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Chapter 6

An Improved Ensemble of
Convolutional Neural Networks
for P300 Speller with a Small
Number of Sensors

Hongchang Shan, Yu Liu, and Todor Stefanov,
"An Empirical Study on Sensor-aware Design of Convolutional Neural Networks for P300 Speller in Brain
Computer Interface,"
In Proceedings of "12th IEEE International Conference on Human System Interaction (IEEE HSI’19)", pp.
5-11, Richmond, Virginia, USA, June 25-27, 2019.

In Chapter 4, we have presented our EoCNN which achieves higher spelling ac-
curacy and ITR compared to other state-of-the-art methods for the P300 speller. In
Chapter 5, we have presented our SLES method that can reduce the number of sen-
sors needed to acquire EEG signals in our EoCNN-based P300 speller while keeping
the character spelling accuracy and the ITR the same as the character spelling accu-
racy and the ITR achieved by EoCNN when an initial large set of 64 sensors is used
in the P300 speller. We call the character spelling accuracy and the ITR, achieved
by EoCNN for the P300 speller with a large number of sensors (i.e, 64 sensors), the
state-of-the-art character spelling accuracy and ITR of the P300 speller. Table 5.7,
5.8, and 5.9 in Chapter 5 show that in most cases, in order to not lose the state-of-
the-art character spelling accuracy and ITR of the P300 speller, we need to use more
than 16 sensors to acquire EEG signals in the EoCNN-based P300 speller. Unfortu-
nately, popular low-complexity and relatively cheap (affordable) BCI systems utilize
a small number of sensors for the acquisition of EEG signals. Typically, such small
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number of sensors is less than or equal to 16 sensors. For example, BCI systems such
as MUSE [MUS], EMOTIV Insight [Ins], Quick-8 [Qui], B-Alert X10 [B-A], EMO-
TIV EPOC+ [EMO], and OPEN BCI Mark IV [Mar] utilize only 4, 5, 8, 10, 14, and
16 sensors, respectively. Therefore, in this chapter, we present our research on how
to achieve the state-of-the-art character spelling accuracy and ITR of the P300 speller
with popular low-complexity and relatively cheap BCI systems that use a small num-
ber of sensors (i.e., less than or equal to 16 sensors) to acquire EEG signals. The novel
contributions of this chapter are the following.

• We perform a study on EoCNN as well as the three CNNs used in EoCNN,
i.e., OTLN, OSLN, and OCLNN, for the P300 speller with different number
of sensors in order to find the reason why EoCNN cannot achieve the state-
of-the-art character spelling accuracy and ITR for a P300 speller with a small
number of sensors. This study shows that the reason for this is that EoCNN has
the problem of putting equal importance on OSLN, OTLN, and OCLNN in the
ensemble processing of the outputs from these three CNNs (see Section 4.1.4 as
well as Equation (4.1) and (4.2)) for the P300 speller irrespective of the number
of sensors used to acquire EEG signals.

• In order to solve the problem of EoCNN, mentioned in the above contribu-
tion, we propose an improved EoCNN for the P300 speller called PEoCNN. In
PEoCNN, first, we parameterize the ensemble processing of the outputs from
OSLN, OTLN, and OCLNN. Then, we use the Sequential Model-based Algo-
rithm Configuration (SMAC) [HHLB11] to automatically find and set values
for the parameters, used in the parameterized ensemble processing of PEoCNN,
depending on the number of sensors utilized in the P300 speller. In this way,
PEoCNN is able to adopt/configure the importance of using the outputs from
OSLN, OTLN, and OCLNN for the P300 speller depending on the number of
sensors that are utilized.

• Experiments on three benchmark datasets show that, when using our PEoCNN
for the P300 speller, the state-of-the-art spelling accuracy can be achieved in
a BCI system with less than or equal to 16 sensors to acquire EEG signals in
most cases. In addition, the state-of-the-art max-ITR1 of the P300 speller can
be achieved in a BCI system with less than 16 sensors to acquire EEG signals.

The rest of this chapter is organized as follows. Section 6.1 presents our study on
the EoCNN-based P300 speller with different number of sensors in order to analyze
and find the reason why EoCNN cannot achieve the state-of-the-art spelling accuracy

1The notion of max-ITR is explained in Section 3.3.5.
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and max-ITR for a P300 speller with a small number of sensors. Section 6.2 intro-
duces our approach to solve the problem of EoCNN revealed by the aforementioned
study. Section 6.3 describes the experimental evaluation of our approach to show that
by using our approach, we are able to achieve the state-of-the-art character spelling
accuracy and max-ITR of the P300 speller with less than or equal to 16 sensors to
acquire EEG signals. Section 6.4 ends this chapter with conclusions.

6.1 Study onEoCNN-basedP300 SpellerwithDifferentNum-
ber of Sensors

In this section, we perform a study on the EoCNN-based P300 speller with different
number of sensors in order to find the reason why EoCNN cannot achieve the state-
of-the-art character spelling accuracy and ITR for a P300 speller with a small number
of sensors. In this study, we perform experiments to examine the character spelling
accuracy and the max-ITR achieved by EoCNN as well as the three CNNs used in the
EoCNN, i.e., OCLNN, OTLN, and OSLN, for the P300 speller with different number
of sensors. First, we describe the experimental setup of this study in Section 6.1.1.
Then, we show and analyze the experimental results of this study in Section 6.1.2.

6.1.1 Experimental Setup

In this study, we use four implementations of the P300 speller to perform the experi-
ments: the EoCNN-based P300 speller, the OCLNN-based P300 speller, the OSLN-
based P300 speller, and the OTLN-based P300 speller. In order to examine the char-
acter spelling accuracy and the max-ITR of the aforementioned four P300 speller im-
plementations when different number of sensors are utilized to acquire EEG signals,
we perform the following two steps:

Step 1. We select different appropriate sensor subsets, containing different num-
ber of sensors, from an initial large set of sensors to acquire EEG signals for a subject
who uses a P300 speller. The subject in this study is the subject used to acquire the
EEG signals in Dataset III-A. We call this subject Subject III-A. We apply our SLES
method (proposed and presented in Chapter 5) to select different appropriate sensor
subsets from an initial large set of 64 sensors for Subject III-A. Therefore, we can use
the training dataset of Dataset III-A to apply our SLES sensor selection method. More
specifically, for our SLES method, this training dataset is used to train the OSLN(S)

and calculate scorej in each iteration of our SLES method (see Algorithm 1 in Chap-
ter 5). For the details of the setup for our SLES please refer to the last paragraph in
Section 5.3.1.
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Step 2. After using our SLES method to select different sensor subsets for Sub-
ject III-A, we calculate the spelling accuracy and the max-ITR of the aforementioned
four P300 speller implementations with the selected sensor subsets using Dataset III-
A. The training dataset of Dataset III-A is used to train the CNN-based classifiers
used in the aforementioned P300 speller implementations with the selected sensor
subsets. Then, the test dataset of Dataset III-A is used to calculate the spelling ac-
curacy and max-ITR of the aforementioned P300 speller implementations with the
selected sensor subsets. The spelling accuracy accmchar(k) is calculated using Equa-
tion (5.3) in Section 5.3.1, where accmchar(k) denotes the spelling accuracy achieved
when using the first k epochs for each character and using the EEG signals acquired
with the selected sensor subset containing m sensors. The ITR ITRm

k is calculated
using Equation (6.1) and (2.35), where ITRm

k denotes the ITR achieved when us-
ing the first k epochs for each character and using the EEG signals acquired with the
selected sensor subset containing m sensors; Ncla =36 because we have 36 possible
characters to spell (see Figure 2.10); accmchar(k) is calculated using Equation (5.3);
and Tk is calculated using Equation (2.35). After the calculation of ITRm

k , we cal-
culate the max-ITRmaxITRm using Equation (6.2), wheremaxITRm denotes the
max-ITR achieved when the EEG signals are acquired with the selected sensor subset
containingm sensors.

ITRm
k =

60(accmchar(k) log2(acc
m
char(k)) + (1− accmchar(k)) log2(

1−accm
char(k)

Ncla−1 ) + log2(Ncla))

Tk
(6.1)

maxITRm = max
1≤k≤15

{ITRm
k } (6.2)

6.1.2 Experimental Results

The experimental results on the spelling accuracy and the max-ITR of the EoCNN-
based P300 speller, the OSLN-based P300 speller, the OTLN-based P300 speller, and
the OCLNN-based P300 speller when different number of sensors m is used to ac-
quire Subject III-A’s EEG signals are shown in Figure 6.1 and Figure 6.2, respectively.
Figure 6.1 shows that, in most cases (with respect to the number of sensors m), the
OCLNN-based P300 speller achieves higher spelling accuracy than the OTLN-based
P300 speller and the OSLN-based P300 speller. When the number of sensors used
to acquire EEG signals is between 1 and 36, the OTLN-based P300 speller achieves
higher spelling accuracy than the OSLN-based P300 speller. When the number of sen-
sors used to acquire EEG signals is between 37 and 64, the OSLN-based P300 speller
achieves higher spelling accuracy than the OTLN-based P300 speller. Figure 6.2
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shows that, in most cases (with respect to the number of sensors m), the OCLNN-
based P300 speller achieves higher max-ITR than the OTLN-based P300 speller and
the OSLN-based P300 speller. When the number of sensors used to acquire EEG
signals is between 1 and 30, the OTLN-based P300 speller achieves higher max-ITR
than the OSLN-based P300 speller. When the number of sensors used to acquire EEG
signals is between 32 and 64, the OSLN-based P300 speller achieves higher max-ITR
than the OTLN-based P300 speller.

Figure 6.1: Spelling accuracy of different P300 speller implementations when differ-
ent number of sensorsm is used to acquire EEG signals.

Figure 6.2: max-ITR of different P300 speller implementations when different num-
ber of sensorsm is used to acquire EEG signals.

The aforementioned experimental results reveal that overall, the three CNNs, i.e.,
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OCLNN, OSLN, and OTLN, have different importance and impact on the spelling
accuracy and the max-ITR of a P300 speller depending on the number of sensors
that are used to acquire EEG signals. This implies that when we use a CNN, which
combines the outputs of OCLNN, OSLN, and OTLN, for a P300 speller, we should
adopt/configure the importance of using the outputs fromOCLNN, OSLN, and OTLN
depending on the number of sensors that are used to acquire EEG signals. Unfortu-
nately, the EoCNN (presented and proposed in Chapter 4) has the issue of putting
equal importance on OSLN, OTLN, and OCLNN in the ensemble processing of the
outputs from these three CNNs (see Section 4.1.4 as well as Equation (4.1) and (4.2))
for the EoCNN-based P300 speller irrespective of the number of sensors used to ac-
quire EEG signals.

6.2 Our Solution Approach
In this section, in order to address the issue of EoCNN revealed in Section 6.1, we
present our solution approach on how to make EoCNN adopt/configure the impor-
tance of using the outputs from OSLN, OTLN, and OCLNN for a P300 speller de-
pending on the number of sensors used to acquire EEG signals. In our approach, first,
we parameterize the ensemble processing of EoCNN as described in Section 6.2.1.
Then, we find and set values for the parameters, that are used in the ensemble pro-
cessing of EoCNN, depending on the number of sensors used to acquire EEG signals
in the P300 speller as described in Section 6.2.2.

6.2.1 Parameterized Ensemble Processing

Our approach is based on EoCNN that is proposed and presented in Chapter 5. We use
the architecture of EoCNN, i.e., the ensemble of OTLN, OSLN, and OCLNN, for the
P300 speller (see Figure 4.1). However, the difference is in the ensemble processing
of the outputs from OTLN, OSLN, and OCLNN. That is, EoCNN puts equal impor-
tance on OSLN, OTLN, and OCLNN in the ensemble processing of the outputs from
OSLN, OTLN, and OCLNN (see Equation (4.1) in Section 4.1.4) irrespective of the
number of sensors used to acquire EEG signals. In contrast, our approach here pa-
rameterizes the ensemble processing of the outputs from OSLN, OTLN, and OCLNN
for the P300 speller in order to make this ensemble processing adaptable/configurable
to the number of sensors used to acquire EEG signals.

Our parameterized ensemble processing of the outputs from OSLN, OTLN, and
OCLNN is shown in Equation (6.3). We call EoCNN, with this parameterized en-
semble processing, PEoCNN. In Equation (6.3), for epoch i and for intensification j,
P 1
PEoC(i, j) denotes the predicted probability by PEoCNN for class “P300”; P 1

OT (i, j)
denotes the predicted probability by OTLN for class “P300”; P 1

OS(i, j) denotes the
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predicted probability by OSLN for class “P300”; P 1
OCL(i, j) denotes the predicted

probability by OCLNN for class “P300”; and p1, p2, and p3 are three parameters that
weight the importance of the predicted probability by OTLN, OSLN, OCLNN, re-
spectively, for class “P300”, in order to determine the outputP 1

PEoC(i, j) of PEoCNN.
p1 ∈ [0, 1], p2 ∈ [0, 1], and p3 ∈ [0, 1]. In addition, we set the constraint p1 + p2 +
p3 = 1 to guarantee that P 1

PEoC(i, j) is in the range [0, 1] because P
1
PEoC(i, j) is the

probability predicted by PEoCNN for class “P300”.

P 1
PEoC(i, j) = p1 × P 1

OT (i, j) + p2 × P 1
OS(i, j) + p3 × P 1

OCL(i, j) (6.3)

How we select appropriate values for p1, p2, and p3, depending on the number
of sensors used in the P300 speller for acquisition of EEG signals, is described in
Section 6.2.2. After the selection of values for p1, p2, and p3, we use P 1

PEoC(i, j),
i.e., the output of PEoCNN for class “P300”, to calculate the position of the target
character in the character matrix shown in Figure 2.10. For the detailed calculation
process, please refer to Section 2.4.2, Equation (2.30), (2.31), and (2.32).

6.2.2 Parameter Configuration for Parameterized Ensemble Processing

As described in Section 6.2.1, in the parameterized ensemble processing of PEoCNN,
there are three parameters, i.e., p1, p2, and p3, that need to be configured (see Equa-
tion (6.3)). This section describes how we select appropriate values for these three
parameters depending on the number of sensors used for the acquisition of EEG sig-
nals in the P300 speller.

For a given number of sensorsm used to acquire EEG signals in the P300 speller,
we select a set of appropriate values for p1, p2, and p3 by looking at this selection
problem as an optimization problem. We define this optimization problem as shown
in Equation (6.4), where p is a vector of p1, p2, and p3, i.e., p = [p1, p2, p3]; Q(p)
is the cost function. We define Q(p) using Equation (6.5), where maxITRta de-
notes the theoretically achievable maximum ITR of a P300 speller; maxITRm(p)
denotes the max-ITR achieved by PEoCNN, configured with p, for the P300 speller
when the EEG signals are acquired using the given m sensors. maxITRm(p) is
calculated using Equation (6.6), where E denotes the total number of epochs used
in a P300 speller. Here, E=15 because we use 15 epochs in the P300 speller (see
Section 2.5). ITRm

k (p) denotes the ITR achieved by PEoCNN, configured with p,
when k epochs are used for the P300 speller and the EEG signals are acquired using
the given m sensors. ITRm

k (p) is calculated using Equation (6.7),where Ncla =36
because we have 36 possible characters to spell (see Figure 2.10); Tk is calculated us-
ing Equation (2.35); accmchar(k)(p) denotes the character spelling accuracy achieved

101



CHAPTER 6. AN IMPROVED ENSEMBLE OF CONVOLUTIONAL NEURAL
NETWORKS FOR P300 SPELLER WITH A SMALL NUMBER OF SENSORS

by PEoCNN, configured with p, when k epochs are used for the P300 speller and
the EEG signals are acquired using the given m sensors. accmchar(k)(p) is calculated
using Equation (6.8), where Nm

tc(k)(p) denotes the number of correctly inferred char-
acters by PEoCNN configured with p when using k epochs for each character and the
EEG signals are acquired using the given m sensors, and Sc denotes the number of
all spelled characters.

Minimize
p

Q(p)

subject to : p1 + p2 + p3 = 1, 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, and 0 ≤ p3 ≤ 1
(6.4)

Q(p) = maxITRta −maxITRm(p) (6.5)

maxITRm(p) = max
1≤k≤E

{ITRm
k (p)} (6.6)

ITRm
k (p) =

60(accmchar(k)(p) log2(acc
m
char(k)(p)) + (1− accmchar(k)(p)) log2(

1−accm
char(k)

(p)
Ncla−1 ) + log2(Ncla))

Tk

(6.7)

accchar(k)(p) =
Ntc(k)m(p)

Sc
(6.8)

Equation (6.4) shows that we define the selection of values for p = [p1, p2, p3]
as a single-objective optimization problem. In this optimization problem, we aim at
finding p such that the cost function Q(p) is minimized. By using this cost function,
we aim at finding appropriate p to configure PEoCNN such that for a givenm sensors
used to acquire EEG signals, the max-ITR achieved by PEoCNN, i.e.,maxITRm(p),
is the closest possible to the theoretically achievable maximum ITRmaxITRta. Typ-
ically, the ultimate goal of designing methods for the P300 speller is to increase the
max-ITR in order to bring it closer to the theoretically achievable maximum ITR (for
detailed discussion please see Section 3.3.5 and Section 4.2.4.). Thus, we define the
cost function, shown in Equation (6.5), to find appropriate p to configure PEoCNN.

We use the SequentialModel-basedAlgorithmConfiguration (SMAC) [HHLB11]
as an optimization algorithm to solve the aforementioned single-objective optimiza-
tion problem defined by Equation (6.4) because SMAC is currently one of the best-
performing and versatile optimization algorithms for parameter configuration. For
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more details on SMAC please refer to [HHLB11]. In the optimization process of
SMAC, the cost function Q(p) is calculated as follows. We use a dataset to train
PEoCNN configured by p selected by SMAC. The training process of PEoCNN is
the same as the training process of EoCNN described in Section 4.1.3. Then, we run
this trained PEoCNN on another dataset to calculateQ(p) using Equation (6.5), (6.6),
(6.7), and (6.8).

6.3 Experimental Evaluation

In this section, we present the experiments, we have performed, to determine and eval-
uate the minimal number of sensors needed to acquire EEG signals in the PEoCNN-
based P300 speller and in the EoCNN-based P300 speller without losing the state-of-
the-art character spelling accuracy and max-ITR. The goal is to demonstrate that: 1)
by using our PEoCNN, we are able to achieve the state-of-the-art character spelling
accuracy and max-ITR of the P300 speller when using less than or equal to 16 sen-
sors to acquire EEG signals; 2) our solution approach, described in Section 6.2, is
effective, i.e., the PEoCNN-based P300 speller needs less number of sensors to ac-
quire EEG signals than the EoCNN-based P300 speller without losing the state-of-
the-art spelling accuracy and max-ITR. First, we describe the experimental setup in
Section 6.3.1. Then, in Section 6.3.2, we show and analyze the obtained experimen-
tal results for the minimal number of sensors needed to acquire EEG signals in the
PEoCNN-based P300 speller and in the EoCNN-based P300 speller.

6.3.1 Experimental Setup

We perform the following three steps in order to compare the minimal number of
sensors needed to acquire EEG signals in the PEoCNN-based P300 speller and in
the EoCNN-based P300 speller without losing the state-of-the-art character spelling
accuracy and max-ITR.

Step 1. We select different appropriate sensor subsets, containing different num-
ber of sensors m, from an initial large set of sensors to acquire EEG signals for a
subject who uses a P300 speller. The subjects in our experiments is the subjects used
to acquire the EEG signals in Dataset II, III-A, and III-B. We call the subjects in
Dataset II, III-A, and III-B, Subject II, Subject III-A, and Subject III-B, respectively.
We apply our SLES method (proposed and presented in Chapter 5) to select differ-
ent appropriate sensor subsets from an initial large set of 64 sensors for Subject II,
Subject III-A, and Subject III-B. Therefore, we can use the training dataset of Dataset
II, III-A, and III-B to apply our SLES sensor selection method. More specifically, for
our SLESmethod, these training datasets are used to train theOSLN(S) and calculate
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scorej in each iteration of our SLES method (see Algorithm 1 in Chapter 5). For the
details of the setup for our SLES please refer to the last paragraph in Section 5.3.1.

Step 2. We build two P300 speller implementations, namely the PEoCNN-based
P300 speller and the EoCNN-based P300 speller. For the PEoCNN-based P300 speller,
depending on given subset ofm sensors selected to acquire EEG signals in Step 1, we
select values for p1, p2, and p3, which are used to configure PEoCNN. As described
in Section 6.2.2, we use SMAC to select appropriate values for p1, p2, and p3. When
using SMAC, we need to calculate Q(p) which is the cost function minimized by
SMAC (see our defined optimization problem in Equation (6.4)). We use the train-
ing dataset in Dataset II, III-A, and III-B to calculate Q(p). We divide each training
dataset in Dataset II, III-A, and III-B into two parts: the first sub-dataset containing
60% of a given training dataset and the second sub-dataset containing the left 40%
of the given training dataset (for the reason of using 60% and 40% to split a dataset
please refer to Section 5.4.1.). The first sub-dataset is used to train PEoCNN config-
ured with p = [p1, p2, p3], selected by SMAC, in the PEoCNN-based P300 speller
with the selectedm sensors to acquire EEG signals. We run the trained PEoCNN on
the second sub-dataset to calculate Q(p) using Equation (6.5), (6.6), (6.7), and (6.8).

Step 3. After selecting p and configuring PEoCNN, we calculate the minimal
number of sensors needed to acquire EEG signals in the PEoCNN-based P300 speller
and in the EoCNN-based P300 speller without losing the state-of-the-art character
spelling accuracy and max-ITR. Firstly, we calculate the spelling accuracy and the
max-ITR of the PEoCNN-based P300 speller and EoCNN-based P300 speller with
the different selected sensor subsets from Step 1 using Dataset II, III-A, and III-B.
The spelling accuracy accmchar(k) is calculated using Equation (5.3) in Section 5.3.1,
where accmchar(k) denotes the spelling accuracy achieved when using the first k epochs
for each character and using the EEG signals acquired with the selected sensor sub-
set containing m sensors. The ITR ITRm

k is calculated using Equation (6.1) and
(2.35), where ITRm

k denotes the ITR achieved when using the first k epochs for
each character and using the EEG signals acquired with the selected sensor subset
containing m sensors. After the calculation of ITRm

k , we calculated the max-ITR
maxITRm using Equation (6.2), where maxITRm denotes the max-ITR achieved
when using the EEG signals acquired with the selected sensor subset containing m
sensors. Secondly, after the calculation of accmchar(k) and maxITR

m, we calculate
the minimal number of sensors needed to acquire EEG signals without losing the
state-of-the-art spelling accuracy and max-ITR of the P300 speller. We usemacc

min to
denote the minimal number of sensors needed to acquire EEG signals without losing
the state-of-the-art spelling accuracy. macc

min is calculated as the minimalm ∈ [1, 64]
which makes accmchar(k) >= accsoachar(k). Here, acc

soa
char(k) denotes the state-of-the-art

spelling accuracy of the P300 speller when using k epochs, i.e., the spelling accu-
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racy achieved by EoCNN using k epochs when 64 sensors are used to acquire EEG
signals in the P300 speller. We use mitr

min to denote the minimal number of sensors
needed to acquire EEG signals without losing the max-ITR of the P300 speller. mitr

min

is calculated as the minimalm ∈ [1, 64] which makesmaxITRm >= maxITRsoa.
Here,maxITRsoa denotes the state-of-the-art max-ITR of the P300 speller, i.e., the
max-ITR achieved by EoCNN when 64 sensors are used to acquire EEG signals in
the P300 speller.

6.3.2 Experimental Results

In this section, we present the experimental results, we have obtained, for the minimal
number of sensors needed to acquire EEG signals in the PEoCNN-based P300 speller
and in the EoCNN-based P300 speller without losing the state-of-the-art spelling ac-
curacy (see Section 6.3.2.1) as well as the minimal number of sensors needed to ac-
quire EEG signals in the PEoCNN-based P300 speller and in the EoCNN-based P300
speller without losing the state-of-the-art max-ITR (see Section 6.3.2.2).

6.3.2.1 Minimal Number of Sensors Without Losing State-of-the-art Spelling
Accuracy

Table 6.1, 6.2 and 6.3 show the minimal number of sensors needed to acquire EEG
signals in the PEoCNN-based P300 speller and in the EoCNN-based P300 speller
without losing the state-of-the-art spelling accuracy for epoch k ∈ [1, 15]. The first
column in the tables lists the different CNNs used in a P300 speller for the inference of
the characters. Each row provides the minimal number of sensors needed to acquire
EEG signals used to acquire EEG signals in a P300 speller for different epoch numbers
k ∈ [1, 15]. A number in bold indicates that the minimal number of sensors needed
to acquire EEG signals in the P300 speller based on the corresponding CNN is lower
than or equal to the minimal number of sensors needed to acquire EEG signals in the
P300 speller based on the other CNN.

Table 6.1: Minimal number of sensors needed to acquire EEG signals in the P300
speller based on different CNNs without losing the state-of-the-art spelling accuracy
of the P300 speller on Dataset II.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PEoCNN 10 13 20 15 17 8 8 3 3 3 3 4 3 3 3
EoCNN 10 16 28 19 22 9 8 3 3 3 3 4 3 3 3
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Table 6.2: Minimal number of sensors needed to acquire EEG signals in the P300
speller based on different CNNs without losing the state-of-the-art spelling accuracy
of the P300 speller on Dataset III-A.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PEoCNN 12 14 14 12 19 17 11 24 29 16 30 13 13 15 18
EoCNN 18 39 37 21 41 38 20 39 44 23 46 33 21 16 31

Table 6.3: Minimal number of sensors needed to acquire EEG signals in the P300
speller based on different CNNs without losing the state-of-the-art spelling accuracy
of the P300 speller on Dataset III-B.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PEoCNN 14 13 15 23 12 10 13 19 22 21 24 15 18 16 11
EoCNN 25 26 28 27 23 14 16 25 30 29 33 22 30 29 23

Table 6.1, 6.2, and 6.3 show that in all 45 cases (i.e., all epoch columns in the
three tables), the minimal number of sensors needed to acquire EEG signals in the
PEoCNN-based P300 speller is lower than or equal to the minimal number of sensors
needed to acquire EEG signals in the EoCNN-based P300 speller without losing the
state-of-the-art spelling accuracy. This demonstrates that our solution approach, de-
scribed in Section 6.2, is effective, i.e., the PEoCNN-based P300 speller needs less
number of sensors to acquire EEG signals than the EoCNN-based P300 speller with-
out losing the state-of-the-art spelling accuracy.

In addition, Table 6.1, 6.2 and 6.3 show that for 31 different epoch numbers out of
all 45 epoch numbers, the PEoCNN-based P300 speller can achieve the state-of-the-
art spelling accuracy with less than or equal to 16 sensors to acquire EEG signals. In
contrast, only for 15 different epoch numbers out of 45 epoch numbers, the EoCNN-
based P300 speller can achieve the state-of-the-art spelling accuracy with less than or
equal to 16 sensors to acquire EEG signals. When a P300 speller is configured with
different epoch numbers, the P300 speller has different spelling accuracy and commu-
nication speed: typically, a P300 speller, configured with a large epoch number, has a
high spelling accuracy but a low communication speed while a P300 speller, config-
ured with a small epoch number, has a low spelling accuracy but a high communica-
tion speed. The PEoCNN-based P300 speller has more configurations, in terms of the
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epoch numbers, than the EoCNN-based P300 speller when used in a low-complexity
BCI systems with less than or equal to 16 sensors to acquire EEG signals. Thus, the
PEoCNN-based P300 speller has more options to trade off the spelling accuracy for
the communication speed and vice versa than the EoCNN-based P300 speller when
used in such low-complexity BCI systems.

6.3.2.2 Minimal Number of Sensors Without Losing State-of-the-art max-ITR

Table 6.4 shows the minimal number of sensors needed to acquire EEG signals in the
PEoCNN-based P300 speller and in the EoCNN-based P300 speller without losing the
state-of-the-art max-ITR for Dataset II, III-A, and III-B. In this table, the first column
lists the different CNNs used in a P300 speller for the inference of the characters.
Each row provides the minimal number of sensors needed to acquire EEG signals in a
P300 speller without losing the state-of-the-art max-ITR for the different datasets. A
number in bold indicates that the minimal number of sensors needed to acquire EEG
signals in the P300 speller based on the corresponding CNN is lower than or equal
to the minimal number of sensors needed to acquire EEG signals in the P300 speller
based on the other CNN.

Table 6.4: Minimal number of sensors needed to acquire EEG signals in the P300
speller based on different CNNs without losing the state-of-the-art max-ITR on
Dataset II, III-A, and III-B.

Dataset II Dataset III-A Dataset III-B
PEoCNN 10 14 13
EoCNN 10 37 26

Table 6.4 shows that for all three datasets, the minimal number of sensors needed
to acquire EEG signals in the PEoCNN-based P300 speller is less than the minimal
number of sensors needed to acquire EEG signals in the EoCNN-based P300 speller
without losing the state-of-the-art max-ITR. This demonstrates again that our solution
approach, described in Section 6.2, is effective, i.e., the PEoCNN-based P300 speller
needs less number of sensors to acquire EEG signals than the EoCNN-based P300
speller without losing the state-of-the-art max-ITR.

Moreover, Table 6.4 shows that for all three datasets, the PEoCNN-based P300
speller achieves the state-of-the-art max-ITR when using less than 16 sensors to ac-
quire EEG signals. In contrast, for only one dataset, the EoCNN-based P300 speller
achieves the state-of-the-art max-ITR when using less than 16 sensors to acquire EEG
signals. This demonstrates that by using our solution approach, described in Sec-
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tion 6.2, we enhance the usability of a P300 speller, having the state-of-the-art max-
ITR, on low-complexity BCI systems across different subjects.

6.4 Conclusions
In this chapter, we present our research on how to achieve the state-of-the-art charac-
ter spelling accuracy and max-ITR of the P300 speller with popular low-complexity
and relatively cheap BCI systems that use less than or equal to 16 sensors to acquire
EEG signals. We perform a study on the EoCNN-based P300 speller with different
number of sensors to show that EoCNN has the problem of putting equal importance
on using OSLN, OTLN, and OCLNN for the P300 speller irrespective of the number
of sensors used to acquire EEG signals. In order to solve this problem, we propose
an improved EoCNN called PEoCNN. In PEoCNN, we parameterize the ensemble
processing of the outputs from OSLN, OTLN, and OCLNN. Then, we use SMAC
to select appropriate values for the parameters depending on the number of sensors
utilized in the P300 speller. Experimental results on three benchmark datasets show
that by using our PEoCNN, we are able to achieve the state-of-the-art performance, in
terms of the character spelling accuracy and the max-ITR, of the P300 speller when
using less than or equal to 16 sensors to acquire EEG signals. Moreover, our pro-
posed PEoCNN enhances the usability of a P300 speller, having the state-of-the-art
performance, on low-complexity BCI systems across different subjects.
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