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Chapter 4

Ensemble of Convolutional Neural
Networks for P300 Signal
Detection and Character Spelling

Hongchang Shan, Yu Liu, and Todor Stefanov,

"Ensemble of Convolutional Neural Networks for P300 Speller in Brain Computer Interface,"

In Proceedings of the 28th International Conference on Artificial Neural Networks., pp., Munich,
Germany, September 17-19, 2019.

N Chapter 3, we introduce our simple, yet effective OCLNN for the P300 signal
detection and character spelling. This CNN solves the problems of the state-of-
the-art CNNs for the P300 speller in [CG11, MG15, LWG™ 18] by performing the
spatial convolution and temporal convolution in its first layer using raw signals. Un-
fortunately, OCLNN still has some limitations to extract some relevant and important
features related to P300 signals. OCLNN performs the spatial convolution and the
temporal convolution together, thereby realizing a joint spatial-temporal convolution
in the first layer. This spatial-temporal convolution extracts only P300-related joint
spatial-temporal features in its single convolution layer. OCLNN does not extract
P300-related separate temporal features and separate spatial features. These sepa-
rate temporal features and separate spatial features have proven to be very important
for the P300 speller [FTM ™88, Pol07, PNCB11, HVE06]. Adding several tempo-
ral or spatial convolution layers following the first spatial-temporal convolution layer
of OCLNN is a potential method to enable OCLNN to learn P300-related separate
spatial or separate temporal features. Nevertheless, such method cannot learn well
P300-related separate temporal or spatial features due to the loss of raw information.
The raw information loss happens because the input to these additional temporal or
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spatial convolution layers for OCLNN is the abstract signals generated by the first
spatial-temporal convolution layer instead of raw signals.

In order to solve this problem of OCLNN, we proposes a novel network, which
combines OCLNN with two other novel CNNs, we have devised, in order to learn
well the aforementioned P300-related separate spatial and separate temporal features,
which are not extracted by OCLNN, together with the spatial-temporal features ex-
tracted by OCLNN. The novel contributions of this chapter are the following:

e Each of the two novel CNNs has only one convolution layer. One of the novel
CNN s performs only the temporal convolution in its convolution layer (the first
layer) to learn P300-related separate temporal features. The other novel CNN
performs only the spatial convolution in its convolution layer (the first layer) to
learn P300-related separate spatial features. These two novel CNNs are able
to learn well P300-related separate temporal and separate spatial features be-
cause the input to each of the two novel CNNs is raw signals. In addition, we
propose a novel network which is an ensemble of these two novel CNNs and
OCLNN. This network extracts more useful P300-related features than OCLNN
alone and is able to achieve higher P300 signal detection accuracy and character
spelling accuracy than OCLNN.

e Experimental results on three benchmark datasets show that our proposed en-
semble of CNNs is able to increase the P300 signal detection accuracy, the
character spelling accuracy, and the communication speed achieved by OCLNN
with up to 4.32%, 5%, and 6.05 bits/min, respectively. Also, our proposed en-
semble of CNNs outperforms other related methods with a significant P300
signal detection accuracy improvement up to 18.55%, a significant character
spelling accuracy improvement up to 38.72%, and a significant communication
speed improvement up to 21.75 bits/min. In terms of the network complexity,
the complexity of our proposed ensemble of CNNs is lower than the complex-
ity of the CNN in [MG15], and higher than the complexity of OCLNN and the
CNNs in [CG11, LWG™18].

The rest of the chapter is organized as follows: Section 4.1 presents our proposed
network (ensemble of CNNs) for the P300 speller. Section 4.2 compares the com-
plexity, the P300 signal detection accuacy, the character spelling accuracy, and the
communication speed between our network and other related methods for the P300
speller. Section 4.3 analyzes our proposed two novel CNNs on extracting P300-related
features, performs an ablation study on our proposed network, and discusses the im-
portance of extracting P300-related features from raw signals. Section 4.4 ends this
chapter with conclusions.
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4.1 Proposed Network

This section introduces our proposed network for the P300 signal detection and char-
acter spelling in the P300 speller. We call our proposed network Ensemble of Con-
volutional Neural Networks (EoCNN). EOCNN combines two novel CNNs, we have
devised, together with our proposed OCLNN presented in Chapter 3. We call these
two novel CNNs as follows: One Spatial Layer Network (OSLN) and One Temporal
Layer Network (OTLN).

4.1.1 Ensemble of Convolutional Neural Networks

The workflow of our EOCNN is shown in Figure 4.1. First, the EEG signals are pre-
processed to construct the input tensor. For the details of the construction of the input
tensor, please refer to Section 3.2.1. Then, the input tensor is sent to three different
CNNgs, i.e., OSLN, OTLN, and OCLNN. OSLN and OTLN are described in Sec-
tion 4.1.2. OCLNN is our proposed simple CNN presented in Chapter 3. OSLN
extracts P300-related separate spatial features. OTLN extracts P300-related separate
temporal features. OCLNN extracts P300-related joint spatial-temporal features. Our
EoCNN uses the ensemble of the outputs from OSLN, OTLN, and OCLNN for the
P300 signal detection and character spelling in the P300 speller. The detection of P300
signals and the inference of characters by using EOCNN is introduced in Section 4.1.4.

P300

EEG Signals

non-
P300
Input P300 Ensemble of outputs
- REEIEEY  Tensor OTLN f?rfclasS “pP300”
non to infer characters

P300

Figure 4.1: Workflow of our EOCNN

4.1.2 Proposed OSLN and OTLN

The architectures of our proposed OSLN and OTLN are described in Table 4.1 and
Table 4.2, respectively. OSLN and OTLN are used in EOCNN (see Section 4.1.1),
where OSLN is designed to learn P300-related separate spatial features and OTLN is
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designed to learn P300-related separate temporal features. Since only the convolution
layer is different between OSLN and OTLN, below we describe the architectures of
OSLN and OTLN together.

Table 4.1: OSLN architecture.

Layer Operation Kernel Feature Maps
or Neurons
1 Convolution (1,C) 16
Dropout — —
Output Fully-Connected = — 2

Table 4.2: OTLN architecture.

Layer Operation Kernel  Feature Maps
or Neurons
1 Convolution (N/15,1) 16
Dropout — —
Output Fully-Connected — 2

Layer 1 of OSLN (see Table 4.1) performs the spatial convolution operation with
the kernel size (1, C'). This convolution operation converts each receptive field of the
signal samples into an abstract datum in a feature map. The signal samples in each
receptive field are from all C sensors in the space domain and sampled at only one
time point in the time domain. Therefore, this convolution operation extracts P300-
related separate spatial features. We use the kernel size (1, C) in order to make this
layer to learn the spatial features from EEG signals acquired using all sensors. The
reason for using all sensors is that it is more helpful to increase the spelling accuracy
than using only part of all sensors [CG11, MG15, LWG™18, SLS18]. The input to
this layer is raw signals, so this layer learns P300-related separate spatial features from
raw signals. This layer generates 16 feature maps, which are the input to Layer Output
of OSLN.

Layer 1 of OTLN (see Table 4.2) performs the temporal convolution operation
with the kernel size (N/15, 1). The temporal convolution operation converts each
receptive field of the signal samples into an abstract datum in a feature map. The
signal samples in each receptive field are sampled within a certain time period and
are acquired from only one sensor. Therefore, this convolution operation extracts
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P300-related separate temporal features. We use the kernel size (/N/15, 1) because
Chapter 3 has shown that 1/15 of the temporal signal samples is a proper receptive
field for a CNN to learn P300-related temporal features. The input to this layer is raw
signals, so this layer learns P300-related separate temporal features from raw signals.
This layer generates 16 feature maps, which are the input to Layer Output of OTLN.

In both Layer 1 of OSLN and Layer 1 of OTLN, the activation function is the
Rectified Linear Unit (ReLU) function. We employ Dropout [SH™ 14], with a rate of
0.4, to prevent OSLN and OTLN from overfitting (introduced in Section 2.2.3).

Layer Output of OSLN (see Table 4.1) and Layer Output of OTLN (see Table 4.2)
are the same. Layer Output is a fully-connected layer with two neurons. These two
neurons represent the class “P300” (the presence of a P300 signal) and the class “non-
P300” (the absence of a P300 signal), respectively. The activation function used in this
layer is the Softmax function which outputs the predicted probability for the “P300”
class and the “non-P300” class.

OSLN and OTLN each uses only one convolution layer. OSLN uses only one
convolution layer because it does not make sense to add more spatial convolution lay-
ers for OSLN. This CNN is designed to only learn P300-related spatial features from
the EEG signals recorded with all C' sensors in the first layer. If we add more spatial
convolution layers after its first spatial convolution layer to learn P300-related spatial
features, these added layers should learn spatial features from the abstract signals gen-
erated by the first spatial convolution layer. However, these abstract signals include
only the time domain and do not have the space domain because the first convolution
layer uses a receptive field including all C sensors. Thus, these abstract signals can-
not be used to extract further spatial features. OTLN also uses only one convolution
layer because one convolution layer is enough to extract useful P300-related separate
temporal features (as shown and discussed later in Section 4.3.1).

4.1.3 Training

The training process used for our EOCNN is the same as the training process used for
our OCLNN (proposed in Chapter 3). For the details of the training process, please
refer to Section 3.2.3.

4.1.4 P300 Signal Detection and Character Spelling using EoOCNN

We use the outputs of the Softmax function for class "P300" and class "non-P300" in
Layer Output of OSLN, OTLN, and OCLNN to detect P300 signals and infer char-
acters. For epoch 7 and for intensification ;7 we use P(l) (1, 7) to denote the output of
the Softmax function for class "P300" in OSLN, Pg (i, j) to denote the output of the
Softmax function for class "non-P300" in OSLN, P(I)T(i7 Jj) to denote the output of
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the Softmax function for class "P300" in OTLN, PgT(i, ) to denote the output of the
Softmax function for class "non-P300" in OTLN, Péc (1, 7) to denote the output of
the Softmax function for class "P300" in OCLNN, PJ; (i, j) to denote the output
of the Softmax function for class "non-P300" in OCLNN. Therefore, for epoch ¢ and
for intensification j, Pé (1, 7) denotes the predicted probability by OSLN for class
“P3007; Pg (i, j) denotes the predicted probability by OSLN for class “non-P300”;
PJ(i, 7) denotes the predicted probability by OTLN for class “P300”; P3(4, 5) de-
notes the predicted probability by OTLN for class “non-P300”; P(l)c (4, 7) denotes
the predicted probability by OCLNN for class “P300”; and ch 1.(i,7) denotes the
predicted probability by OCLNN for class “non-P300”.

We use Equation (4.1), (4.2), and (4.3) for the detection of P300 signals, where
PL. (i, j) denotes the predicted probability by EoOCNN for class “P300”; PR, (i, j)
denotes the predicted probability by EoCNN for class “non-P300”; EoC' denotes
our EOCNN classifier; and X; ;) denotes the input tensor to be classified. Equa-
tion (4.1) and (4.2) show the ensemble processing of the outputs from OSLN, OTLN,
and OCLNN. Equation (4.3) shows the detection of a P300 signal. In this equation,
EoC(X(; ;) = 1 means that EOCNN detects a P300 signal from the input tensor
X(i,j) and EoC(X(; ) = 0 means that EOCNN does not detect a P300 signal from
this input tensor. After using Equation (4.3) to detect P300 signals, we can assess the
performance of our proposed EOCNN in terms of the P300 signal detection accuracy
(see Section 4.2.2).

PEOC(Zh]) = g X (Pés(l,j) + PéT(Zaj) + PéCL(Zh])) (41)
0 .o 1 0 /- - 0 /. - 0 ..

Proc(iyj) = 3 % (Pos(i,g) + Por(i, j) + Pocr(i, 7)) 4.2)
R 1 Zf P]%L‘OC(ivj)>PgoC(i7j)

EoC(X(i5) = { 0 otherwise “.3)

We use Péoc(i, Jj), the output of EoOCNN for class “P3007, to calculate the po-
sition of the target character in the P300 speller character matrix. For the detailed
calculation process, please refer to Section 2.4.2, Equation (2.30), (2.31), and (2.32).

4.2 Experimental Evaluation

The experimental setup used for the evaluation, presented in this section, is the same as
the experimental setup used in Chapter 3 (for detailed description of the experimental
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setup please see Section 3.3.1). We first compare the complexity of our EOCNN with
the complexity of other related CNNs for the P300 speller in Section 4.2.1. Then,
we compare the P300 signal detection accuracy achieved by our EOCNN and other
related methods in Section 4.2.2. Also, we compare the character spelling accuracy
achieved by our EOCNN and other related methods in Section 4.2.3. Finally, we com-
pare the ITR of the P300 speller based on our EOCNN and other related methods in
Section 4.2.4.

4.2.1 Complexity

In this section, we compare the complexity of EOCNN, in terms of the number of pa-
rameters (explained in Section 3.3.2) and layers, with the complexity of the networks
OCLNN (proposed and presented in Chapter 3), CCNN [CG11], BN3 [LWG™'18],
and CNN-R [MG15] briefly described in Section 3.1. Concerning the complexity of
EoCNN, since EoOCNN is the ensemble of OSLN, OTLN, and OCLNN, the number
of the parameters of EOCNN is calculated as the sum of the number of parameters of
OSLN, OTLN, and OCLNN, and the number of the layers used in EOCNN is calcu-
lated as the sum of the number of the layers used in OSLN, OTLN, and OCLNN. The
complexity of different CNNs is shown in Table 4.3. The first row in the table lists
the CNNs, we compare. The second row provides the number of parameters for each
CNN. The third row shows the number of layers used in each CNN. Table 4.3 shows
that the complexity of EOCNN, in terms of the number of parameters and layers, is
higher than the complexity of OCLNN, CCNN, BN3 and lower than the complexity
of CNN-R.

Table 4.3: Complexity of different CNNs.

EoCNN OCLNN CCNN BN3 CNN-R
Parameters | 56598 16882 37502 39489 21950818
Layers 6 2 4 5 6

4.2.2 P300 Signal Detection Accuracy

This section compares the P300 signal detection accuracies achieved by EOCNN with
the P300 signal detection accuracies achieved by OCLNN (proposed and presented
in Chapter 3), CCNN [CG11], BN3 [LWG™ 18], and CNN-R [MG15] on Dataset II,
III-A and III-B.

The P300 signal detection accuracies are shown in Table 4.4. The first row in
the table lists the CNNs used for comparison. The second, third, and last row show
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the P300 signal detection accuracy of the different CNNs on Dataset II, III-A, and
III-B, respectively. The numbers are given in percentage (%) and calculated using
Equation (3.5). An accuracy number in bold indicates the highest accuracy along a
row. “~” in the table means that the accuracy is not reported in the reference paper
describing the corresponding CNN.

Table 4.4: P300 signal detection accuracy of different CNNs on Dataset II, III-A, and
I11-B.

EoCNN OCLNN CCNN BN3 CNN-R
P300 Accuracy on II 94.76  92.41 - 84.44  86.29

P300 Accuracy on ITI-A | 88.92 84.60 70.37 75.13 73.06

P300 Accuracy on III-B | 89.65 86.40  78.19 79.02 79.80

Overall, EOCNN achieves the highest accuracy among all CNNs on Dataset 11, I11-
A, and III-B. It increases the P300 signal detection accuracies achieved by the other
CNNs with up to 18.55%. Compared with OCLNN, EoCNN is able to increase the
P300 signal detection accuracy achieved by OCLNN with 2.35%, 4.32%, and 3.25%
on Dataset II, Dataset III-A, and Dataset I1I-B, respectively. Compared with the other
related CNNs, on Dataset II, EOCNN is able to increase the P300 signal detection
accuracy achieved by BN3 and CNN-R with 10.32% and 8.47%, respectively. On
Dataset I1I-A, EOCNN is able to increase the P300 signal detection accuracy achieved
by CCNN, BN3, and CNN-R with 18.55%, 13.79%, and 15.86%, respectively. On
Dataset I1I-B, EOCNN is able to increase the P300 signal detection accuracy achieved
by CCNN, BN3, and CNN-R with 11.46%, 10.63%, and 9.85%, respectively.

4.2.3 Character Spelling Accuracy

This section compares the character spelling accuracies achieved by our EOCNN and
the accuracies achieved by OCLNN, CCNN, BN3, CNN-R, and ESVM [RGOS] for
Dataset I1I-A and I1I-B, as well as the character spelling accuracies achieved by EOCNN
and the accuracies achieved by OCLNN, CCNN, BN3, CNN-R, and Bostanov [Bos04]
for Dataset 1I.

The character spelling accuracy achieved by our EOCNN and other methods on
Dataset II, Dataset III-A, and Dataset III-B is shown in Table 4.5, 4.6, and 4.7, re-
spectively. In these tables, the different methods, we compare, are shown in the first
column. The spelling accuracy for different epoch numbers k& € [1, 15] is shown in
each row of the table. A number in bold indicates that the accuracy achieved by the
corresponding method is the highest among all methods. “~ denotes that the corre-
sponding paper, describing the method, does not provide the accuracy number. The
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accuracy numbers in these tables are given in percentage (%). Overall, the spelling
accuracy achieved by our EoCNN is higher than the spelling accuracy achieved by
other methods in most cases. Our EoCNN increases the spelling accuracy achieved
by other methods with up to 38.72%.

Table 4.5: Spelling accuracy achieved by different methods on Dataset II.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EoCNN |83.87 93.55 100 100 100 100 100 100 100 100 100 100 100 100 100

CCNN |58.06 54.83 77.41 93.54 93.54 93.54 93.54 96.77 96.77 100 100 100 100 100 100

CNN-R (70.97 83.87 93.55 96.77 100 100 100 100 100 100 100 100 100 100 100

BN3 |77.42 74.19 80.65 83.87 93.55 96.77 96.77 96.77 100 100 100 100 100 100 100

OCLNN [77.42 90.32 100 100 100 100 100 100 100 100 100 100 100 100 100

Bostanov | 64.52 83.87 93.55 96.77 96.77 100 100 100 100 100 100 100 100 100 100

Table 4.6: Spelling accuracy achieved by different methods on Dataset III-A.

Method Epochs
1 23 45 6 7 8 9101112131415
EoCNN [23 39 61 68 76 81 84 86 88 93 95 98 97 99 99
CCNN |16 33 47 52 61 65 77 78 85 86 90 91 91 93 97
CNN-R |14 28 38 53 57 62 71 75 77 82 89 87 87 92 95
BN3 22 39 58 67 73 75 79 81 82 86 89 92 94 96 98
OCLNN |23 39 56 63 73 79 82 85 90 91 94 95 95 96 99
ESVM |16 32526072 — - - - 83 — - 94 - 97

Table 4.5, 4.6, and 4.7 show that, when compared with OCLNN (proposed and
presented in Chapter 3), the spelling accuracy achieved by EOCNN is higher than the
spelling accuracy achieved by OCLNN in most cases. EoCNN is able to increase
the character spelling accuracy achieved by OCLNN with up to 6.45%, 5%, 5% for
Dataset II, Dataset III-A, and Dataset I1I-B, respectively. However, on epoch number
k =9 in Dataset III-A and on epoch number & = 8 in Dataset III-B, EOCNN decreases
the spelling accuracy achieved by OCLNN. The reason for this is that EOCNN puts
equal importance on OSLN, OTLN, and OCLNN in the ensemble processing of the
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Table 4.7: Spelling accuracy achieved by different methods on Dataset I1I-B.

Method Epochs
1 23 456 7 8 9101112131415
EoCNN [51 66 74 81 84 90 91 92 95 97 98 98 98 98 99
CCNN |35 52 59 68 79 81 82 89 92 91 91 90 91 92 92
CNN-R [36 46 66 70 77 80 86 86 88 91 94 95 95 96 96
BN3 147 59 70 73 76 82 84 91 94 95 95 95 94 94 95
OCLNN |46 62 72 79 84 87 89 93 94 96 97 97 97 98 98
ESVM 3553626875 - — — — 91 — - 96 - 96

outputs from OSLN, OTLN, and OCLNN. For more details of the explaination on this
reason please refer to Chapter 6.

Table 4.5, 4.6, and 4.7 also show that, when compared with other related meth-
ods, for Dataset I, our EOCNN can increase the spelling accuracy achieved by CCNN,
CNN-R, BN3, and Bostanov with up to 38.72%, 12.90%, 19.36%, and 19.35%, re-
spectively. For Dataset II1I-A, our EOCNN can increase the spelling accuracy achieved
by CCNN, CNN-R, BN3, and ESVM with up to 16%, 23%, 7%, and 10%, respec-
tively. For Dataset III-B, our EOCNN can increase the accuracy achieved by CCNN,
CNN-R, BN3, and ESVM with up to 16%, 20%, 8%, and 16%, respectively.

Moreover, our method is robust across different subjects. Table 4.5, 4.6, and 4.7
show that for all three subjects, our EOCNN achieves the highest spelling accuracy
among all other methods in 43 out of 45 cases.

These experimental results also give some insights on how many epochs we should
use for the spelling of one character in the P300 speller. The first insight is from the
fact that, in Table 4.5, the spelling accuracy achieved by CCNN and BN3 on epoch
number k=2 is lower than the spelling accuracy achieved by CCNN and BN3 on epoch
number k=1. This shows that adding more epochs does not necessarily improve the
spelling accuracy for the P300 speller. Such observation is also discussed in more
details in [CG11]. The other insight is from the fact that in Dataset II, we need only 2
epochs to achieve a spelling accuracy which is higher than 90% while in Dataset III-A
and Dataset III-B, in order to achieve a spelling accuracy higher than 90%, we need
at least 10 epochs and 6 epochs, respectively. This indicates that we can use different
number of epochs for different subjects to spell characters using the P300 speller. In
this way, we can use a small number of epochs for a subject when using the P300
speller such that we can significantly decrease the time needed for a subject to spell a
character while keeping an acceptable spelling accuracy.
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4.2.4 Information Transfer Rate

This section compares the Information Transfer Rate (ITR) of the P300 speller based
on our EOCNN and other methods. ITR is calculated using Equation (2.34) and (2.35)
(introduced in Section 2.4.3). The ITR of the P300 speller based on our EoOCNN
and other methods for Dataset II, Dataset III-A, and Dataset III-B is shown in Ta-
ble 4.8, 4.9, and 4.10, respectively. In these tables, the different methods, we com-
pare, are shown in the first column. The ITR for different epoch numbers k € [1, 15]
is shown in each row of the table. A number in bold denotes that the number is the
highest ITR along a row. “—” in a table denotes that the ITR cannot be calculated
because the corresponding method does not provide the spelling accuracy. The ITR
is shown in bits/minute.

Table 4.8: The ITR of the P300 speller based on different methods on Dataset II.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
EoCNN |48.33 40.25 35.25 28.46 23.86 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12
CCNN ]26.58 16.65 22.09 24.73 20.74 17.85 15.67 14.92 13.45 13.2 12.12 11.2 10.41 9.72 9.12
CNN-R [36.68 33.18 30.64 26.41 23.86 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12
BN3 [42.28 27.06 23.65 20.4 20.74 19.07 16.74 14.92 14.5 13.2 12.12 11.2 10.41 9.72 9.12
OCLNN |42.28 37.74 35.25 28.46 23.86 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12
Bostanov [31.46 33.18 30.64 26.41 22.15 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12

Table 4.9: The ITR of the P300 speller based on different methods on Dataset I1I-A.

Method Epochs
12 3 4 5 6 7 8 9 10 11 12 13 14 15
EoCNN |5.77 9.64 15.03 14.44 14.51 13.88 12.96 12.02 11.29 11.35 10.84 10.67 9.71 9.48 8.89
CCNN (296 7.33 991 9.41 10.18 9.7 11.21 10.2 10.63 9.87 9.82 9.25 8.6 8.36 8.51
CNN-R [2.28 556 7.03 9.7 9.13 899 9.82 956 9.01 9.11 9.62 855 7.94 82 8.17
BN3 ]5.33 9.64 13.87 14.1 13.59 12.22 11.69 10.86 10 9.87 9.62 9.44 9.13 8.88 8.69
OCLNN|5.77 9.64 13.11 12.78 13.59 13.32 12.44 11.78 11.74 10.91 10.63 10.02 9.32 8.88 8.89
ESVM [2.96 6.96 11.65 11.82 13.28 - - - - 929 - - 913 - 851

We compare the max-ITR! achieved by our EOCNN and other methods for the
P300 speller. Overall, the max-ITR achieved by our EOCNN is higher than the max-
ITR achieved by all other methods. Our EoCNN is able to increase the max-ITR
achieved by other methods with up to 21.75 bits/min.

!The notion of max-ITR is introduced in Section 3.3.5.
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Table 4.10: The ITR of the P300 speller based on different methods on Dataset III-B.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
EoCNN |21.61 22.4 20.52 19.23 17.15 16.64 14.9 13.55 12.97 12.31 11.55 10.67 9.92 9.27 8.89
CCNN [11.76 153 14.25 14.44 15.47 13.88 12.44 12.76 12.22 1091 10.01 9.07 8.6 8.2 7.69
CNN-R |12.32 12.58 17.05 15.14 14.83 13.6 13.49 12.02 11.29 10.91 10.63 10.02 9.32 8.88 8.33
BN3 |18.97 18.72 18.75 16.2 14.51 14.17 12.96 13.28 12.71 11.81 10.84 10.02 9.13 8.53 8.17
OCLNN|18.32 20.26 19.62 18.45 17.15 15.68 14.32 13.82 12.71 12.06 11.3 10.44 9.71 9.27 8.69
ESVM [11.76 15.78 15.43 1444 142 - - - - 1091 - - 951 - 833

Table 4.8, 4.9, and 4.10 show that, when compared with OCLNN (proposed and
presented in Chapter 3), the max-ITR achieved by our EOCNN is higher than the max-
ITR achieved by our OCLNN on all three datasets. Our EOCNN increases the max-
ITR achieved by our OCLNN with 6.05 bits/min, 1.44 bits/min, and 2.14 bits/min on
Dataset 11, III-A, and III-B, respectively.

Table 4.8, 4.9, and 4.10 also show that, when compared with other related meth-
ods for the P300 speller, for Dataset II, the max-ITR achieved by our EOCNN is
higher than the max-ITR achieved by all other methods, i.e., CCNN, CNN-R, BN3,
and Bostanov. Our EoCNN increases the max-ITR achieved by CCNN, CNN-R,
BN3, and Bostanov with 21.75 bits/min, 11.65 bits/min, 6.05 bits/min, and 15.15
bits/min, respectively. For Dataset III-A, the max-ITR achieved by our EoCNN is
higher than the max-ITR achieved by all other methods, i.e., CCNN, CNN-R, BN3,
and ESVM. Our EoCNN increases the max-ITR achieved by CCNN, CNN-R, BN3,
and ESVM with 3.82 bits/min, 5.21 bits/min, 0.93 bits/min, and 1.75 bits/min, re-
spectively. For Dataset III-B, the max-ITR achieved by our EOCNN is higher than the
max-ITR achieved by all other methods, i.e., CCNN, CNN-R, BN3, and ESVM. Our
EoCNN increases the max-ITR achieved by CCNN, CNN-R, BN3, and ESVM with
6.93 bits/min, 5.35 bits/min, 3.43 bits/min, and 6.62 bits/min, respectively.

Our EoCNN increases the max-ITR achieved by our OCLNN, thereby bringing
the max-ITR more closer to the theoretically achievable maximum ITR (introduced
in Section 2.4.3). Unfortunately, the complexity, in terms of the number of parame-
ters, of EOCNN is 3.35 times higher than the complexity of OCLNN (see Table 4.3).
As described in Section 1.1.2, the low complexity of a CNN-based method for P300
character spelling is an important requirement to build efficient P300 spellers that can
be used in people’s daily life. Therefore, increasing further the complexity of our
EoCNN-based P300 speller in order to further increase the max-ITR of the speller
is not a suitable way to go in terms of efficiency. Thus, further research efforts are
needed to find alternative ways to further increase the max-ITR without sacrificing the
efficiency of the EOCNN-based P300 speller. For example, one possible alternative

68



CHAPTER 4. ENSEMBLE OF CONVOLUTIONAL NEURAL NETWORKS FOR
P300 SIGNAL DETECTION AND CHARACTER SPELLING

ways is to devise a better character matrix (Figure 2.10) which enables the reduction
of the time periods t1, t2, and ¢3 in the P300 speller experiment (see Section 2.4.2 and
Equation (2.34) and (2.35)) . However, such psychology-related research direction is
out of the scope of this thesis.

4.3 Discussions

In this section, first, we analyse our proposed OTLN and OSLN in terms of character
spelling accuracy and discuss the influence of the number of convolution layers on
extracting useful P300-related separate temporal features in Section 4.3.1. Then, we
perform an ablation study on EOCNN to show that we need to combine all three CNNs
(i.e., OSLN, OTLN, OCLNN) in EoCNN in order to achieve high spelling accuracy in
Section 4.3.2. Finally, we explore the importance of extracting P300-related features
from raw signals in Section 4.3.3.

In this section, all the experiments are performed by using the experimental setup
described in Section 3.3.1. We draw similar conclusions from the experimental results
of all datasets, i.e., Dataset I1I-A, Dataset III-B, and Dataset II. Thus, the experimental
results are shown using only Dataset III-A in order to present our conclusions.

4.3.1 Analysis of Our Proposed OTLN and OSLN

First, we perform experiments to show the character spelling accuracy achieved by
OTLN and OSLN, respectively. The experimental results are shown in Table 4.11.
In this table, the different CNNs, we compare, are shown in the first column. The
spelling accuracy for different epoch numbers k € [1, 15] is shown in each row of the
table. A number in bold indicates that the corresponding CNN achieves the highest
accuracy compared to all other CNNs. The accuracy numbers in this table are given
in percentage (%). Table 4.11 shows that OTLN and OSLN both have good ability
to achieve high spelling accuracy when OTLN and OSLN are used independently for
P300 spelling. Thus, OTLN and OSLN are able to extract very useful P300-related
separate temporal features and P300-related separate spatial features, respectively.
Then, we analyse whether OTLN needs more convolution layers to extract P300-
related separate temporal features. In order to analyse the influence of the number
of convolution layers on OTLN, we perform experiments to compare the spelling
accuracy achieved by OTLN and other two CNNs called OTLN-31 and OTLN-6I.
OTLN-31 and OTLN-6I1 use 3 and 6 convolution layers, respectively. These convo-
lution layers use the same kernel size and generate the same number of feature maps
as the convolution layer used in OTLN. The spelling accuracy achieved by OTLN,
OTLN-31 and OTLN-6I is plotted in Figure 4.2. This figure shows that the spelling
accuracy achieved by OTLN-31 and OTLN is almost the same. The spelling accuracy
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achieved by OTLN-61 is lower than the spelling accuracy achieved by OTLN. These
experimental results show that using one convolution layer is enough to extract useful
P300-related separate temporal features for P300 spelling. Using more convolution
layers for the extraction of separate temporal features does not help increasing the
spelling accuracy and may cause overfitting which decreases the spelling accuracy.

Table 4.11: Spelling accuracy achieved by OTLN, OSLN and EoCNN on Dataset
1I-A.

Network Epochs
1 23456 7 8 9101112131415

OTLN |21 34 51 65 69 73 76 81 85 85 88 92 92 93 95

OSLN (24 355563 69 75 78 79 80 82 89 92 94 95 96

EoCNN |23 39 61 68 76 81 84 86 88 93 95 98 97 99 99
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Figure 4.2: Spelling accuracy achieved by OTLN, OTLN-31 and OTLN-61 on Dataset
I-A.
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4.3.2 Ablation Study on EoOCNN

We perform an ablation study on EOCNN to show that we need to combine all three
CNNss (i.e., OSLN, OTLN, OCLNN) in EoCNN in order to achieve high spelling ac-
curacy. We first remove a CNN from EoCNN. Then, we perform experiments to show
the spelling accuracy achieved by the ensemble of the two CNNs left in EOCNN. In
this way, we want to show the importance of each separate CNN in EoCNN for char-
acter spelling in the P300 speller. The experimental results are shown in Table 4.12.
In this table, “-” indicates that we remove a given CNN from EoCNN. For example,
“EoCNN-OSLN” indicates that we remove OSLN from EoCNN. The experimental re-
sults show that after removing any of the individual CNNs from EoCNN, the spelling
accuracy achieved by the ensemble of the two CNNs left is lower compared with the
spelling accuracy achieved by EOCNN when none of the individual CNNs is removed.
This shows that we need to combine all three CNNs (i.e., OSLN, OTLN, OCLNN)
in EOCNN in order to achieve high spelling accuracy. The experimental results from
Table 4.12 also give us some insights. For example, in most cases, the spelling ac-
curacy achieved by EOCNN-OTLN is higher than the spelling accuracy achieved by
EoCNN-OSLN. This shows that P300-related spatial features are more important than
P300-related temporal features on increasing the spelling accuracy. This is because a
large number of sensors (i.e., 64 sensors) are used to acquire EEG signals in the P300
speller. When using a large number of sensors for the acquisition of EEG signals, we
need to put more importance on extracting P300-related spatial features in order to
achieve high spelling accuracy (For more explanation, please see Chapter 6).

Table 4.12: Spelling accuracy achieved by EoOCNN after removing a separate CNN.

Network Epochs
12345678 9101112131415

EoCNN-OTLN (23 39 58 67 75 81 82 86 86 91 93 96 96 97 99

EoCNN-OSLN |22 36 57 66 73 79 80 84 89 92 92 95 95 97 98

EoCNN-OCLNN|22 35 55 67 75 79 80 82 83 89 90 93 95 97 98

EoCNN 2339 61 68 76 81 84 86 88 93 95 98 97 99 99
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4.3.3 Exploration on the Importance of Extracting P300-related Fea-
tures from Raw Signals

We explore the importance of extracting P300-related temporal features from raw
signals. We consider two sets of networks. These two sets of networks are called
“RAW_networks” and “unRAW_networks”, respectively. RAW_networks include
networks EOCNN, OCLNN, EoCNN-OSLN, EoCNN-OTLN, and EoOCNN-OCLNN.
All the networks in set RAW_networks extract P300-related temporal features from
only raw signals. unRAW _networks include networks CCNN, CNN-R and BN3. All
the networks in set unRAW_networks extract P300-related temporal features from
abstract signals. We perform experiments to show the spelling accuracy achieved by
each network in set RAW_networks and the spelling accuracy achieved by each net-
work in set unRAW_networks.

The experimental results are shown in Figure 4.3. In this figure, the spelling
accuracy achieved by the networks in set RAW_networks and the spelling accuracy
achieved by the networks in set unRAW_networks are plotted in different shapes and
colors. This figure shows that in most cases, the spelling accuracy achieved by the
networks in set RAW_networks is higher than the spelling accuracy achieved by the
networks in set unRAW_networks. This fact indicates that extracting P300-related
temporal features from raw signals is able to achieve higher spelling accuracy than
extracting P300-related temporal features from abstract signals.
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Figure 4.3: Spelling accuracy achieved by networks in set RAW_networks and net-
works in set unRAW _networks on Dataset III-A.
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4.4 Conclusions

In this chapter, we propose a novel and effective network, called EoCNN, for the
P300 signal detection and character spelling in the P300 speller. Our EOCNN uses
an ensemble of three different CNNs for P300 spelling. These three CNNs extract
different useful P300-related features. Experimental results on three datasets show
that our EOCNN increases the P300 signal detection accuracy, the character spelling
accuracy, and the ITR achieved by OCLNN (proposed and presented in Chapter 3)
and other related methods for the P300 speller. In addition, our EOCNN is robust
across different subjects.

Unfortunately, the complexity of our EOCNN is only lower than the complexity of
CNN-R, and higher than the complexity of OCLNN, CCNN, and BN3. Thus, when
compared to CNN-R, we should use our EOCNN for the P300 speller because our
EoCNN has lower complexity and achieves higher P300 signal detection accuracy,
character spelling accuracy, and ITR than CNN-R. When compared with OCLNN,
CCNN, and BN3, if the hardware platform used in an efficient P300-based BCI system
cannot support the high complexity of EOCNN, we need to choose a network among
OCLNN, CCNN, and BN3 to be used for the P300 speller. In this case, we should
use OCLNN because OCLNN is better than CCNN and BN3 for the P300 speller
(For detailed explanation on why OCLNN is better than CCNN and BN3 for the P300
speller, please see Section 3.3.5). If the hardware platform used in an efficient P300-
based BCI system can support the complexity of EOCNN, we should use EoOCNN in
such P300-based BCI system because EoOCNN is able to achieve higher P300 signal
detection accuracy, character spelling accuracy, and ITR than OCLNN, CCNN, and
BN3 for the P300 speller.
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