapping conditional event . 67

5.13 Mapping parallel gateway . 67

5.14 Mapping inclusive gateway . 68

5.15 Mapping exclusive gateway . 69

5.16 Mapping the generated compensation order complex gateway 71

5.17 Finding the connecting node to a complex gateway 72

5.18 Mapping incoming �ows of the compensation order gateway 73

5.19 Mapping the post compensation complex gateway 74

5.20 Mapping the cancel �ow to the post compensation gateway 74

5.21 Mapping the compensation completion 75

5.22 Mapping the task completion . 76

iii

List of Figures

1.1.1 The BPMN to Reo converter menu in ECT 5

1.1.2 The mapping of Figure 1.1.1 . 5

2.2.1 An example of messaging in BPMN 18

3.3.1 An example of a context-dependent Reo network 22

3.3.2 An example of a data-aware Reo network 22

3.3.3 A Reo network for a FIFO2 bu�er 23

4.2.1 A context-dependent Reo connector 31

4.2.2 CA of Figure 4.2.1 . 32

4.2.3 A data-aware Reo connector . 32

4.2.4 CA of Figure 4.2.3 . 32

4.3.1 FIFO2 . 36

4.3.2 CA of Figure 4.3.1 . 36

4.5.1 A context-dependent Reo connector 42

4.5.2 A data-aware Reo connector . 43

5.1.1 Figure 5.1.1a after re�nement . 55

5.3.1 The meta-model of FlowNode . 60

5.3.2 Mapping of the compensation order complex gateway 70

5.3.3 Mapping of the post compensation complex gateway 72

5.3.4 Mapping the re�ned BPMN 2 example of Figure 5.1.1b to Reo . . . 77

6.2.1 A data-aware Reo connector . 87

6.2.2 A context-dependent Reo connector 89

6.2.3 CASMs generated for Figures 6.2.1 and 6.2.2 91

6.2.4 CASM for Figure 6.2.2 . 92

6.2.5 CC for Figure 6.2.2 . 92

v

6.3.1 Two FIFO1s forming FIFO2 . 94

6.3.2 Hiding the empty transition . 94

6.4.1 A sample Reo network . 95

6.4.2 CASM corresponding to Figure 6.4.1 95

6.4.3 A coloring annotated state of the CC corresponding to Figure 6.4.1 . 96

6.4.4 7-Sequencer . 100

6.4.5 Performance evaluation based on N-Sequencer network 102

7.4.1 An example of a sales process modeled in BPMN 114

7.4.2 The process of a sample on-line shop modeled in Reo 115

7.4.3 Ignoring priorities in Figure 7.4.2 . 117

List of Tables

4.2.1 Constraint automata for basic Reo primitives 30

4.4.1 Priority constraint automata of commonly used Reo primitives . . . 37

4.5.1 Connector coloring semantics of the Reo network of Figure 4.5.1 . . 43

4.5.2 Connector coloring semantics of commonly used Reo primitives . . . 43

4.5.3 Connector coloring semantics of the Reo network of Figure 4.5.2 . . 44

4.6.1 Reo automata for basic Reo primitives 45

6.2.1 Context-independent encoding of Reo primitives 86

6.2.2 Context-dependent encoding of Reo primitives 86

7.2.1 Constraint encoding of Reo with priority 109

7.4.1 Priority data of Figure 7.4.3 . 118

vii

viii

1
Introduction

The term business process modeling is �rst introduced by S. Williams [Wil67] where

he argues that the techniques for modeling physical control systems could be applied

to business processes [DM03]. However, it took until the 1990s for the term business

process to become popular [Hoo11].

At the time, companies started to think in terms of processes rather than func-

tions and procedures [Rol95]. Process thinking ensures the right development di-

rection by analyzing the chain of events in an organization. Examples include the

events occurring from purchase to supply or from receiving orders to sales.

A business process is a set of related and structured activities, which serves a

speci�c goal for a customer [Rol95]. The de-facto standard in the �eld of business

process modeling is the Business Process Model and Notation (BPMN).

Business Process Model and Notation (BPMN) [Gro11], previously referred to

as Business Process Modeling Notation, is a graphical representation of business

process models based on �owcharting techniques. The main goal of BPMN is to

provide an understandable notation for both technical experts and business users.

Similar to many modeling languages, it is possible for a BPMN model to contain

errors. Syntactical errors are created by connecting the modeling elements in an

1

invalid manner. In general, syntactical errors can be detected simply by parsing the

model [AP08]. A number of BPMN designing tools such as Eclipse BPMN Modeler

[BPM], ARIS Express [ari], and Yaoqiang [Yao] can detect syntactical errors in

models.

However, a model may contain behavioral errors, which are more complicated to

detect. For instance, a model may represent a process that is not sound. A process

is sound when every reachable state from an initial state has a way to reach a �nal

state [GPR+07]. A process may contain deadlock or livelock. Deadlocks occur when

a process can reach a non-�nal state that it cannot leave. Livelocks happen when a

process ends in one path, but some states are still active with no progress possible.

Detecting behavioral errors requires investigating the runtime behavior of a process.

An informal approach to �nding cases of deadlock and livelock in BPMN models has

been proposed in [AP08] [TJ10], which is based on �nding the pre-de�ned patterns

of such errors in the model. Although this approach has low computational costs,

it is not complete in term of �nding other forms of errors.

Formalizing semantics of a BPMN process enables automated model checking of

the process in order to detect behavioral errors. Similar to a variety of BPM systems

on the market [DRMR13], the foundation of BPMN is based on Petri nets [vdA04].

The choice of Petri nets as foundation for BPM system implementation over other

formal methods, often more expressive or specialized [RBM05, BHF05], is not sur-

prising: hardly any model is as simple, intuitive, and naturally supports task trace-

ability.

While undoubtedly Petri nets based models enable automated process analysis

within BPM systems, they lack few desirable characteristics: i) They lack com-

positionality, which means that they cannot deal with large and complex systems.

Ideally, we would like to plug semantic models for individual components to the

semantic models of existing processes in a compositional way. ii) The classical Petri

nets are not expressive enough and often are extended (e.g., with colors, reset and

inhibitor arcs, priority transitions) to enable meaningful process analysis. Such ex-

tensions change the operational semantics of the model and generate incompatible

dialects of process-speci�cation languages adopted by various tools.

An alternative theory for coordinating concurrent components is called the Reo

coordination language [Arb04]. Reo has been used to formalize semantics of Busi-

ness Process Modeling Notation (BPMN) [AKM08b], UML Activity and Sequence

Diagrams [CKA10], map BPEL fragments [STK+10], represent transactional work-

�ows [KA13], implement service orchestrations [JSS+12] and service choreogra-

phies [MA07b].

2

In this dissertation, we propose formal semantics for Business Process Modeling

Notation (BPMN) models in terms of Reo. The mapping of BPMN to Reo is

implemented as a plugin in the Reo analysis tool-set in a model-driven paradigm.

Our mapping completes the proposed mapping of BPMN to Reo in [AKM08b]

by covering not only basic BPMN constructs, but also advanced structures such

as BPMN transactions. In addition, our proposed mapping rules are expressed

formally in a dedicated language for model to model transformation.

Since synchronization propagates through composition in Reo, it allows compo-

sition of components and services in an intuitive way, and addresses the issue (i)

mentioned above. Reo is easily extensible to support more advanced process mod-

els, such as timed [MA07a] or stochastic work�ows networks [MSKA10], via de�ning

new channels. However, the open-ended nature of Reo channels makes it necessary

to extend the formal semantics of Reo in order to include some new concepts.

Several dozen variations of semantic models for Reo have been proposed [JA12].

They vary from rather simple that cover basic Reo behavior (e.g., constraint au-

tomata [BSAR06]) to more complex models that capture speci�c behavioral aspects,

e.g., context-sensitivity [CCA07]. In some of these semantic models, computing the

overall semantics of a system given automata-based semantics for its parts (compo-

nents, services or glue code) is computationally expensive. This hampers using the

language for analyzing large real-world business processes.

In this dissertation, we present a constraint-based framework, which uni�es var-

ious formal semantics of Reo. In this framework, the behavior of a Reo network is

described as a constraint satisfaction problem (CSP). A CSP is a problem whose

solutions must satisfy some limitations also known as constraints. The constraint-

based nature of our approach allows simultaneous coexistence of several semantics

in a simple fashion. The behavior of a Reo network is determined by the solu-

tions to its CSP. Since any solution must satisfy all the encoded formal semantics,

the framework eliminates any behavior inconsistent with (an aspect of) a formal

semantics of Reo.

Another advantage of our proposed constraint-based approach compared to the

existing approaches of deriving formal semantics of Reo is its e�ciency due to

e�cient constraint solving methods and optimization techniques used in the o�-

the-shelf constraint solvers. We support this claim with a case study.

Among the behavioral aspects required to model a business process is priority.

The notion of priority is necessary for modeling behaviors such as transaction and

exception handling, where the data �ow representing the error or exception should

interrupt the normal �ow. A formal semantics to model priority in Reo, named

3

Constraint Automata with Priority (CAP), has been proposed in [ABS15]. CAP

provides means to model propagation and stopping the propagation of priority.

Despite its comprehensive approach in modeling priority, the proposed semantics is

computationally expensive for direct implementation.

Inspired by CAP, in this dissertation, we present an alternative approach to

model priority in Reo by extending our constraint-based framework with priority-

aware premises. Further, we extend our priority-aware formal model to support not

only a binary notion of priority, as modeled in CAP, but also numeric priorities.

1.1 Contributions

The contributions of this dissertation are as follows:

� We present a model-driven mapping of business process models speci�ed in

BPMN into Reo networks. Such transformations enable application of au-

tomated analysis and model checking on business processes. We have im-

plemented our proposed mapping in a rule-based fashion using a dedicated

transformation language, which makes the implementation of the mapping

concise, readable, and easy to maintain. We have integrated our mapping

into the Extensible Coordination Tool-set (ECT), the integrated development

environment for Reo. This makes it easier for business process models to be

fed to various tools in ECT. Figure 1.1.1 shows an example of a BPMN model

with the option to be converted to Reo using our BPMN to Reo plugin. Figure

1.1.2 depicts the generated Reo network.

� We provide an extensible constraint-based approach to unify various semantic

models of Reo networks. We represent a problem of computing semantics for

a complex Reo network by encoding semantics of individual channels as con-

straints and solving the corresponding constraint satisfaction problem. This

approach bridges the expressiveness gaps and incompatibility among di�erent

Reo semantics. In addition, using a constraint-based approach replaces direct

implementations of algorithms for calculating di�erent Reo formal semantics.

� We extend our constraint-based framework to support the priority-aware be-

havior of Reo connectors. Priority is an important concept in modeling trans-

actions. Our work makes it more straight-forward and less complicated to

obtain Constraint Automata with Priority (CAP) formal semantics for Reo.

Our framework is the only existing approach that integrates various behav-

4

Figure 1.1.1: The BPMN to Reo converter menu in ECT

Figure 1.1.2: The mapping of Figure 1.1.1

ioral aspects of a Reo network (e.g. data-dependency, context-sensitivity,

priority-awareness) under one umbrella.

1.2 Outline

The rest of this dissertation is organized as follows:

� In Chapter 2, we introduce BPMN 2 modeling elements and introduce an

example of BPMN with problems. This chapter is based on the technical

5

content of [1], listed in Section 1.3.

� Chapter 3 provides an overview of the Reo coordination language. There, we

describe the behavior of Reo primitives in an informal style.

� Chapter 4 contains an overview of several formal semantic models proposed

for describing behavior of a Reo connector. The de�nitions of the semantics

that are relevant to this work are given in details.

� Chapter 5 describes our rule-based model-driven approach in transforming

BPMN models to Reo connectors. The transformation handles advanced

BPMN elements, namely, transaction and compensation.

An obstacle in computing execution semantics of some BPMN models with

high-level elements such as transaction is that their behavior is too compli-

cated and elaborated to directly be mapped to constructions of a language

used for veri�cation. To tackle this issue, we suggest a re�nement procedure

to substitute such high-level constructs with a set of simpler elements that

together deliver the same functionality. This chapter is partially based on the

technical content of [1], listed in Section 1.3.

� In Chapter 6, we introduce our constraint-based framework to capture the

formal semantics of Reo networks, given by two di�erent formal semantics

namely, Constraint Automata with State Memory (CASM) and Connector

Coloring (CC) [CCA07]. CASM is an extension of Constraint Automata (CA),

which is one of the most popular semantics for Reo. We favor using CASM

over CA, which is a simpler semantics, because CASM provides a mechanism

to model the state values. This helps in treating the states symbolically.

Therefore, unlike CA every data-item entering a bu�er does not lead to a new

state.

To capture context sensitivity, a behavioral aspect that CA and some of its ex-

tensions miss, we use CC, which models context sensitivity in a Reo connector

using graph coloring techniques.

We present a tool to generate CASMs from Reo networks in a compositional

manner, where the part of behavior that is not compliant with CC is ruled

out.

We employ highly optimized o�-the-shelf constraint solvers instead of straight-

forward custom algorithms for computing the semantics [CKA12]. We provide

formal arguments to show the correctness of our approach. Then, we present

6

an evaluation on the performance of our framework through a case study. The

technical content of [4], listed in Section 1.3 is the basis of this chapter.

� In Chapter 7, we extend our framework to support priority and its propa-

gation through a Reo connector. We propose a constraint-based solution to

replace the custom algorithm to calculate the priority-aware behavior of a Reo

connector [CKA19]. We �rst introduce a binary model of priority and show

how it can be encoded in our constraint-based framework. Subsequently, we

extend this solution to numeric priorities. We show the application of our

model in a case study. This chapter is based on the technical content of [5],

listed in Section 1.3.

� Chapter 8 concludes this thesis and outlines future research directions.

1.3 Publications

1. Behnaz Changizi and Natallia Kokash and Farhad Arbab. A Uni�ed Toolset

for Business Process Model Formalization. 7th International Workshop on

Formal Engineering approaches to Software Components and Architectures,

pages 147-156. ENTCS, 2010.

2. Behnaz Changizi and Natallia Kokash and Farhad Arbab. A Semantic Model

for Service Composition with Coordination Time Delays. International Con-

ference on Formal Engineering Methods, pages 106-121. 2010.

3. Behnaz Changizi and Natallia Kokash and Farhad Arbab. Input-Output Con-

formance Testing for Channel-based Service Connectors. In: Proceedings of

PACO, pages 19�35. 2011.

4. Behnaz Changizi and Natallia Kokash and Farhad Arbab. A Constraint-

based Method to Compute Semantics of Channel-based Coordination Models.

International Conference on Software Engineering Advances. IARA, 2012.

5. Behnaz Changizi and Natallia Kokash and Farhad Arbab. Service Orchestra-

tion with Priority Constraints. International Conference on Fundamentals of

Software Engineering, pages 194-209. LNCS, 2019.

7

8

2
Business Process Model and Notation

2.1 Introduction

Business Process Model and Notation (BPMN) [Gro11], also known as Business

Process Modeling Notation, is a standard graphical representation of business pro-

cess models. BPMN bridges the gap between visualization of the business processes

and their actual implementation by providing an understandable notation for both

business stakeholders and technical experts.

BPMN is based on �owcharting techniques. It allows modeling complex business

processes using its diverse set of control structures, which covers concepts such as

sequencing, repetition, choice, concurrency, messaging, failure, transactions, etc.

BPMN has an expressive notion to de�ne events and to associate triggers to the

de�ned events. Furthermore, it provides means to form reusable units out of a set

of elements.

The �rst version of BPMN is developed by the Business Process Management

Initiative (BPMI) in 2004. In 2005, BPMI and the Object Management Group

(OMG) merged. BPMN is maintained by OMG since then. In 2006, the BPMN

speci�cation was adopted as an OMG standard. In 2011, the �nal edition of BPMN

9

2 speci�cation was released.

BPMN 1.2 presents a notation for modeling business processes and informally

expresses the semantics of the modeling primitives. This leads to ambiguity and

confusions in interpretation of a process. For instance, the authors in [vdADK02]

present a deadlock situation called vicious circle that is caused by using convergent

inclusive gateways. This is a class of situations where two inclusive gateways are

connected in a cyclical way. Moreover, BPMN 1.2 speci�cation provides no details

on model serialization format.

BPMN 2, the biggest revision of BPMN so far, presents a formal de�nition

in terms of a meta-model, that is a formal de�nition of the constructs and their

relations in a valid model. The meta-model speci�es a serialization format that

enables model exchange among di�erent BPMN 2 tools. In the context of modeling

elements, BPMN 2 o�ers the following enhancements over previous versions:

� It expands the set of BPMN gateways with exclusive and inclusive event-based

gateways.

� It enriches the set of activities by adding business rule task, sequential multi-

instance activity, event sub-process that handles events occurring in bounding

sub-process, and call activity that invokes a global sub-process.

� It enhances events by introducing escalation, and complex events, and the

concept of interrupting and non-interrupting events.

Although BPMN 2 provides an explicit execution semantic, the semantics are

expressed in informal fashion. This leaves rooms for interpretation for a number of

issues such as deadlocks and race conditions.

In this chapter, we provide an overview to BPMN. We also present examples of

process models containing semantical errors.

2.2 BPMN 2 elements

A BPMN diagram consists of a number of elements that fall into the categories of

�ow objects, connecting objects, swimlanes, and artifacts. A �ow object can be an

event, a gateway, or an activity.

2.2.1 Connecting objects

Connecting objects are used to connect the other BPMN elements:

10

� Sequence �ows represent the occurring order of processes in a business model.

� Message �ows are used to exchange messages between process participants.

� Association �ows associate modeling elements to each other. For instance, a

compensation task is associated to its task via an association �ow.

2.2.2 Events

Events represent triggers occurring during execution of business processes. Events

usually have a cause or a result. The representation of an event is a circle wherein

internal markers are placed to denote triggers or results. Based on the time that

events a�ect the �ow, they fall into three categories:

Start events, which start a process;

Intermediate events, which occur between start and end of a process;

End events, which terminate a process.

Each time a process receives a new start event trigger, a new instance of the process

begins to execute. Therefore, a process may have many process instances. Start

events and intermediate events are catching, meaning that they catch a trigger in

order to occur. End events and some of intermediate events are throwing as they

throw a result. Compared to the passive nature of catching events, throwing events

are active as they trigger themselves rather than waiting for a trigger to take place.

The following intermediate events can attach to the boundary of an activity:

message, timer, error, compensation, and signal. In this case, they can only occur

while the surrounding activity is active. Boundary events can either be interrupting

or non-interrupting.

Interrupting events stop the execution of the activity and direct the �ow out

of the boundary event, while non-interrupting events do not interfere with the ex-

ecution of the activity. Instead, they start the �ow out of the boundary event in

parallel. Another di�erence is that non-interrupting events can occur several times

while the surrounding activity is running.

Following is the list of event types in BPMN 2:

11

A none event has no de�ned trigger. It can indicate a start point,
a state change or a �nal state. Each process can only have one
none start event.

A message event is used to model exchange of messages. A mes-
sage has a speci�c receiver.

A signal is broadcasted between processes. It di�ers from message
in that a message has a speci�c target, but a signal is broad-casted.
A thrown signal can be caught multiple times.

A timer event indicates a waiting time within the process. A
timer trigger can be a speci�c date/time value or a duration.

A conditional event occurs when a business condition becomes
true.

A link is a mechanism for connecting two sections of a process. A
throwing link event is used at the exit point, while a catching link
event as the entrance point. Using link helps keeping the model
clean and prevents spaghetti models.

A cancel event is always used with a transaction sub-process. It
indicates that the transaction should be canceled. A cancel event
triggers a cancel intermediate event attached to the sub process
boundary.

A terminate event indicates that all activities in the process should
be immediately ended. In this case, the process is ended without
compensation or event handling.

A throwing compensation event indicates that a compensation is
needed. A catching compensation event states that a compensa-
tion will occur when the event is triggered. All other boundary
events occur only while the activity that they are attached to is
active. In contrary, an attached compensation takes place only if
the process triggers a compensation and if the activity to which
compensation is attached has been completed successfully.

A multiple event summarizes several events with a single event.
A catching multiple event occurs if at least one of its speci�ed
events occurs. However, a throwing multiple triggers all the de-
�ned events.

12

A parallel multiple event, which is added in BPMN 2, is a supple-
ment to multiple event. A parallel multiple event is only catching.
It indicates that all of the de�ned events are required in order to
trigger this event.

Escalation is new in the BPMN 2 speci�cation. An escalation
event is used to trigger a path in middle of a process �ow that
requires involvement of a higher responsibility.

Based on the types, event triggers are forwarded in �ve di�erent strategies:

� Publication: A published trigger can be caught by any catching event that

matches the trigger within any scope where it is published. Message and

signal events triggers are forwarded this way.

Messages are created out of the pool wherein they are published. In case that

a message should be received by a speci�c process instance, the particular

instance in referred by the message.

Signals are created inside the pool wherein they are published. In general,

signals are used to broadcast within and across processes, pools, and process

diagrams.

� Direct Resolution: The timer and conditional triggers are thrown implicitly.

These triggers wait for a de�ned time or a speci�c condition to trigger the

related catch event, respectively.

� Propagation: A propagated trigger is forwarded from its origin to the inner-

most enclosing level that has an attached catching event that matches the

trigger. Instances of events that propagate are error and escalation.

Unlike error triggers that are critical and suspend execution, escalations are

non-critical and allow execution to proceed normally. If there is no catching

event found for an error or an escalation trigger, the trigger is unresolved.

� Cancellation: When a cancellation occurs, all running activities terminate and

all activities in the sub-process wherein cancellation applies are compensated,

if they are completed successfully. In case that the sub-process is a transaction,

it needs to be rolled back.

� Compensation: A successfully completed activity is compensated by its com-

pensation handler, which is either user-de�ned or implicit. In latter case, the

13

compensation handlers of the enclosed activities are invoked in the reverse or-

der of their execution. If an activity has not completed successfully, nothing

happens and no error is raised.

2.2.3 Activities

An activity describes the type of work that needs to be done. An activity is either a

task, a sub-process, or a transaction. BPMN represents the activity in a high-level

of abstraction. It is not the BPMN responsibility to describe the activity details.

Tasks, which are atomic activities have several types:

A manual task is a task that is performed manually.

A user task is performed by a person with assistance of au-
tomation.

Service tasks are services such as web services or automated
applications.

A script task is executed by a business process engine.

Business rule tasks are introduced in BPMN 2. They are per-
formed by business rule engines.

A send task is a simple task with an outgoing message �ow,
which is used for sending messages. The task is completed
after the message is sent.

A receive task is a simple task with an incoming message �ow,
which waits for a message to arrive. Once it receives the mes-
sage, the task is completed.

A sub-process captures a set of activities, gateways, and �ows within a single

activity. It hides or reveals details of business process based on being expanded or

14

collapsed, which is denoted using a plus sign at the bottom of the sub-process. A

sub-process may only begin with a none start event and end with a none end event.

A transaction is a sub-process that all of its enclosed activities
constitute a logical unit of operation, meaning that all the activ-
ities must be completed successfully, and if one fails, all of them
need to be compensated.

Event sub-process are introduced in BPMN 2. An event sub-
process behaves like a boundary event, but it resides inside a
process or a sub-process rather than on their boundaries.
An event sub-process can be considered as an optional sub-process
that occurs when its start event is triggered.
Similar to boundary events, an event sub-process may interrupt
the containing process or run in parallel in a non-interrupting
fashion, depending on the type of its start event.
In addition, it is allowed to have only one start event that is
non-empty. The event types that can be used as a start event
for an event sub-process are: message, conditional, signal, timer,
escalation, error, multiple, and parallel-multiple. As mentioned,
the only way to run an event sub-process is by triggering its start
event. As a result, no incoming or outgoing sequence �ow can
connect to an event sub-process.

In BPMN 1.2, there are two types of sub-processes: embedded and reusable.

BPMN 2 sub-processes are inherently embedded. They can only be reused if they

are de�ned globally and are referenced by call activities.

An embedded sub-process can only contain a none start event. It cannot have

other types of start events such as timers or messages.

Furthermore, an embedded sub-process can only be found inside a process to

which it belongs. A global sub-process, on the other hand, can reside within di�erent

processes.

In BPMN 2, reusable task and sub-processes are invoked using a call activity.

According to the BPMN 2 speci�cation [Gro11], a call activity in BPMN 2 cor-

responds to the BPMN 1.2 reusable sub-process, while a sub-process in BPMN 2

corresponds to the BPMN 1.2 embedded sub-process.

A transaction has three possible outcomes:

� All the activities �nish successfully. In this case, the process proceeds with

the normal �ow.

� In case of a failure, the compensation tasks associated to the successfully

15

completed activities execute. The process continues through the cancel inter-

mediate event.

� In case that an unexpected error takes place, the sub-process activities are

interrupted without any compensation. The process then proceeds with the

intermediate error event.

An activity can be annotated using di�erent markers that indicate the nature

of the activity. The markers are as follows:

� The loop marker indicates that the attached activity executes multiple times

until the loop condition holds. The condition can be evaluated either in the

beginning or in the end of the activity depending on a speci�c attribute of the

activity.

� A compensation marker is used to undo a completed activity.

� A sequential multi-instance marker de�nes an activity that has multiple in-

stances created sequentially. The number of instances to be instantiated is

either de�ned as an attribute of the activity or as the cardinality of input data

items.

� A parallel multi-instance marker represent activities that can be executed in

parallel as multiple instances. Each instance can have a di�erent set of input

parameters.

� An ad-hoc marker is used to represent an activity, whose inner tasks have

no required order. Each task can start at any time. There is no dependency

among the activities.

2.2.4 Gateways

Gateways manage the control �ows within a process or sub-process by specifying

the interaction among sequence �ows as they converge and diverge. The list of

BPMN 2 gateways follows:

2.2.5 Swimlanes and artifacts

A swimlane is used for organizing and categorizing activities inside a business pro-

cess. A swimlane can be either a pool or a lane. A pool represents a participant in

a business. Lanes are partitions inside a pool.

16

Data-based exclusive gateways are used to create alternative paths
based on the conditions that are set on the incoming data �ow. A
diverging exclusive gateway, also called decision, routes the incoming
�ows to one of the mutually exclusive alternative outgoing �ows. A
converging exclusive gateway directs one of its incoming �ows to its
only outgoing �ow.

Data-based inclusive gateways create alternative but also parallel
paths within a process �ow. A diverging inclusive gateway directs
its incoming �ow to one or more outgoing �ows based on conditions.
A converging inclusive gateway, on the other hand, awaits incoming
�ows to complete.

Parallel gateways are used to create and also to combine parallel
�ows. A diverging parallel gateway creates parallel �ows, while a
converging one merges the incoming �ows into one outgoing �ow.

Event-based gateway routes based on occurrence of events rather than
on data. In addition to events, it also works with receive message
task. An event-based gateway is always followed by catching events
or receive tasks.

A parallel event-based Gateway is similar to a parallel data-based
gateway with the di�erence that it depends on occurrence of events
rather than on data.

A complex gateway models complex synchronization behavior. An
expression is used to describe the behavior of the gateway.

Artifacts are used for adding information into the model. The followings are

three types of artifacts:

� Data objects, which describe the required or the produced data in an activity.

� Groups are used to categorize di�erent activities.

� Annotations are providing information about the model.

Example 2.2.1 Figure 2.2.1 depicts a BPMN model consisting of two processes.

The receiver process starts, waits till receiving a message from the sender process

before it ends. While the sender process starts, evaluates a condition based on which

it chooses to end or to send a message to the receiver process, and returns back to

the condition evaluation step.

17

Figure 2.2.1: An example of messaging in BPMN

The desired behavior of this model is that the processes start, the message ex-

change occurs, and they end. However, it is possible that the sender process �nishes

without sending any message. In this case, the receiver process keeps waiting for a

message that will never arrive. This is an example of deadlock.

In addition, the model contains a livelock, which occurs if after the receiver

process receives a message from the sender process and �nishes, the sender keeps

going back to the sending step and does not end.

18

3
Reo Coordination Language

3.1 Introduction

In the realm of service-oriented programming that is a current trend in software

development, the behavior of a software system is not only de�ned by the function-

alities of its underlying services, but also in terms of their interactions. The code

written to realize the latter is often referred to as glue code.

Writing and maintaining glue code is a tedious task, especially in complex sys-

tems wherein the size and rigidity of the glue code tend to increase over time. This

makes these systems hard to modify and maintain. Coordination languages o�er a

more manageable alternative for generating glue code.

Reo [Arb04] is a channel-based coordination language for composition of software

components and services. Using a small and open-ended set of prede�ned and user-

de�ned constructs, Reo supports modeling of complex coordination behavior in

terms of synchronization, bu�ering, mutual exclusion, priority, etc.

The primitive constructs of Reo are channels. Each channel has two ends, also

called ports. Channel ends are either of type source that read data into the channel

or sink that write the channel's data out.

19

Channels can connect to each other on their ends to form compound elements.

Reo connectors, also called networks are constructed this way. A Reo node is formed

by one or more channel ends.

Furthermore, Reo provides a mechanism for hierarchical modeling and abstract-

ing from inner structures by means of components [Arb04]. A connector can turn

into a component. In this case it will exhibit (part of) its inner logic as an observable

behavioral interface.

Reo emphasizes on the connectors and their compositions rather than the entities

that connect to the connectors to coordinate with each others. A Reo connector

imposes a speci�c coordination pattern on interactions occurring between entities.

This happens without the entities controlling or being necessarily aware of this

pattern. This type of coordination is called exogenous, as it is performed from the

outside.

According to a survey of coordination languages [Arb06], Reo belongs to the class

of data�ow-oriented coordination languages, which is between the data-oriented and

the control-oriented classes.

While the main concern of data-oriented coordination languages is consistency

among shared data, control-driven languages focus on the �ow of control. In com-

parison, data�ow-oriented languages de�ne the communicating entities, the points

of data-�ow, and exchanging data-items.

3.2 Reo

In this section, we present an informal overview of the pre-de�ned set of Reo con-

structs. Following is the list of Reo channels:

A sync channel has a source and a sink end. It accepts data from
its source end i� it can dispense it simultaneously through its sink
end.

A lossySync has a source and a sink end. It reads a data-item
from its source end and writes it simultaneously to its sink end.
If the sink end is not ready to accept the data-item, the channel
loses it.

A syncDrain has two source ends and no sink end. It reads data
through its two source ends i� both ends are ready to interact
simultaneously. The channel discards the received data-items.

20

A syncSpout has two sink ends and no source end. For each
sink end, the channel generates a data-item out of the underlying
data domain and writes them simultaneously to the corresponding
ends.

An asyncDrain has two source ends and no sink end. It accepts
and discards a data-item from either of its source ends that o�ers
data. If both ends o�er data-items simultaneously, the channel
chooses one of the ends non-deterministically.

) A blockSourceSync channel is a Sync channel that blocks the prop-
agation of priority from its source end toward the sink end.
This channel and the two next priority blocking channels are used
to limit the scope a�ected by priority, which originates from a
PrioritySync channel.

(A blockSinkSync channel is a Sync channel that stop spreading of
priority from its sink end toward the source end.

)(A blockSync channel is a combination of BlockSourceSync and
BlockSinkSync. It stops the propagation of priority in both direc-
tions.

The following is a list of pre-de�ned Reo components that are abstracted con-

nectors.

A replicator has one source end and one or more sink ends. It
replicates data-items coming from its source to its sink ends si-
multaneously.

A merger has one or more source ends and a sink end. It chooses
one of its source ends that is ready to communicate in a non-
deterministic way, receives the incoming data-item, and writes it
to its sink end simultaneously.

A router has one source end and one or more sink ends. It accepts
a data-item from its source end and simultaneously replicates it
on one of its sink end that is non-deterministically chosen from
its set of sink ends, which are ready to accept data.

A cross-product has one or more source ends and a sink end. It
accepts a data-item from each of its source ends. Furthermore, it
forms a tuple of the data-items that are set in the counter-clock-
wise order with respect to the sink node. It writes the tuple on
its sink end. All of these operations occur simultaneously.

21

As mentioned, Reo nodes are created from channel ends. In case that the node

only consists of source ends, it is called a source node. A node is sink, if it is formed

by merely sink ends. Otherwise, if a mixture of source and sink ends collide, the

created node is called a mixed node.

A mixed node is an atomic combination of a replicator and a non-deterministic

merger. Each read and write action needs all of its involved source and sink ends

to be able to interact synchronously. Otherwise, the action cannot take place.

3.3 Examples

Example 3.3.1 Figure 3.3.1 shows a Reo network that is composed of a lossySync

and a FIFO1 channel. When the FIFO1 channel is empty, the lossySync reads a

value from its source end and passes it to its sink end that coincides with the source

end of the FIFO1 channel. Therefore, the FIFO1 channel becomes full. The data

stored in the FIFO1 channel can be read and consumed via its sink channel. Before

that the FIFO1 channel loses its data, the lossySync channel accepts but loses all

its incoming data.

a
b1 b2

c

Figure 3.3.1: An example of a context-dependent Reo network

Example 3.3.2 Figure 3.3.2 depicts a Reo network consisting of two �lter channels

with negating conditions. The �rst channel reads a data item from its source end

and writes it on its sink end if it matches its condition, otherwise it loses the data.

In the former case, the data item will not satisfy the condition corresponding to the

second channel, so it is lost by the second channel. In both cases, there won't be any

write operation on the sink end of the second channel.

a

p

b1 b2
c

¬p

Figure 3.3.2: An example of a data-aware Reo network

Example 3.3.3 Figure 3.3.3 illustrates a Reo network containing two FIFO1 chan-

nels. The network behaves as a FIFO2 bu�er. In the beginning, both channels are

empty. If there is an incoming data item on the source end of the �rst channel, the

22

channel accepts the data and becomes full. Then, by an internal transition the data

item is moved to the second channel. It makes it possible for the �rst channel to

read another data item and/or to writes out the stored data through the sink end of

the second channel.

a
b1 b2

c

Figure 3.3.3: A Reo network for a FIFO2 bu�er

3.4 Extensible Coordination Tools (ECT)

A variety of Reo related tools are bundled together in a common framework, called

Extensible Coordination Tools (ECT) [AKM+08a]. The tools in the framework

are integrated as Eclipse plugins and operate based on the operational semantics

of Reo, most notably, connector coloring and variations of constraint automata.

ECT includes tools to design, transform, animate, model check, test, perform QoS

analysis, and generate executable code from Reo connectors.

The ECT tools can be chained together to enable analysis on business process

models. Here, we brie�y overview these tools:

� Graphical editor : The graphical editor provides facilities to design Reo net-

works. The editor has been implemented based on the Eclipse Modeling

Framework (EMF) [SBPM09] and Eclipse Graphical Modeling Framework

(GMF). As a requirement of the model-driven approach and to work with

EMF, Reo meta-model has been de�ned in [Kra11] [KMLA11].

� Animation tool : The animation tool produces simulation of Reo networks in

the format of Adobe Flash [�a]. The tool is based on the animation semantics

introduced in [Cos10] and visualizes the token game in Reo connectors [Kra11].

� Veri�cation tool : Vereofy [BBK+10] is a model checker for Reo networks de-

veloped at the Technical University of Dresden. It can be used independently

or from the ECT.

� mCRL2 conversion tool : Another model checker for Reo networks that is in-

tegrated into ECT is the mCRL2 [GMR+06]. The mCRL2 to Reo converter

tool translates constraint automata speci�cations of Reo into mCRL2 speci�-

cations.

23

� Execution engines: ECT includes two execution engines: i) The centralized

execution engine of Reo is a code generation framework based on constrained

automata [BSAR06]. ii) The distributed execution engine for Reo is imple-

mented based on constraint-based semantics of Reo [Pro11].

� The Extensible Automata (EA) framework : Extensible Automata (EA) frame-

work is a uni�ed framework for generating automata-based semantics of Reo

networks. The framework comes with a graphical automata editor, which also

can be used outside of the context of Reo. It includes functionality to gener-

ate automata models with stochastic information from graphical Reo models.

From these models, it is possible to extract Continuous Time Markov Chains

(CTMCs) that can be analyzed by the external tools such as PRISM proba-

bilistic model checker [KNP02] or ECT stochastic simulation tool [Kan10].

� BPMN 2 to Reo conversion tool : In the context of this thesis, we have imple-

mented a plugin to convert BPMN 2 models into Reo connectors [CKA10].

The converter deals with transactions, whose behavior is relatively more com-

plex to map, in a two phases manner.

The �rst phase is re�nement, wherein transactions are substituted by a group

of BPMN 2 elements, which collectively presents the same behavior as the

transaction, yet they are easier to be mapped to Reo. In the second phase,

the BPMN 2 constructs are being matched against some patterns to generate

corresponding Reo elements. Chapter 5 elaborates on the converter.

� Constraint-based semantics calculator : As part of this thesis, we have im-

plemented a tool to generate data-dependent, context-sensitive, and priority-

aware formal semantics of Reo. To generate the automata-based formal se-

mantics of Reo networks, we express the behavior of the Reo network in term

of constraint satisfaction problem. From the solutions to this problem, we

build the automata model.

Our approach in using constraint solving to get the semantics of a Reo network

is similar to the one used to generate the distributed execution engine for Reo

[CPLA10]. However, unlike [CPLA10] [Pro11] , we support data, time, and

priority. Another di�erence is that we calculate the all the possible behavior,

while the mentioned tool has a step-wise approach that �nd the next possible

behavior at a time. In Chapter 6, we present our approach in details.

Our work is the �rst tool support for priority in Reo. Chapter 7 elaborates on

our approach in obtaining a priority-aware formal semantics of Reo from the

24

solutions of constraints generated from each of Reo elements in a compositional

manner.

25

26

4
Formal Semantics for Reo

4.1 Introduction

A bene�t of employing coordination languages in general and Reo in particular

is that they express the coordination patterns explicitly and separate them from

the computational part of the code. This opens up possibilities for performing

various types of analysis and automation such as model checking, code generation,

automated test generation, etc.

To be able to perform such tasks, it is insu�cient to describe the behavior of

Reo models in a verbal manner. We need a more rigorous way to unambiguously

specify semantics of Reo models.

Several formal semantics have been proposed in the recent years that express

the behavior of Reo connectors. Jongmans et al. [JA12] present a comprehensive

overview of thirty models. They grouped these models into the following categories:

� Coalgebraic models: Two coalgebraic semantics of Reo, Timed Data Streams

[Arb02] [AR02] [RKNP04] and Record Streams [IB08] [IBC11] rely on the coal-

gebraic concept of stream, which refers to an in�nite sequence of elements of a

given set. This class of semantics are di�cult to use for analysis purpose, for

27

instance, as an underlying model to apply model checking techniques [JA12].

� Automata-based semantics: A big number of Reo operational semantics are

based on automata. States in these automata correspond to the states of a

Reo network, while the transitions denote I/O operations.

A list of automata based semantics for Reo are: port automata (PA) [KC09],

Constraint Automata [BSAR06], Labeled Constraint Automata (LCA) [KB09],

Timed Constraint Automata (TCA) [ABBR04], Probabilistic Constraint Au-

tomata [Bai05], Quantitative Constraint Automata (QCA) [ACMM07] [MA09],

Continuous Time Constraint Automata (CTCA) [BW06], Resource Sensitive

Timed Constraint Automata (RSTCA) [MA07a], Transactional Constraint

Automata (TNCA) [MA10], Behavioral Automata (BA) [Pro11], Buchi Au-

tomata [IB08] [IBC11] [IBC08] [IBC11], Guarded Automata [BCS12] [Mar09],

Stochastic Guarded Automata [MSKA10] [MSKA14], Intentional Automata

[Cos10], Quantitative Intentional Automata [ACvdM+09], and Action Con-

straint Automata [KCA10].

� Structural operational semantics: Some of the semantics proposed for Reo

are expressed in terms of structural operational semantics. Sun Meng et al.

[MAA+12] model Reo networks in terms of the Unifying Theories of Pro-

gramming (UTP) [Hoa13]. A UTP design consists of predicates that express

assumptions on inputs and commitments on outputs.

Another work in this �eld is done by Mousavi et al. [MSA06]. They present a

Structural Operational Semantics (SOS) for some of Reo primitives in Gordon

Plotkin's style [Plo04]. In the proposed semantics, data-�ow of a Reo connec-

tor is represented by a set of rules, which pair the structure of the connector

with functions that map the nodes to potentially in�nite sequences of data

items.

Tile Model [ABC+09] is a more recent SOS-based formal semantics for Reo

that extends Gordon Plotkin's SOS inference rules. In this model, transitions

are described as movements from an initial state to a �nal state upon �ring

related triggers.

Tile Model de�nes composition in three ways:

� horizontal composition that models synchronization, where the e�ect of

one tile is a trigger for another tile,

� vertical composition, which is a composition occurring in time. This is

when the �nal state of one tile matches the initial state of another tile,

28

� parallel composition that captures concurrency.

� Semantics based on graph-coloring. Connector coloring (CC) [CCA07] is a for-

mal semantics for Reo that describes the behavior of a connector by assigning

di�erent colors to its ports.

The colors designate presence or absence of data-�ow. This model accounts

for synchronization and context dependency. It captures context dependency

by propagating negative information about the absence of data-�ow inside a

Reo network.

The most important types of semantics that have in�uenced and provided basis for

the other classes of semantics are constraint automata and coloring semantics. These

models are the underlying models of several tools for Reo ranging from animation

to testing and model checking.

In this chapter, we present the de�nition and examples for Reo semantics that

are relevant to this thesis. In addition, we brie�y discuss the time complexity of

obtaining formal semantics of a Reo network using the computation rules de�ned

by the formal semantics.

4.2 Constraint automata

De�nition 4.2.1 (Constraint automaton [BSAR06]) A constraint automaton

is a tuple A = (Q, N , →, q0), where

� Q is a set of states,

� N is a set of port names,

� → ⊆ Q× 2N ×DC ×Q is a transition relation, where DC is the set of data

constraints over a �nite data domain Data,

� q0 ∈ Q is an initial state.

We write q
N,g−−→ p instead of (q,N, g, p) ∈ →. Table 4.2.1 depicts the CA

corresponding to the most common Reo elements.

Constraint automata have a compositional nature. Therefore, the semantics of

a whole model can be obtained through the composition of the given semantics of

its participant elements.

Following is the de�nition of the product operator, which performs the compo-

sition.

29

Table 4.2.1: Constraint automata for basic Reo primitives

{a, b} ,
da = db

∅,
true

{a, b} ,
da = db

∅,
true

{a} ,
true

{a, b} ,
true

∅,
true

CA corresponding to
a b

CA corresponding to
a b

CA corresponding to
a b

{a, b} ,
true

∅,
true

{b} , true

∅,
true

{a} ,
true

{a, b} ,
expr(da)
∧da = db

{a} ,
¬expr(da)

∅, true

CA corresponding to
a b

CA corresponding to
a b

CA corresponding to
p

a b

{a, b} ,
db = f(da)

∅,
true

{a} ,
da = d

{b} ,
db = d

∅,
true

∅,
true

{a, b, c} ,
da = db = dc

∅, true

CA corresponding to
f

a b

CA corresponding to
a b

CA corresponding to

a
b

c

{a, b} ,
da = db

{a, c} ,
da = dc

∅, true {a, b, c} ,
dc =< da, db >

∅,
true

CA corresponding to

a
b

c

CA corresponding to

c
a

b

30

De�nition 4.2.2 (Product on constraint automata) The product of constraint

automata A1 = (Q1,N1, →1, q0,1) and A2 = (Q2,N2, →2, q0,2) is de�ned as:

A1 ./ A2 = (Q1 ×Q2,N1 ∪N2,→, q0,1 × q0,2)

where the following rules de�ne the transition relation →:

q1
N1,g1−−−−→ p1, q2

N2,g2−−−−→ p2, N1 ∩N2 = N2 ∩N1

< q1, q2 >
N1∪N2,g1∧g2−−−−−−−−−→< p1, p2 >

q1
N1,g1−−−−→ p1, N1 ∩N2 = ∅

< q1, q2 >
N1,g1−−−−→< p1, q2 >

q2
N2,g2−−−−→ p2,N1 ∩N2 = ∅

< q1, q1 >
N2,g2−−−−→< q1, q2 >

We can abstract from the data-�ow on certain Reo nodes using the hiding op-

erator de�ned as follows:

De�nition 4.2.3 (Hiding on constraint automata) Let A = (Q,N , →, q0) be

a CA and C ∈ N .

The constraint automaton that results from hiding the node C in automaton A
is ∃C [A] = (Q,N\{C}, →C , q0) and the transition relation −→C is de�ned as

follows:

p
N,g−−→ q,N ′ = N\{C}, g′ = ∃C [g]

p
N ′,g′−−−→C q

, where

∃C [g] =
∨
d∈D

g [d (C) /d] .

Example 4.2.1 Figure 4.2.2 depicts the CA semantics of the Reo network of Figure

4.2.1. According to CA, it is possible that the lossySync channel loses the incoming

data in the state q, where the FIFO1 channel is empty. This is an example of

undesired behavior that is the result of the fact that CA is not a context-dependent

semantics.

a
b1 b2

c

Figure 4.2.1: A context-dependent Reo connector

31

qstart p

{a, b1, b2}, d(a) = d(b1) ∧ d(b2) = d(c)

{a}, true
{a, c}, true

{a}, true

{c}, true

Figure 4.2.2: Constraint automaton of the Reo network of Figure 4.2.1

Example 4.2.2 Figure 4.2.4 illustrates the CA of the Reo network of Figure 4.2.3.

Since, CA is data-aware it can describes the correct behavior of this data-aware

network.

a

p

b1 b2
c

¬p

Figure 4.2.3: A data-aware Reo connector

q

{a, b1, b2},
d(a) = d(b1) ∧
d(b1) = d(b2) ∧
p(a) ∧ p(b1)

{a},
p(a)

∅, true

Figure 4.2.4: Constraint automaton of the Reo network of Figure 4.2.3

4.3 Constraint automata with state memory

Constraint automata with state memory (CASM) [PSHA12] extends CA with vari-

ables that represent local memory cells of automata states. Because CASM elabo-

rates on state information, we choose to use CASM instead of CA, in our work.

De�nition 4.3.1 (Constraint automaton with state memory) A constraint

automaton with state memory (CASM) is a tuple A = (Q,N ,→, q0,M) where

� Q is a �nite set of states.

� N is a �nite set of names.

� →, a �nite subset of Q × 2N ×DC(N ,M,D) ×Q, is the transition relation

of A, where DC(N ,M,D) is the set of data constraints, de�ned below.

32

� q0 ∈ Q is an initial state.

� M is a set of memory cell names, where N ∩M = ∅.

Every n ∈ N represents a node in a Reo connector. The set N is partitioned

into three mutually disjoint sets of source nodes N src, mixed nodes Nmix, and sink

nodes N snk.

Because we make the replication and merge inherent in Reo nodes explicit as

replicator and merger primitives, at most two primitive ends coincide on every node

n ∈ N . Thus, it follows that a source or a sink node contains only a single (source

or sink) primitive end, and a mixed node contains exactly one source and one sink

primitive ends.

We write q
N,g−−→ p instead of (q,N, g, p) ∈→. For every transition q

N,g−−→ p, we

require that g ∈ DC(N,M,D), where D is the global set of numerical data values

and DC(N,M,D) is the language de�ned by the following grammar:

g ::= true | ¬ g | g ∧ g | u = u | u < u,

u ::= d(n) | m′ | m | v.

In this grammar,

� = is the symmetric equality relation,

� < is a total order relation,

� n ∈ N ⊆ N denotes a node name,

� d(n) represents the data item exchanged through the node n,

� m ∈M correspond to a memory cell in the current state, which is the source

state of the transition,

� m′ stands for the memory cell m ∈ M in the next state, which is the target

state of the transition,

� v ∈ D.

As usual, false stands for ¬true, x > y stands for y < x, and other logical

operators, such as ∨ and ⇒ (the implication symbol) can be built from the given

operators.

Transitions with data constraints that can be reduced to false using the Boolean

laws are impossible and we omit them. A data constraint g that is always true can

be left out.

33

We use Mg to represent the set of all m ∈ M that syntactically appear as m

in a data constraint g; andM′g to refer to the set of all m ∈M that syntactically

appear as m′ in g.

The valuation function Vq : M → 2D designates the set of values Vq(m) of a

memory cell m ∈M in a state q ∈ Q, where Vq0(m) = ∅ for all m ∈M.

A transition q
N,g−−→ p in a given constraint automaton with state memory is

possible only if there exists a substitution for every syntactic element d(n), m, and

m′ that appears in g to satisfy g.

A substitution simultaneously replaces in g:

- every occurrence of d(n) with the data value exchanged through the node

n ∈ N ;

- every occurrence of m′ of every m ∈M with a value v ∈ D;

- every occurrence m ∈M with:

� the special symbol ′◦′ if Vq(m) = ∅,

� a value v ∈ Vq(m), otherwise.

The guard g is satis�ed if proper replacement values can be found to make g

true. Making this transition, the automaton de�nes the valuation function Vp for

the target state p, as follows:

� For every m ∈ M′g, Vp(m) is the set of all v ∈ D whose replacements for m′

satisfy g.

� For every other m ∈M, Vp(m) = ∅.

A relational operator evaluates to true only if the values of its operands are in

its respective relation. Thus, any operator with one or more ◦ as an operand always

evaluates to false.

We call a CASM, normalized i�

� It does not have two states with the same set of state memory variables.

� Every two transitions di�er at least in their start states, their target states,

or their sets of synchronizing ports.

For any arbitrary CASM that is not normalized, we can normalize it by

� introducing auxiliary variables, to make the set of state memory variables

unique for each state,

34

� by merging the transitions that have the same start and target states and

synchronize the same ports.

In the sequel, we consider only normalized CASMs.

Following are the de�nitions for product and hiding operations on CASM. Both

de�nitions are adapted from [BSAR06].

De�nition 4.3.2 (Product automaton on CASM) The product of CASMs A1

= (Q1, N1, →1, q0,1, M1) and A2 = (Q2,N2,→2, q0,2,M2) is de�ned as:

A1 ./ A2 = (Q1 ×Q2,N1 ∪N2,→, q0,1 × q0,2,M1 ∪M2)

where the following rules de�ne the transition relation →:

q1
N1,g1−−−−→1p1, q2

N2,g2−−−−→2p2, N1 ∩N2 = N2 ∩N1

〈q1, q2〉
N1∪N2,g1∧g2−−−−−−−−−→ 〈p1, p2〉

q1
N1,g1−−−−→1p1, N1 ∩N2 = ∅

〈q1, q2〉
N1,g1−−−−→ 〈p1, q2〉

q2
N2,g2−−−−→2p2,N1 ∩N2 = ∅

〈q1, q2〉
N2,g2−−−−→ 〈q1, p2〉

Similar to CA, we can abstract from the data-�ow on certain Reo nodes using

the hiding operator de�ned as follows:

De�nition 4.3.3 (Hiding on CASM) Let A = (Q,N , →, q0,M) be a CASM

and C ∈ N .

The constraint automaton that results from hiding the node C in automaton A
is ∃C [A] = (Q,N\{C}, →C , q0,M) and the transition relation −→C is de�ned as

follows:

p
N,g−−→ q,N ′ = N\{C}, g′ = ∃C [g]

p
N ′,g′−−−→C q

, where

∃C [g] =
∨
d∈D

g [d (C) /d] .

To facilitate our further reasoning with CASM, we provide the following de�ni-

tion that gives the set of state memories used in each state.

De�nition 4.3.4 (State variables) Given the CASM A = (Q,N , →, q0,M), we

de�ne the function S : Q → 2M as for each q
N,g−−→ p, m ∈ Vg ⇒ m ∈ S (q) and

m′ ∈ Vg ⇒ m ∈ S (p).

35

Example 4.3.1 Figure 4.3.2 depicts the CASM for the Reo shown network in Fig-

ure 4.3.1. CASM provides an explicit representation for the stored values using its

state variables.

a
b1 b2

c

Figure 4.3.1: FIFO2

start m

n m, n

∅, true

∅, true

∅, true ∅, true

{a}, m′ = â

∅, n′ = m

{a}, m′ = â ∧ n′ = n

{c},m′ = m ∧ ĉ = n{c}, ĉ = n

{a, c},m′ = â ∧ ĉ = n

Figure 4.3.2: Constraint automaton of the Reo network of Figure 4.3.1

4.4 Constraint automata with priority

De�nition 4.4.1 (Constraint automaton with priority) A constraint automa-

ton with priority is a tuple P = (A,R,S, T) where

� A = (Q,N ,Nmix,N src,N snk,−→,Q0) is a constraint automaton,

� R ⊂ 2N : ∀R ∈ R is a subset of N , such that if a node n ∈ R connects to the

priority imposing channel, PrioritySync, the priority a�ects n̄ ∈ R.

� S ⊂ R×R is the set pairs of subsets of N , such that ∀(X,Y) ∈ S, the priority
imposed on the region X can propagate to the region Y ,

� T =def (t, /) : t ∈ R and / ⊆−→ × −→ is a binary relation on the transitions

of A such that q
N,g−−→ p / q̄

N̄,ḡ−−→ p̄ implies q = q̄ and (N, g) 6= (N̄ , ḡ).

36

Table 4.4.1: Priority constraint automata of commonly used Reo primitives

q

{a, b}, da = db

∅, true

q

{a, b}, da = db

∅, true

Q0 = {q}, Q0 = {q},
R = {{a, b}}, R = {{a}, {b}},

S = 1, S = 1 ∪ {({b}, {a})},
T = {{a, b} : T = ∅

q
{a,b},da=dB−−−−−−−−→ q C q

∅,true−−−−→ q}
CAP corresponding to

a b!

CAP corresponding to

a b)

q

{a, b}, da = db

∅, true

q

{a, b}, da = db

∅, true

Q0 = {q}, Q0 = {q},
R = {{a, b}}, R = {{a}, {b}},

S = 1 ∪ {({a}, {b})}, S = 1 ∪ {({a}, {b}), ({b}, {a})},
T = ∅ T = ∅

CAP corresponding to

a b(

CAP corresponding to

a b)(

q
{a, b} ,
da = db

∅, true

q

{a, b} ,
da = db

∅, true{a} ,
true

Q0 = {q}, Q0 = {q},
R = {{a, b}}, R = {{a, b}},

S = 1, S = 1,

T = ∅ T = {∅ : q
{a,b},da=db−−−−−−−−→ q C q

{a},true−−−−−→ q,

∅ : q
{a,b},da=db−−−−−−−−→ q C q

∅,true−−−−→ q,

∅ : q
{a},true−−−−−→ q,C q

∅,true−−−−→ q}
CAP corresponding to

a b
CAP corresponding to

a b

37

{a, b} ,
true

∅, true

q {a, b} ,
true

∅, true

Q0 = {q}, Q0 = {q},
R = {{a, b}}, R = {{a, b}},

S = 1, S = 1,

T = ∅ T = ∅
CAP corresponding to

a b

CAP corresponding to

a b

q

{b} , true

∅, true{a} ,
true

q

{b} , true

∅, true{a} ,
true

Q0 = {q}, Q0 = {q},
R = {{a, b}}, R = {{a, b}},

S = 1, S = 1,

T = ∅ T = ∅
CAP corresponding to

a b

CAP corresponding to

a b

q

{a, b} ,
expr(da)∧
da = db

{a} ,
¬expr(da)

∅, true

q
{a, b} ,
db = f(da)

∅, true

Q0 = {q}, R = {{a, b}}, Q0 = {q}, R = {{a, b}},
S = 1, T = ∅ S = 1, T = ∅

CAP corresponding to
p

a b

CAP corresponding to
f

a b

qstart p

{a} ,da = d

{b} ,db = d∅, true
∅, true

q
{a, b, c} ,
da = db = dc

∅, true

Q0 = {q}, R = {{a}, {b}}, Q0 = {q}, R = {{a, b, c}},
S = 1, T = ∅ S = 1, T = ∅

CAP corresponding to

a b

CAP corresponding to

a
b

c

38

q
{a, b} ,
da = db

{a, c} ,
da = dc

∅, true

q
{a, b, c} ,
dc =< da, db >

∅,
true

Q0 = {q}, Q0 = {q},
R = {{a, b, c}}, R = {{a, b, c}},

S = 1, S = 1,

T = ∅ T = ∅
CAP corresponding to

a
b

c

CAP corresponding to

c
a

b

Observe that the nodes in R connect to each other by priority propagating

channels such as Sync, PrioritySync, SyncDrain. The connections of the regions

paired in S is, however, via priority blocking channels like BlocingSinkSync, Block-

ingSourceSync and AsyncDrain. The sets R, S and the tag t in T are auxiliary

concepts for composition of CAPs. Table 4.4.1 shows CAPs corresponding to Reo

elements.

Similar to CA, the product-automaton operator (./) computes the CAP corre-

sponding to a Reo network from CAPs of its substituent elements.

Let P1 and P2 be the two CAPs, τ1, λ1 ∈−→1, τ1 / λ1 and τ2, λ2 ∈−→2. If τ1

and τ2 synchronize to form a transition τ ∈−→P1./P2
, λ1 and λ2 synchronize to

form a transition λ ∈−→P1./P2
, the relation of τ / λ is full lifting of the τ1 / λ1.

Since the priority blocking channels can a�ect the propagation of the priority,

the priority relations that full lifting de�nes are not always valid on the product of

the automata. We need to eliminate invalid transitions that are results of improper

propagation of the priority.

The following three cases are the only valid propagation of the priority [ABS15]:

� Propagation over empty transitions: If λ is an empty transition, then λ1 and

λ2 are also empty transitions. In this case, full lifting brings a new priority

imposition as: τ / λ.

� Propagation by containment : If λ1 is a proper transition, then λ is a proper

transitions, which contains λ1. Therefore, full lifting is a natural growth of

the previously imposed priority that preserves the priority relation as: τ / λ.

� Propagation by seepage: If λ1 is an empty transition, but λ is a proper tran-

sition, then λ2 is also a proper transition. Under this condition, full lifting

39

is not always valid. Therefore, we need more restriction to preserve the new

priority relation that full lifting impose that is τ / λ. The seepage relation

S and the tag t of the transition help to check the validity of full lifting for

this case. So, the full lifting is valid if there exists a �nite sequence of regions

r0, .., ri, ri+1, .., rn such that ri ∈ R, (ri, ri+1) ∈ S, r0 = t and rn includes all

nodes involved in the transition λ2. Note that S is the seepage relation that

de�nes the allowed propagation of the priority through regions. Observe that

if t1 = ∅ , then t = ∅. Since ∅ /∈ R, such a sequence does not exist and the

full lifting is not valid.

Following is the de�nition of the CAP product operator.

De�nition 4.4.2 (Product-automaton) Let Pi = (Ai,Ri,Si, Ti), i = 1, 2 be

two CAPs, where Ai = (Qi,Ni,Nmix
i ,N src

i ,N snk
i ,−→,Q0,i), such that:

N1 ∩N2 ⊆ N src
1 ∩N snk

2 ∪N snk
1 ∪N src

2

The de�nition of the product-automaton P1 ./ P2 = (A1 ./ A2,R,S, T) follows:

Listing 4.1: Calculating R

R := ∅
for each r1 ∈ R1

if ∃ r2 ∈ R2 : r1 ∩ r2 6= ∅
R := R ∪ r1 ∪ r2

else

R := R ∪ r1

for each r2 ∈ R2

if 6 ∃r1 ∈ R1 : r1 ∩ r2 6= ∅ then
R = R ∪ r2

Listing 4.2: Calculating seepage relation S

S := ∅
for each (u1, v1) ∈ S1

S + = (big(u1), big(v1))

for each (u2, v2) ∈ S2

S + = (big(u2), big(v2))

S + = I

40

Let (t1, τ1 /1 λ1) ∈ T1. The transition λ1 is either empty or proper:

∀ τ2 ∈ −→2 : τ1 ∩ τ2 6= ∅ if λ1is empty

big(r1) : τ1 || τ2 / ∅
∀ τ2 ∈ −→2 : τ1 ∩ τ2 = ∅
if exists a sequence such that otherwise

∀ τ2 : τ1 ∩ τ2 6= ∅ λ1 is proper

∀ λ2 : λ1 ∩ λ2 6= ∅
big(r1) : τ1 || τ2 / λ1 || λ2

(4.1)

4.5 Connector coloring

The connector coloring semantics [CCA07] denote the existence or absence of data-

�ow through the primitive ends by marking them with di�erent colors.

Let Colors be a set of colors. In a set of two colors, Colors = {—, - -}, —

denotes an occurrence and - - represents an absence of data-�ow. Two colors are

adequate to express the formal semantics of many Reo networks. However, they

cannot express the semantics of context-dependent Reo networks.

Such a network presented in Example 4.2.2 is when the sink end of a lossySync

channel connects to an empty FIFO1 channel; in this case, the semantics of this

network according to the two-color set includes the case where the lossySync loses

its incoming data item, while the FIFO1 channel is empty. This is an unacceptable

behavior for a so-called context-dependent lossySync channel: it must lose its in-

coming data only if its sink end cannot dispense it. In the sequel, when we refer to

a lossySync we mean its context sensitive version.

The three coloring semantics, Colors = {–, /, .}, addresses this problem by

propagating negative information regarding the absence of data-�ow. It replaces - -

with / and . meaning that the associated primitive end, respectively, provides or

requires a reason for no-�ow.

Considering that no-�ow can occur only when at least one of the involved primi-

tive ends provides a reason for it, and that an empty FIFO1 cannot provide a reason

for no-�ow on its source end, the invalid behavior described above does not arise in

the three coloring semantics.

De�nition 4.5.1 (Coloring) A coloring l : P → Colors is a total function from

the primitive ends to a set of colors. We refer to the global set of colorings as L.

De�nition 4.5.2 (Coloring composition) The composition of colorings l1 and

l2, denoted l1 • l2, is de�ned as:

41

l1 • l2 = {
c1 ∪ c2|c1 ∈ l1, c2 ∈ l2, p1 ∈ dom(c1), p2 ∈ dom(c2),

p1 and p2 are the source and sink ends of a node n,

¬ (c1(p1) = / ∧ c2(p2) = .)

}

De�nition 4.5.3 (Coloring table) A coloring table over the primitive set

P ⊆ P is a set of colorings with the domain P .

De�nition 4.5.4 (Next function) The next function η : L × 2L → 2L maps a

pair of a coloring and a coloring table to a colorings table.

De�nition 4.5.5 (Coloring semantics) A coloring semantics of a Reo network

is a tuple CC = 〈P, 2L, l0, η〉, where:

� P is the set of primitive ends,

� l0 ∈ L is the initial set of possible colorings,

� 2L is a set of colorings,

� η is a next function that maps a pair of a coloring and a coloring table into a

coloring table.

Example 4.5.1 Table 4.5.1 depicts the CC for the network shown in Figure 4.5.1.

The two �ows described in the table correspond to the cases; i) when there is a write

request of the end a, then the ends a, b1 and b2 have a �ow, but the end c provides a

reason for no �ow, ii) when there is no write request present on the end a, therefore

the ends a and b2 require a reason for no �ow and the ends b1 and c provides a

reason for no �ow. Since CC is context-sensitive, it can capture the semantics of

the given network correctly.

a
b1 b2

c

Figure 4.5.1: A context-dependent Reo connector

42

Table 4.5.1: Connector coloring semantics of the Reo network of Figure 4.5.1

a b1 b2 c
− − − .
. . . .

Table 4.5.2: Connector coloring semantics of commonly used Reo primitives

a b

× ×
◦ •
• ◦

CC corresponding to
a b

a b

× ×
◦ ×
× ◦

CC corresponding to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

a b

× ×
◦ •
• ◦

CC correspondence to

a b

Example 4.5.2 Table 4.5.3 shows the CC of the Reo network shown in Figure

4.5.2. The absence of data constraints in the CC, leads to incorrect behavior, as

shown in the �rst row of the table, where there is �ow on both b1 and c.

a

p

b1 b2
c

¬p

Figure 4.5.2: A data-aware Reo connector
43

Table 4.5.3: Connector coloring semantics of the Reo network of Figure 4.5.2

a b1 b2 c
− − − −
− − − .
− . . .
. . . .

4.6 Reo automata

Bonsangue et al. [BCS12] present Reo automata (RA), an automata-based formal

model, to deal with context-dependency in Reo.

Intuitively, a Reo automaton is a non-deterministic automaton whose transitions

are labeled in the form of g|f , where g is a binary predicate, called guard, and f a

set of nodes that �re synchronously. A transition can be taken only when its guard

g is true.

Let Σ = {σ1, ..., σk} be a set of nodes, σ̄ be the negation of σ, and BΣ be the

free Boolean algebra generated by the following grammar:

g ::= σ ∈ Σ | > | ⊥ | g ∨ g | g ∧ g | ḡ

The above grammar produces guards. Often g1∧g2 is written as g1g2. A natural

order ≤ is de�ned between two guards g1,g2 ∈ BΣ as

g1 ≤ g2 ⇒ g1 ∧ g2 = g1

The intended interpretation of ≤ is logical implication: g1 =⇒ g2. An atom of

BΣ is a guard a1...ak such that ai ∈ ¯Sigma ∪ Σ with

Σ = {σi | σi ∈ Σ}, 1 ≤ i ≤ k

De�nition 4.6.1 (Reo automaton [BCS12]) A Reo automaton is a triple (Σ, Q, δ)

where:

� Σ is the set of nodes,

� Q is a set of states,

44

Table 4.6.1: Reo automata for basic Reo primitives

ab|ab
ab|ab
ab̄|a ab|ab

RA corresponding to
a b

RA corresponding to
a b

RA corresponding to
a b

ab|ab
āb|b
ab̄|a

a|a

b|b
RA corresponding to

a b
RA corresponding to

a b
RA corresponding to

a b

ac|ac
ābc

ac|ac
bc|bc

RA corresponding to

a
b

c

RA corresponding to

a
b

c

� δ ⊆ Q×BΣ×2Σ×Q is the transition relation such that for transitions labeled

as BΣ × 2Σ such that for each q
g|f−−→ p ∈ δ:

� g ≤ f̂

� g ≤ g′ ≤ f̂ . ∀α ≤ g′. ∃ q g′′|f−−−→ p ∈ Σ. α ≤ g′′

Table 4.6.1 depicts the Reo automata corresponding to the most common Reo

elements.

4.7 Complexity

Analyzing the complexity of the calculations on CAP or other formal semantics of a

Reo network in a formal fashion is beyond the scope of this dissertation. However,

here we roughly estimate the time complexity of the product of CA. We have chosen

CA because it is one of the most basic formal semantics for Reo. Calculating the

complexity of CA product can provide an insight into the complexity of composing

more sophisticated automata based semantics such as CAP.

45

Let R be a Reo network that is constructed by connecting n smaller

networks in a step-wise fashion, meaning that one join occurs at a time,

A1..i−1 = (Q1..i−1, N1..i−1, →1..i−1, q01..i−1) be the CA of R1..i−1 network at the

i-th step before the i-th network is added, and Ai = (Qi, Ni, →i, q0i) be the CA

of Ri, the i-th network.

Note that at the �rst step, only A1 exists. At the second step A1 is connected

to A2 to form A1..2.

Computing A1..i−1 ./ Ai requires all transitions of A1..i−1, t1..i−1, to be checked

against the transitions of Ai, ti. For each ti, the common ports of the transition

and N1..i−1 need to be found. The time complexity of this operation is O(T1..i−1 ×
P1..i−1 × Pi), where T1..i−1 is the number of transitions of A1..i−1, P1..i−1, and Pi

are the number of elements in N1..i−1 and Ni, respectively.

In addition, for the each t1..i−1 all the common ports of the transition with Ni

is calculated. With a similar complexity of O(Ti × P1..i−1 × Pi), where Ti is the

number of transitions of Ai.

Based on the outcome of these operations, we may need to create a couple of

new states by merging the source and target states of t1..i−1 and ti. We assume

that the creating these states takes a constant time. This assumption is based on

the fact that constraint automata states are atomic entities.

However, in the case of CASM, the time complexity of creating a new state in

the product of two CASMs depends on the number of state variables. Without

considering transition guards, the complexity of computing A1..i is:

O(T1..i−1 × P1..i−1 × Pi + Ti × P1..i−1 × Pi + T1..i−1 × Ti) =

O(

i−1∏
j=1

Tj ×
i∏

k=1

Pk +

i∏
l=1

Pl × Ti +

i∏
m=1

Tm)

Assuming that the number of transitions and the port names in each Ai is T
and P, respectively, the complexity can be written as O(T n ×Pn). As the formula

shows the CA product is a very computationally expensive operation.

The problem of solving transition guards is a constraint satisfaction problem,

which is a known NP-Complete problem. It is known that verifying a solution to

an NP-complete problem is possible in polynomial time, but the time to �nd the

solutions increases rapidly by the growth in the size of constraints.

Later in this dissertation, we provide an alternative approach for obtaining the

formal semantics of a Reo network using constraint solvers. Our approach enables

us to bene�t from all the advances in research to keep this problem tractable for

46

practical use.

47

48

5
Mapping BPMN to Reo

In this chapter, we present our approach in transforming BPMN 2 models into Reo

networks. Since the core of Extensible Coordination Tool-set (ECT) [AKM+08a]

and Eclipse BPMN 2 modeler [act] are based on Eclipse Modeling Framework (EMF)

[SBPM09], the BPMN 2 to Reo transformation can be carried out in the model-

driven paradigm. We use the Eclipse de-facto model transformation language and

toolkit called Atlas Transformation Language (ATL) [JK05].

ATL is a high level rule-based language dedicated to model transformation. By

using ATL we bene�t from the power of separation of concerns and focus only on

the required mapping rules, rather than matching patterns on the source models

and execution of the rules.

The mapping rules presented in this chapter are mainly based on the conceptual

mapping of BPMN primitives to Reo presented in [AKM08b] [AM08]. The following

is a brief summary of the mapping:

� A task or a collapsed sub-process is mapped to a FIFO1 channel, which

denotes a unit of work in a process. However, an expanded sub-processes is

modeled using a Reo connector whose inner elements are mapped from the

inner elements of the sub-process.

49

� In general, an event is mapped to a replicator node. For each start event, a

writer is created and connected to a source end of the node to simulate the

arrival of the event. Similarly, each end event is connected to a reader on one

of its sink ends. Throwing events are connected to the corresponding catching

events using FIFO1 and lossySync channels. So, they do not block the �ow

in case that the catching events are not yet ready to receive the event.

� For each conditional event, a �lter channel with the corresponding con-

dition is created and connected to the source end of the node.

� The terminate and throwing compensation are special cases, which their

mappings requires possible compensations. Therefore, they have more

sophisticated mappings, which we discuss in this chapter.

� Gateways are mapped to di�erent kinds of Reo nodes based on their types

and the number of their incoming and outgoing sequence �ows.

� A data-based exclusive gateway is mapped to a router node, while each

of its outgoing sequence �ows is mapped to a �lter channel with a corre-

sponding condition.

� A data-based inclusive gateway is mapped to a replicator node.

� A parallel event-based gateway with one incoming �ow is mapped to a

replicator. In case that it has more than one incoming �ows, it is mapped

to a join node.

� Sequence and message �ows are mapped to synchronous channels unless there

exists a more speci�c rule that describes the mapping in a given context.

Most BPMN 2 elements can be mapped to Reo constructs, which have relatively

similar granularity. One notable exception is that mapping of transactions requires

more e�ort than the other BPMN 2 elements do, and it creates many more Reo

constructs. This is due to the complex behavior of BPMN 2 transactions compared

to the other elements.

Tasks in a transaction should be compensated in the reverse order of their execu-

tion. In addition, the post compensation �ow cannot be taken unless all performed

compensatable tasks are compensated. Addressing these concerns requires more

elements to be added to the target model.

Since for mapping transactions requires more work compared with the rest of

elements. We re�ne them with groups of �ner grained elements, which collectively

deliver the same functionality. This is done prior to performing the transformation.

50

The rest of this chapter is organized as follows: Section 5.1 presents an algo-

rithm to re�ne BPMN 2 transactions in order to simplify the mapping procedure.

Section 5.2 is a brief introduction to Atlas Transformation Language (ATL). Our

proposed BPMN 2 to Reo mapping is given in Section 5.3. We show result of the

mapping using an example in Section 5.4. Section 5.5 overviews the related work

on transformation of BPMN models.

5.1 Transaction re�nement

To simplify mapping of BPMN transactions, we substitute them with a set of BPMN

2 elements that are easier to map to Reo, yet collectively expose the same func-

tionality. The correctness of this re�nement can be checked against the informal

behavioral description of the elements involved. We do not provide a formal proof.

The mechanism to trigger a compensation in BPMN 2 is either by using a cancel

event attached to the boundary of a transaction or by throwing a compensation

event. For simplicity, we assume that all compensations are triggered in the former

way. It is not a limiting assumption as it is possible to convert the latter to the

former.

In the re�nement process, we create complex gateways for two purposes: i)

to control the execution order of compensation tasks and ii) to delay the post

compensation �ow. We refer to them as compensation order and post compensation,

respectively.

We use these complex gateways as placeholders to be replaced by groups of

Reo elements, which implement the informally described behavior of the gateways.

Though the behavior of complex gateway is de�ned by its expression attribute,

for these gateways, we ignore their expression attribute. During the re�nement

process, though, we keep track of these gateways and pass their identi�ers to the

ATL mapping process in order to invoke the suitable mapping rules.

We carry out the re�nement as follows:

1. We create a send signal event for each compensatable task and place it after

the task (using an inclusive gateway if the task has a following element). This

is to notify when the task is completed.

2. When a compensatable task resides in a sequence of compensatable tasks,

only the last performed task can be compensated immediately upon receiving

the cancel event. The rest of the tasks should be compensated only if their

51

following tasks in the sequence are compensated. Therefore, for each com-

pensatable task in a sequence except for the last task, we create a send signal

event and place it after the compensation task corresponding to that task

(using gateways for connecting objects when it is necessary). These events

are �red after the corresponding compensatable tasks are compensated.

3. For a compensatable task Ta with a following compensatable task Tb in a

sequence of compensatable tasks, we create a complex gateway (of type com-

pensation order) with incoming sequence �ows originating from 1) the cancel

boundary event, 2) a newly created receive signal event, which catches the

signal corresponding to completion of Ta, 3) a newly created receive signal

event, which catches the signal corresponding to completion of Tb, and 4) a

newly created receive signal event, which catches the signal corresponding to

completion of the compensation of Tb. The complex gateway sends �ow to

the compensation task corresponding to Ta only if all incoming sequence �ows

are enabled.

The above steps assure that the compensation tasks are invoked in the right

order. In addition, we need to prevent that the outgoing sequence �ow of the cancel

boundary event is taken before all compensation tasks within the given transaction

are completed. The following step realizes this.

4. Let ce be the cancel boundary event of the given transaction, se be the outgo-

ing sequence �ow of ce, and fe be the target of se. We create a new complex

gateway ge (of type post compensation) and remove se. For each compensation

task tc and its corresponding componsatable task ta, we create a new receive

signal event to receive these signals. For each event, we create a sequence

�ow, which has the event as its source and gc as its target. This complex

gateway enables its outgoing sequence �ow if the cancel event is received and

after receiving each receive signal event corresponding to the compensatable

task ta, the receive signal event corresponding to the compensation of the task

tc is received, as well.

Listings 5.1, 5.2, and 5.3 depict our algorithm for transaction re�nement. To

reduce verbosity, we provide the following de�nitions:

� The objects property of a transaction is the set of its enclosed BPMN 2 �ow

objects (i.e. activities, gateways, and events).

� The compensation property refers to the compensation task corresponding to

the activity. If the task is not compensatable, this value is null.

52

� The nextFlowObjects property is the set of all the �ow objects that are directly

connected to an outgoing sequence �ow from the �ow object.

� The previousFlowObjects property is the set of all the �ow objects that are

directly connected to an incoming sequence �ow from the �ow object.

� The receivers, a property of a send signal event, is the set of the receivers of

the event.

� The getDoneSignal function maps a compensatable or a compensation task

to their corresponding send signal event.

� The getNextCompensatables function maps a compensatable task to its fol-

lowing compensatable tasks in sequences of compensatable tasks if they exist.

Otherwise, it returns null.

In addition, we assume that adding an object to the nextFlowObjects list creates

the required connecting objects.

The re�nement starts with the re�ne method, which goes through the transac-

tions in a given process and asserts that they have a single catching cancel boundary

event. If the event is found, a post compensation complex gateway is created in or-

der to delay the activation of the outgoing sequence �ow from the cancel boundary

event until all performed compensatable tasks inside the transaction are compen-

sated. Then, for each compensatable task the handleTaskCompletion and han-

dleCompensation methods are invoked.

The handleTaskCompletion method creates a send signal event and places it

after the given compensatable task (using a newly created gateway to connect it to

the other elements if it is needed). Additionally, it creates a receive signal event to

catch the generated signal event and adds it to the receivers attribute of the send

signal event.

The handleCompensation method starts by �nding the receive signal event,

which indicates the completion of the given compensatable task. Then, it �nds

the compensatable tasks that are immediate successors of the current compensa-

table task within sequences of compensatable tasks and creates the signal events

described in the third step.

Figure 5.1.1b demonstrates the result of applying the transaction re�nement

algorithm on a sample transaction shown in Figure 5.1.1a.

53

Listing 5.1: Re�nement of transactions

1 refine(BPMN2Process proc) {

2 foreach (Transaction tran in proc.objects.filter(e | e.isTypeOf(`

↪→ Transaction'))) {

3
4 Event[] cancels = tran.objects.filter(e | e.isTypeOf(`

↪→ CatchingCancelEvent'));

5 assert(cancels.length == 1);

6
7 Gateway postCompensation = new ComplexGateway();

8 postCompensation.nextFlowObjects = cancels[0].nextFlowObjects;

9 cancels[0].nextFlowObjects = {postCompensation};

10
11 foreach(Task start : tran.objects.filter(e | e.isTypeOf(`Task')

↪→ ∧ e.compensation != null) and tran.previousFlowObjects().

↪→ length == 0) {

12
13 // Allow post compensation flow only when all performed

↪→ compensatable tasks are compensated

14 Event taskDone = new CatchingSignalEvent();

15 getDoneSignal(task).receivers.add(taskDone);

16 taskDone.nextFlowObjects = {postCompensation};

17
18 Event compensationDone = new CatchingSignalEvent();

19 getDoneSignal(task.compensation).receivers.add(

↪→ compensationDone);

20 compensationDone.nextFlowObjects = {postCompensation};

21 }

22
23 foreach (CompensatableTask task in tran.objects.filter(e | e.

↪→ isTypeOf(`Task') ∧ e.compensation != null)) {

24 handleTaskCompletion(task);

25 handleCompensation(cancels[0], task);

26 }

27 }

28 }

54

(a) An example of BPMN 2 transaction (modi�ed from [Gro11])

(b) Re�ned transaction

Figure 5.1.1: BPMN 2 model of Figure 5.1.1a after performing the transaction re�nement

55

Listing 5.2: Re�nement of transactions (dealing with task completion)

1 handleTaskCompletion(CompensatableTask task) {

2 // A send signal event to indicate the task is done

3 Event doneSendEvent = new SendSignalEvent();

4 // A receive signal event to catch the signal above

5 Event doneReceiveEvent = new CatchingSignalEvent();

6 doneSendEvent.receivers = {doneReceiveEvent};

7 // Placing the signal event after the task

8 if (task.nextFlowObjects == null) {

9 task.nextFlowObjects = {doneSendEvent};

10 } else {

11 Gateway gateway = new InclusiveGateway();

12 gateway.nextFlowObjects = task.nextFlowObjects;

13 gateway.nextFlowObjects.add(doneSendEvent);

14 task.nextFlowObjects = {gateway};

15 }

16 }

5.2 Atlas Transformation Language

We have implemented the BPMN 2 to Reo transformation in ATL (ATLAS Trans-

formation Language), which is developed as a part of the ATLAS Model Manage-

ment Architecture (AMMA) platform [BJT05]. ATL is a hybrid language, meaning

that it supports both declarative and imperative programming styles.

A program in ATL consists of several rules that match against the source model

elements and generate target elements. Rules in ATL are of three types: matched

and lazy rules that are declarative, called rules, which are imperative.

The matched rules de�ne matching conditions for generating target elements

out of the source elements and the way to initialize them from the matched source

model element. A matched rule contains two mandatory sections, which are the

matching and generation patterns; and two optional parts that are local variables

de�nitions and an imperative section.

Local variables are de�ned by the keyword using. The scope of a local variable

is its enclosing rule. The source pattern of a matched rule is de�ned using the

from keyword. By de�ning an expression on the matching pattern, it is possible

to restrict the matching of the source elements to those of choice. A source model

element of an ATL transformation can only be matched by one matched rule.

The optional imperative section is de�ned by the keyword do. The generation

part of the rule is speci�ed by the to keyword. Unlike matched rules, a lazy rule is

56

Listing 5.3: Re�nement of transactions (dealing with compensations)

1 handleCompensation(CatchingCancelEvent cancel, CompensatableTask

↪→ task) {

2 Event receiver = getDoneSignal(task).receivers[0];

3 CompensatableTask[] nexts = getNextCompensatables(task);

4 if (nexts.length == 0) {

5 Gateway gateway = new InclusiveGateway();

6 cancel.nextFlowObjects.add(gateway);

7 receiver.nextFlowObjects = {gateway};

8 gateway.nextFlowObjects.add(task.compensation);

9 } else {

10 // A complex gateway that fires if either all or

11 // only the first two of its inputs have flow

12 Gateway order = new ComplexGateway();

13 cancel.nextFlowObjects.add(order);

14 receiver.nextFlowObjects.add(order);

15
16 foreach(CompensatableTask next in nexts) {

17 // Event associated with the next compensatable task

18 getDoneSignal(next).nextFlowObjects.add(order);

19
20 // Event associated with compensation of the next

21 // compensatable task

22 Event compensationDone = getDoneSignal(next.compensation).

↪→ receivers[0];

23 getDoneSignal(compensationDone).nextFlowObjects.add(order);

24 }

25 order.nextFlowObjects.add(receiver);

26 }

27 }

57

Listing 5.4: De�nition mapping rule

rule mapDefinition {

from

def : BPMN2!Definitions

to

mod : Reo!Module(

name <- def.name,

connectors <- def.rootElements->select(e | e.oclIsKindOf(

↪→ BPMN2!Process))

)

}

only �red when it is called through another rule.

Imperative programming in ATL is feasible using called rules. They can accept

parameters. In order to run a called rule, they need to be explicitly called from an

imperative code section.

ATL allows developers to de�ne auxiliary methods, called helpers, which can be

called from di�erent parts of the program. An ATL helper consists of a name, a con-

text type, a return type, an ATL expression de�ning the logic of the helper, and an

optional set of parameters de�ned as pairs of parameter name and parameter type.

5.3 Mapping BPMN 2 to Reo

We express the mapping in terms of the BPMN 2 and Reo meta-models. Meta-

models provide a precise and systematic way to describe valid models.

The conversion begins by matching the BPMN 2 top most element, which ac-

cording to the BPMN 2 meta-model is De�nition. De�nition is a container for other

BPMN 2 elements.

Similarly, a module serves as the top most container for Reo elements. Both

de�nition and module can be seen as logical elements that are added in the meta-

models in order to preserve the process structure. Neither of them exists in the

conceptual de�nition of the notations.

58

Listing 5.5: Process mapping rule

helper context BPMN2!SubProcess def : expanded : Boolean =

self.flowElements.size() > 0;

helper context BPMN2!FlowNode def : expandedSubProcess : Boolean =

if not self.oclIsKindOf(BPMN2!SubProcess)

then false

else self.expanded

endif;

rule mapProcess {

from

proc : BPMN2!Process

to

conn : Reo!Connector(

name <- proc.name,

nodes <- proc.flowElements->select(e | e.oclIsTypeOf(BPMN2!

↪→ Activity) or e.oclIsTypeOf(BPMN2!Event) or e.oclIsTypeOf

↪→ (BPMN2!Gateway)),

primitives <- proc.flowElements->select(e | e.oclIsTypeOf(BPMN2

↪→ !SequenceFlow) or (e.oclIsKindOf(BPMN2!SubProcess) and

↪→ not e.expanded())),

subConnectors <- proc.flowElements->select(e | e.

↪→ expandedSubProcess())

)

}

5.3.1 De�nition

We map a de�nition to a Reo module. The rule in Listing 5.4 carries out this

mapping. Similar to all of our mapping rules, it respects the nesting of elements,

meaning that the result of mapping an enclosed element is assigned to the mapped

parent element. The rule creates a Reo module for the BPMN 2 de�nition and

triggers rules matching the nested processes. The result of the triggered rules will

be assigned to connectors inside the created module.

59

Figure 5.3.1: The FlowNode and its related entities in BPMN 2 EMF meta-model

The select command in the rule collects the processes from the list of elements

nested within the rootElements attribute of the de�nition. RootElement is an

abstract type with Process as one of its subtypes. The select command applied on

rootElement guarantees that not any other subtype but process will go through this

assignment.

The function oclIsKindOf returns true, if it is invoked from either an instance

of the passed type or an instance of one of its subtypes. Similarly, the function

oclIsTypeOf returns true, if the element to which it is applied is an instance of the

passed type.

5.3.2 Process

We map a BPMN 2 process to a Reo connector in Listing 5.5. Besides creating a

connector, the rule initiates the set of nodes, primitives, and subconnectors from

the result of mapping the activity, gateway, and event elements, sequenceFlows,

and subprocesses, respectively.

When a mapping rule maps an BPMN 2 elements to a mixture of Reo nodes

and primitives those types that are the rules in Listing 5.5 does assign to the cor-

responding attribute in the Reo connector need to be manually assigned to their

target attribute of the connector. This is done in the do section of those rules,

where we place the recently created primitives inside the corresponding Reo con-

nector. Otherwise, these primitives would be �oating inside the model.

We assume that a subprocess is collapsed when it has no inner element. The

helper expanded returns true, when it is applied on a subprocess with at least one

60

Listing 5.6: Mapping tasks and collapsed subprocesses

rule mapTaskAndCollapsedSubprocess {

from

nod : BPMN2!FlowNode(nod.oclIsKindOf(BPMN2!Task) or (nod.

↪→ oclIsKindOf(BPMN2!SubProcess) and not nod.

↪→ expandedSubProcess()))

to

ndc : Reo!Node,

fif : Reo!FIFO(sourceEnds <- src, sinkEnds <- snk),

src : Reo!SourceEnd(node <- ndc),

snk : Reo!SinkEnd(node <- ndk),

ndk : Reo!Node

do {

ndc.connector.primitives.add(fif);

}

}

inner element. The helper expandedSubProcess serves the same purpose, but with

a di�erence that it is applicable on any �owNode.

As Figure 5.3.1 demonstrates FlowNode mentioned in the rule is the super type

of activity, gateway, and event types in the BPMN 2 meta-model.

5.3.3 Task and subprocess

Since a BPMN 2 task represents one unit of work in a process, we map it to a FIFO1

channel while preserving its incoming and outgoing sequence �ows.

Similarly, a collapsed subprocess represents a single step in a process by ab-

stracting away from its inner structure, it resembles a Reo FIFO1 channel. Listing

5.8 describes the mapping rule for a simple activity and a collapsed subprocess.

Unlike a collapsed subprocess, an expanded subprocess reveals its inner struc-

ture. Therefore, we map an expanded subprocess to a Reo subconnector that con-

tains Reo elements mapped from the inner elements of the source subprocess.

The rule in Listing 5.7 �rst creates a Reo connector, then invokes other rules to

map its inner elements, and assigns the result to the generated connector.

61

Listing 5.7: Mapping an expanded subprocess

rule mapExpandedSubprocess {

from

subp : BPMN2!SubProcess(subp.expandedSubProcess())

to

conn : Reo!Connector(

name <- subp.name,

nodes <- subp.flowElements->select(e | e.oclIsTypeOf(BPMN2!

↪→ Task) or e.oclIsTypeOf(BPMN2!Event) or e.oclIsTypeOf(

↪→ BPMN2!Gateway)),

primitives <- subp.flowElements->select(e | e.oclIsTypeOf(

↪→ BPMN2!SequenceFlow) or (e.oclIsKindOf(BPMN2!SubProcess)

↪→ and not e.expandedSubProcess())),

connector <- subp.flowElements->select(e | e.

↪→ expandedSubProcess()

)

}

5.3.4 Throw and catch events

A catch event catches a trigger from a throw event with the same event type.

The type of an event is de�ned in the eventDe�nitions attribute of the event. As

mentioned in Chapter 2, event triggers are resolved in one of the following mecha-

nisms:

� Publication: message and signal events,

� Propagation: escalation and error events,

� Direct Resolution: conditional event,

� Cancellation: cancel event,

� Compensation: compensation event.

We use FIFO channels to queue the event triggers emitted from throw events

to be processed by corresponding catch events. This is similar to the approach

proposed in [AKM08b] for mapping messages. While the FIFO channels are empty,

the throw event can emit a trigger and control �ow proceeds to the next step.

Meanwhile, the catch event can consume the trigger from the queue asynchronously.

62

Listing 5.8: Mapping tasks and collapsed subprocesses

rule mapTaskAndCollapsedSubprocess {

from

nod : BPMN2!FlowNode(nod.oclIsKindOf(BPMN2!Task) or (nod.

↪→ oclIsKindOf(BPMN2!SubProcess) and not nod.

↪→ expandedSubProcess()))

to

ndc : Reo!Node,

fif : Reo!FIFO(sourceEnds <- src, sinkEnds <- snk),

src : Reo!SourceEnd(node <- ndc),

snk : Reo!SinkEnd(node <- ndk),

ndk : Reo!Node

do {

ndc.connector.primitives.add(fif);

}

}

A limitation of this approach is that when the FIFO is full, the catch event is

blocked. To deal with this issue, a lossySync channel can be used to lose the new

event triggers if the previously generated events are still waiting to be processed.

When the maximum number of possible event triggers can be calculated, for

instance, when the catch event is not reachable from any loop or it is reachable

from loops with prede�ned repeating number, it is possible to use a FIFOn (which

is a sequence of n FIFO1 channels), where n is the maximum number of loop

repetitions.

Listing 5.9 shows the mapping rule for catch events. It creates a Reo node for

the source catch event. The name of the generated node is used in Listing 5.10

and 5.11 to connect the catch event to the corresponding throw event using the

resolveTemp operator.

Listing 5.10 maps published throw events. The using section �nds the corre-

sponding catch events. The to section connects the throw event to its corresponding

catch events using FIFO1 channels. Similarly, Listing 5.11 presents the mapping for

propagated throw events. The di�erence between the two using sections of these

rules is due to the di�erence in trigger forwarding for published and propagated

events in BPMN 2. As mentioned in Chapter 2, a propagated trigger is forwarded

from its origin to the innermost enclosing level that has an attached catching event

that matches the trigger, while propagated event triggers can be caught by any

catching event that matches the trigger within any scope where it is published.

63

Listing 5.9: Mapping non-conditional catch event

rule mapCatchingEvent {

from

cev : BPMN2!CatchingEvent(cev.eventDefinitions->select(e | tev.

↪→ eventDefinitions.size() < 2 and not e.oclIsTypeOf(BPMN2!

↪→ ConditionalEventDefinition)))

to

cme : Reo!Node(name <- cev.name)

}

The function refImmediateComposite is a special function in ATL, which returns

the immediate container. We use it to narrow the scope of search for catch events

for the propagated events.

The conditional is directly resolved. This means that there is no throw event

for conditional event type, and that such catch events are activated when the cor-

responding conditions are met.

The rule in Listing 5.12 maps a conditional event to a Reo writer with ability

to make in�nite I/O request (indicated by assigning -1 to the writer's request at-

tribute), two nodes that are used to connect the other elements, and a �lter channel

whose expression attribute matches the source model conditional event.

5.3.5 Gateway

The behavior of a parallel gateway is determined by the number of its incoming and

outgoing sequence �ows. If it has only one incoming sequence �ow, it acts similar

to a Reo replicate node. If the number of incoming sequence �ows is more that

one, the behavior of the gateway is as of a Reo join node as it merges the data

items from all the incoming sequence �ows and writes the result on the outgoing

sequences �ows.

The rule in Listing 5.13 generates a Reo node for the matched parallel gateway,

wherein the number of incoming sequence �ows of the gateway determines the type

of the generated Reo node.

64

Listing 5.10: Mapping published throw message event

rule mapPublishedThrowingEvent {

from

mte : BPMN2!ThrowingEvent(mte.eventDefinitions->select(e | e.

↪→ oclIsTypeOf(BPMN2!MessageEventDefinition) or e.oclIsTypeOf

↪→ (BPMN2!SignalEventDefinition)).size() = 1)

using {

cas: Sequence(BPMN2!CatchingEvent) = BPMN2!CatchingEvent.

↪→ allInstances()->select(e | e.eventDefinitions->first().

↪→ messageRef = mte.eventDefinitions->first().messageRef or e

↪→ .eventDefinitions->first().signalRef = mte.

↪→ eventDefinitions->first().signalRef)->asSequence();

}

to

nod : Reo!Node(name <- mte.name),

sc1 : Reo!SourceEnd(node <- nod),

sk1 : Reo!SourceEnd(node <- thisModule.resolveTemp(cat, 'cme')),

fif : Reo!FIFO(sourceEnds <- sc1, sinkEnds <- sk1)

do {

nod.connector.primitives.add(fif);

for (cat in cas) {

thisModule.connectByLossyFifo(nod, thisModule.resolveTemp(cat

↪→ , 'cme'));

}

}

}

65

Listing 5.11: Mapping propagated throw events

rule mapPropagatedThrowingEvent {

from

tev : BPMN2!ThrowingEvent(tev.eventDefinitions->select(e | e.

↪→ oclIsTypeOf(BPMN2!EscalationEventDefinition) or e.

↪→ oclIsTypeOf(BPMN2!ErrorEventDefinition)).size() = 1)

using {

cas : Sequence(BPMN2!CatchingEvent) = e.refImmediateComposite()

↪→ .flowElements->select((e | e.eventDefinitions->first().

↪→ escalationRef=tev.eventDefinitions->first().

↪→ escalationRef) or (e | e.eventDefinitions->first().

↪→ errorRef=tev.eventDefinitions->first().errorRef))

}

to

nod : Reo!Node(name <- tev.name)

do {

for (cat in cas) {

thisModule.connectByLossyFifo(nod, thisModule.resolveTemp(

↪→ cat, 'cme'));

}

}

}

rule connectByLossyFifo(nd1 : reo!Node, nd2 : reo!Node) {

to

los : Reo!LossySync(sourceEnds <- sc1, sinkEnds <- sk1),

sc1 : Reo!SourceEnd(node <- nd1),

sk1 : Reo!SinkEnd(node <- nd3),

nd3 : Reo!Node,

fif : Reo!FIFO(sourceEnds <- src, sinkEnds <- snk),

sc2 : Reo!SourceEnd(node <- nd3),

sk2 : Reo!SinkEnd(node <- nd2)

do {

nd1.connector.nodes.add(nd3);

nd1.connector.primitives.add(fif);

nd1.connector.primitives.add(los);

}

}

66

Listing 5.12: Mapping conditional event

rule mapConditionalEvent {

from

cde : BPMN2!CatchingEvent(cde.eventDefinitions->select(e | e.

↪→ oclIsTypeOf(BPMN2!ConditionalEventDefinition)).size() > 0)

using {

cnd : cde.eventDefinitions->select(e | e.oclIsTypeOf(BPMN2!

↪→ ConditionalEventDefinition).first().condition

}

to

nd1 : Reo!Node,

nd2 : Reo!Node,

wrt : Reo!Writer(sinkEnds <- sk1, requests <- -1),

sk1 : Reo!SinkEnd(node <- nd1),

sc1 : Reo!SourceEnd(node <- nd1),

sk2 : Reo!SinkEnd(node <- nd2),

fil : Reo!Filter(sourceEnds <- sc1, sinkEnds <- sk2, expression

↪→ <- cnd),

do {

nd1.connector.primitives.add(fil);

}

}

Listing 5.13: Mapping parallel gateway

rule mapParallelGateway {

form

gwy : BPMN2!ParallelGateway

to

nod : Reo!Node(

name <- gwy.name,

type <- if gwy.incoming.size()>0

then #JOIN

else #REPLICATOR

endif

)

}

67

Listing 5.14: Mapping inclusive gateway

rule mapInclusiveGateway {

form

gwy : BPMN2!InclusiveGateway

to

nod : Reo!Node(name <- gwy.name)

}

rule mapSequenceFlowOutOfInclusiveGateway {

from

seq : BPMN2!SequenceEdge(seq.sourceRef.oclTypeOf(BPMN2!

↪→ InclusiveGateway))

to

fil : Reo!Filter(sourceEnds <- sce, sinkEnds <- ske, expressions

↪→ <- seq.sourceRef.condition),

sce : Reo!SourceEnd(node <- seq.sourceRef),

ske : Reo!SinkEnd(node <- seq.targetRef)

}

A diverging inclusive gateway directs the incoming sequence �ow to its outgo-

ing sequences, whose conditions are evaluated to true. We can achieve the same

behavior using a replicate node whose sink ends are connected to �lter channels.

Each �lter channel and its expression corresponds to one of the outgoing sequence

�ows of the gateway. If the condition is met, then the �lter channel passes the

incoming data item through. Otherwise, the channel loses the data item. Listing

5.14 shows the rules that carry out the mapping of the inclusive gateway and its

outgoing sequence �ows.

A diverging exclusive gateway creates alternative paths, where only one path

can be taken. Similar to an inclusive gateway, we map an exclusive gateway using

a Reo router node and a �lter channel for each outgoing sequence �ow. Listing 5.15

presents the rule for mapping an exclusive gateway and its outgoing sequence �ows.

5.3.6 Transaction

In Listings 5.1, 5.2, and 5.3, we have presented an algorithm to re�ne BPMN 2

transactions, which introduces two kinds of complex gateways.

1. The compensation order complex gateway that ensures that an activity is

68

Listing 5.15: Mapping exclusive gateway

rule mapExclusiveGateway {

form

gwy : BPMN2!ExclusiveGateway

to

nod : Reo!Node(name <- gwy.name, type <- #ROUTE)

}

rule mapSequenceFlowOutOfExclusiveGateway {

from

seq : BPMN2!SequenceEdge(seq.sourceRef.oclIsTypeOf(BPMN2!

↪→ ExclusiveGateway))

to

fil : Reo!Filter(sourceEnds <- src, sinkEnds <- snk, expressions

↪→ <- seq.sourceRef.condition),

src : Reo!SourceEnd(node <- seq.sourceRef),

snk : Reo!SinkEnd(node <- seq.targetRef)

}

only compensated if a cancel event has occurred and the activity has been

executed, and in case that there is an activity that needs to be compensated

before this activity, it has been compensated.

2. The post compensation complex gateway, which prevents that the outgoing

sequence �ow of the cancel boundary event is taken before all compensation

tasks within the given transaction are completed.

For simplicity, we assume that the transaction re�nement step provides a list

of the generated complex gateways. Here, we use orderComplexGateways and

postComplexGateway to represent these complex gateways. Alternatively, we could

detect them programmatically based on their context in terms of their adjacent

elements.

Listing 5.16 presents the rule for mapping a compensation order complex gate-

way. In this rule and the followings, we capitalize some labels to make it easier

to �nd them later in the �gures and to track their usage cross rules. The helper

connectingNode de�ned in Listing 5.17 is used in the mapping of incoming sequence

�ows to compensation order complex gateway to connect each incoming sequence

to its corresponding node that is generated from the complex gateway. Listing 5.18

demonstrates mappings for the sequence �ows of the complex gateway.

To make these rules easier to be understood, Figure 5.3.2 illustrates the result of

69

!

A

B

C

)(

D

Cancel

Taski+1 done

Taski+1 compensated

Taski done

E

F

Taski to be compensated

!

Figure 5.3.2: Mapping of the compensation order complex gateway

applying them to control the �ow for compensating the compensatable Taski with

the following compensatable Taski+1.

Listing 5.19 shows the rule, which maps the post compensation complex gateway

to a join node in Reo. The complex gateway incoming sequence from the catching

cancel event is presented in Listing 5.20. Listings 5.21 and 5.22, presents rules,

which map the gateway incoming sequence �ows from the events signalling the task

compensation and the task completion, respectively. Due to lengthiness of these

rules, in Figure 5.3.3, we visualize the result of applying them on a transaction with

two compensatable tasks: Taski and Taskj that are in parallel path without any

other compensatable tasks ahead of them in a sequence.

5.3.7 Other elements

In general, we map sequence �ows to sync channels that coordinate the mapped

elements. We map the rest of BPMN 2 �ow nodes that are not mapped by the

aforementioned rules to Reo nodes.

Since ATL does not provide a mechanism to provide priority over the rules, the

70

Listing 5.16: Mapping the generated compensation order complex gateway

rule mapCompensationOrderComplexGateway {

from

cxg : BPMN2:ComplexGateway(thisModule.orderComplexGateways->

↪→ includes(cxg))

to

A : Reo!Node(type <- #ROUTE),

pab : Reo!PrioritySync(sourceEnds <- sca, sinkEnds <- skb),

sca : Reo!SourceEnd(node <- A),

skb : Reo!SinkEnd(node <- B),

B : Reo!Node(type <- #JOIN),

fbc : Reo!FIFO(sourceEnds <- scb, sinkEnds <- skc),

scb : Reo!SourceEnd(node <- B),

skc : Reo!SinkEnd(node <- C),

C : Reo!Node(type <- #JOIN),

fcd : Reo!FIFO(sourceEnds <- scc, sinkEnds <- skd),

scc : Reo!SourceEnd(node <- C),

skd : Reo!SinkEnd(node <- D),

D : Reo!Node(type <- #JOIN),

sae : Reo!SyncDrain(sourceEnds <- Sequence{sra, sre}),

sra : Reo!SourceEnd(node <- A),

sre : Reo!SourceEnd(node <- E),

E : Reo!Node,

sef : Reo!Sync(sourceEnds <- sce, sinkEnds <- skf),

sce : Reo!SourceEnd(node <- E),

skf : Reo!SinkEnd(node <- F),

F : Reo!SinkEnd(node <- F),

pdf : Reo!Sync(sourceEnds <- srd, sinkEnds <- snf),

srd : Reo!SourceEnd(node <- D),

snf : Reo!SinkEnd(node <- F)

do {

for (e in Sequence{pab, fbc, fcd, pdf, sae) {

A.connector.primitives.add(e);

}

}

}

71

Listing 5.17: Finding the connecting node to a complex gateway

helper context BPMN2!FlowNode def : connectingNode(gw :

↪→ ComplexGateway) : String =

if self.oclTypeOf(BPMN2!CatchingCancelEvent)

then 'A'

else if self.oclTypeOf(BPMN2!CatchingSignalEvent)

then if thisModule.compensatables.get(gw)->includes(self)

then 'B'

else if thisModule.nextCompensatables.get(gw)->includes(

↪→ self)

then 'C'

else if thisModule.nextCompensations.get(gw)->

↪→ includes(self)

then 'D'

endif

endif

endif

else 'UNKNOWN'

endif;

)(

)(!

!

Taski compensated
Ai Bi

G

Taski done
Ci

Di
Ei

Cancel F
Taski not done

Taskj not done

Taskj done

Taskj compensated

Cj

Aj

Dj

Bj

Ej

Figure 5.3.3: Mapping of the post compensation complex gateway

rule for mapping the non-speci�c elements need to have a condition to assure that

they do not match any of the existing rules. This is simply achieved by negating

the disjunction of the related rules.

72

Listing 5.18: Mapping incoming �ows of the compensation order gateway

rule mapSequenceFlowFromCompensatableToOrderComplexGateway {

from

seq : BPMN2!SequenceFlow(thisModule.orderComplexGateways->

↪→ includes(seq.targetRef) and thisModule.nextCompensations

↪→ .get(gw)->includes(seq.sourceRef))

to

fia : Reo!FIFO(sourceEnds <- sca, sinkEnds <- ska),

sca : Reo!SourceEnd(node <- seq.sourceRef),

ska : Reo!SinkEnd(node <- thisModule.resolveTemp(seq.targetRef,

↪→ seq.sourceRef.connectingNode(seq.targetRef))),

blk : Reo!BlockSync(sourceEnds <- scb, sinkEnds <- skb),

scb : Reo!SourceEnd(node <- seq.sourceRef),

skb : Reo!SinkEnd(node <- thisModule.resolveTemp(seq.targetRef,

↪→ 'E'))

}

rule mapSequenceFlowToOrderComplexGateway {

from

seq : BPMN2!SequenceFlow(thisModule.orderComplexGateways->

↪→ includes(seq.targetRef) and not thisModule.

↪→ nextCompensations.get(gw)->includes(seq.sourceRef))

to

fia : Reo!FIFO(sourceEnds <- sca, sinkEnds <- ska),

sca : Reo!SourceEnd(node <- seq.sourceRef),

ska : Reo!SinkEnd(node <- thisModule.resolveTemp(seq.targetRef,

↪→ seq.sourceRef.connectingNode(seq.targetRef)))

}

rule mapSequenceFlowFromOrderComplexGateway {

from

seq : BPMN2!SequenceFlow(thisModule.orderComplexGateways->

↪→ includes(seq.sourceRef))

to refined

syn : Reo!Sync(sourceEnds <- src, sinkEnds <- snk),

src : Reo!SourceEnd(node <- thisModule.resolveTemp(seq.

↪→ sourceRef, 'F')),

snk : Reo!SinkEnd(node <- seq.targetRef)

}

73

Listing 5.19: Mapping the post compensation complex gateway

rule mapPostCompensationComplexGateway {

from

cxg : BPMN2:ComplexGateway(cxg = thisModule.postComplexGateway)

to

G : Reo!Node(type <- #JOIN)

}

Listing 5.20: Mapping the cancel �ow to the post compensation gateway

rule mapCancelToPostCompensationComplexGatewaySequenceFlow {

from

seq : BPMN2!SequenceFlow(seq.sourceRef.oclTypeOf(BPMN2!

↪→ CatchingCancelEvent) and seq.targetRef = thisModule.

↪→ postComplexGateway)

to

fia : Reo!FIFO(sourceEnds <- sca, sinkEnds <- ska),

sca : Reo!SourceEnd(node <- seq.sourceRef),

ska : Reo!SinkEnd(node <- F),

F : Reo!Node

}

74

Listing 5.21: Mapping the compensation completion

rule mapCompensationToPostCompensationGatewaySequenceFlow {

from

seq : BPMN2!SequenceFlow(seq.targetRef = thisModule.

↪→ postComplexGateway and seq.sourceRef.oclIsKindOf(BPMN!

↪→ CatchingSignalEvent) and thisModule.nextCompensations.

↪→ get(seq.targetRef)->includes(seq.sourceRef))

to

fi1 : Reo!FIFO(sourceEnds <- sc1, sinkEnds <- sk1),

sc1 : Reo!SourceEnd(node <- seq.sourceRef),

sk1 : Reo!SinkEnd(node <- A),

A : Reo!Node(type <- #JOIN),

fi2 : Reo!FIFO(sourceEnds <- sc2, sinkEnds <- sk2),

sc2 : Reo!SourceEnd(node <- thisModule.resolveTemp(seq.

↪→ sourceRef, 'C')),

sk2 : Reo!SinkEnd(node <- A),

sab : Reo!Sync(sourceEnds <- sca, sinkEnds <- skb),

sca : Reo!SourceEnd(node <- A),

skb : Reo!SinkEnd(node <- B),

B : Reo!Node,

fi3 : Reo!FIFO(sourceEnds <- sce, sinkEnds <- snb),

sce : Reo!SourceEnd(node <- thisModule.resolveTemp(seq.

↪→ sourceRef, 'E')),

snb : Reo!SinkEnd(node <- B),

bbg : Reo!BlockSync(sourceEnds <- scb, sinkEnds <- skg),

scb : Reo!SourceEnd(node <- B),

skg : Reo!SinkEnd(node <- thisModule.resolveTemp(seq.sourceRef,

↪→ 'G'))

do {

fil.connector.nodes.add(A);

fil.connector.nodes.add(B);

}

}

75

Listing 5.22: Mapping the task completion

rule mapCompensatableToPostCompensationGatewaySequenceFlow {

from

seq : BPMN2!SequenceFlow(seq.targetRef = thisModule.

↪→ postComplexGateway and

seq.sourceRef.oclIsKindOf(BPMN!CatchingSignalEvent) and

thisModule.nextCompensatables.get(seq.targetRef)->

↪→ includes(seq.sourceRef))

to

fic : Reo!FIFO(sourceEnds <- scf, sinkEnds <- skc),

scf : Reo!SourceEnd(node <- seq.sourceRef),

skc : Reo!SinkEnd(node <- C),

C : Reo!Node,

pri : Reo!PrioritySync(sourceEnds <- scc, sinkEnds <- skd),

scc : Reo!SourceEnd(node <- ndc),

skd : Reo!SinkEnd(node <- D),

D : Reo!Node,

sdr : Reo!SyncDrain(sourceEnds <- Sequence{scf, scd}),

scf : Reo!SourceEnd(node <- thisModule.resolveTemp(seq.

↪→ targetRef, 'F')),

scd : Reo!SourceEnd(node <- D),

syn : Reo!Sync(sourceEnds <- sec, sinkEnds <- snd),

snd : Reo!SinkEnd(node <- D),

sec : Reo!SourceEnd(node <- E),

E : Reo!Node,

ffe : Reo!FIFO(sourceEnds <- sen, sinkEnds <- ske, full <- true

↪→),

sen : Reo!SourceEnd(node <- ndt),

ske : Reo!SinkEnd(node <- D),

ndt : Reo!Node

do {

for (e in Sequence{C, D, E, ndt}) {

fic.connector.nodes.add(e);

}

}

}

76

Figure 5.3.4: Mapping the re�ned BPMN 2 example of Figure 5.1.1b to Reo

5.4 Example

Figure 5.3.4 shows the result of applying the presented BPMN 2 to Reo transfor-

mation rules on the re�ned BPMN 2 model of Figure 5.1.1b.

5.5 Related Work

Several works on the topic of formal semantics of business processes propose a

mapping from BPMN to Petri nets [vdA98] e.g. [TSJ10], [DDO08], [DW11], and

[MBL+18]. Petri nets constitute a graph-based modeling language for describing

distributed systems. Similar to BPMN, Petri nets have a graphical syntax and its

execution semantics have exact mathematical de�nitions.

77

The obtained Petri nets model can be analyzed using Petri nets analyzing tools

such as ProM [vDdMV+05], Yasper [SOP+06], Wo�an [VvdAK04], Snoopy[HHL+12],

and CPN Tools [JKW07]. Each of these tools performs particular types of analyses.

Some tools can only analyze a subset of Petri nets.

Groote et al. in [GMR+06] propose converting the obtained Petri nets models to

the process speci�cation language mCRL2 to open up the possibility of automatic

veri�cation by the mCRL2 tool-set.

Alternatively, BPMN has been mapped to other formalisms. Wong et al. [WG08]

propose a mapping from BPMN to Communicating Sequential Processes (CSP)

[Hoa85], a type of process algebra.

Christiansen et al. [CCH11] use a token-based semantics to de�ne formal se-

mantics for BPMN processes. Authors of [ESB14] propose a formal semantics for

BPMN processes in Maude [CM02], a logical declarative language based on rewrit-

ing logic. Prandi et al. [PQZ08] suggest a translation of BPMN into the process

algebra COWS [LPT07].

Braghetto et al. in [BFV11] propose a mapping of BPMN processes into Stochas-

tic Automata Network (SAN) [PA91] - a compositionally built stochastic model. Au-

thors of [MSY14] present a formal model for BPMN processes in terms of Labelled

Transition Systems, which are obtained from process algebra encoding. Poizat et

al. in [PS12] propose a model transformation into the LOTOS NT process algebra

[GLS17].

A drawback of using aforementioned formalisms compared to Petri nets is that

they do not preserve the structure of the original BPMN model, as they are lower

level languages and at �ner granularity compared to BPMN. Reo has graphical

syntax and exact mathematical de�nitions of its execution semantics. It de�nes a

form of coordination in terms of synchronizing, bu�ering, retaining data, etc., along

with constraining its input and output data items. Reo allows hierarchical modeling

where arbitrarily complex models can be formed out of simpler ones.

The semantics of Reo is compositional. This means that complex networks can

be built by connecting simpler networks. Once a business model is transformed to

a Reo network, its behavior can be formally studied using various programs within

the Extensible Coordination Tools (ECT) [AKM+08a], a set of Eclipse plug-ins

that constitute an integrated development environment for the Reo coordination

language.

ECT contains tools for the design [AKM+08a], animation [Kra11], simulation

[Kan10], testing [AAA+09], stochastic analysis [ACMM07], veri�cation [KB09, KKdV10,

MSA04], execution [Pro11, AJ15, AKM+08a, JSS+12], and model transformation

78

[CKA10, MSTV07, KMLA11] for Reo networks.

79

80

6
A Constraint-Based Semantics Framework

for Reo

6.1 Introduction

In Chapter 5, we presented our approach for automatic transformation of business

process models into Reo [CKA10]. This enables the use of Reo analysis methods

and tools on these processes that originally were not expressed in Reo. Performing

analysis on a Reo connector requires the behavior of the connector expressed in one

of the formal semantics of Reo.

Each of these formal semantics comes with a set of de�nitions and operators,

which enable calculating semantics of a Reo connector. The straight-forward al-

gorithms of supporting tools for automating this process are developed based on

these de�nitions. These custom algorithms are computationally expensive and not

optimized. As a result, in practice the size of a connector they can support is small.

Another inherent limitation of these algorithms stem from that they model data

explicitly. As a consequence, in practice the set of input data needs to be limited

to a prede�ned small set. This holds even for connecters with no data-sensitive

81

components, which shows the same behavior for each data item.

Even though di�erent formal semantics of a Reo connector describe the behavior

of the same model, since each of them focuses on some behavioral aspects such as

context-sensitivity or data-awareness, and ignores some other aspects, it is possible

that one aspects of its semantics describes some behavior that another semantics

considers invalid. A classical example of this case is when a lossySync channel is

connected to a FIFO1 channel. The constraint automata and the coloring semantics

for this example describe di�erent behavior.

In this chapter, we present a constraint-based framework to derive formal se-

mantics of a Reo connector. We form a constraint by encoding the behavior of

constructs of the connector.

Our framework eliminates the result of expressiveness gap among Reo formal

semantics by incorporating more than one semantics in deriving the behavior of a

Reo connector. This way, we transform problem of calculating formal semantics

of a Reo connector into a constraint satisfaction problem, for which e�cient and

optimized methods and tools exist. We use the symbolic approach to deal with

data, i.e, rather than dealing with concrete values, we split the data domain to

ranges for which the connector exhibits di�erent behavior.

This work is a necessary step for providing fully automated model checking for

data-aware and context-dependent Reo connectors. It can be seen as a generaliza-

tion of the constraint-based framework presented in [Pro11], that is used as a base

for Reo's distributed execution engine. However, there are major di�erences be-

tween them. For instance, the framework for the Reo execution engine only provide

support for synchrony and context-sensitivity, while our method deals with priority

and data-constraints as well.

6.2 Reo constraint satisfaction problem (RCSP)

In this section, we extend the constraint-based framework in [Pro11] to incorporate

all behavioral dimensions addressed by various semantic models for Reo. In our

framework, we denote each of these elements by variables over their proper domains.

We relate these variables to each other and restrict possible values they can

assume using constraints whose solutions give the underlying formal semantics of

the network. In this section, we deal only with connectors whose semantics can be

expressed in CASM or CC. Later, we extend our framework to also support priority.

Let N = N src ∪ Nmix ∪ N snk be the global set of nodes, M the global set of

state memory variables, and D the global set of numerical data values. The set

82

of primitive ends P consists of all primitive ends p derived from N by marking its

elements with superscripts c and k, according to the following grammar:

p ::= rc | sk

where r ∈ N src ∪Nmix and s ∈ N snk ∪Nmix. Observe that the primitive ends nc

and nk connect on the common node n.

Let p ∈ P, n ∈ N and m ∈ M be a primitive end, a node, and a state memory

variable, respectively. A free variable v that occurs in the constraints encoding the

behavior of a Reo network has one of the following forms:

� ñ ranges over {>,⊥} to show presence or absence of �ow on the node n.

� n̂ ranges over D to represent the data value passing through the node n.

� m̊, m̊′ range over {>,⊥} to denote whether or not the state memory variable

m is de�ned in, respectively, the source and the target states of the transition

to which the encoded guard belongs.

� m̂, m̂′ range over D to represent the values of the state memory variable m

in, respectively, the source and the target states of the transition to which the

encoded guard belongs.

� p. ranges over {>,⊥} to state that the reason for lack of data-�ow through

the primitive end p originates from the primitive to which p belongs or the

context (of this primitive).

Note that not all of the introduced variables are required for encoding the behav-

ior of every Reo network. In presence of context-dependent primitives like lossySync

or in priority-sensitive networks, constraints include variables of the form p.. For

the stateful elements such as FIFO1, variables like m̊, m̊
′, m̂, and m̂′ appear in the

constraints.

Observe that the interpretation of some of the mentioned variables depends on

the values of other variables. Referring to the variable p. makes sense only if ñ = ⊥,
where p = nc or p = nk (i.e., the primitive end p belongs to the node n); and n̂, m̂

and m̂′ make sense only if ñ = >, m̊ = > and m̊′ = >, respectively.
The grammar for a constraint Ψ encoding the behavior of a Reo network is as

follows:

83

t ::= n̂ | m̂ | m̂′ | d | t~ d (terms)

a ::= ñ | p. | m̊ | m̊′ | t = t | t < t (atoms)

ψ ::= > | a | ¬ψ | ψ ∧ ψ (formulae)

where d ∈ D is a constant, ~ ∈ {+,−, ∗, /,%, ˆ}, and p is either of the form nc or

nk.

A solution to a formula ψ is de�ned over the variable sets V × Vd, where the

variables in V are mapped to a value in {⊥,>} and values in Vd are mapped to

subsets of D. The satisfaction rules for a solution 〈δ, δd〉 are de�ned as follows:

〈δ, δd〉 � > always

〈δ, δd〉 � ñ i� δ(ñ) = >
〈δ, δd〉 � p. i� δ(p.) = >
〈δ, δd〉 � m̊ i� δ(m̊) = >
〈δ, δd〉 � m̊′ i� δ(m̊′) = >
〈δ, δd〉 � P (t1, t2, ..., tn) i� (δd(t1), δd(t2), ..., δd(tn)) ⊆ I(P (t1, t2, ..., tn))

〈δ, δd〉 � ψ1 ∧ψ2 i� 〈δ, δd〉 � ψ1 ∧ 〈δ, δd〉 � ψ2

〈δ, δd〉 � ¬ψ i� 〈δ, δd〉 6� ψ
There exists an associated interpretation, I(P) ⊆ 2D

n
, for each n-ary predicate

P .

De�nition 6.2.1 (Reo constraint satisfaction problem) A Reo constraint sat-

isfaction problem (RCSP) is a tuple 〈P,M,M0,V, C〉, where:

� P is a �nite set of primitive ends.

� M is a �nite set of state memory variables.

� M0 ⊆M is a set of state memory variables that de�ne the initial con�guration

of a Reo network.

� V is a set of variables v de�ned by the grammar

v ::= ñ | p. | m̊ | m̊′ | n̂ | m̂ | m̂′

for n ∈ N , p ∈ P, and m ∈ M. The values that the variables of the forms

n̂, m̂, and m̂′ can assume are subsets of D, and the other variables are Boolean,
with values in {>,⊥}.

84

� C = {C1, C2, ..., Cm} is a �nite set of constraints, where each Ci is a constraint

given by the grammar Ψ involving a subset of variables Vi ⊆ V.

Example 6.2.1 The RCSP of a sync channel with the source end a and the sink

end b is 〈{a, b}, ∅, ∅, {ã, b̃, â, b̂}, ã ⇔ b̃ ∧ ã ⇒ (â = b̂)〉. The solutions for this

constraint problem give the behavior of the sync channel as the channel allows data-

�ow on its source end i� its sink end can dispense it simultaneously (which agrees

with the semantics of this channel as de�ned in other formal models of Reo). In case

of data-�ow, the values of the data items passing through the ends of this channel

are equal.

We obtain the constraints corresponding to a Reo network by composing the

RCSPs of its constituents as de�ned below.

De�nition 6.2.2 (Composition) The composition of two RCSPs ρ1 = 〈P1,M1,

M0,1,V1, C1〉 and ρ2 = 〈P2,M2,M0,2,V2, C2〉 is de�ned as follows:

ρ1 � ρ2 = 〈P1 ∪ P2,M1 ∪M2,M0,1 ∪M0,2,V1 ∪ V2, C1 ∧ C1〉

However, connecting two Reo networks must not introduce incorrect data-�ow

possibilities. This is done by enforcing a restriction on the possible solutions through

the following axiom:

Axiom 6.2.1 (Mixed node axiom) When two Reo networks connect on the com-

mon node x, where xc is a source end in one network and xk is a sink end in the

other, the following constraint must hold:

¬x̃⇔ (xc. ∨ xk.)

The mixed node axiom, which applies to all mixed nodes in a network, states that

a node x cannot produce the reason for no-�ow all by itself.

6.2.1 Encoding Reo elements in RCSPs

Table 6.2.2 summarizes the constraint encodings associated with commonly used

Reo elements. If a Reo network does not contain any context-dependent channel, the

variables encoding the context-dependency can be ignored in its RCSP. Table 6.2.1

shows the encoding of Reo elements from Table 6.2.2 where the context variables

are removed. Note that in these tables, a and b denote the source and the sink ends

of a primitive, respectively, and that dom refers to the domain of the given function

85

Table 6.2.1: Context-independent encoding of Reo primitives

Channel Constraints

ψSync(a, b) : ã⇔ b̃ ∧ ã⇒ (â = b̂)
ψSyncDrain(a1, a2) : ã1 ⇔ ã2

ψAsyncDrain(a1, a2) : ¬(ã1 ∧ ã2)

ψLossySync : b̃⇒ ã ∧ b̃⇒ (â = b̂)
ψMerger(a0..i, b) : b̃⇔ (

∨
i ãi)

∧
j,j 6=i ¬(ãi ∧ ãj) ∧ ãi ⇒ (âi = b̂)

ψReplicator(a, b0..i) : ã⇔ (
∧

i b̃i) ∧ ã⇒ (
∧

i(b̂i = â))

ψRouter(a, b0..i) : ã⇔ (
∨

i b̃i)
∧

j,j 6=i ¬(b̃i ∧ b̃j) ∧ b̃i ⇒ (b̂i = â)

ψFIFO1(a, b,m) : ã⇒ (¬m̊∧ m̊′ ∧ (m̂′ = ã))∧ b̃⇒ (m̊∧¬m̊′ ∧
(m̂ = b̃)) ∧ (¬ã ∧ ¬b̃)⇒ (m̊⇔ m̊′ ∧ m̊⇒ (m̂ = m̂))

p
ψFilter(a, b, P) = b̃⇒ (ã ∧ b̂ ∈ dom(P) ∧ P (â) ∧ (â = b̂))

f
ψTransformer(a, b, f) = b̃⇒ (ã ∧ b̂ ∈ dom(f)) ∧ b̃⇒ (b̂ = f(â))

Table 6.2.2: Context-dependent encoding of Reo primitives

Channel Constraints

ψSync(a, b) : ã⇔ b̃ ∧ ã⇒ (â = b̂) ∧ ¬(ac. ∧ bk.)
ψSyncDrain(a1, a2) : ã1 ⇔ ã2 ∧ ¬(ac1

. ∧ ac2.)
ψAsyncDrain(a1, a2) : ã1 ⇒ (¬ã2 ∧ ac2.) ∧ ã2 ⇒ (¬ã1 ∧ ac1.)

ψLossySync(a, b) : b̃⇒ ã ∧ b̃⇒ (â = b̂) ∧ ¬ac. ∧ ¬ã⇒ bk
.

ψMerger(a0..i, b) : ãi ⇔ b̃ ∧ ãi ⇒ (âi = b̂) ∧ ¬b̃ ⇒
((¬bk.

∧
i a

c
i
.) ∨ (bk

. ∧ ¬aci .
∧

j,j!=i a
k
j
.
))

ψReplicator(a, b0..i) : ã ⇔
∧

i b̃i ∧ (ã ⇒
∧

i(b̂i = â)) ∧ ¬ã ⇒
((¬ac.

∧
i b

k
i
.
) ∨ (¬bki

. ∧
j,j 6=i b

k
j
. ∧ ac.))

ψRouter(a, b0..i) : ã ⇔ (
∨

i b̃i)
∧

j,j 6=i ¬(b̃i ∧ b̃j) ∧ b̃i ⇒ (b̂i =

â) ∧ ã⇔ (¬ac. ∨ ¬(
∨

i b
k
i
.
))

ψFIFO1
(a, b,m) : ã⇒ (¬m̊∧ m̊′ ∧ (m̂′ = â))∧ b̃⇒ (m̊∧¬m̊′ ∧

(m̂ = b̂)) ∧ (¬ã ∧ ¬b̃) ⇒ (m̊ ⇔ m̊′ ∧ m̊ ⇒ (m̂ = m̂′)) ∧ ¬m̊ ⇒
bk

. ∧ m̊⇒ ac.p ψFilter(a, b, P) = b̃ ⇒ (ã ∧ â ∈ dom(P) ∧ P (â)) ∧ b̃ ⇒ (â =

b̂) ∧ (¬ã⇒ (¬ac. ⇔ bk
.
)) ∧ (ã ∧ ¬b̃⇒ bk

.
)

f ψTransformer(a, b, f) = b̃ ⇒ (ã ∧ â ∈ dom(f)) ∧ b̃ ⇒ (b̂ =

f(â)) ∧ ¬(ac. ∧ bk.)

or predicate. In the case of elements with more than one source or sink ends, we

use indices.

86

The intuition behind these constraints is that their solutions re�ect the semantic

model of each element as given by CASM and CC.

Example 6.2.2 Figure 6.2.1 shows a Reo network that consists of a transformer

channel with the function 3 ∗ â, whose domain is the set of numbers Number and a

�lter channel with the condition b̂%2 = 0 and domain Number.

a
3 ∗ â b

c
b̂%2 = 0

Figure 6.2.1: A data-aware Reo connector

Since none of the Reo primitives in Figure 6.2.1 is context-dependent, we use

the constraints corresponding to the primitives in this network as de�ned in Table

6.2.1.

ψTransformer(a, b, 3 ∗ â) = ã⇔ b̃ ∧ ã⇒ (â ∈ Number ∧ b̂ = 3 ∗ â)) (6.1)

ψFilter(b, c, b̂%2 = 0) = c̃⇒ (b̃ ∧ b̂ ∈ Number ∧ (b̂%2 = 0)) (6.2)

Equation 6.1 states that �ow occurs on the source end of the transformer channel

i� it occurs on its sink end. In addition, �ow can exist only if the data item that

enters the source end of the channel is a number. In this case, the data item written

on the sink end is three times the value of the source data item.

Equation 6.2 expresses that �ow on the source end of the �lter channel leads

to �ow on its sink end, i� the data item belongs to the channel's accepting pattern

(which is b̂%2 = 0).

In this case, the value of data items passing through the ends are equal. No

�ow through the sink end c is either due to no �ow on b or that the incoming data

item does not satisfy the accepting pattern. As mentioned, the conjunction of these

constraints (subject to Axiom 7.2.1, which trivially holds in this case) encodes the

behavior of the given Reo network.

6.2.2 Solving RCSPs

In this section, we show how to obtain the solutions of RCSPs. Since Reo Constraint

Satisfaction Problems (RCSPs) have predicates with free variables of types Boolean

87

({>,⊥}) and data (D), a SAT-solver or a numeric constraint solver cannot solve

them alone. Satis�ability Modulo Theories (SMT) [BSST09] solvers �nd solutions

for propositional satis�ability problems where propositions are either Boolean or

constraints in a speci�c theory.

However, SMT-solvers are not applicable in our case either, because unlike SAT-

solvers they �nd only an instance of a solution as opposed to the complete set of

answers. Another drawback of most SAT- and SMT-solvers is that they work only

on quanti�er-free formulae, while we use existential quanti�es to implement the

hiding operator of constraint automata (see Section 6.3).

To generate the CASM corresponding to a given Reo network, we need all solu-

tions and thus resort to a hybrid approach that uses both SAT-solvers and Computer

Algebra Systems (CASs), namely, REDUCE [Ray87], which is a system for general

algebraic computations.

First, we form a pure Boolean constraint system by substituting data dependent

constraints with new Boolean variables and �nd all solutions for the new constraints

using a SAT-solver. Then, by substituting each such solution into the original con-

straints, we obtain a data dependent constraint satisfaction problem that a CAS can

solve symbolically. From these solutions, we extract a CASM corresponding to the

Reo network encoded by the original set of constraints. Our approach avoids state

explosion by treating data constraints symbolically. In the following, we elaborate

on our approach.

In an RCSP 〈P,M,M0,V, C〉, let VB and VD be the sets of free Boolean and

free data variables of C, respectively, where V = VB ∪ VD, and let AD be the set

of atomic predicates of C containing data variables. The following is our procedure

for solving C.

1. We obtain CB from C by replacing every occurrence of x ∈ AD with a unique

new Boolean variable y /∈ V. For example, for C = (c̃ ⇒ b̃) ∧ (c̃ ⇒ (b̂ ∈
Number ⇒ b̂%2 = 0)) in Figure 6.2.1, we obtain CB as (c̃⇒ b̃)∧ (c̃⇒ (y1 ⇒
y2)) where y1 and y2 replace b̂ ∈ Number and b̂%2 = 0, respectively.

2. An o�-the-shelf SAT-solver can �nd the set of solutions SB for CB . We de�ne

the �nite set of constraints C [SB] = {C [v1, v2, . . . , vn \ z1, z2, . . . zn] | for all
distinct vi ∈ VB , 1 ≤ i ≤ n = |VB |, zi ∈ S (vi) , S ∈ SB}.

3. Every CD ∈ C [SB] is a numerical constraint satisfaction problem, which we

(symbolically) solve using a Computer Algebra System. Every solution to

each CD along with the SAT solution S ∈ SB that produced CD ∈ C [SB] in

the previous step, constitute a solution to the RCSP.

88

Using the presented technique, we obtain the solutions for the RCSP correspond-

ing to Examples 6.2.2 as follows:

1. 〈{ã = ⊥, b̃ = ⊥, c̃ = ⊥},>〉,

2. 〈{ã = >, b̃ = ⊥, c̃ = ⊥}, â 6∈ Number〉,

3. 〈{ã = >, b̃ = >, c̃ = ⊥}, â ∈ Number ∧ b̂ = 3 ∗ â ∧ b̂%2 6= 0〉,

4. 〈{ã = >, b̃ = >, c̃ = >}, â ∈ Number ∧ b̂ = 3 ∗ â ∧ b̂%2 = 0 ∧ b̂ = ĉ〉.

a
b

c

Figure 6.2.2: A context-dependent Reo connector

Example 6.2.3 Figure 6.2.2 depicts a Reo network that consists of a lossySync

channel and a FIFO1 channel connecting on the node b.

Since the Reo network in Figure 6.2.1 contains a lossySync that is a context

dependent channel, we use the context-aware RCSP encoding from Table 6.2.2:

ψLossySync(a, b) = b̃⇒ (ã ∧ (â = b̂)) ∧ ¬ac. ∧ ¬ã⇒ bk
.
. (6.3)

ψFIFO1
(b, c,m) = b̃⇒ (¬m̊∧m̊′∧(m̂′ = b̂))∧c̃⇒ (m̊∧¬m̊′∧(m̂ = ĉ))∧(¬b̃∧¬c̃)⇒

((m̊⇔ m̊′) ∧ m̊⇒ (m̂ = m̂′)) ∧ ¬m̊⇒ cc. ∧ m̊⇒ bk
.
.

(6.4)

Equation 6.3 states that �ow on the sink end of the lossySync is due to �ow

on its source end. If there is �ow on the sink end of the lossySync, the data items

exchanged at the source and the sink ends are the same. However, it is possible

that the source end has �ow, but the sink end does not. In this case, the reason for

no �ow comes from the environment with which the sink end communicates. The

third possible behavior of the channel is that there is no �ow on the source end due

to the environment, in which case the channel provides a reason for no �ow on its

sink end.

Equation 6.4 expresses the behavior of the FIFO1 channel as follows: The �ow

on the source end of the channel states that the value of the variable representing

the state memory (of the current state) is unde�ned. The �ow on the source end

de�nes the state memory variable for the next state to contain the value of the

89

incoming data item. On the other hand, �ow on the sink end means that the value

of the state memory variable is de�ned. The data item leaving the sink end is

equivalent to the bu�er's data item. In addition, the value of the state memory

variable becomes unde�ned in the next state. If there is no �ow on the ends, the

variables related to the states stay the same. Being empty, the FIFO1 channel

provides a reason for no �ow on its sink end, while being full does so on the source

end of the channel.

The solutions for the RCSP 6.4, (where for brevity, we omit the values of the

variables representing the context, such as bc.) are as follows:

1. 〈{ã = ⊥, b̃ = ⊥, c̃ = ⊥, m̊ = ⊥, m̊′ = ⊥},>〉,

2. 〈{ã = >, b̃ = >, c̃ = ⊥, m̊ = ⊥, m̊′ = >}, â = b̂ ∧ m̂′ = b̂〉,

3. 〈{ã = >, b̃ = ⊥, c̃ = ⊥, m̊ = >, m̊′ = >}, m̂ = m̂′〉,

4. 〈{ã = ⊥, b̃ = ⊥, c̃ = ⊥, m̊ = >, m̊′ = >}, m̂ = m̂′〉,

5. 〈{ã = >, b̃ = ⊥, c̃ = ⊥, m̊ = >, m̊′ = ⊥}, m̂ = ĉ〉,

6. 〈{ã = ⊥, b̃ = ⊥, c̃ = >, m̊ = >, m̊′ = ⊥}, m̂ = ĉ〉.

6.2.3 Constructing CASM

In order to construct the CASM from the set of solutions S for an RCSP 〈P,M,M0,V, C〉,
we �rst de�ne

� N = {n | nc ∈ P ∨ nk ∈ P}

and then map each solution 〈s, sd〉 ∈ S into a transition q
N,g−−→ p as follows:

� q = 〈{m | m ∈M, s (m̊) = >}〉,

� p = 〈{m | m ∈M, s (m̊′) = >}〉,

� N = {n | n ∈ N , s (ñ) = >},

� The data constraint g is (a syntactic variant of) sd.

We obtain the CASM A = (Q,N ,→, q0,M) from the set −→ of all transitions

generated above, where:

� Q = {q | q N,g−−→ p ∨ p N,g−−→ q},

� q0 = 〈{m | m ∈M0, s(m̊) = >}〉,

90

∅, true
{a, b, c},

â ∈
Number∧

b̂ = 3 ∗ â ∧
b̂ = ĉ ∧
b̂%2 = 0

{a, b},
â ∈
Number∧
b̂ = 3 ∗ â ∧
b̂%2 6= 2

{a}, â 6∈
Number

mstart
∅, true

{a, b, c}, â = b̂ ∧ b̂ = ĉ ∧ m̂′ = ĉ

{a}, true

∅, true

{a, d}, m̂ = d̂

{d}, m̂ = d̂

Figure 6.2.3: CASMs generated for Figures 6.2.1 and 6.2.2

� M is the sameM as in the RCSP.

Applying the above procedure to the solutions of RCSPs constraints generates

their corresponding CASMs. For instance, the �rst solution for the constraints in

Example 6.2.2 generates the transition q
∅,true−−−−→ q, where q is the only state of the

CASM, which has no state memory variable. This is so because the set of variables

of the form m̊ is empty. Also, the transition has no synchronizing port, because the

value of every one of the variables ã, b̃ and c̃ is ⊥. Figures 6.2.3a and 6.2.3b show

the CASMs derived from the RCSPs in Examples 6.2.1 and 6.2.2.

Our approach deals with data in a symbolic fashion, where we partition the

global set of data values to equivalence classes toward which a Reo network behaves

di�erently. This is in contrast with the traditional way of dealing with data in the

formal semantics of Reo (and other models), where they consider a di�erent state

for each possible value that can be stored in bu�ers and a distinct transition for

each data value passing through the ports.

Our symbolic approach allows working with an in�nite data domain. In addition,

rather than implementing the highly time- and memory-demanding custom-made

algorithms to generate Reo formal semantics, we use the e�cient SAT-solvers and

computer algebra systems to solve constraints whose solutions are equivalent to

these models.

An experimental study done on the e�ciency of using SAT-solvers to generate

91

start m

{A}, true

{A,B},
dA = dB ∧ dA = m′

{C},
dC = m

{A}, true

Figure 6.2.4: CASM for Figure 6.2.2

Ac Bk Bc Ck

I . . / .
II . / / .
III − − − .

L0

Ac Bk Bc Ck

1 . . / /
2 . / / /
3 . . / −
4 . . / −

L1

3

4

III

I

II 2

1

Figure 6.2.5: CC for Figure 6.2.2

Reo formal semantics [Pro11] compares two prototypes based on constraint satisfac-

tion techniques and connector coloring semantics, without taking data constraints in

consideration. The results illustrate that the approach based on constraint solving

scales better and is more e�cient. In chapter 7 we present an evaluation through a

case study, which a�rms this conclusion.

6.3 Hiding

We use hiding to abstract from internal transitions. This is a mechanism to support

hierarchy and is used to create components.

The author in [Pro11] proposes applying the existential quanti�er to the con-

straints encoding of the behavior of a network to abstract from internal ports and

their corresponding data variables. Similarly, we use existential quanti�ers such as

∃ẽ, ê, e. : C, where C is the RCSP of a Reo network and e is an internal node to

hide.

Although several algorithms exist for the problem of quanti�er elimination in

Boolean algebra and �rst order logic [BZ07] [Abd02] [Dav88], we are not aware of

92

any working tool that does quanti�er elimination on Boolean algebraic formulae.

Therefore, our tool implements the hiding operator as de�ned for CASM.

Hiding the internal nodes on some transitions can make the set of their syn-

chronized nodes empty. Here, we refer to such a transition as an empty transition,

if the free variables of its guard are merely state memory variables. Under some

circumstances, we can merge the source and the target states of empty transitions.

Let q and p be two states in a CASM such that q
∅,g−−→ p. The following are the

conditions under which the state p can merge into the sate q:

1. The states q and p have the same number of state memory variables.

2. The guard g consists of the conjunction of the predicates of the form of x = y′,

for x, y ∈M. This way, g de�nes a correspondence relation between the state

memory variables of the state q and those of the state p.

3. For each transition q
N,g′−−−→ r where r /∈ {p, q}, there is a transition p

N,g′′−−−→ r

such that g′ ⇔ g′′g , where g
′′
g is obtained from g by replacing all occurrences

of the next state memory variable y′ with the next state memory variable x′,

if g contains x = y′ for state memory variables x, y ∈M.

4. For each transition r
N,g′−−−→ p where r /∈ {p, q}, there is a transition r

N,g′′−−−→ q

such that g′′ ⇔ g′g, where g
′
g is derived from g by substituting all occurrences

of the state memory variable x in g with the state memory variable x, if g

contains x = y′ for state memory variables x, y ∈M.

Provided that the above conditions hold, the state p merges into the state q as

follows:

1. We eliminate the transition q
∅,g−−→ p.

2. We remove the state p after substituting y, y′, and p with x, x′, and q in

all transitions. Observe that such substitutions convert the non-eliminated

transitions between the states q and p into loops over the state q.

Example 6.3.1 Figure 6.3.1 shows a FIFO2 derived from composing two FIFO1s.

The CASM corresponding to the FIFO2 is in Figure 6.3.2a. Figure 6.3.2b depicts

the CASM resulting from hiding the mixed node b. Figure 6.3.2c presents the result

of eliminating the empty transitions.

93

a
b

c

Figure 6.3.1: Two FIFO1s forming FIFO2

start m

n m,n

∅, true
∅, true

∅, true
∅, true

{a}, m′ = â

{b}, b̂ = m ∧ n′ = b̂

{a}, m′ = â ∧ n′ = n

{c}, m′ = m
∧ ĉ = n

{c}, ĉ = n

{a, c}, m′ = â ∧ ĉ = n

(a) CASM of Figure 6.3.1

start m

n m,n

∅, true
∅, true

∅, true ∅, true

{a}, m′ = â

∅, n′ = m

{a}, m′ = â∧ n′ = n

{c}, m′ = m
∧ ĉ = n

{c}, ĉ = n

{a, c}, m′ = â ∧ ĉ = n

(b) Hiding internal ports

start m
m,
n

∅, true

∅, true

∅, true
{a},
m′ = â

{a},
m′ = â ∧
n′ = m

{c}, m′ = m∧ ĉ = n{c},
ĉ = m

{a, c},m′ = â ∧
ĉ = m

(c) Merging the states

Figure 6.3.2: Hiding the empty transition and merging its source and target states for the
CASM of FIFO2 in Figure 6.3.1

94

d

a
b

c

Figure 6.4.1: A sample Reo network

start m

{a, b}, â = b̂ ∧ m̂′ = b̂

{b, d}, b̂ = d̂ ∧
m̂′ = d̂

{c}, ĉ = m̂

Figure 6.4.2: CASM corresponding to Figure 6.4.1

6.4 Correctness and compositionality

CASM and CC model the presence and the absence of data �ow on a Reo network

at di�erent levels of granularity. For instance, Figure 6.4.2 and Figure 6.4.3 are

the CASM and CC semantics for the Reo network in Figure 6.4.1. As the �gures

show, the node b in CASM is mapped to three primitive ends in CC, which do not

necessarily have the same coloring.

In this section, we formally investigate the relation between the solutions of the

RCSP for a given Reo network and its CC and CASM semantics. However, we �rst

need to present some de�nitions.

For a given networkR withA = (Q,N ,→, q0,M), its CASM and C = 〈P,L, L0, η〉,
its CC, we de�ne the function OR : P → N as it maps each CC port to its corre-

sponding node in CASM.

De�nition 6.4.1 (Correlation ∼) Let A = (Q,N ,→, q0,M) be a CASM and

C = 〈P,L, L0, η〉 be a CC. We de�ne the relation ∼: Q× L, as follows:

� q0 ∼ L0, if N =
⋃

p∈P OR(p).

� For each p ∈ Q and L′ ∈ L, p ∼ L′ if the following conditions hold:

1. There exists q ∈ Q and L ∈ L such that q
N,g−−→ p and L′ = η(L, l), where

l ⊂ L,

2. For all n ∈ N,n = OR(p)⇔ l(e) = −,

3. q ∼ L.

95

d

a
b

c

Figure 6.4.3: A coloring annotated state of the CC corresponding to Figure 6.4.1

If a relation ∼ exists between Q and L, then we say that A correlates to C, written

as A ∼ C.

It is easy to see that if A and C belong to the same Reo network, then q0 ∼ L0.

Therefore, A ∼ C.

De�nition 6.4.2 (id mapping) For the CASM A = (Q,N ,→, q0,M) and the

coloring semantics C = 〈P,L, L0, η〉 such that A ∼ C, the function id : L → 2Q

correlates coloring tables with subsets of Q such that id(L) returns the set of all

q ∈ Q wherein the data-�ow possibilities resulting from the outgoing transitions of

q correspond to the data-�ow possibilities prescribed by the coloring table L.

The following example illustrates De�nition 6.4.2.

Example 6.4.1 Figure 6.2.4 and Figure 6.2.5 are, respectively, the CASM and the

CC of the Reo network of Figure 6.2.2.

Note that we have modi�ed the presentation of the CC to resemble the CASM

structure. For instance, the transition L1
i−→ L2 represents L2 = η (L1,

colsL1
[i]), where the colsL1

is the possible colorings for each coloring table as shown

in the example.

Let q designate the state without a state memory variable in the CASM of Fig-

ure 6.2.5, and let p designate the state with the state memory variable m. Then,

according to De�nition 6.4.1, q ∼ L0 and p ∼ L1.

De�nition 6.4.3 (Memory cells of a state) We use Mq to denote the set of

all m ∈ M that syntactically appear as m in a data constraint g on an outgoing

transition q
N,g−−→ p of the state q. Analogously, we use M′q to denote the set of

all m ∈ M that syntactically appear as m′ in a data constraint g on an incoming

transition p
N,g−−→ q of the state q. We call Mq and M′q, respectively, the accessed

and the updated memory cells of the state q.

De�nition 6.4.4 (Encoding a Reo network) For the semantics for a Reo net-

work R as A = (Q,N ,→, q0,M) and C = 〈P,L, L0, η〉, the RSCP Ψ = 〈P,M,

M0,V, C〉 encodes R in terms of its CASM and CC semantics i� the following con-

ditions hold:

96

1. For all solution pairs 〈s, sd〉 � Ψ, there exist a transition q
N,g−−→ p and a

colorings l ∈ L ∈ L such that

(a) for all m ∈M, m ∈Mq i� s(m̊) = >

(b) for all m ∈M, m ∈Mp i� s(m̊′) = >

(c) for all n ∈ N , n ∈ N i� s(ñ) = >

(d) for all v̂ ∈ V, [g] v̂\sd(v̂)

(e) for all p ∈ P, s(p̃) = > i� l(n) = − coloring

(f) for all p ∈ P, s(e.) = > where e is either pc or pk i� l(n) = /

(g) for all p ∈ P, s(e.) = ⊥ where e is either pc or pk i� l(n) = .

(h) for all p ∈ P such that pc ∪ pk ⊂ P, if sol(p̃) = ⊥, then pc. ∨ pk..

2. For all transitions q
N,g−−→ p, and colorings l ∈ L ∈ L such that q ∼ L and

p ∼ η(L, l), there exists a solution 〈s, sd〉 such that

(a) for all m̊ ∈ V, s(m̊) = > i� q ∈ id(L) and m ∈Mq

(b) for all m̊′ ∈ V, s(m̊′) = > i� p ∈ id(η(L, l)) and m ∈M′p
(c) for all ñ ∈ V i� n ∈ N and l(n) = −

(d) for all v̂ ∈ V, g [v] \sd (v̂)

(e) for all e. ∈ V, where e is either nc or nk, s(e.) = > i� n /∈ N and

l(n) = /

(f) for all e. ∈ V, where e is either nc or nk, s(e.) = ⊥ i� n /∈ N and

l(n) = .

The purpose of this encoding is to obtain the behavior of the Reo network as

speci�ed in both its CASM and CC semantics by solving the RCSP ψ.

Theorem 6.4.1 (Correctness) For the CASM A = (Q,N ,→, q0,M) and the

CC C = 〈P,L, L0, η〉 such that A ∼ C, let Ψ be the RCSP encoding A and C. The

CASM A′ = (Q′,N ′,→′, q′0,M′) and the CC C ′ = 〈P ′,L′, L′0, η′〉 extracted from

the solutions of Ψ are re�nements of A and C and A′ ∼ C ′.

Proof For all solution s � Ψ, there is a coloring l′ and a transition q′
N ′,g′−−−→ p′ such

that the �rst part of De�nition 6.4.4 holds:

� l′ ∈ L,

� q′
N ′,g′−−−→ p′,

97

� q′ ∈ Q,

� p′ ∈ Q.

We construct A′ = (
⋃

(q′ ∪ p′) ,N ′,→′, q′0,M′) and C ′ = 〈P ′,L′, L′0, η′〉 from
the solutions, where A′ v A and C ′ v C.

Lemma 6.4.1 Assume the condition (1) of De�nition 6.4.4 holds for two RC-

SPs Ψ1 = 〈P1,M1,M0,1,V1, C1〉 and Ψ2 = 〈P2,M2,M0,2,V2, C2〉 for automata

A1 = (Q1,N1,→1,q01
,M1) and A2 = (Q2,N2,→2,q02

,M2) and colorings C1 =

〈P1,L1, L01
, η1〉 and C2 = 〈P2,L2, L02

, η2〉. Then the condition (1) of De�nition

6.4.4 holds for Psi1 � Psi2, A1 ./ A2 and C1 • C2.

Proof Assume 〈s, sd〉 � Ψ1 and 〈s, sd〉 � Ψ2. Let 〈s1, sd1〉 and 〈s2, sd2〉 be the

images of 〈s, sd〉 over V1 and V2, respectively. Then 〈s1, sd1〉 � Ψ1 and 〈s2, sd2〉 � Ψ2

and for each v ∈ V1 ∩ V2, s1(v) = s2(v) and sd1(v) = sd2(v).

Therefore, there exist transitions q1
N1,g1−−−−→1p1 and q1

N2,g2−−−−→2p2 and colorings l1 ∈
L1 ∈ L1 and l2 ∈ L2 ∈ L2 such that the condition (1) of De�nition 6.4.4 holds.

For each ṽ ∈ V1∩V2, s1(ṽ) = > i� v ∈ N1 and v ∈ N2. Therefore, N1∩N2 = N2∩N1,

which means 〈q1, q2〉
N1∪N2,g1∧q2−−−−−−−−−→ 〈p1, p2〉.

For each ṽ ∈ V1 ∩ V2, s1(ṽ) = > i� l1(OR(n)) = − and l2(OR(n)) = −, s1(ṽ) =

⊥ ∧ s1(v.) = > i� l1(OR(n)) = . and l2(OR(n)) = ., and s1(ṽ) = ⊥ ∧ s1(v.) = ⊥
i� l1(OR(n)) = . and l2(OR(n)) = /.

On the other hand,

� for all m ∈M, m ∈Mq i� s(m̊) = >

� for all m ∈M, m ∈Mp i� s(m̊′) = >

� for all n ∈ N , n ∈ N i� s(ñ) = >

� for all v̂ ∈ V, [g] v̂\sd(v̂)

� for all p ∈ P, s(p̃) = > i� l(n) = −

� for all p ∈ P, s(e.) = > where e is either pc or pk i� l(n) = /

� for all p ∈ P, s(e.) = ⊥ where e is either pc or pk i� l(n) = .

Therefore, the condition (1) of De�nition 6.4.4 holds for Ψ1�Ψ2, A1 ./ A2 and

C1 • C2.

98

Lemma 6.4.2 Assume the condition (2) of De�nition 6.4.4 holds for two RCSPs

Ψ1 = 〈P1,M1,M0,1,V1, C1〉 and Ψ2 = 〈P2,M2,M0,2,V2, C2〉 and for CASMs A1

and A2 and CCs C1 and C2. Then the condition (2) of De�nition 6.4.4 holds for

Ψ1 �Ψ2, A1 ./ A2 and C1 • C2.

Proof Consider the solutions 〈s1, sd1〉 � Ψ1 and 〈s2, sd2〉 � Ψ2 such that 〈s1, sd1〉
encodes q1

N1,g1−−−−→1p1 and l1 ∈ C1 and 〈s2, sd2〉 encodes q2
N2,g2−−−−→2p2 and l2 ∈ C2.

Then, 〈s, sd〉 � Ψ1 � Ψ2, where 〈s, sd〉 = 〈s1 ∪ s2, sd1 ∪ sd2〉. Here, we distinguish

between two cases:

� For all v ∈ dom(s1) ∩ dom(s2) and for all v̂ ∈ dom(sd1
) ∩ dom(sd2

), s1(v) =

s2(v) and sd1
(v̂) = sd2

(v̂).

� Otherwise.

The former case describes valid solutions. For two transitions q1
N1,g1−−−−→1p1 and

q2
N2,g2−−−−→2p2, we have 〈q1, q2〉

N1∪N2,g1∧g2−−−−−−−−−→ 〈p1, p2〉 i� N1 ∪N2 = N2 ∪N1.

For two colorings l1 and l2, the coloring l = l1 � l2 is valid i� either ec ∈ dom(l1)

and ek ∈ dom(l2) and ¬(l1(ec) = / ∧ l2(ek) = /) or ek ∈ dom(l1) and ec ∈ dom(l2),

¬(l1(ek) = / ∧ l2(ec) = /).

For all n ∈ N1 and n ∈ N2, s1(n) = >, s2(n) = >, n ∈ N1∩N2 and N1∩N2 = N2∩
N1 means that {n|ñ ∈ P1∧s1(ñ) = >∧ ñ ∈ P2} = {n|ñ ∈ P2∧s2(ñ) = >∧ ñ ∈ P1}.
So, {n|ñ ∈ P1 ∪ P2 ∧ s1(ñ) = >} = {n|ñ ∈ P1 ∩ P2 ∧ s2(ñ) = >}. This means that

for all ñ ∈ P1 ∩ P2, s1(ñ) = s2(ñ).

For all q1 ∈ Q1, m ∈ M(q1) i� s1(m) = > and q2 ∈ Q2, m ∈ M(q2) i� s2(m) = >.
Since M1 ∩M2 = ∅, M(〈q1, q2〉) = M(q1) ∪M(q2), m ∈ M(〈q1, q2〉) i� s1(m) =

> ∨ s2(m) = >.
If sd1

⇒ g1 and sd2
⇒ g2, then sd1

∪ sd2
⇒ g1 ∧ g2.

The latter gives invalid solutions, which are impossible. Therefore, the condition

(2) of De�nition 6.4.4 holds for Ψ1 �Ψ2, A1 ./ A2 and C1 • C2.

Theorem 6.4.2 (Compositionality) If Ψ1 encodes the automaton A1 and the

CC C1 and Ψ2 encodes the automaton A2 and the CC C2, then Ψ1 � Ψ2 encodes

the automaton A1 ./ A2 and the CC C1 • C2.

Proof It follows directly from Lemmas 6.4.1 and 6.4.2.

99

BA C D E F

H G

Figure 6.4.4: 7-Sequencer

6.4.1 Performance evaluation

In the remainder of this section, we perform an evaluation on the performance of

the presented constraint-based approach along with a brief comparison with the

existing approaches, namely, connector coloring and constraint automata.

The execution time of the algorithm depends on the number of states of the

given RLTS and the time required to solve the constraints encoding of the network.

Thus, to study the performance of our framework and to compare it with the existing

approaches in computing operational semantics of Reo networks, we choose the case

of N-Sequencer, which consists of N FIFO channels that are circularly connected.

In this example, adding each FIFO1 channel doubles the number of the states in

the corresponding semantics model and increases the complexity of the constraints

encoding the behavior of the network by adding new variables and new assertions

on them.

This makes the network a good choice for our benchmarking, where we would

like to compare the solutions on state explosion.

Since we are interested in comparing our approach with the existing tools, we

do not include priority in our case study. This is justi�ed by the fact that incor-

porating priority does not a�ect the number of states in the model and only will

in�uence the size of the constraint. In addition, adding more FIFO1 channels to

the network increases both the number of the states and the size of the constraint

capturing the semantics of the network. Since we are using optimized third-library

tools to solve the constraints, we do not distinguish between the various form of

constraints obtained from di�erent channels and instead we are just interested in

the approximate growth of the constraints.

Figure 6.4.4 shows a 7-sequencer. Though the size of the operational semantics

model of this network grows in a linear fashion in relation with N, the number of

intermediate states to compute the �nal results grows exponentially.

The benchmarks have been performed on Mac Book Pro OS X El Capitan with

100

2.8 GHz Intel Core i7 and 16 GB MHz DDR3 memory. The implementation of our

approach is in Java 8. We have used Reduce Algebra System[Ray87] to compute

the conjunctive normal form of the constraints and to solve them. We have also

experimented with an optimization on the number of the variables used in the

constraints by substituting equal variables with a single variable. The result of

the original and the optimized approaches are presented with red and blue square

markers, respectively.

Figure 6.4.5a presents the average time required for computing a single solution

of the RCSP of a N-Sequencer. Figure 6.4.5b demonstrates the relation between

N and the size of the RCSP's constraints of a N-Sequencer. This is an indication

of complexity of the constraint that needs to be solved. Note that the number of

solutions for RCSP of a N-Sequencer is 2N, which equals to the number of transitions

in the corresponding RLTS. Finally, Figure 6.4.5c illustrates the total time required

to compute all solutions of a RCSP's constraint of a N-Sequencer. Figure 6.4.5d

shows the time consumed to calculate the coloring semantics and the constraint

automata semantics of N-Sequencers using the ECT tool-set. For N = 16, the

computation of coloring semantics fails with the stack over�ow error. The same

happens while computing the constraint automata semantics for N = 21.

As the results show our approach can handle bigger models compared to the

existing ECT tools. It is interesting to observe that the di�erence between the

original and optimized approaches becomes more signi�cant for bigger values of N .

Another possible optimization point is the call to Reduce program that is currently

implemented by invoking the program externally. We expect a better performance

due to reduction of external invocation overhead by including the source code of

the Reduce Algebra System in our tool.

6.5 Conclusions

In this chapter, we have presented a constraint-based framework that encodes the

semantics of Reo networks as constraint satisfaction problems whose predicates

are either Boolean propositions or numerical constraints. We presented a hybrid

approach to �nd the solutions for these problems.

An advantage of our approach is that it treats data constraints symbolically to

mitigate the state explosion problem. From this solution, we construct the semantic

model corresponding to a Reo network in the form of constraint automata with state

memory.

Our framework supports product and hiding operations on constraint automata.

101

0 100 200 300
0

10

20

N

T
im

e
(S
ec
o
n
d
s)

Optimized approach
Original approach

(a) Time (s), single solution

0 100 200 300
0

50,000

100,000

N
C
o
n
st
ra
in
t
si
ze

(b
y
te
s) Optimized approach

Original approach

(b) Size of the RCSP

0 100 200 300
0

2,000

4,000

6,000

8,000

N

T
im

e
(S
ec
o
n
d
s)

Optimized approach
Original approach

(c) Time (s), calculating the RLTS

0 5 10 15 20
0

10

20

30

N

T
im

e
(S
ec
o
n
d
s)

CC (seconds)

CA (seconds)

(d) Time (s), building CA and connector
coloring table

Figure 6.4.5: Performance evaluation based on N-Sequencer network

102

We have implemented and integrated our approach as a tool in the ECT. In the

next section, we use this framework to encode priority. It makes our work the most

expressive framework that exists to analyze Reo networks.

103

104

7
Priority

7.1 Introduction

Priority is an important concept in modeling work�ows. For instance, modeling

compensation and error handling requires a mechanism to express priority of some

�ow alternatives over others. In the context of Reo, priority can be utilized as a

mechanism to impose preferences on the otherwise non-deterministic choices.

Arbab et al. in [ABS15] introduce a compositional approach to model priority

and a priority-aware formal semantics for Reo, named Constraint Automata with

Priority (CAP), which is an extension of constraint automata.

This approach, which distinguishes between where priority is originated from

and where it must be applied i.e. non-deterministic choices, consists of the following

elements:

� A primitive to impose priority that is prioritySync,

� A mechanism to propagate priority from the location it is imposed through

the network,

105

� A mechanism to block the propagation of priority in desired places using one

of the following primitives:

� BlockSourceSync, which stops propagation of priority coming from its

source end toward its sink;

� BlockSinkSync, which blocks propagation of priority from its sink end

toward its source;

� BlockSync that stops propagation of priority on both ends.

� Means to a�ect the otherwise non-deterministic choices by priority.

CAP is an expressive formalism for supporting priority in Reo. However, its

operations to manipulate CAPs are computationally expensive, if they are imple-

mented in a straight-forward fashion.

The practical needs for dealing with large models of realistic business processes

currently complicates direct use of automata-based semantic models. In this chap-

ter, we extend our constraint-based framework presented in Chapter 6 to support

priority in Reo. The rest of this chapter is organized as follows: In Section 7.2, we

introduce priority �ow in Reo along with a constraint-based semantics for it. In Sec-

tion 7.3, we extend our approach to support numeric priorities. In Section 7.4, we

show the application of our constraint-based approach. In Section 7.5, we overview

related work. Finally, in Section 7.6, we conclude the chapter and outline future

work.

7.2 Priority �ow

We distinguish between two types of priority on a node:

� when the node is imposing the priority to be propagated, which we call it

innate priority,

� when the node has obtained the priority through propagation, we refer to it

as acquired.

Both ends of prioritySync have innate priority. When an end with innate pri-

ority connects to another end that has no priority, the new end will obtain acquired

priority. When one end of a synchronous type channel (e.g., sync, syncDrain) has

acquired priority, the other end has innate priority.

106

However, in the case of non-synchronous channels (e.g., FIFO, asyncDrain) and

also the priority blocking channels, their ends can only have acquired priority. We

update the constraint-based framework for Reo presented in Chapter 6 to support

priority and the priority propagation mechanism, which we informally described

above. In the rest of this chapter, we omit data constraints when de�ning behavior of

Reo elements. Data constraints are irrelevant for priority �ow and were thoroughly

covered in Chapter 6.

Let N and M be global sets of ends and state memory variables, respectively.

A free variable v has one of the following forms, where n ∈ N and m ∈M:

� ñ ∈ {>,⊥} shows presence or absence of data-�ow on n;

� m̊, m̊′ ∈ {>,⊥} denotes whether or not the state memory variablem is de�ned

in the source and the target states of the transition, respectively;

� n. ∈ {>,⊥} indicates the reason for lack of data-�ow on n originating from

the primitive or the context (of this primitive), respectively;

� n!• , n!◦ ∈ {>,⊥} models priority �ow denoting whether n has acquired or

innate priority. An end n has priority i� n!• ∨ n!◦ = >.

A constraint Ψ, which encodes the behavior of a Reo network is de�ned as:

a ::= ñ | n!• | n!◦ | n. | m̊ | m̊′ (atoms),

ψ ::= > | a | ¬ψ | ψ ∧ ψ (formulae)

A solution to ψ is a map from the variable sets V to a value in {⊥,>}. The

satisfaction rules for a solution 〈δ〉 are satisfaction in propositional logic. We denote

the set of all solutions for Ψ as S(Ψ).

In Chapter 6 we have introduced RCSP. Here we extend the de�nition of RCSP

and its composition operator with the priority notion and some axioms, which assist

in incorporating priority in our constraint-based framework.

De�nition 7.2.1 (RCSP) A Reo Constraint Satisfaction Problem (RCSP) is a

tuple 〈N ,M,M0,V, C〉, where:

� N is a �nite set of ends. M is a �nite set of state memory variables.

� M0 ⊆M is a set of state memory variables that de�ne the initial con�guration

of a network.

� V is a set of variables v de�ned by the grammar

v ::= ñ | n. | m̊ | m̊′ | n!◦ | n!• for n ∈ N and m ∈M.

107

� C = {C1, C2, ..., Cm} is a �nite set of constraints, where each Ci is a

constraint given by the grammar Ψ involving a subset of variables Vi ⊆ V.

De�nition 7.2.2 (Composition �) The composition of two RCSPs ρ1 = 〈N1,

M1, M0,1, V1, C1〉 and ρ2 = 〈N2, M2, M0,2, V2, C2〉 is de�ned as follows:

ρ1 � ρ2 = 〈N1 ∪N2, M1 ∪M2, M0,1 ∪M0,2, V1 ∪ V2, C1 ∧ C2〉.

Axiom 7.2.1 (Join axiom) To propagate no-�ow reasons, when a source end c

and a sink end k from two networks, the following holds:

¬c̃⇔ ¬k̃ ⇔ (c. ∨ k.).

Axiom 7.2.2 (Priority join axiom) When a source end c and a sink end k from

two networks connect, this holds:

(c!
◦
∨ c!

•
⇔ k!◦ ∨ k!•) ∧ (c!

◦
∧ k!◦ ⇔ c!

•
∨ k!•).

Axiom 7.2.3 (Non-deterministic choice axiom) Let N be a set of ends from

which a Reo primitive chooses one for communication non-deterministically. The

following guarantees that a node y with no priority has �ow only if no prioritized

node, e.g., x, is ready to interact:

(¬x̃ ∧ (x!◦ ∨ x!•) ∧ ỹ ∧ ¬(y!◦ ∨ y!•))⇒ ¬x..

108

Table 7.2.1: Constraint encoding of Reo with priority

Channel Constraints

a b! ψPrioSync(a, b) : (ã⇔ b̃) ∧ ¬(a. ∧ b.) ∧a!• ∧ b!•

a b)
ψBlkSrcSync(a, b) : (ã⇔ b̃) ∧ ¬(a. ∧ b.) ∧¬b!•

a b(
ψBlkSnkSync(a, b) : (ã⇔ b̃) ∧ ¬(a. ∧ b.) ∧¬a!•

a b)(
ψBlkSync(a, b) : (ã⇔ b̃) ∧ ¬(a. ∧ b.) ∧¬a!• ∧ ¬b!•

a b ψSync(a, b) : (ã⇔ b̃)∧¬(a.∧ b.) ∧((¬a!• ∧¬a!◦ ∧¬b!• ∧¬b!◦)∨
(a!• ∧ ¬b!• ∧ b!◦) ∨ (¬a!• ∧ a!◦ ∧ b!•))

a b
ψLossySync(a, b) : b̃⇒ ã∧¬a.∧¬ã⇒ b.∧ ((¬a!• ∧¬a!◦ ∧¬b!• ∧
¬b!◦) ∨ (a!• ∧ ¬b!• ∧ b!◦) ∨ (¬a!• ∧ a!◦ ∧ b!•))

a b
ψSyncDrain(a1, a2) : ã⇔ b̃∧¬(a. ∧ b.)∧ ((¬a!• ∧¬a!◦ ∧¬b!• ∧
¬b!◦) ∨ (a!• ∧ ¬b!• ∧ b!◦) ∨ (¬a!• ∧ a!◦ ∧ b!•))

a b ψAsyncDrain(a1, a2) : ã⇒ (¬b̃∧b.)∧ b̃⇒ (¬ã∧a.)∧¬a!• ∧¬b!•

a b
ψFIFO1(a, b,m) : (ã⇒ ¬m̊∧m̊′)∧(b̃⇒ m̊∧¬m̊′)∧(¬ã∧¬b̃)⇒
(m̊⇔ m̊′) ∧ (¬m̊⇒ b.) ∧ (m̊⇒ a.) ∧ (¬a!• ∧ ¬b!•)

c
a

b

ψMerger(a, b, c) : (ã ∨ b̃) ⇒ c̃ ∧ ¬(ã ∧ b̃) ∧ ¬c̃ ⇒ ((¬c. ∧ a.) ∨
(c. ∧ ¬a. ∧ b.) ∨ (c. ∧ ¬b. ∧ a.)) ∧ b.)) ∧ (c!

◦ ∧ ¬c!• ⇒ (a!• ∧
b!
•
)) ∧ (¬a!• ∧ b!• ∧ (a!◦ ∨ b!◦)⇒ c!

•
)

a
b

c
ψReplicator(a, b, c) : ã ⇔ (b̃ ∧ c̃) ∧ ¬ã ⇒ ((¬a. ∧ b.) ∨ (¬b. ∧
c.) ∨ (¬c. ∧ b. ∧ a.)) ∧ c. ∧ a.)) ∧ (a!◦ ∧ ¬a!• ⇒ (b!

• ∧ c!•)) ∧
(¬b!• ∧ c!• ∧ (b!

◦ ∨ c!◦)⇒ a!•)

a
b

c

ψRouter(a, b, c) : ã⇔ (b̃∨ c̃)∧¬(b̃∧ c̃)∧ ã⇔ (¬a.∨¬(b.∨c.))∧
(a!◦ ∧ ¬a!• ⇒ (b!

• ∧ c!•)) ∧ (¬b!• ∧ c!• ∧ (b!
◦ ∨ c!◦)⇒ a!•)

109

In Chapter 6, we presented the constraints that a primitive imposes on a network

as a CSP. Here we extend these constraints with priority capturing variables.

If the variable p!• is true, the end p has innate priority. For example, in a

prioritySync channel, both ends have innate priority.

A primitive end can also obtain innate priority via propagation. For instance, if

one end of a sync channel has acquired priority, which means it is prioritized because

a primitive connected to it propagates priority, then the other end will have innate

priority. We denote acquired priority for a primitive end p as: p!◦ ∧ ¬p!• .

The priority capturing constraint for a sync channel with source end a and sink

end b can be speci�ed as follows:

¬(a!◦ ∨ a!• ∨ b!
◦
∨ b!

•
) ∨ (a!◦ ∧ ¬a!• ∧ b!

•
) ∨ (a!• ∧ b!

◦
∧ ¬b!

•
).

The assertion ¬p!• blocks the priority propagation on p. Though, p can still

have acquired priority through a potential connecting primitive when p!◦ = >.
Table 7.2.1 shows the constraint encoding of Reo channels and nodes in presence

of priority �ow. The solutions to the CSP expressing the behavior of a Reo network

encode possible data-�ow through its nodes.

Since a network may later connect to another network, the constraints should

account for priority imposed by potential future connections. This information can

be discarded when analyzing the behavior of a network in isolation. To exclude

such cases, we should restrict the possible values of boundary ends.

Axiom 7.2.4 (Grounding axiom) Let B ⊂ N be the set of boundary nodes in a

Reo network. We rule out the solutions that are only present for further expansion

of the network by:

∀b ∈ B : b!
◦
⇒ b!

•
.

De�nition 7.2.3 (RLTS) A Reo Labeled Transition System (RLTS) is a tuple

RLT S=(N , M, Q, →, q0), where:

� N is a set of ends,

� M is a set of state memory variables,

� Q is a (�nite) set of states of the form 〈M〉,

� M is the set of state memory variables that are valid in the given state, → ⊆
Q × 2N × 2N × 2N × Q is a transition relation, wherein N , R, and I in

(q, N, R, I, p) ∈→ represent the ends that have �ow, those without �ow

110

for which the reason for no �ow is the end not being ready for interaction,

and the ends with priority. Note that n 6∈ N does not always mean n ∈ R as

the reason for data �ow can be the network (then, n requires a reason for no

�ow).

� q0 ∈ Q is the initial state.

We write q
N, R, I−−−−−→ p instead of (q, N, R, I, p) ∈ →. For n ∈ I, n /∈ R⇔ n ∈

N .

De�nition 7.2.4 (Composition �) We de�ne the composition of L1 = (N1, M1,

Q1, →1, q01
) and L2 = (N2, M2, Q2, →2, q02

) as:

L1 � L2 = (N1 ∪N2, M1 ∪M2, →, q01
× q02

)

where → is de�ned as:

q1
N1,R1,I1−−−−−−→1t1 q2

N2,R2,I2−−−−−−→2t2N1 ∩N2 = N2 ∩N1R1 ∩N2 = R2 ∩N1I1 ∩N2 = I2 ∩N1

q1 × q2
N1∪N2,R1∪R2,I1∪I2−−−−−−−−−−−−−−→ t1 × t2

q1
N1,R1,I1−−−−−−→1t1q2

N2,R2,I2−−−−−−→2t2N1 ∩N2 = ∅

q1 × q2
N1,R1,I1−−−−−−→ t1 × t2

and its symmetric rule.

We de�ne few operations on a solution s for Ψ = 〈NΨ,MΨ, MΨ0, VΨ, CΨ〉:

- source(s)=〈{m|m◦∈MΨ : s(m◦) = >}〉,

- target(s)=〈{m|m′◦∈MΨ :s(m′◦)= >}〉,

- �ow(s)={n|n∈ NΨ: s(ñ) = >},

- reason-giving(s)={n|n∈NΨ :s(n.)= >},

- priority(s)={n|n ∈ NΨ : (s(n!◦) ∨ s(n!•)) = >}.

We say s v q
N,R,I−−−−→ p, where

- q = source(s),

- N = �ow(s),

111

- R=reason-giving(s),

- I = priority(s),

- p = target(s).

De�nition 7.2.5 (Visualization) The visualization function γ on Ψ = 〈 N , M,

M0, V, C〉 yields L=(N , M, Q, →, q0), where

� M = {m|s(m◦) = > ∨ s(m′◦) = >, s ∈ S(Ψ)},

� Q =
⋃

s∈S(Ψ){source(s), target(s)},

� →= {(source(s), f low(s), reason-giving(s), priority(s), target(s)) | s ∈ S(Ψ)},

� q0= source(s0).

Theorem 7.2.1 Let Ψ1 and Ψ2 be two RCSPs, we show that γ(Ψ1�Ψ2) = γ(Ψ1)�
γ(Ψ2).

Proof Let γ(Ψ1)=(N1,M1, Q1, →1, q01
), γ(Ψ2) = (N2, M2, Q2, →2, q02

), and

γ(Ψ1 � Ψ2) = (N, Q, →, q0).

It is trivial to see thatN = N1∪N2,M =M1∪M2, Q = Q1×Q2, q0 = q01×q02 .

Assume ∃s ∈ S(Ψ1�Ψ2), s1,∈ S1, s2 ∈ S2, t1 : q1
N1,R1,I1−−−−−−→1p1, t2 : q2

N2,R2,I2−−−−−−→2p2

s.t. s1 v t1 and s2 v t2, but @ t : q
N,R,I−−−−→ p ∈→ s.t. s v t.

Therefore, N1 ∩ N2 6= N2 ∩ N1 ∧ N1 ∩ N2 6= ∅ or (N1 ∪ N2) ∩ (R1 ∪ R2) 6= ∅.
The latter is impossible. For the former, either n ∈ N1, n /∈ N2 or n ∈ N2, n /∈ N1,

which is not possible as it means s(n) = >∧ s(n) = ⊥. Similarly, we can show it is

impossible to have a t in γ(Ψ1 �Ψ2), when there is no s ∈ S s.t. s v t.

RLTS is comparable with Reo automata [BCS12], a context-dependent formal

semantics of Reo. A transition in Reo automata is labeled with a guard, which is

a Boolean predicate in disjunctive normal form expressing positive and negative

information about presence or absence of I/O requests, and a �ring set that models

the occurring I/O operations in the transition. The second set in RLTS transitions

(the set of ends that provide reason for no �ow) correspond to the negated elements

of the guards in Reo automata, while the set of ends with �ow relates to both the

�ring set and the positive elements of the guards. Unlike Reo automata, RLTS

supports priority.

112

7.3 Numeric priority

Here, we extend our approach to support numeric priorities. This enables us to deal

with more than one level of priorities such as in a process where the normal �ow

may be interrupted by both exception and error.

In BPMN, an error event has the highest priority, and the exception has priority

over the normal �ow. In this extension, the range for priority variables of an end n,

n!◦ and n!• , is N (natural numbers) ∪ {0}, where 0 indicates no priority. The larger
number is the higher priority it represents. Each prioritySync channel comes with

a user de�ned priority value, which propagates through its ends. To propagation of

a higher priority over a lower priority or no priority, we constrain priority variables

to be greater than or equal to their initial values.

〈δ〉 � x ≥ P i� δ(x) ≥ P , 〈δ〉 � x > P i� δ(x) > P , 〈δ〉 � x = P i� δ(x) = P ,

where x ∈ {x!• , x!◦}, P ∈ N ∪ {0}.
The new constraint-based encodings of the replicator and router nodes in this

table are constructed in accordance with Axiom 7.2.3.

De�nition 7.3.1 (NPRLTS) A Numeric Priority Reo Labeled Transition System

is a tuple (N , M, Q, →, q0), where:

� N is a set of ends,

� M is a set of state memory variables, Q is a (�nite) set of states of the form

〈M〉, M is the set of state memory variables that are valid in the given state,

→ ⊆ Q× 2N × 2N ×N 7→ N×Q is a transition relation, wherein N , R, and

fI in (q, N, R, fI , p) ∈→ are the ends having �ow, those without �ow for

which the reason for no �ow is the end not being ready for interaction, and a

partial map of nodes with priority to their priority values, respectively.

� q0 ∈ Q is the initial state.

We write q
N,R,fI−−−−→ p instead of (q, N, R, fI , p) ∈ →. For all q

N,R,fI−−−−→ p:

f(n) > 0, n /∈ N ⇔ n ∈ R. We rede�ne priority(s) as {(n, p)|n ∈ NΨ : s(n!◦) =

p ∨ s(n!•) = p}.

De�nition 7.3.2 (Extended Visualization) The visualization function γ on Ψ =

〈NΨ, MΨ, MΨ0
, V, C〉 yields L = (NL, ML, Q, →, q0), where

� NL = {n|s(ñ) = >, s ∈ S(Ψ)},

� ML = {m|s(m◦) = > ∨ s(m′◦) = >, s ∈ S(Ψ)},

113

Figure 7.4.1: An example of a sales process modeled in BPMN

� Q =
⋃

s∈S(Ψ){source(s), target(s)},

� → = {(source(s), f low(s), reason-giving(s), priority(s), target(s)) | s ∈
S(Ψ)}, q0=source(s0).

7.4 Case study

In this section, we present the applications of our approach on a priority-aware

model. Figure 7.4.1 depicts a sales process, which starts by receiving an order from

a customer. It proceeds by reserving the ordered items for the customer. Then, the

customer's credit gets charged and the customer's account is updated, meanwhile if

the payment encounters a problem, a cancellation event is triggered, which causes

compensation for any of the performed actions. Finally, if no problem occurs, the

ordered items are shipped and the process ends.

Figure 7.4.2 shows a Reo network that simulates this process. Here, we use

alphabet characters to refer to nodes (e.g. B, C) and channels (e.g. BC, BD). To

address a node end or a channel end, we append a number to the name of an end,

unless it is the only end (e.g. it is a boundary end). For instance, the end BC2,

which is the source end of the channel BC connects to the end B2 on the node B. In

[CKA10], the authors de�ned a procedure to map BPMN models to Reo networks.

The process starts by reading a token from the writer W2, which resembles

114

W1

W2

R1

R2

R3

N

12

M

2 1

C

1 2

E

1 2
3

D

1 2

F

2

1 3

G

2

1
3

H

1 2

J1 2

3 4

I 21 K1 2

B
1

3

2

A

1 2
L

1
3

2

!

+

+

×

×

Figure 7.4.2: The process of a sample on-line shop modeled in Reo

receiving an order. Though a Reo network can be used for modeling in�nite data

�ow, in the BPMN standard, when a start event is triggered, a new instance of the

process is instantiated. Therefore, the Reo network is designed to handle only one

request. The end A1 reads a token from the writer W2 and duplicates it into the

BC and BD FIFO1 channels. The token continues to the CE FIFO1 channel. If

the payment succeeds, the token enters the EG FIFO1 channel waiting for a token

from the other input of the merge node G to enter the GH FIFO1 channel and

�nally to be consumed by the reader R3.

If the payment fails, performed actions need to be compensated. A token from

the writer W1 indicates a payment failure, so the process needs to be canceled. So,

the token leaving the CE FIFO1 channel goes through the EJ prioritySync channel.

The replicate node J duplicates the token to the JK FIFO1 and the JL lossySync

channel. The reader R2 consumes the token from the JK FIFO1 channel, while the

token from the JL lossySync channel moves forward to the MN FIFO1 channel.

The token from the BD FIFO1 channel goes through the DF FIFO1 channel for

a possible compensation. The token from the DF FIFO1 channel may either go to

the join node G to join the �ow of a successful payment, or to be consumed by the

LF syncDrain. In the latter case, it goes to the MN FIFO1 channel. Then, the

process ends by a read action of the reader R1.

We compute the behavior of the given Reo network using our constraint-based

framework. The steps for obtaining the RLTS are as follows: First, we form the

RCSP of the network by traversing through its primitives. Then, we solve the

obtained RCSP and extract transitions from obtained solutions.

To show how priority can a�ect the behavior of our example, we �rst investigate

115

the behavior of the network in absence of priority, wherein the normal �ow of the

process can continue even in case of a payment failure. This is because the router

nodes E chooses one of its outgoing �ows in a non-deterministic fashion.

We would like to check if for all transitions t, which belong to the RLTS of

the network, the following holds: {CE, DF} ⊆ source(t) ∧ E1 ∈ flow(t) ∧W1 /∈
reason− giving(t)⇒W1 ∈ target(t). To violate this property, it is enough to �nd

a transition from a state wherein both CE and DF FIFO1 channels are full, there

is �ow on end E1, W1 is ready to communicate, but W1 does not have �ow.

Abstraction: For checking this assertion, we abstract from the ends without �ow

on transitions with the same source (q), target (p), ends with �ow (N1), but di�erent

ends without �ow (N2) by replacing them with q
N1,N

′
2−−−−−→ p, where N ′2 = {W1} if

W1 ∈ N2, otherwise N
′
2 = {}. This abstraction reduces the number of transitions

in the RLTS without a�ecting the result of the veri�cation for the given assertion.

We can take this one step further and remove the information about ends without

�ow from all the states except the state wherein CE and DF FIFO1 channels are

full.

Figure 7.4.3 shows the abstract (with respect to the given assertion) RLTS of

the network of Figure 7.4.2 in absence of priority, where the transition t4 violates

the assertion. Here, we use short labels (e.g. t4) on transitions and states. The

original labels are represented in Table 7.4.1. In addition, the ends with a similar

name are grouped e.g. B1,2,3 (referring to ends B1, B2, and B3). This is only a

presentation modi�cation to save space. We show that the transition t4 can not

exist when the priority is considered in the model.

0 : C̊E ∧ D̊F ∧ Ẽ1 ∧ ¬W1
. ∧ ¬W̃1 (the assertion)

1 :
ΨPrioritySync(EJ2,4)

EF !•
2

2 :
1 &join of EJ2&E2

E!•
2

3 :
2; Ψrouter(E1,2,3)

Ẽ1 ∧ ¬Ẽ2 ⇒ E2
.

4 :
3 & coloring & join

E2
. ⇒W1

.

116

s1 s2 s3 s4 s6

s5

s7 s8

s9

s10
t1 t2

t3

t10

t5

t6

t7

t8 t9

t4
t11 t12

Figure 7.4.3: The RLTS corresponding to Reo network of Figure 7.4.2 with no priority chan-
nel

5 :
2 & 4 coloring & join

¬W̃1 ⇒W1
.

6 :
0&5

⊥

7.5 Related work

Several works, e.g., [FPHA02, BK92, Bau97] use priorities to model scheduling

policies. Many work�ow languages rely on Petri nets [vdAtH02, YSSW08]. Priority

�ow in Petri net-based process models is managed with the help of inhibitor arcs

and transition priorities [Pad15]. Inhibitor arcs allow a transition to �re only if the

adjacent place is empty. Prioritized Petri nets [Bal01] introduce a partial order on

transitions. Given a set of enabled transitions, the transitions with higher priority

�re before the transitions with lower priority. Others, e.g., [LP16, RMP+12] use

a partial order on transitions to model priority. Our earlier approach in modeling

priority using binary variables supports a limited form of priority compared to the

mentioned Petri nets approaches. However, the proposed extension bridges this gap

by de�ning priorities as non-zero natural numbers. An advantage of our model is its

compositionality. Compared to the aforementioned methods, Reo �ts in the realm

of component-based or service-oriented architecture in a compositional way. Reo is

an extensible language, where new behavioral aspects can be added. An e�ort to

express the behavior of Reo networks via constraints is reported in [CPLA10]. It

demonstrates the e�ciency of the constraint-based approach. It models synchro-

nization and data �ow constraints, but no priority �ow was considered. In [CKA12],

117

Table 7.4.1: The transition labels and prioritized ends (P) of the RLTS of Figure 7.4.3

s1 〈〉
s2 〈BC,BD〉
s3 〈CE,DF 〉
s4 〈EG,FG〉
s5 〈MN,JK〉
s6 〈GH〉
s7 〈JK〉
s8 〈MN〉
s9 〈〉
s10 〈〉
t1 N1 : {W2, A1,2, B1,2,3, AB1,2, BC2, BD3}, N2 : {}
t2 N1 : {BC1, BD1, C1,2, D1,2, CE2, DF2}, N2 : {}
t3 N1 : {W1, CE2, DF3, IJ2,3, I1,2, J1,2,3,4, JK2, JL1,3,

L1,2,3, LF2,3, LM1,2, F1,2,M1,2,MN2}, N2 : {}
t4 N1 : {EG3, FG3, E1,3, F1,3, CE1, DF1},

N2 : {W1}
t5 N1 : {R1, N1,2,MN1}, N2 : {}
t6 N1 : {R1,2, N1,2,MN1,K1,2, JK1}, N2 : {}
t7 N1 : {R2,K1,2, JK1}, N2 : {}
t8 N1 : {R2,K1,2, JK1}, N2 : {}
t9 N1 : {R1, N1,2,MN1}, N2 : {}
t10 N1 : {EG3, FG3, E1,3, F1,3, CE1, DF1},

N2 : {W1}
t11 N1 : {EG1, FG2, G1,2,3, GH3}, N2 : {}
t12 N1 : {R3, H1,2, GH1}, N2 : {}
P {W1, I1,2, J1,2,3,4, JK2, EJ2,4, E1,2, JL1,3, L1,2,3,

LF2,3, F2,3, LM1,2,M1,2,MN2}

a framework is presented to encode semantics of Reo networks as CSP with predi-

cates in the form of binary propositions and numerical constraints. An advantage

of this method is handling data constraints symbolically and, hence, mitigating the

state explosion problem of automata models. We extended this framework to han-

dle priority constraints, taking a step forward toward implementing a tool-set that

covers all behavioral aspects of Reo. Among the formal semantics of Reo, connector

coloring comes with a limited notion of priority based on the context information.

The context information a�ects otherwise non-deterministic data-�ow choices. In

[KAT16], an automata-based semantics is proposed, which associates a preference

for each transitions. A transition of lower preference is �red i� no more preferred

transition can occur.

118

7.6 Conclusions and future work

In this chapter, we addressed the problem of priority �ow modelling using the Reo

coordination language. We extended the uni�ed constraint-based semantics of Reo

with binary and numeric priority constraints. Furthermore, we showed correctness

of our approach for the binary case. We also illustrated the use of our framework

for modeling business processes with priority �ow.

As part of our ongoing work, we are using this framework to encode other aspects

of the semantics of Reo, speci�cally, timed behavior. A promising area for future

work is to use our framework for constraint-based model checking of Reo networks

with priority.

119

120

8
Conclusion

Despite long-term e�orts, analyzing business processes is still a challenge. Creat-
ing tools for analyzing business processes requires expressing the behavior of the
processes in an accurate way. Most of the business process management notations,
particularly Business Process Model and Notation (BPMN), are based on Petri nets.

While Petri nets can be used to automate process analysis, they are not com-
positional. This makes analyzing the behavior of large and complex models based
on Petri nets challenging.

The Reo coordination language is an alternative theory to Petri nets that has
been used to formalize semantics of BPMN. Reo has a compositional nature, which
enables adding semantic models for individual components to the semantic models
of existing processes.

In this dissertation, we used the Reo coordination language to capture the behav-
ior of BPMN processes. We presented an automated mapping of business process
models expressed in BPMN 2 to Reo networks in order to create the possibility of
using various types of analysis on business process models. Our mapping takes data
into account. Thus, it enables veri�cation of data �ow. We not only deal with basic
BPMN 2 constructs, but also with compound elements such as transactions and
exception handling. Formalizing the behavior of these elements requires modeling
priority.

Reo is an extensible language that comes with various formal semantic models.
This makes it possible to perform di�erent kinds of analysis by focusing on speci�c

121

behavioral aspects of a given network. However, there is a gap between the behavior
that each of the semantics can express. This can introduce incompatibilities among
these operational models. In addition, these formal semantics are computed using
their own specialized algorithms, which are directly implemented.

Such algorithms are computationally expensive. As a result, the Reo models
(and consequently business models) whose operational semantics can be e�ciently
calculated are limited to those of relatively small size.

Each of these formal semantics constrain the possible I/O operations through
the nodes to those allowed by the semantics. Therefore, we convert the problem of
�nding behaviors accepted by a given semantic model into a constraint satisfaction
problem for which many e�cient supporting tools exist.

We developed a uni�ed constraint-based framework to compute formal semantics
of a Reo network given the semantics of its parts in a compositional fashion. Since we
have included various existing formal semantics of Reo in our framework, behavior
speci�cations that are considered invalid according to any of these formal semantics
are ruled out. The tool we implemented to realize this framework relies on constraint
solvers. Therefore, it bene�ts from the advances in the �eld of constraint solving.

Within this framework, the behavior of a Reo construct speci�ed by a given se-
mantics model is expressed in terms of constraints. In order to obtain the semantics
of the whole Reo connector, the constraints of its constructs are concatenated. The
framework replaces data constraints with new binary predicates that represent the
logical value of the data constraint. The �nal constraint is then converted to the
acceptable format for an o�-the-shelf constraint solver.

After the constraint solver �nds the solutions, the solutions are mapped back to
the predicates. The data constraints and the value of their representative predicate
are sent to a numeric constraint solver that treats the data symbolically. This way
instead of obtaining distinct possible values for each variable denoting a data-item,
we have a range of values, which is a more compact representation. We compared
the performance of our approach to the existing ways of computing the formal
semantics of Reo.

We presented a constraint-based approach for calculating priority-aware se-
mantics of Reo models. This approach has been integrated into the mentioned
constraint-based framework as the �rst tool support for priority in Reo. Similarly,
this approach bene�ts from the shift of paradigm from custom direct implementa-
tion to using tools available in the well researched area of constraint solving. We
not only provide a way to model the binary notion of priority in Reo, but also we
deal with numeric priority. We demonstrated the application of our toolchain by
analyzing a BPMN process that could not be analyzed previously.

A limitation of our implemented toolchain is that it relies on the external BPMN
modeling tools to create the BPMN process to be analyzed. Since not all BPMN
tools support export the BPMN models in our expected format, the choice of BPMN
editor compatible with our tool set is limited.

As our future work, we plan to expand our constraint-based semantics frame-
work to include other formal semantics of Reo, for instance, those that incorporate
stochastic and quantitative aspects of the behavior of Reo circuits. In addition,
we plan to extend our constraint-based framework to generate data to be used for

122

simulation and testing purposes.

123

124

Bibliography

[AAA+09] Bernhard Aichernig, Farhad Arbab, Lacramioara Astefanoaei,
Frank S. de Boer, Sun Meng, and Jan J. M. M. Rutten. Fault-
based Test Case Generation for Component Connectors. In Theoret-
ical Aspects of Software Engineering, 2009. TASE 2009. Third IEEE
International Symposium on, pages 147�154. IEEE, july 2009.

[ABBR04] Farhad Arbab, Christel Baier, Frank De Boer, and Jan J. M. M. Rut-
ten. Models and Temporal Logics for Timed Component Connectors.
In 2nd International Conference on Software Engineering and Formal
Methods, pages 198�207. IEEE Computer Society, 2004.

[ABC+09] Farhad Arbab, Roberto Bruni, Dave Clarke, Ivan Lanese, and Ugo
Montanari. Tiles for Reo. In Recent Trends in Algebraic Development
Techniques, volume 5486 of Lecture Notes in Computer Science, chap-
ter 4, pages 37�55. Springer, 2009.

[Abd02] Abdelwaheb Ayari and David Basin. QUBOS: Deciding Quanti�ed
Boolean Logic using Propositional Satis�ability Solvers. In Formal
Methods in Computer-Aided Design, pages 187�201. Springer, 2002.

[ABS15] Farhad Arbab, Christel Baier, and Marjan Sirjani. Priority in Reo
and Constraint Automata. Technical report, Centrum voor Wiskunde
en Informatica, 2015. In preparation.

[ACMM07] Farhad Arbab, Tom Chothia, Sun Meng, and Young-Joo Moon. Com-
ponent Connectors with QoS Guarantees. In Coordination Models
and Languages, 9th International Conference, pages 286�304, 2007.

[act] Activiti. http://www.activiti.org. Accessed: 2019-09-30.

[ACvdM+09] Farhad Arbab, Tom Chothia, Rob van der Mei, Sun Meng, Youngjoo
Moon, and Chretien Verhoef. From coordination to stochastic mod-
els of QoS. In Coordination Models and Languages, pages 268�287.
Springer, 2009.

[AJ15] Farhad Arbab and Sung-Shik T. Q. Jongmans. Coordinating Mul-
ticore Computing. In Advanced Lectures of the 15th International
School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems: Formal Methods for Multicore Pro-
gramming, volume 9104 of Lecture Notes in Computer Science, pages
57�96. Springer International Publishing, 2015.

125

http://www.activiti.org

[AKM+08a] Farhad Arbab, Christian Koehler, Ziyan Maraikar, Young-Joo Moon,
and José Proença. Modeling, Testing and Executing Reo Connectors
with the Eclipse Coordination Tools. In 5th International Workshop
on Formal Aspects of Component Software, volume 8. ENTCS, 2008.

[AKM08b] Farhad Arbab, Natallia Kokash, and Sun Meng. Towards Using Reo
for Compliance-Aware Business Process Modeling. In ISoLA, pages
108�123, 2008.

[AM08] Farhad Arbab and Sun Meng. Synthesis of Connectors from Scenario-
based Interaction Speci�cations. In Proceedings of the International
Symposium on Component Based Software Engineering, volume 5282
of Lecture Notes in Computer Science, pages 114�129. Springer, 2008.

[AP08] Ahmed Awad and Frank Puhlmann. Structural detection of deadlocks
in business process models. In Business Information Systems, 11th
International Conference, pages 239�250, 2008.

[AR02] Farhad Arbab and Jan J. M. M. Rutten. A coinductive calculus of
component connectors. In Recent Trends in Algebraic Development
Techniques, volume 2755 of Lecture Notes in Computer Science, pages
35�56. Springer-Verlag, 2002.

[Arb02] Farhad Arbab. Abstract Behavior Types: A Foundation Model for
Components and Their Composition. In Formal Methods for Com-
ponents and Objects, pages 33�70, 2002.

[Arb04] Farhad Arbab. Reo: a Channel-Based Coordination Model for Com-
ponent Composition. Mathematical Structures in Computer Science,
14:329�366, 2004.

[Arb06] Farhad Arbab. Computing and interaction. In D. Goldin, S. Smolka,
and P. Wegner, editors, Composition of Interacting Computations,
pages 277�321. Springer-Verlag, 2006.

[ari] ARIS Express. http://www.ariscommunity.com/aris-express.
Accessed: 2019-09-30.

[Bai05] Christel Baier. Probabilistic Models for Reo Connector Circuits.
Journal of Universal Computer Science, 11(10):1718�1748, 2005.

[Bal01] Gianfranco Balbo. Introduction to Stochastic Petri Nets, pages 84�
155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[Bau97] Falko Bause. Analysis of Petri nets with a dynamic priority method,
pages 215�234. Springer, 1997.

[BBK+10] Christel Baier, Tobias Blechmann, Joachim Klein, Sascha Klüppel-
holz, and Wolfgang Leister. Design and veri�cation of systems with
exogenous coordination using vereofy. In ISoLA (2), volume 6416 of
Lecture Notes in Computer Science, pages 97�111. Springer, 2010.

126

http://www.ariscommunity.com/aris-express

[BCS12] Marcello Bonsangue, Dave Clarke, and Alexandra Silva. A Model
of Context-dependent Component Connectors. Science of Computer
Programming, 77(6):685 � 706, 2012.

[BFV11] Kelly Rosa Braghetto, Joao Eduardo Ferreira, and Jean-Marc Vin-
cent. From Business Process Model and Notation to Stochastic Au-
tomata Network. Research report, Universidade Sao Paulo, 2011.

[BHF05] Michael Butler, Tony Hoare, and Carla Ferreira. A Trace Semantics
for Long-running Transactions. In Proceedings of the International
Conference on Communicating Sequential Processes: The First 25
Years, CSP'04, 2005.

[BJT05] Jean Bézivin, Frédéric Jouault, and David Touzet. An introduction
to the atlas model management architecture. Technical Report 05-01,
LINA, 2005.

[BK92] Eike Best and Maciej Koutny. Petri net Semantics of Priority Sys-
tems. Theoretical Computer Science, 96(1):175 � 215, 1992.

[BPM] BPMN 2.0 Modeler. https://www.eclipse.org/proposals/soa.

bpmn2-modeler/. Accessed: 2019-09-30.

[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M.
Rutten. Modeling Component Connectors in Reo by Constraint Au-
tomata. Science of Computer Programming, 61(2):75�113, 2006.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. Satis�ability Modulo Theories. Handbook of Satis�ability, 4,
2009.

[BW06] Christel Baier and VerenaWolf. Stochastic Reasoning about Channel-
based Component Connectors. In Coordination Models and Lan-
guages, volume 4038 of Lecture Notes in Computer Science, pages
1�15. Springer-Verlag, 2006.

[BZ07] Lucas Bordeaux and Lintao Zhang. A Solver for Quanti�ed Boolean
and Linear Constraints. In Proceedings of the 2007 ACM symposium
on Applied computing, SAC '07, pages 321�325. ACM, 2007.

[CCA07] Dave Clarke, David Costa, and Farhad Arbab. Connector Colouring
I: Synchronisation and Context Dependency. Science of Computer
Programming, 66(3):205�225, 2007.

[CCH11] David Raymond Christiansen, Marco Carbone, and Thomas Hilde-
brandt. Formal Semantics and Implementation of BPMN 2.0 Inclu-
sive Gateways. In Web Services and Formal Methods, page 146�160.
Springer, 2011.

127

https://www.eclipse.org/proposals/soa.bpmn2-modeler/
https://www.eclipse.org/proposals/soa.bpmn2-modeler/

[CKA10] Behnaz Changizi, Natallia Kokash, and Farhad Arbab. A Uni�ed
Toolset for Business Process Model Formalization. In 7th Interna-
tional Workshop on Formal Engineering approaches to Software Com-
ponents and Architectures, pages 147�156. ENTCS, 2010.

[CKA12] Behnaz Changizi, Natallia Kokash, and Farhad Arbab. A Constraint-
based Method to Compute Semantics of Channel-based Coordination
Models. In International Conference on Software Engineering Ad-
vances. IARA, 2012.

[CKA19] Behnaz Changizi, Natallia Kokash, and Farhad Arbab. Service Or-
chestration with Priority Constraints. In International Conference on
Software Engineering Advances, Lecture Notes in Computer Science.
Springer-Verlag, 2019.

[CM02] Manuel Clavel and José Meseguer. Re�ection in Conditional Rewrit-
ing Logic. Theoretical Computer Science, 285(2):245�288, 2002.

[Cos10] David Costa. Formal Models for Context Dependent Connectors for
Distributed Software Components and Services. PhD thesis, Vrij Uni-
versiteit Amsterdam, 2010.

[CPLA10] Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab.
Channel-based coordination via constraint satisfaction. Science of
Computer Programming, In Press, Accepted Manuscript, 2010.

[Dav88] James H. Davenport. Computer Algebra Applied to Itself. Journal
of Symbolic Computation, 6:127�132, 1988.

[DDO08] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics
and Analysis of Business Process Models in BPMN. Information &
Software Technology, 50(12):1281�1294, 2008.

[DM03] Thomas Dufresne and James Marti. Process Modeling for E-Business.
INFS 770 Methods for Information Systems Engineering: Knowledge
Management and E-Business., 2 edition, 2003.

[DRMR13] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Rei-
jers. Fundamentals of Business Process Management. Springer, 2013.

[DW11] Gero Decker and Mathias Weske. Interaction-centric Modeling of
Process Choreographies. Information Systems, 36(2):292�312, 2011.

[ESB14] Nissreen El-Saber and Artur Boronat. BPMN Formalization and Ver-
i�cation Using Maude. In Proceedings of the 2014 Workshop on Be-
haviour Modelling-Foundations and Applications, BM-FA '14, pages
1:1�1:12. ACM, 2014.

[�a] Adobe Flash. https://get.adobe.com/flashplayer/. Accessed:
2019-09-30.

128

https://get.adobe.com/flashplayer/

[FPHA02] Reinhard Füricht, Herbert Prähofer, Thomas Ho�nger, and Josef Alt-
mann. A Component-based Application Framework for Manufactur-
ing Execution Systems in C# and .NET. pages 169�178, 2002.

[GLS17] Hubert Garavel, Frédéric Lang, and Wendelin Serwe. From LO-
TOS to LNT. ModelEd, TestEd, TrustEd: Essays Dedicated to Ed
Brinksma on the Occasion of His 60th Birthday, page 3�26, 2017.

[GMR+06] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko,
and Muck Van Weerdenburg. The Formal Speci�cation Language
mCRL2. In Methods for Modelling Software Systems, volume 06351
of Dagstuhl Seminar Proceedings. IBFI, 2006.

[GPR+07] Jan F. Groote, Marija Petkovic, Ivo Raedts, Yaroslav S. Usenko,
Lou J. Somers, and Jan Martijn E.M. van der Werf. Transforma-
tion of BPMN Models for Behaviour Analysis. In Proceedings of the
5th International Workshop on Modelling, Simulation, Veri�cation
and Validation of Enterprise Information Systems, pages 126�137.
INSTICC Press, 2007.

[Gro11] Object Management Group. Business Process Model and Notation
(BPMN) Version 2.0. Technical report, Object Management Group,
2011.

[HHL+12] Monika Heiner, Mostafa Herajy, Fei Liu, Christian Rohr, and Martin
Schwarick. Snoopy � A Unifying Petri Net Tool. In Application and
Theory of Petri Nets, page 398�407. Springer, 2012.

[Hoa85] Charles A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, Inc., 1985.

[Hoa13] Tony Hoare. Unifying Semantics for Concurrent Programming. In
Computation, Logic, Games, and Quantum Foundations. The Many
Facets of Samson Abramsky - Essays Dedicated to Samson Abramsky
on the Occasion of His 60th Birthday, volume 7860 of Lecture Notes
in Computer Science, pages 139�149. Springer, 2013.

[Hoo11] Geo�rey Hook. Business process modeling and simulation. In Winter
Simulation Conference, pages 773�778, 2011.

[IB08] Mohammad Izadi and Marcello M. Bonsangue. Recasting Constraint
Automata into Büchi Automata. In International Colloquium on The-
oretical Aspects of Computing, pages 156�170, 2008.

[IBC08] Mohammad Izadi, Marcello Bonsangue, and Dave Clarke. Modeling
Component Connectors: Synchronisation and Context-dependency.
In Software Engineering and Formal Methods, pages 303�312. IEEE
Press, 2008.

129

[IBC11] Mohammad Izadi, Marcello Bonsangue, and Dave Clarke. Büchi Au-
tomata for Modeling Component Connectors. Software and System
Modeling, 10(2):183�200, 2011.

[JA12] Sung-Shik T.Q. Jongmans and Farhad Arbab. Overview of Thirty
Semantic Formalisms for Reo. Scienti�c Annals of Computer Science,
22:201�251, 2012.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL.
In MoDELS Satellite Events, pages 128�138, 2005.

[JKW07] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured
Petri Nets and CPN Tools for modelling and validation of concur-
rent systems. International Journal on Software Tools for Technology
Transfer, 9(3-4):213�254, 2007.

[JSS+12] Sung-Shik T. Q. Jongmans, Francesco Santini, Mahdi Sargolzaei,
Farhad Arbab, and Hamideh Afsarmanesh. Proceedings of the In-
ternational Conference on Service-Oriented and Cloud Computing,
pages 1�16. Springer, 2012.

[KA13] Natallia Kokash and Farhad Arbab. Formal Design and Veri�cation
of Long-Running Transactions with Extensible Coordination Tools.
IEEE Trans. Serv. Comput., 6(2):186�200, 2013.

[Kan10] Oscar Kanters. QoS Analysis by Simulation in Reo. diploma thesis,
CWI Amsterdam and Vrije Universiteit Amsterdam, 2010, 2010.

[KAT16] Tobias Kappé, Farhad Arbab, and Carolyn L. Talcott. A Compo-
sitional Framework for Preference-Aware Agents. In Proceedings of
The First Workshop on Veri�cation and Validation of Cyber-Physical
Systems, pages 21�35, 2016.

[KB09] Sascha Klüppelholz and Christel Baier. Symbolic Model Checking for
Channel-based Component Connectors. Science of Computer Pro-
gramming, 74(9):688 � 701, 2009.

[KC09] Christian Koehler and Dave Clarke. Decomposing Port Automata .
In SAC'09: Proceedings of 2009 ACM Symposium on Applied Com-
puting, pages 1369�1373. ACM, 0 2009.

[KCA10] Natallia Kokash, Behnaz Changizi, and Farhad Arbab. A Semantic
Model for Service Composition with Coordination Time Delays. In
ICFEM, pages 106�121, 2010.

[KKdV10] Natallia Kokash, Christian Krause, and Erik de Vink. Data-aware De-
sign and Veri�cation of Service Compositions with Reo and mCRL2.
In SAC'10: Proceedings of the 2010 ACM Symposium on Applied
Computing, pages 2406�2413. ACM, 0 2010.

130

[KMLA11] Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad
Arbab. Modeling Dynamic Recon�gurations in Reo Using High-level
Replacement Systems. Science of Computer Programming, 76(1):23
� 36, 2011.

[KNP02] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM:
Probabilistic Symbolic Model Checker. In Computer Performance
Evaluation, Modelling Techniques and Tools 12th International Con-
ference, pages 200�204, 2002.

[Kra11] Christian Krause. Recon�gurable Component Connectors. PhD thesis,
Leiden University, The Netherlands, 0 2011.

[LP16] Irina. A. Lomazova and Louchka Popova-Zeugmann. Controlling
Petri Net Behavior using Priorities for Transitions. Fundamenta In-
formaticae, 143(1-2):101�112, 2016.

[LPT07] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A Cal-
culus for Orchestration of Web Services. In Programming Languages
and Systems, page 33�47. Springer Berlin Heidelberg, 2007.

[MA07a] Sun Meng and Farhad Arbab. On Resource-Sensitive Timed Compo-
nent Connectors. In Proceedings of the International Conference on
Formal Methods for Open Object-Based Distributed Systems, volume
4468 of LNCS, pages 301�316. Springer, 2007.

[MA07b] Sun Meng and Farhad Arbab. Web Services Choreography and Or-
chestration in Reo and Constraint Automata. In Proceedings of the
ACM Symposium on Applied Computing, pages 346�353. ACM Press,
2007.

[MA09] Sun Meng and Farhad Arbab. QoS-Driven Service Selection and
Composition Using Quantitative Constraint Automata. Fundamenta
Informaticae, 95(1):103�128, 2009.

[MA10] Sun Meng and Farhad Arbab. A Model for Web Service Coordina-
tion in Long-Running Transactions. In The Fifth IEEE International
Symposium on Service-Oriented System Engineering, pages 121�128,
2010.

[MAA+12] Sun Meng, Farhad Arbab, Bernhard K. Aichernig, Lacramioara Aste-
fanoaei, Frank S. de Boer, and Jan J. M. M. Rutten. Connectors as
Designs: Modeling, Re�nement and Test Case Generation. Science
of Computer Programming, 77(7-8):799�822, 2012.

[Mar09] Marcello M. Bonsangue and Dave Clarke and Alexandra Silva. Au-
tomata for Context-Dependent Connectors. In COORDINATION,
pages 184�203, 2009.

131

[MBL+18] Umair Mutarraf, Kamel Barkaoui, Zhiwu Li, Naiqi Wu, and Ting Qu.
Transformation of Business Process Model and Notation Models onto
Petri nets and Their Analysis. Advances in Mechanical Engineering,
10(12):1687814018808170, 2018.

[MSA04] Mohammad Reza Mousavi, Marjan Sirjani, and Farhad Arbab. Speci-
�cation and Veri�cation of Component Connectors. Technical Report
CSR-04-15, Department of Computer Science, Eindhoven University
of Technology, 2004.

[MSA06] Mohammad Reza Mousavi, Marjan Sirjani, and Farhad Arbab. For-
mal Semantics and Analysis of Component Connectors in Reo. Elec-
tronic Notes in Theoretical Computer Science, 154(1):83 � 99, 2006.

[MSKA10] Young-Joo Moon, Alexandra Silva, Christian Krause, and Farhad
Arbab. A Compositional Semantics for Stochastic Reo Connectors.
In Proceedings Ninth International Workshop on the Foundations of
Coordination Languages and Software Architectures, pages 93�107,
2010.

[MSKA14] Young-Joo Moon, Alexandra Silva, Christian Krause, and Farhad
Arbab. A compositional model to reason about end-to-end QoS in
Stochastic Reo connectors. Science of Computer Programming, 80:3�
24, 2014.

[MSTV07] Roshanak Zilouchian Moghaddam, Marjan Sirjani, Samira Tasharo�,
and Mohsen Vakilian. Modeling Web Service Interactions using the
Coordination Language Reo. In Proceedings of the 4th International
Workshop on Web Services and Formal Methods, volume 4937 of Lec-
ture Notes in Computer Science, pages 108�123. Springer, 2007.

[MSY14] Radu Mateescu, Gwen Salaün, and Lina Ye. Quantifying the par-
allelism in bpmn processes using model checking. In Proceedings of
the 17th International ACM Sigsoft Symposium on Component-based
Software Engineering, CBSE '14, pages 159�168. ACM, 2014.

[PA91] Brigitte Plateau and Karim Atif. Stochastic Automata Network For
Modeling Parallel Systems. IEEE Transactions on Software Engi-
neering, 17(10):1093�1108, 1991.

[Pad15] Julia Padberg. Recon�gurable Petri Nets with Transition Priorities
and Inhibitor Arcs. The Proceedings of the 8th International Confer-
ence on Graph Transformation, pages 104�120, 2015.

[Plo04] Gordon Plotkin. A Structural Approach to Operational Semantics.
The Journal of Logic and Algebraic Programming, 60�61(0):17 � 139,
2004.

[PQZ08] Davide Prandi, Paola Quaglia, and Nicola Zannone. Formal Analysis
of BPMN Via a Translation into COWS. In Coordination Models and

132

Languages, 10th International Conference, COORDINATION, pages
249�263, 2008.

[Pro11] José Proença. Synchronous Coordination of Distributed Components.
PhD thesis, Institue for Prgramming research and Algorithms, 2011.

[PS12] Pascal Poizat and Gwen Salaün. Checking the Realizability of BPMN
2.0 Choreographies. In Proceedings of the 27th Annual ACM Sympo-
sium on Applied Computing, SAC '12, pages 1927�1934. ACM, 2012.

[PSHA12] Bahman Pourvatan, Marjan Sirjani, Hossein Hojjat, and Farhad
Arbab. Symbolic Execution of Reo Circuits using Constraint Au-
tomata. Science of Computer Programming, 77(7-8):848�869, 2012.

[Ray87] Gerhard Rayna. REDUCE: Software for Algebraic Computation.
Springer-Verlag New York, Inc., 1987.

[RBM05] Ugo Roberto Bruni, Hernán C. Melgratti and Montanari. Theoretical
Foundations for Compensations in Flow Composition Languages. In
Proc. of the 32nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. ACM, 2005.

[RKNP04] Jan J. M. M. Rutten, Marta Kwiatkowska, Gethin Norman, and
David Parker. Component Connectors, volume 23 of CRM Mono-
graph Series. American Mathematical Society, 2004.

[RMP+12] Valentín Valero Ruiz, Hermenegilda Macià, Juan José Pardo, María-
Emilia Cambronero, and Gregorio Díaz. Transforming Web Services
Choreographies with priorities and time constraints into prioritized-
time colored Petri nets. Science of Computer Programming, 77(3):290
� 313, 2012.

[Rol95] Asbjorn Rolstadas. Business Process Modeling and Reengineering. In
Performance Management: A Business Process Benchmarking Ap-
proach, pages 148�150, 1995.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF: Eclipse Modeling Framework 2.0. Addison-Wesley
Professional, 2nd edition, 2009.

[SOP+06] Lou J. Somers, Olivia Oanea, Reinier Post, Kees M. van Hee, and Jan
Martijn E. M. van der Werf. Yasper: A Tool for Work�ow Modeling
and Analysis. In Sixth International Conference on Application of
Concurrency to System Design, volume 00, pages 279�282, 2006.

[STK+10] David Schumm, Oktay Turetken, Natallia Kokash, Amal Elgammal,
Frank Leymann, and Willem-Jan van den Heuvel. Business Process
Compliance through Reusable Units of Compliant Processes. In Cur-
rent Trends in Web Engineering: 10th Int. Conf. on Web Engineering,
pages 325�337. Springer, 2010.

133

[TJ10] Nasi Tantitharanukul and Watcharee Jumpamule. Detection of Live-
Lock in BPMN Using Process Expression. volume 114 of Communica-
tions in Computer and Information Science, pages 164�174. Springer,
2010.

[TSJ10] Nasi Tantitharanukul, Prompong Sugunnasil, and Watcharee Jumpa-
mule. Detecting Deadlock and Multiple Termination in BPMNModel
using Process Automata. ECTI-CON2010: The 2010 ECTI In-
ternational Confernce on Electrical Engineering/Electronics, Com-
puter, Telecommunications and Information Technology, pages 478�
482, 2010.

[vdA98] Wil M. P. van der Aalst. The Application of Petri Nets to Work�ow
Management. Journal of Circuits, Systems, and Computers, 8(1):21�
66, 1998.

[vdA04] Wil M. P. van der Aalst. Business Process Management Demysti�ed:
A Tutorial on Models, Systems and Standards for Work�ow Man-
agement, pages 1�65. Lecture Notes in Computer Science. Springer,
2004.

[vdADK02] Wil M. P. van der Aalst, Jörg Desel, and Ekkart Kindler. On the Se-
mantics of EPCs: A Vicious Circle. In EPK 2002 - Geschäftsprozess-
management mit Ereignisgesteuerten Prozessketten, Proceedings des
GI-Workshops und Arbeitskreistre�ens, pages 71�79, 2002.

[vdAtH02] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. Work�ow
Patterns: On the Expressive Power of (Petri-net-based) Work�ow
Languages. Technical Report DAIMI PB-560, 2002.

[vDdMV+05] Boudewijn F. van Dongen, Ana Karla A. de Medeiros, Henricus
M. W. Verbeek, Ajmm Ton Weijters, and Wil M. P. van der Aalst.
The ProM Framework: A New Era in Process Mining Tool Support.
In Applications and Theory of Petri Nets, page 444�454. Springer,
2005.

[VvdAK04] Henricus M. W. Verbeek, Wil M. P. van der Aalst, and Akhil Ku-
mar. XRL/Wo�an: Veri�cation and Extensibility of an XML/Petri-
Net-Based Language for Inter-Organizational Work�ows. Informa-
tion Technology and Management, 5(1-2):65�110, 2004.

[WG08] Peter Y.H. Wong and Jeremy Gibbons. A Process Semantics for
BPMN. In Proceedings of 10th International Conference on Formal
Engineering Methods., volume 5256 of Lecture Notes in Computer
Science, page 355�374, 2008.

[Wil67] Stanley Williams. Business Process Modeling Improves Administra-
tive Control. Automation, pages 44�50, 1967.

134

[Yao] Yaoqiang BPMN Editor. http://sourceforge.net/projects/

bpmn/.

[YSSW08] JianHong Ye, ShiXin Sun, Wen Song, and LiJie Wen. Formal Seman-
tics of BPMN Process Models Using YAWL. Intelligent Information
Technology Applications, 2:70�74, 2008.

135

http://sourceforge.net/projects/bpmn/
http://sourceforge.net/projects/bpmn/

Summary

Business process management is an operational management approach that fo-
cuses on improving business processes. Business processes, i.e., collections of im-
portant activities in an organization, are represented in the form of a work�ow, an
orchestrated and repeatable pattern of activities amenable to automated analysis
and control.

Business Process Model and Notation (BPMN) has become the de-facto stan-
dard for business processes diagrams. In order to provide tools support to analyze
the behavior of a BPMN model, in this dissertation, we present a mapping of BPMN
models to Reo networks. The Reo coordination language is an exogenous coordi-
nation language that realizes the coordination patterns in terms of its complex
networks, that are built out of simple primitives called channels. The mapping of
BPMN to Reo is implemented as a plugin in the Reo analysis tool-set in a model-
driven paradigm. Our mapping covers not only basic BPMN constructs but also
advanced structures such as BPMN transactions.

Reo is easily extensible to support more advanced process models by de�ning
new channels. However, the open-ended nature of Reo channels makes it necessary
to extend the formal semantics of Reo in order to include some new concepts.

Several dozen variations of semantic models for Reo have been proposed that
vary from rather simple that cover basic Reo behavior to more complex models
that capture speci�c behavioral aspects, e.g., context-sensitivity. In some of these
semantic models, computing the overall semantics of a system given semantics for its
parts is computationally expensive. This hampers using the language for analyzing
large real-world business processes.

In this dissertation, we present a constraint-based framework, which uni�es var-
ious formal semantics of Reo. In this framework, the behavior of a Reo network
is described using constraints. The constraint-based nature of our approach allows
the simultaneous coexistence of several semantics in a simple fashion. The behavior
of a Reo network is determined by the solutions to these constraints. Since any
solution should satisfy all the encoded formal semantics, the framework eliminated
any inconsistent behavior between the Reo formal semantics.

Another advantage of our proposed constraint-based approach compared to the
existing approaches of calculating formal semantics of Reo is its e�ciency due to
e�cient constraint solving methods and optimization techniques that are used in
the o�-the-shelf constraint solvers. We support this claim with a case study.

Among the behavioral aspects required to model a business process is priority.
The notion of priority is necessary for modeling behaviors such as transaction and
exception handling, where the data �ow representing the error or exception should
interrupt the normal �ow.

In this dissertation, we present an alternative approach to model priority in Reo
by extending our constraint-based framework with priority-aware premises. Further,
we extend our priority-aware formal model to support not only a binary notion of
priority, but also numeric priorities.

136

Samenvatting (Dutch Summary)

Bedrijfsprocesbeheer is een operationele managementaanpak die zich richt op
het verbeteren van bedrijfsprocessen. Bedrijfsprocessen, d.w.z. verzamelingen van
belangrijke activiteiten in een organisatie, worden weergegeven in de vorm van een
work�ow, een georkestreerd en herhalend patroon van activiteiten die geschikt zijn
voor geautomatiseerde analyse en controle.

Business Process Model and Notation (BPMN) is de algemene standaard gewor-
den voor bedrijfsprocesdiagrammen. Om ondersteunening in het analyseren van
het gedrag van een BPMN-model, presenteren we in dit proefschrift een vertaling
van BPMN-modellen naar Reo-netwerken. De Reo-coördinatietaal is een exogene
coördinatietaal die de coördinatiepatronen opnieuw benoemt in termen van com-
plexe netwerken, die zijn opgebouwd uit simpele primitieven genaamd channels.
De vertaling van BPMN naar Reo is geïmplementeerd als een Reo-analysetool in
een modelgedreven paradigma. Onze vertaling omvat niet alleen standaard BPMN-
constructies, maar ook geavanceerde structuren zoals BPMN-transacties.

Reo is eenvoudig uitbreidbaar om meer geavanceerde procesmodellen te onder-
steunen door het de�niëren van nieuwe channels. Het �exibele karakter van Reo-
kanalen maakt het echter noodzakelijk om de formele semantiek van Reo uit te
breiden met een aantal nieuwe concepten. Verschillende variaties van semantis-
che modellen voor Reo voorgesteld, varierend van vrij eenvoudig en die betrekking
hebben op het basisgedrag van Reo, tot meer complexe modellen die speci�eke
gedragsaspecten vast leggen, bijvoorbeeld contextgevoeligheid.

In vele van deze semantische modellen is de berekening van de algehele semantiek
van het systeem gegeven de semantiek van zijn onderdelen is rekenkundig duur. Dit
bemoeilijkt het gebruik van de taal voor het analyseren van grote bedrijfsprocessen.
In dit proefschrift presenteren we een op constraint-based framework dat verschil-
lende formele semantiek van Reo.

In dit framework wordt het gedrag van een Reonetwork beschreven met het be-
hulp van constraints. Onze constraint-based framework aanpak maakt gelijktijdige
bestaan van verschillende semantiek op een eenvoudige manier mogelijk. Het gedrag
van een Reo-netwerk wordt bepaald door de oplossingen voor deze constraints.
Aangezien elke oplossing zou moeten voldoen aan alle gecodeerde formele semantiek,
elimineerde het elk inconsistent gedrag tussen de Reo-formele semantieken.

Een ander voordeel van onze voorgestelde constraint-based benadering vergeleken
met de bestaande benaderingen van het berekenen van de formele semantiek van
Reo is de e�ciëntie door e�ciënte constraint-solving methoden en optimalisatietech-
nieken die worden gebruikt in de o�-the-shelf constraint-solvers. We ondersteunen
deze bewering met een casestudy.

Onder de gedragsaspecten die vereist zijn om een bedrijfsproces te modelleren,
is prioriteit. Prioriteit is nodig voor het modelleren van gedrag zoals transactions
en exception handling, waarbij de data�ow die de error of exception representeert
de normale �ow moet onderbreken.

In dit proefschrift presenteren we een alternatieve benadering om prioriteit te

137

modelen in Reo door onze framework uit te breiden met prioriteit. Bovendien
breiden we ons prioriteitsbewust formele model uit om niet alleen binaire prioriteit,
maar ook numerieke prioriteiten te ondersteunen.

138

About the author

Beehnaz Changizi was born on March 21st, 1979 in Hamedan, Iran. She com-
pleted her bachelor studies in Computer Engineering at the Faculty of Computer
Engineering Amirkabir University of Technology - Tehran Polytechnic Tehran, Iran,
in 2003. She has worked for several years as a software developer before starting a
master's degree. She obtained her master of science in Software Engineering from
Sharif University of Technology in 2007. In 2008, Behnaz moved to Amsterdam to
become a Ph.D. student at the Leiden University as part of the COMPAS project,
under the supervision of Prof. Dr. Farhard Arbab. After four years of being a full-
time Ph.D. student, Behnaz returned to industry to follow her passion for creating
software, while she continued working on her thesis.

139

Acknowledgement

I would like to express my gratitude to all the people who helped me in any form
during the period of my Ph.D. It is impossible to name everyone here, but I would
like to mention some of them.

I would like to thank my colleagues in CWI Jose Proenca, Michiel Helven-
steijn, Joost Winter, Ziyan Maraikar, Young-Joo Moon, Lacramioara Astefanoaei,
Helle Hansen, Christian Krause, Mahdi Jaghoori, Sun Meng, Stijn de Gouw, and
Sung-Shik Jongmans, Alexandra Silva, Stephanie Kemper, Yunes Hassen, and Ivan
Zapreev.

I would like to especially thank Bahareh Changizi for drawing the bird on the
thesis cover, Iona Michaelis for editing the last chapter of my thesis, Davey Bruns
for editing the Dutch version of my thesis's summary, and Michiel Helvensteijn for
proofreading my thesis.

I give special thanks to my family and friends for lifting me: Bahareh Changizi,
Behnam Changizi, Arash Malayeri, Narges Javaheri, Aylar Soltani, Amaneh Mah-
boubi, Somayeh Bakhtiari, Martina Chirilus-Bruckner, Naser Ayat, Anna Kovacs,
Zaklina Stevic, Pedram Malayeri, and Reinahneh Zolfaghari.

This doctoral dissertation is dedicated to my parents to whom I am forever grate-
ful for their love, support, and encouragement and to my husband Rory Michaelis
for his love, support, and patience. He deserves the �nal acknowledgment as he
su�ered most from its completion.

140

Titles in the IPA Dissertation Series since 2017

M.J. Steindorfer. E�cient Im-
mutable Collections. Faculty of Science,
UvA. 2017-01

W. Ahmad. Green Computing: Ef-
�cient Energy Management of Multi-
processor Streaming Applications via
Model Checking. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2017-02

D. Guck. Reliable Systems � Fault
tree analysis via Markov reward au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-03

H.L. Salunkhe. Modeling and Bu�er
Analysis of Real-time Streaming Ra-
dio Applications Scheduled on Hetero-
geneous Multiprocessors. Faculty of
Mathematics and Computer Science,
TU/e. 2017-04

A. Krasnova. Smart invaders of pri-
vate matters: Privacy of communica-
tion on the Internet and in the Inter-
net of Things (IoT). Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty
of Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Lim-
itations and Opportunities. Faculty of
Science, UvA. 2017-07

W. Lueks. Security and Privacy
via Cryptography � Having your cake
and eating it too. Faculty of Science,
Mathematics and Computer Science,
RU. 2017-08

A.M. �utîi. Modularity and Reuse
of Domain-Speci�c Languages: an ex-

ploration with MetaMod. Faculty of
Mathematics and Computer Science,
TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Speci�c
Languages. Faculty of Mathematics
and Computer Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty
of Mathematics and Computer Science,
TU/e. 2017-11

A. Amighi. Speci�cation and Veri-
�cation of Synchronisation Classes in
Java: A Practical Approach. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2018-01

S. Darabi. Veri�cation of Program
Parallelization. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2018-02

J.R. Salamanca Tellez. Coequa-
tions and Eilenberg-type Correspon-
dences. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2018-03

P. Fiter u-Bro³tean. Active Model
Learning for the Analysis of Net-
work Protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-04

D. Zhang. From Concurrent State
Machines to Reliable Multi-threaded
Java Code. Faculty of Mathematics and
Computer Science, TU/e. 2018-05

H. Basold. Mixed Inductive-
Coinductive Reasoning Types, Pro-
grams and Logic. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-06

A. Lele. Response Modeling: Model
Re�nements for Timing Analysis

of Runtime Scheduling in Real-time
Streaming Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Speci�cation: unifying modeling and
programming. Faculty of Mathematics
and Natural Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the
art of railway maintenance: Analysis
and optimization of maintenance via
fault trees and statistical model check-
ing. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-10

F. Yang. A Theory of Executability:
with a Focus on the Expressivity of Pro-
cess Calculi. Faculty of Mathematics
and Computer Science, TU/e. 2018-11

L. Swartjes. Model-based design of
baggage handling systems. Faculty of
Mechanical Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Sim-
ilarity Measures for Curves and Sur-
faces. Faculty of Mathematics and
Computer Science, TU/e. 2018-13

M. Talebi. Scalable Performance
Analysis of Wireless Sensor Network.
Faculty of Mathematics and Computer
Science, TU/e. 2018-14

R. Kumar. Truth or Dare: Quan-
titative security analysis using attack
trees. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-15

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software De-
velopment. Faculty of Electrical En-

gineering, Mathematics, and Computer
Science, TUD. 2018-16

M. Mehr. Faster Algorithms for
Geometric Clustering and Competitive
Facility-Location Problems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-17

M. Alizadeh. Auditing of User Be-
havior: Identi�cation, Analysis and
Understanding of Deviations. Faculty
of Mathematics and Computer Science,
TU/e. 2018-18

P.A. Inostroza Valdera. Struc-
turing Languages as Object-Oriented
Libraries. Faculty of Science,
UvA. 2018-19

M. Gerhold. Choice and Chance -
Model-Based Testing of Stochastic Be-
haviour. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-20

A. Serrano Mena. Type Error
Customization for Embedded Domain-
Speci�c Languages. Faculty of Science,
UU. 2018-21

S.M.J. de Putter. Veri�cation of
Concurrent Systems in a Model-Driven
Engineering Work�ow. Faculty of
Mathematics and Computer Science,
TU/e. 2019-01

S.M. Thaler. Automation for Infor-
mation Security using Machine Learn-
ing. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-02

Ö. Babur. Model Analytics and Man-
agement. Faculty of Mathematics and
Computer Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova.
Practical General Top-down Parsers.
Faculty of Science, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algo-
rithms for Geometric Network Prob-
lems. Faculty of Mathematics and
Computer Science, TU/e. 2019-05

J. Moerman. Nominal Tech-
niques and Black Box Testing for Au-
tomata Learning. Faculty of Science,
Mathematics and Computer Science,
RU. 2019-06

V. Bloemen. Strong Connectivity
and Shortest Paths for Checking Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2019-07

T.H.A. Castermans. Algorithms
for Visualization in Digital Humanities.
Faculty of Mathematics and Computer
Science, TU/e. 2019-08

W.M. Sonke. Algorithms for
River Network Analysis. Faculty of
Mathematics and Computer Science,
TU/e. 2019-09

J.J.G. Meijer. E�cient Learning and
Analysis of System Behavior. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2019-10

P.R. Gri�oen. A Unit-Aware Matrix
Language and its Application in Con-
trol and Auditing. Faculty of Science,
UvA. 2019-11

A.A. Sawant. The impact of API evo-
lution on API consumers and how this
can be a�ected by API producers and
language designers. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2019-12

W.H.M. Oortwijn. Deductive Tech-
niques for Model-Based Concurrency
Veri�cation. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2019-13

M.A. Cano Grijalba. Session-Based
Concurrency: Between Operational and
Declarative Views. Faculty of Science
and Engineering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of
Science, Mathematics and Computer
Science, RU. 2020-02

R.A. van Rozen. Languages of
Games and Play: Automating Game
Design & Enabling Live Programming.
Faculty of Science, UvA. 2020-03

B. Changizi. Constraint-Based Anal-
ysis of Business Process Models. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2020-04

	Introduction
	Contributions
	Outline
	Publications

	Business Process Model and Notation
	Introduction
	BPMN 2 elements
	Connecting objects
	Events
	Activities
	Gateways
	Swimlanes and artifacts

	Reo Coordination Language
	Introduction
	Reo
	Examples
	Extensible Coordination Tools (ECT)

	Formal Semantics for Reo
	Introduction
	Constraint automata
	Constraint automata with state memory
	Constraint automata with priority
	Connector coloring
	Reo automata
	Complexity

	Mapping BPMN to Reo
	Transaction refinement
	Atlas Transformation Language
	Mapping BPMN 2 to Reo
	Definition
	Process
	Task and subprocess
	Throw and catch events
	Gateway
	Transaction
	Other elements

	Example
	Related Work

	A Constraint-Based Semantics Framework for Reo
	Introduction
	Reo constraint satisfaction problem (RCSP)
	Encoding Reo elements in RCSPs
	Solving RCSPs
	Constructing CASM

	Hiding
	Correctness and compositionality
	Performance evaluation

	Conclusions

	Priority
	Introduction
	Priority flow
	Numeric priority
	Case study
	Related work
	Conclusions and future work

	Conclusion

