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Chapter 5

A Novel Sensor Selection Method
based on Convolutional Neural
Network for P300 Speller

Hongchang Shan, and Todor Stefanov,
"SLES: A Novel CNN-based Method for Sensor Reduction in P300 Speller,"
In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC’19), Berlin, Germany, July 23-27, 2019.

Hongchang Shan, and Todor Stefanov,
"A Novel Sensor Selection Method based on Convolutional Neural Network for P300 Speller in Brain
Computer Interface",
The 56th ACM/IEEE Design Automation Conference (DAC’19) WIP session, Las Vegas, NV, USA, June
2-6, 2019.

P300 spellers are still not used in human’s daily life and remain in an experimental
stage at research labs. Some of the reasons for this situation are : 1) Current pop-

ular EEG headsets in BCI systems, used for P300 spellers, utilize a large number of
sensors to achieve high spelling accuracy. For example, the BCI systems Brain Prod-
ucts ActiCHamp [Act], g.HIamp [g.H], and Biosemi ActiveTwo [Bio18] utilize up to
160, 256, and 280 sensors, respectively. The price of the EEG headset is significantly
high when the number of sensors is large because a lot of sensors require a compli-
cated electrode cap and a lot of amplifier channels. For example, a 280-sensor BCI
system (e.g., BioSemi ActiveTwo) costs around 87000 dollars while a 14-sensor BCI
system (e.g., EMOTIV EPOC+ [EMO]) costs 799 dollars; 2) Utilizing a large number
of sensors makes the P300 speller to consume a lot of power, which is unacceptable
for a battery-powered mobile BCI practical system. Such system utilizes a wireless
EEG headset and a resource-constrained hardware platform for data processing. A
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large number of sensors increases the amount of the data needed to be recorded and
processed, thereby increasing the power consumption of the wireless BCI headset and
the hardware platform. This does not allow a mobile practical P300 speller to work
for a long time period on a single battery charge; 3) Utilizing a large number of sen-
sors strengthens the user’s discomfort and increases the installation time of the P300
speller.

To address the aforementioned problems caused by the utilization of a large num-
ber of sensors, sensor selection methods could be used to select an appropriate sen-
sor subset from an initial large set of sensors while keeping acceptable spelling ac-
curacy. So, a good sensor selection method should enable substantial reduction of
the sensors needed to acquire brain signals. Therefore, good sensor selection meth-
ods are in urgent need for designing comfortable, cheap, and power-efficient P300
spellers and for promoting such P300 spellers into the human’s daily life. Sensor
selection methods for the P300 speller have been studied in recent years. For exam-
ple, [RG08] [RSG+09] [CRC+10] [CR+11] utilize a backward elimination algorithm
as a sensor selection strategy. These works propose different ranking functions to
evaluate and eliminate sensors such as the P300 signal detection accuracy, the P300
spelling accuracy [CR+11], the Ccs score [RG08], Signal to Signal and Noise Ratio
(SSNR) [RSG+09] [CRC+10] [CR+11], Area Under the Receiver Operating Char-
acteristic (AUC) [CRT+14]. Alternatively, [CG11] and [LWG+18] directly select the
important sensors for a given user by analysing the weights of a trained neural net-
work. Unfortunately, the aforementioned sensor selection methods cannot select an
appropriate sensor subset such that they can further reduce the number of sensors used
to acquire brain signals while keeping the spelling accuracy the same as the accuracy
achieved when the initial large sensor set is used. As a consequence, the cost, power
consumption, and discomfort of a P300 speller are still unacceptably high when using
the aforementioned sensor selection methods to design and configure P300 spellers.
In order to further reduce the cost and power consumption of a P300 speller, we pro-
pose an effective sensor selection method based on a specific novel CNN, i.e., the
OSLN, we have devised and presented in Chapter 4. The novel contributions of this
chapter are the following:

• We parameterize the OSLN with the number of sensors used for the acquisition
of EEG signals. Our sensor selection method uses this parameterized CNN to
evaluate and rank the sensors during the sensor selection process. This method
features an iterative parameterized backward elimination algorithm to eliminate
and select sensors. The parameter, configured in this backward elimination al-
gorithm, controls the training frequency of the CNN and the number of sensors
to eliminate in every iteration.
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• We perform experiments on three benchmark datasets and compare the min-
imal number of sensors selected by our proposed method and other selection
methods needed to acquire EEG signals while keeping the spelling accuracy
the same as the accuracy achieved when the initial large sensor set is used. The
results show that, compared with the minimal number of sensors selected by
other methods, our method can reduce this number with up to 44 sensors.

The rest of the chapter is organized as follows. Section 5.1 describes the related
work. Section 5.2 presents our proposed sensor selection method. Section 5.3 de-
scribes the experimental setup and the experimental results on the comparison of the
minimal number of sensors selected by our proposed method and other sensor selec-
tion methods to acquire brain signals for the P300 speller. Section 5.4 discusses how
the number of sensors eliminated in an iteration influences the performance of our
proposed method as well as how the CNN network architecture influences the sensor
selection process. Section 5.5 ends the chapter with conclusions.

5.1 Related Work

In this section, we describe the related works on sensor selection methods for the P300
speller in BCI.

[RG08] [CR+11] utilize a backward elimination algorithm as a sensor selection
strategy. Different ranking functions are proposed to evaluate and eliminate sensors.
These ranking functions include the P300 detection accuracy, the average spelling ac-
curacy across different epochs [CR+11], the Ccs score [RG08], Signal to Signal and
Noise Ratio (SSNR) [CR+11], and Area Under the Receiver Operating Characteristic
(AUC) [CRT+14]. In order to select a sensor subset, the backward elimination al-
gorithm either eliminates one sensor [CR+11] or a group of sensors [RG08] in each
iteration of the algorithm. Starting with a set of n sensors in an iteration, the backward
elimination algorithm removes each sensor in the current sensor set and evaluates the
resulting subsets with (n − 1) sensors using the aforementioned ranking functions.
The sensor or the group of sensors which removal maximizes the ranking score is
eliminated. In contrast to these methods, we proposes a novel ranking function (see
Section 5.2.3) based on the OSLN we have devised and presented in Chapter 4. Ex-
perimental results (see Section 5.3.2) show that our sensor selection method is able
to select a sensor subset with smaller number of sensors needed to acquire the EEG
signals while keeping the spelling accuracy the same as the accuracy achieved when
the initial large sensor set is used, compared with the sensor subset selected by the
aforementioned sensor selection methods. Therefore, our sensor selection method
can further reduce the cost and power consumption of the P300 speller.
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[CG11] and [LWG+18] propose CNN-based classifiers for character spelling in
the P300 speller. By analysing the weights of the spatial convolution layer of their
trained CNNs, they determine which sensors are more important in the sensor set.
This can be a potential sensor selection method for the P300 speller. However, the
problem of such potential method is that it loses important information needed for
proper sensor selection. The aforementioned CNNs have multiple convolution layers.
The information needed for proper sensor selection is distributed over the weights of
all convolution layers. In [CG11] and [LWG+18], only the weights of the first layer
are used for analysis and sensor selection because the weights of the other convo-
lution layers can hardly be used for sensor selection (for the detailed explanation of
the reason for this please refer to Section 5.4.2). Thus, the aforementioned methods
cannot use all the information available for proper sensor selection. In contrast to
the aforementioned CNNs, our proposed OSLN has only one convolution layer and
this layer performs the spatial convolution operation. All the information needed for
sensor selection is captured by the weights of this single spatial convolution layer.
Moreover, our CNN has similar ability to extract very useful P300-related features
compared to the aforementioned CNNs (see Table 4.11 and Table 3.8). We analyse
the weights of the single spatial convolution layer in our CNN to select sensors. Thus,
our method uses all the information available for proper sensor selection compared
to the aforementioned methods. As a result, our method can select more appropriate
sensor subsets and further reduce the minimal number of sensors needed to acquire
brain signals without losing spelling accuracy. For more detailed discussion see Sec-
tion 5.4.2.

5.2 Our Sensor Selection Method

In this section, we present our novel iterative sensor selection method for the P300
speller. We call it Spatial Learning based Elimination Selection (SLES).

5.2.1 Spatial Learning based Elimination Selection

Our SLES method is described in Algorithm 1. The symbols used in Algorithm 1
and their corresponding descriptions are listed in Table 5.1. The input of SLES is
the initial sensor set S and the parameter Es. The output of SLES is a set of se-
lected sensor subsets SUB. For each iteration in Algorithm 1, SLES trainsOSLN(S)

with the input signals recorded with the sensors in sensor set S (see Line 2 in Algo-
rithm 1). OSLN(S) (described in Section 5.2.2) is the parameterized version of the
OSLN (proposed in Chapter 4) with S as a parameter. After training OSLN(S), the
ranking scores scorej for all sensors sj in sensor set S are calculated (Line 3-4) using
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OSLN(S) and Equation (5.2) explained in Section 5.2.3. The sensor with the mini-
mal score is found and removed from sensor set S (Lines 6-7). This reduced sensor
set S is the selected sensor subset in this iteration (Line 8). The input parameter Es

controls the training frequency of OSLN(S) (Line 1) and the number of sensors to
eliminate after training OSLN(S) (Line 5).

Table 5.1: The symbols used in Algorithm 1.

Symbol Description

S Sensor set.

sj The jth sensor in S.

C Number of sensors in the initial sensor set.

SUB A set of selected sensor subsets.

subm A selected sensor subset withm sensors.

OSLN(S) The novel parameterized CNN given in Section 5.2.2

Es Number of sensors to eliminate in an iteration.

scorej The ranking score for sj .

sremove The sensor to remove.

5.2.2 Parameterized OSLN

In this section, we describe in details the OSLN(S) (used in Algorithm 1), which is
the parameterized version of the OSLN, proposed and presented in Chapter 4.

5.2.2.1 Input Tensor

The input toOSLN(S) is the tensor (N × |S|) shown in Figure 5.1. S is the sensor set
used in Algorithm 1. xji denotes the ith temporal signal sample in the time domain
and this signal sample is recorded with sensor sj in sensor set S in the space domain.
OSLN(S) is parameterized by S because the input tensor toOSLN(S) is constructed
by the EEG signal samples acquired using the sensors in sensor set S and S is changed
in each main iteration of Algorithm 1 (see Line 7). N denotes the number of temporal
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Algorithm 1: Proposed SLES algorithm.
Input: Set S = {s1, s2, ..., sj , ... sC}, Es;
Output: Set SUB = {sub1, sub2, ... , subm, ... subC−1};

1 for 1 ≤ k ≤ C/Es do
2 Train a OSLN(S) with the input signals recorded using S;
3 for sj ∈ S do
4 Calculate scorej using OSLN(S) and Equation (5.2);
5 for 1 ≤ m ≤ Es do
6 sremove = argmin

sj∈S
{scorej};

7 S ← S − sremove;
8 sub(C−Es∗(k−1)−m) ← S;

signal samples. These temporal signal samples are preprocessed in the same way as
explained in Section 3.2.1 of Chapter 3.

Figure 5.1: Input tensor to OSLN(S), where sj ∈ S.

5.2.2.2 Network Architecture

Table 5.2 shows the details of the OSLN(S) architecture. The first column shows the
name of the layers. The second column shows the operation performed in the cor-
responding layer. The third column shows the kernel size in the convolution layer.
The fourth column shows how many feature maps or neurons are utilized in the con-
volution or fully-connected layer. The difference between OSLN(S) and OSLN (see
Table 4.1 in Section 4.1.2) is Layer 1, i.e., the convolution layer. Thus, we describe
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only Layer 1 of OSLN(S) in this section.

Table 5.2: OSLN(S) architecture.

Layer Operation Kernel Size Feature Maps/Neurons

1 Convolution (1,|S|) 16

Dropout — —

2 Fully-Connected — 2

In Layer 1, OSLN(S) performs a spatial convolution operation to extract the spa-
tial features related to P300 signals from the input tensor. The detailed calculation
in this convolution operation is shown in Equation (5.1), where fki denotes the ith
datum in the kth feature map. wkj denotes the jth weight of the filter and this filter
outputs abstract data for the kth feature map. The activation function we utilize in this
layer is the Rectified Linear Unit (ReLU). In this layer, we utilize Dropout in order to
prevent the network from overfitting. In this layer, we do not use bias in the convo-
lution operation, thus all the learned features are captured by the weights wkj . This
layer outputs 16 feature maps in total.

fki =
∑
sj∈S

xjiwkj (5.1)

5.2.3 Ranking Function

Our proposed novel ranking function used in SLES is given in Equation (5.2), where
scorej is the ranking score for sensor sj used in Algorithm 1. wkj are the weights
described in Equation (5.1). These weights are obtained from the trained OSLN(S),
described in Section 5.2.2.2 and used in Algorithm 1. Note that we take the absolute
value of the weights in Equation (5.2) because weights with a large negative value
also indicate that the corresponding sensors are important in sensor set S. We use
the absolute values of the weights from the spatial convolution layer (i.e., Layer 1 in
Table 5.2) of the trained OSLN(S) in the ranking function to rank the sensors in the
sensor set because [CG11] and [LWG+18] have shown that analyzing the weights of
the spatial convolution layer from trained CNNs for the P300 speller is a potential
method to determine which sensors are more important in the sensor set. For details,
please refer to [CG11] and [LWG+18].
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scorej =
16∑
k=1

|wkj | (5.2)

We have proposed three CNNs with one convolution layer, i.e., OSLN, OCLNN
(proposed and presented in Chapter 3), and OTLN (proposed and presented in Sec-
tion 4.1.2 of Chapter 4). Our ranking function to rank the sensors in the sensor set is
based on the parameterized OSLN instead of a parameterized version of OCLNN as
well as instead of a parameterized version of OTLN. The reason for this is explained
in Section 5.4.2.

5.3 Experimental Evaluation
In this section, we present the experiments, we have performed, in order to compare
the minimal number of sensors selected by our method and other methods to acquire
EEG signals while keeping the spelling accuracy the same as the accuracy achieved
when the initial large sensor set is used. We first introduce our experimental setup and
then we present and analyse the obtained experimental results.

5.3.1 Experimental Setup

To perform the experiments, we use 3 different implementations of the P300 speller:
the OCLNN-based P300 speller (proposed and presented in Chapter 3), the EoCNN-
based P300 speller (proposed and presented in Chapter 4), and the SVM-based P300
speller [RG08]. We want to confirm the robustness of our SLES method by showing
that our method is effective for different P300 speller implementations.

We compare our SLES method with 12 other sensor selection methods. These
methods are summarized in Table 5.3. In this table, the first row gives the names of
the different methods. The second row describes the sensor elimination algorithms
used in the methods, where BE-1 denotes a backward elimination algorithm which
eliminates one sensor at a time; BE-4 denotes a backward elimination algorithmwhich
eliminates 4 sensors at a time; “–” denotes that the corresponding method does not use
a backward elimination algorithm. The last row indicates the ranking functions used
in the methods, where P300 denotes the P300 detection accuracy; Char denotes the
average character spelling accuracy across all epochs; AUC denotes Area Under the
Receiver Operating Characteristic [CRT+14];Ccs denotes the ranking score proposed
in [RG08]; SSNR denotes Signal to Signal and Noise Ratio [CR+11]; CCNN and
BN3 denote that the corresponding method selects sensors by analysing the weights
obtained from the trained networks CCNN [CG11] and BN3 [LWG+18], respectively.
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Table 5.3: Methods compared with SLES.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Algo. BE-1 BE-1 BE-1 BE-1 BE-1 BE-4 BE-4 BE-4 BE-4 BE-4 – –

Function P300 Char AUC Ccs SSNR P300 Char AUC Ccs SSNR CCNN BN3

We compare the minimal number of sensors selected by the different methods
to acquire EEG signals while keeping the spelling accuracy the same as the accu-
racy achieved when the initial large sensor set is used. We use the training dataset
of Dataset II, III-A and III-B (described in Section 2.5) as the preliminary dataset to
perform sensor selection using the different sensor selection methods to select sensor
subsets for the corresponding subject. More specifically, for our SLES method, this
preliminary dataset is used to train a OSLN(S) and calculate scorej in each iteration
of our SLES method (see Algorithm 1). For the sensor selection methods C1 , C2 ,
C3 , C4 , C5 , C6 , C7 , C8 , C9 , and C10 (see Table 5.3), this preliminary dataset is
used to calculate the P300 detection accuracy (for C1 and C6), the average character
spelling accuracy across all epochs (for C2 and C7), AUC (for C3 and C8), the Ccs

score (for C4 and C9), and the SSNR score (for C5 and C10). For the sensor selec-
tion methods C11 and C12 (see Table 5.3), this preliminary dataset is used to train
CCNN (for C11) and BN3 (for C12) in order to analyze the weights of the trained
CCNN and BN3 to select appropriate sensor subsets from the initial sensor set. Af-
ter using different sensor selection methods to select sensor subsets, we calculate the
spelling accuracy of the aforementioned OCLNN-based P300 speller, EoCNN-based
P300 speller, and SVM-based P300 speller with the selected sensor subsets. The train-
ing datasets of Dataset II, III-A and III-B are used to train the classifier used in the
aforementioned P300 speller implementations with the selected sensor subsets. Then,
the test dataset of Dataset II, III-A and III-B are used to calculate the spelling accuracy
of the aforementioned P300 speller implementations with the selected sensor subsets.
The spelling accuracy is calculated using Equation (5.3). In this equation, accmchar(k)
denotes the spelling accuracy when using the first k epochs for each character and us-
ing the EEG signals acquired with the selected sensor subset containingm number of
sensors. Nm

tc(k) denotes the number of truly predicted characters when using the first k
epochs for each character and using the EEG signals acquired with the selected sensor
subset containing m number of sensors, and Sc denotes the number of all characters
in the evaluation dataset. After the evaluation of the spelling accuracy, the minimal
number of sensors needed to acquire EEG signals for epoch k is calculated asmmin,
wheremmin is the minimalm ∈ [1, 63] which makes accmchar(k) >= acc64char(k).
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accmchar(k) =
Nm

tc(k)

Sc
(5.3)

The setup for our SLES algorithm (Algorithm 1) is the following. The input to
SLES is S = {s1, s2, ..., sj , ... sC} and Es. We set C=64 because the datasets used in
the experiments are recorded with 64 sensors. We set Es=4. For detailed discussion
whyEs=4 see Section 5.4.1. SLES usesOSLN(S) as the ranking function. OSLN(S)

uses the input tensor (N × |S|). N = 240 because the signal sampling frequency is
240 Hz and we take each individual pattern to be the signal samples between 0 and
1000 ms posterior to the beginning of each intensification.

5.3.2 Experimental Results

Table 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 show the minimal number of sen-
sors selected by the different sensor selection methods to acquire EEG signals while
keeping the spelling accuracy the same as the accuracy achieved when the initial large
sensor set of all 64 sensors is used. The first column in the tables lists the different
selection methods we compare. Each row provides the minimal number of sensors
selected by a method to acquire EEG signals for different epoch numbers k ∈ [1, 15].
A number in bold indicates that the minimal number of sensors selected by the cor-
responding method is the lowest among all methods. Overall, the minimal number
of sensors selected by our SLES method is lower than the minimal number of sen-
sors selected by all other methods in most cases. SLES is able to reduce the minimal
number of sensors selected by other methods with up to 44 sensors.

For the P300 speller with our CNN-based classifiers, i.e., OCLNN and EoCNN,
(see Table 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9), in 83 out of 90 cases, the minimal number of
sensors selected by our SLES is lower than the minimal number of sensors selected by
all other methods. Our SLES is able to reduce the minimal number of sensors selected
by other methods with up to 44 sensors. The largest reduction occurs when comparing
the minimal number of sensors selected by SLES with the minimal number of sensors
selected by C8 on epoch number k = 7 for Dataset III-A using the OCLNN-based
P300 speller.

For the P300 speller with the SVM-based classifier (see Table 5.10, 5.11 and 5.12),
in 41 out of 45 cases, the minimal number of sensors selected by our SLES is lower
than theminimal number of sensors selected by all other methods. Our SLES is able to
reduce theminimal number of sensors selected by othermethodswith up to 40 sensors.
The largest reduction occurs when comparing the minimal number of sensors selected
by SLES with the minimal number of sensors selected byC12 on epoch number k = 2
for Dataset III-B.
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Finally, our SLES method is robust because: 1) SLES is effective in reducing the
number of sensors when the P300 speller is implemented with different classifiers.
From Table 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12, we can see that no matter
the P300 speller is implemented with CNN-based classifier or SVM-based classifier,
the minimal number of sensors selected by SLES is lower than the minimal number
of sensors selected by all other methods in most cases; 2) SLES is effective when
it is used for different subjects, i.e., no matter that SLES is used with Dataset III-A,
Dataset III-B or Dataset II, the minimal number of sensors selected by SLES is lower
than the minimal number of sensors selected by all other methods in most cases.

Table 5.4: Minimal number of sensors selected by different methods for Dataset II.
The P300 speller is implemented using the CNN-based classifier OCLNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 11 11 46 15 22 11 9 3 3 3 3 4 3 3 3
C1 32 30 47 39 38 22 16 6 6 6 6 6 6 7 6
C2 17 20 55 19 34 15 12 6 5 3 4 3 6 7 7
C3 18 18 47 18 30 10 12 6 5 3 5 6 6 6 6
C4 24 27 49 17 28 8 10 7 6 7 4 3 3 5 6
C5 40 33 48 41 38 35 20 9 8 9 9 8 9 9 8
C6 48 33 49 47 32 30 28 28 20 15 10 20 10 15 15
C7 44 32 49 48 31 27 27 27 22 18 10 10 8 10 10
C8 44 36 50 38 33 32 25 25 10 10 10 10 10 17 12
C9 45 35 44 34 34 34 25 25 10 17 18 17 15 15 15
C10 48 35 49 44 40 30 33 29 21 19 20 20 20 18 17
C11 25 25 54 24 24 14 15 15 10 10 12 17 15 15 15
C12 29 27 59 25 31 22 15 18 13 13 15 18 19 21 18

5.4 Discussions

In this section, we discuss the configuration of input parameter Es in SLES (see Al-
gorithm 1). Also, we discuss the impact of different CNN architectures on selecting
sensors.
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Table 5.5: Minimal number of sensors selected by different methods for Dataset III-A.
The P300 speller is implemented using the CNN-based classifier OCLNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 17 50 50 25 40 35 20 50 60 20 50 35 21 16 35
C1 27 64 58 59 55 64 43 58 64 29 57 49 29 29 53
C2 29 64 64 60 59 59 36 60 60 31 56 56 31 28 60
C3 28 64 64 60 64 60 55 64 64 36 64 55 39 39 46
C4 53 64 63 64 64 64 60 64 61 61 64 56 55 37 61
C5 30 64 56 64 55 64 43 63 64 31 64 57 36 33 55
C6 30 63 64 64 64 64 57 64 64 61 64 53 53 53 59
C7 44 57 64 64 64 64 62 64 64 55 64 53 59 52 51
C8 49 59 60 63 64 64 64 63 64 60 64 56 56 54 56
C9 22 64 56 55 58 64 56 56 64 34 52 48 27 36 34
C10 34 63 64 64 64 64 59 64 64 61 64 58 61 53 59
C11 25 64 56 55 58 64 56 56 64 34 54 48 27 36 39
C12 28 64 64 56 64 64 58 56 64 41 64 53 39 36 41

5.4.1 Configuration of Es in SLES

In this section, we show how we configure the input parameter Es in SLES. We use
only the preliminary dataset of Dataset III-A and use the OCLNN-based P300 speller
implementation to show the experiments on how to tune Es because we obtain the
same Es value when we perform experiments using all datasets and using all the
aforementioned P300 speller implementations to tune Es for SLES. We divide the
preliminary dataset of Dataset III-A into two parts. The first part contains 60% of the
preliminary dataset of Dataset III-A. The second part contains the left 40% of the pre-
liminary dataset of Dataset III-A. The first part, i.e., the 60% of the preliminary dataset
of Dataset III-A, is used to train OSLN(S) (see Section 5.2.2) while running SLES
with differentEs configurations, i.e., Es=1, 2, 4, 8, 16, 32 and 64. With eachEs con-
figuration, SLES selects a set of sensor subsets for Dataset III-A. The second part, i.e.,
the left 40% of the preliminary dataset of Dataset III-A, is used to evaluate the spelling
accuracy of the aforementioned P300 speller implementation with the selected sensor
subsets. The P300 spelling accuracy is calculated using Equation (5.3). Then, we
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Table 5.6: Minimal number of sensors selected by different methods for Dataset III-B.
The P300 speller is implemented using the CNN-based classifier OCLNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 25 17 31 27 26 21 27 32 37 32 31 29 34 29 23
C1 32 23 31 28 31 24 32 40 43 44 38 32 42 35 26
C2 28 24 52 38 36 25 35 45 41 41 31 30 42 38 31
C3 26 29 42 50 35 23 32 54 49 48 38 29 39 38 33
C4 31 25 61 40 45 24 38 57 60 57 59 55 49 47 43
C5 44 33 36 34 31 24 34 41 43 48 38 42 42 37 26
C6 50 56 55 49 48 58 48 50 50 50 48 44 51 49 45
C7 52 48 49 49 50 49 49 59 48 48 48 46 45 47 46
C8 49 49 54 52 49 54 48 59 49 49 49 44 46 44 44
C9 44 56 49 49 40 25 35 39 39 49 51 37 34 35 42
C10 49 52 55 44 50 51 46 50 52 51 49 50 51 49 50
C11 44 56 49 49 40 25 35 49 39 49 51 37 38 34 42
C12 54 61 59 55 52 27 30 42 45 63 54 48 47 34 42

calculate the minimal number of sensorsmmin for the different Es configurations as
described in Section 5.3.1. In this experiment, we divide the preliminary dataset of
Dataset III-A into two parts, i.e., one part containing 60% of the preliminary dataset of
Dataset III-A and one part containing the left 40% of this dataset because the majority
of the researchers use this ratio to split a dataset [XMYR16, VELB18, LLJ+18].

The experimental results are shown in Table 5.13. The first column in the ta-
ble lists the different configurations of Es in SLES. Each row provides the minimal
number of sensors selected by SLES for different epoch numbers k ∈ [1, 15]. A num-
ber in bold indicates that the minimal number of sensors selected by SLES with the
corresponding Es configuration is the lowest compared with the minimal number of
sensors selected by SLES with other Es configurations. From Table 5.13, we can see
that, in most cases, the minimal number of sensors selected by SLES withEs=4 is the
lowest compared to the minimal number of sensors selected by SLES with other Es

configurations. Therefore, we set Es=4 when using SLES.
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Table 5.7: Minimal number of sensors selected by different methods for Dataset II.
The P300 speller is implemented using the CNN-based classifier EoCNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 10 16 28 19 22 9 8 3 3 3 3 4 3 3 3
C1 28 33 40 41 38 19 15 6 6 6 6 6 6 7 6
C2 15 24 48 19 34 14 12 6 5 3 4 3 6 7 7
C3 14 20 41 20 30 9 10 6 5 3 5 6 6 6 6
C4 19 29 43 21 28 7 9 7 6 8 4 3 3 5 6
C5 31 34 42 43 38 31 17 9 8 9 9 8 9 9 8
C6 43 35 44 49 33 29 25 27 20 15 10 20 10 15 15
C7 39 32 45 52 31 27 26 27 22 18 10 10 8 11 10
C8 37 36 47 40 33 30 25 25 10 10 10 10 10 17 12
C9 42 37 43 36 34 33 24 25 10 18 18 17 15 15 15
C10 43 38 45 47 40 28 32 29 21 19 20 20 20 18 15
C11 19 29 48 25 23 13 12 15 10 10 11 17 15 15 15
C12 26 31 53 28 31 18 13 18 13 13 15 18 19 19 18

5.4.2 Exploring the Impact of the CNNArchitecture on Sensor Selection

We perform experiments to explore the impact of different CNN architectures on the
sensor selection process in order to address the issue mentioned in the third paragraph
of Section 5.1 and the issue mentioned at the end of Section 5.2.3. The P300 speller
implemention used for this experiment is the CNN-based classifier OCLNN. We use
the preliminary dataset of Dataset III-A to train our OSLN, OTLN (proposed and pre-
sented in Section 4.1.2 of Chapter 4), OCLNN (proposed and presented in Chapter 3),
CCNN [CG11], and BN3 [LWG+18]. We select sensor subsets by directly analyzing
the weights of the convolution layer of OSLN, OCLNN, and OTLN, as well as se-
lect sensor subsets by directly analyzing the weights of the first convolution layer of
CCNN and BN3 (as done in [CG11] and [LWG+18]). We use the evaluation dataset
of Dataset III-A to evaluate the P300 spelling accuracy of the aforementioned P300
speller implementation with the selected sensor subsets. Then, we calculate the min-
imal number of sensors mmin selected by analysing the weights of OSLN, OCLNN,
OTLN, CCNN, and BN3. For the detailed calculation ofmmin see Section 5.3.1.
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Table 5.8: Minimal number of sensors selected by different methods for Dataset III-A.
The P300 speller is implemented using the CNN-based classifier EoCNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 18 39 37 21 41 38 20 39 44 23 46 33 21 16 31
C1 27 51 44 55 55 60 43 46 50 30 52 46 29 29 50
C2 30 53 50 56 59 55 36 49 52 35 51 54 31 27 56
C3 30 53 50 56 64 56 55 52 53 39 59 53 39 39 41
C4 55 52 48 59 63 60 60 52 49 62 60 52 55 37 56
C5 31 54 51 59 55 60 43 50 50 36 59 55 36 33 50
C6 31 52 50 58 64 59 57 53 52 62 61 50 54 53 56
C7 44 56 52 55 62 60 61 51 53 58 60 50 59 52 48
C8 50 57 47 52 64 60 64 50 52 61 60 51 56 54 53
C9 23 55 43 51 55 58 56 45 51 40 48 42 27 36 31
C10 34 56 49 53 64 60 59 64 52 62 60 53 61 53 52
C11 26 53 42 50 58 61 56 46 52 39 51 44 26 36 36
C12 30 60 48 55 64 63 58 52 53 44 59 48 39 36 40

The experimental results are shown in Table 5.14. The first column in the table
lists the different CNNs. Each row provides theminimal number of sensors selected by
analysing the weights of the different CNNs for different epoch numbers k ∈ [1, 15].
A number in bold indicates that the minimal number of sensors selected by analysing
the weights of the corresponding CNN is the lowest, compared to the minimal number
of sensors selected by analysing the weights of other CNNs.

Table 5.14 shows that the minimal number of sensors selected by analysing the
weights of our proposed one-convolution-layer CNNs, i.e., OSLN, OCLNN, as well
as OTLN, is lower than the minimal number of sensors selected by analysing the
weights of CCNN and BN3. The reason is the following. CCNN and BN3 have
multiple convolution layers. The information needed for proper sensor selection is
distributed over the weights of all convolution layers. In CCNN and BN3, only the
weights of the first convolution layer are used for analysis and proper sensor selection
because the weights of the other convolution layers can hardly be used for proper
sensor selection. This is because the information for the importance of each sensor
in the sensor set is stored in the input neurons of the input tensor to a CNN. This
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Table 5.9: Minimal number of sensors selected by different methods for Dataset III-B.
The P300 speller is implemented using the CNN-based classifier EoCNN.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 25 26 28 27 23 14 16 25 30 29 33 22 30 29 23
C1 31 30 28 28 27 18 23 34 37 40 37 29 39 35 26
C2 28 32 48 38 32 20 24 38 35 39 31 27 39 38 31
C3 26 40 38 50 33 21 22 47 42 45 36 26 37 38 33
C4 31 31 57 40 42 20 25 50 53 52 56 40 40 47 43
C5 44 39 33 34 29 22 26 34 36 46 38 36 38 37 26
C6 50 60 50 49 45 42 37 45 45 49 46 38 47 49 45
C7 52 55 48 49 46 39 38 52 40 47 47 41 41 45 46
C8 49 55 51 52 48 45 37 53 42 46 45 37 41 44 44
C9 44 62 46 49 38 23 24 35 33 45 50 32 29 36 42
C10 50 60 52 44 49 41 35 44 46 48 49 41 47 49 50
C11 44 60 48 49 37 23 25 36 35 42 49 30 35 34 41
C12 54 64 56 55 45 26 28 42 41 51 52 38 40 34 42

input tensor is directly related to the first convolution layer of CCNN and BN3 by
directly connecting each receptive field of the input neurons in the input tensor with
each neuron in the first layer of CCNN and BN3. These connections are expressed by
their corresponding weight in the first convolution layer. Thus, the weights of the first
convolution layer of CCNN and BN3 can be used for analysis and sensor selection.
However, the weights of the other convolution layers of CCNN and BN3 only express
the connections of the neurons of the first convolution layer with the neurons of the
other convolution layers. We can hardly build any direct relation between the input
tensor (that stores the information for the importance of each sensor in the sensor
set) with the neurons in the other convolution layers of CCNN and BN3 by using the
weights of these layers. As a result, the weights of the other layers of CCNN and BN3
can hardly be used for analysis and proper sensor selection. Therefore, CCNN and
BN3 cannot use all the information available for proper sensor selection. In contrast,
our OSLN, OCLNN, OTLN have only one convolution layer. All the information
needed for sensor selection is captured by the weights of the single convolution layer
of OSLN, OCLNN, and OTLN.We analyse the weights of the single convolution layer
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Table 5.10: Minimal number of sensors selected by different methods for Dataset II,
The P300 speller is implemented using the SVM-based classifier ESVM [RG08].

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 13 10 36 20 31 16 8 4 3 5 3 5 3 6 3
C1 30 32 42 38 43 28 15 8 6 9 7 10 6 8 6
C2 25 28 40 29 40 19 16 9 6 11 3 11 7 6 8
C3 21 23 38 30 34 25 13 8 7 10 6 14 7 7 7
C4 26 24 36 33 38 18 14 10 8 12 5 13 4 9 9
C5 43 29 37 40 41 36 24 11 9 13 8 12 10 16 11
C6 50 38 52 50 50 33 26 30 18 19 11 24 12 14 16
C7 47 40 55 48 49 29 29 29 16 21 13 23 11 17 13
C8 50 37 54 42 46 31 30 29 16 23 13 20 16 16 19
C9 51 35 49 39 54 39 29 31 19 25 14 19 13 19 17
C10 49 44 50 40 50 30 31 26 20 21 19 19 19 20 16
C11 28 30 56 30 36 19 17 16 9 20 16 19 16 17 12
C12 31 33 61 36 38 23 18 20 11 24 20 21 21 26 14

in OSLN, OCLNN, and OTLN to select sensors. Thus, OSLN, OCLNN, and OTLN
use all the information available for proper sensor selection compared to CCNN and
BN3. As a result, OSLN, OCLNN, and OTLN can select more appropriate sensor
subsets and further reduce the minimal number of sensors needed to acquire EEG
signals without losing spelling accuracy. The aforementioned discussion explains the
issue mentioned in the third paragraph of Section 5.1.

The experimental results in Table 5.14 also explain why in Section 5.2.3, our rank-
ing function to rank the sensors in the sensor set is based on OSLN instead of OCLNN
and OTLN. When compared with OTLN, the minimal number of sensors selected by
analyzing the weights of OSLN is lower than the minimal number of sensors selected
by analyzing the weights of OTLN. Therefore, our ranking function in SLES is based
on OSLN instead of OTLN. When compared with OCLNN, the minimal number of
sensors selected by analyzing the weights of OSLN is comparable with the minimal
number of sensors selected by analyzing the weights of OCLNN. However, the net-
work complexity of OSLN (8,722 parameters) is only 51.67% of the complexity of
OCLNN (16882 parameters). This means that the time of training the OSLN is much
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Table 5.11: Minimal number of sensors selected by different methods for Dataset III-
A, The P300 speller is implemented using the SVM-based classifier ESVM [RG08].

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 19 44 54 38 40 42 33 56 58 39 44 27 35 21 36
C1 31 56 58 49 45 57 44 54 64 43 55 51 46 32 56
C2 32 53 57 48 44 59 47 55 64 43 50 53 47 32 55
C3 29 53 54 48 47 56 35 55 63 45 52 57 42 36 49
C4 56 50 53 44 42 55 31 54 60 56 49 51 43 37 57
C5 31 55 58 50 45 49 43 60 64 46 58 48 47 33 57
C6 35 60 61 57 54 56 52 64 64 53 62 59 57 50 62
C7 43 59 61 55 49 57 52 64 64 50 62 58 55 50 62
C8 47 54 64 57 48 54 55 62 64 59 57 52 56 49 63
C9 33 55 60 51 48 62 59 63 64 56 53 54 39 46 49
C10 33 62 62 59 53 57 57 64 64 54 61 60 59 52 55
C11 29 61 59 54 55 59 56 58 64 46 53 45 41 40 37
C12 35 64 63 56 59 61 60 59 64 51 58 47 44 46 43

smaller than the time of training the OCLNN. Thus, the speed of SLES with the rank-
ing function based on OSLN is much higher than the speed of SLES with the ranking
function based on OCLNN (see Line 2 to Line 4 in Algorithm 1). Therefore, our
ranking function in SLES is based on OSLN instead of OCLNN.

5.5 Conclusions

In this chapter, we propose a novel sensor selection method, called SLES, for reduc-
ing the number of sensors needed to acquire EEG signals for a P300 speller without
losing spelling accuracy. SLES uses an iterative parameterized backward elimination
algorithm to eliminate and select sensors and it uses our novelOSLN(S) as a ranking
function to evaluate the importance of a sensor. Our SLES is also robust across differ-
ent P300 speller implementations and different subjects. Experimental results show
that the minimal number of sensors selected by our SLES method is lower than the
minimal number of sensors selected by other methods in most cases. Therefore, our
SLES can further reduce the cost and power consumption of the P300 speller, thereby
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Table 5.12: Minimal number of sensors selected by different methods for Dataset III-
B, The P300 speller is implemented using the SVM-based classifier ESVM [RG08].

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SLES 18 19 34 29 17 31 39 41 22 36 24 33 33 26 27
C1 28 27 43 39 32 35 45 50 36 51 36 30 45 37 29
C2 27 25 42 38 29 31 39 54 36 49 40 30 44 30 27
C3 24 31 45 35 26 30 42 49 34 44 38 32 47 26 27
C4 23 26 59 36 27 29 44 52 35 42 37 36 39 37 30
C5 35 29 44 40 29 33 48 50 39 49 38 33 43 40 31
C6 49 58 56 51 44 40 57 61 48 59 46 42 57 51 47
C7 41 52 53 48 46 48 53 63 50 54 49 44 52 47 44
C8 40 50 53 49 47 50 49 60 47 50 41 44 51 50 46
C9 42 51 48 47 41 37 52 61 43 49 45 39 46 44 45
C10 42 54 51 52 38 43 57 61 44 55 50 46 53 50 49
C11 43 55 49 47 34 33 45 53 40 52 51 39 49 29 46
C12 52 59 56 61 46 41 51 64 49 64 56 41 60 30 46

facilitating the utilization of P300 spellers into people’s daily life.
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Table 5.13: Minimal number of sensors selected by SLES with different Es configu-
rations.

Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Es=1 27 56 58 57 50 60 44 53 63 30 55 33 24 19 46
Es=2 18 45 52 34 43 46 28 48 58 26 47 30 20 16 36
Es=4 15 46 49 28 40 36 18 48 59 21 46 27 19 13 38
Es=8 19 54 49 31 41 48 26 48 57 25 46 34 20 13 37
Es=16 22 54 55 42 45 56 39 53 63 29 53 35 25 20 37
Es=32 25 59 57 47 49 58 48 54 63 32 54 37 28 23 41
Es=64 27 60 60 48 50 60 55 55 64 36 59 42 31 24 44

Table 5.14: Minimal number of sensors selected by analysing different CNNs.

Epochs
CNN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
OSLN 23 60 55 49 51 60 53 55 64 31 53 46 27 32 39
OCLNN 22 60 55 49 49 60 53 53 63 32 52 46 27 33 39
OTLN 23 62 56 51 53 62 53 56 64 34 53 46 27 33 39
CCNN 25 64 56 55 58 64 56 56 64 34 54 48 27 36 39
BN3 28 64 64 56 64 64 58 56 64 41 64 53 39 36 41
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