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Chapter 3

A Simple Convolutional Neural
Network for P300 Signal Detection
and Character Spelling

Hongchang Shan, Yu Liu, and Todor Stefanov,
"A Simple Convolutional Neural Network for Accurate P300 Detection and Character Spelling in Brain
Computer Interface,"
In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-18), pp.
1604-1610, Stockholm, Sweeden, July 13-19, 2018.

The P300 speller has been the benchmark and the most-commonly used application
of P300-based BCI systems [FRAG+12]. Previous research on the P300 signal

detection and character spelling in the P300 speller uses traditional machine learning
methods, namely manually-designed signal processing techniques for feature extrac-
tion aswell as classifiers like Support VectorMachine (SVM) and Linear Discriminant
Analysis (LDA). It focuses on enhancing P300 potentials [RS+09], extracting useful
features [Bos04], choosing the most relevant EEG sensors [CR+11], or removing ar-
tifacts caused by the muscle contraction [GZW10], the eye movement [MWV+10]
and the body movement [GG+10]. Unfortunately, manually-designed feature extrac-
tion and traditional classification techniques have the following problems: 1) they can
only learn the features that researchers focus on but lose or remove other underlying
features; 2) brain signals have subject-to-subject variability, which makes it possible
that methods performing well on certain subjects (with similar age or occupation)
may not give a satisfactory performance on others. These problems limit the poten-
tial of manually-designed feature extraction and traditional classification techniques
for further P300 signal detection and character spelling accuracy improvements.
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In recent years, deep learning, especially using Convolutional Neural Networks
(CNNs), has achieved significant performance improvements in the computer vision
field [KSH12, SZ14, HZRS16]. Deep CNNs have the advantage of automatically
learning feature representations from raw data1. They can learn not only something
we know but also something important and unknown to us. Automatically learning
from raw data has better ability to achieve good results which are invariant to dif-
ferent subjects. Thus, CNNs are able to boost the full potential of recognizing BCI
signals, overcoming the aforementioned shortcomings of traditional machine learning
methods.

Therefore, in recent years, researchers have started to design (deep) CNNs for
P300-based BCIs [CG11,MG15, LWG+18] and achieved better P300 signal detection
and character spelling accuracy than traditional techniques. However, these CNNs
have some limitations in increasing the P300 signal detection and character spelling
accuracy. These CNNs first use a spatial convolution layer to learn P300-related spa-
tial features from raw signals. Then, they use several temporal convolution layers to
learn P300-related temporal features from the abstract temporal signals generated by
the spatial convolution layer (the first layer). In this way, the input to the temporal
convolution layers is the abstract temporal signals instead of raw temporal signals. In
fact, raw temporal signals are more important to learn P300-related temporal feature.
Therefore, these CNN architectures cannot learn P300-related temporal features well
and this leads to problems that: 1) they prevent further P300 signal detection and
character spelling accuracy improvements; 2) they require high network complexity
to achieve competitive accuracy, which prevents the use of these CNNs for practical
mobile-based BCIs [WWJ11, CFF16].

To solve the problems mentioned above, we propose a simple, yet efficient CNN
architecturewhich can capture feature representations from both raw temporal and raw
spatial information. The network complexity is significantly reduced while increasing
the P300 signal detection accuracy, character spelling accuracy, and the communica-
tion speed. The novel contributions of this chapter are the following:

• We propose a CNN architecture with only one convolution layer. Our CNN is
able to better learn P300-related features from both raw temporal information
and raw spatial information. Our CNN exhibits much lower network complexity
compared to other state-of-the-art CNNs [CG11,MG15, LWG+18] for the P300
speller.

• We perform experiments on three benchmark datasets and compare our results

1In this dissertation, we use “raw data, information, or signals” to denote the data that is only pre-
processed (e.g., bandpass filtering and normalization) but not abstracted by a feature extraction method
(e.g., a CNN).
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with those in previous research works that report the best results. The com-
parison shows that our proposed CNN can increase the P300 signal detection
accuracy with up to 14.23% and the character spelling accuracy with up to
35.49%. The comparison also shows that our proposed CNN achieves compara-
ble communication speed with the related BN3 method [LWG+18]. Moreover,
our CNN achieves higher communication speed compared to other state-of-the-
art related methods [CG11, MG15, RG08, Bos04].

The rest of this chapter is organized as follows: Section 3.1 describes the related
work. Section 3.2 presents our proposed CNN. Section 3.3 compares the complexity,
the P300 signal detection accuracy, the character spelling accuracy, and the communi-
cation speed between the proposed CNN and other methods for P300 signal detection
and character spelling. Section 3.4 ends this chapter with conclusions.

3.1 Related Work

The general architecture of the CNNs for P300-based BCI [CG11, MG15, LWG+18]
uses the input tensor2 (N × C) shown in Figure 3.1, whereN denotes the number of
temporal signal samples and C denotes the number of sensors used for EEG signal
recording and obtaining the samples. This architecture has three stages. In the first
stage, it performs convolution along space to learn P300-related spatial features. In
the second stage, it performs convolution along time to learn P300-related temporal
features. In the final stage, it uses fully-connected layers to make accurate correlation
between learned features and a particular class.

Cecotti [CG11] is the first to propose the aforementioned architecture. Let us call
his architecture CCNN. Table 3.1 shows the detailed architecture of CCNN. The first
column in the table describes the sequence of layers. The second column describes
the operation in a layer. The third column describes the kernel size of the convolution
operation3 in the convolution layers. The last column describes the number of feature
maps/neurons in a layer.

Liu [LWG+18] improves CCNN by combining Batch Normalization [IS15] and
Droupout [SH+14] techniques (see Table 3.2). This CNN is namedBN3 in [LWG+18].
BN3 uses the Batch Normalization operation in two layers: one is in Layer 1 and the
other is in Layer 3. BN3 also employs Dropout in the fully-connected layers to reduce
overfitting4. Before the output layer, BN3 uses two fully-connected layers instead of
one for better generalization and accumulation of features.

2The notion of a tensor is introduced in the second paragraph in Section 2.3.
3The convolution operation and the notion of the kernel size are introduced in Section 2.3.1.
4The problem of overfitting is introduced in Section 2.2.3.
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Figure 3.1: Abstraction of the raw signals in the spatial convolution layer in current
CNNs. x denotes a signal sample in the input tensor. f denotes a datum in a feature
map. Every column in the input tensor contains a set of C signal samples. These
samples come fromC sensor at a certain sampling time point. The spatial convolution
operation converts each column of spatial data (receptive field) from the input tensor
into an abstract datum in a feature map.

Manor [MG15] proposes a deep CNN achitecture for the P300-based BCI. Let
us call his architecture CNN-R. It is shown in Table 3.3. CNN-R improves CCNN
by using a deeper and wider network architecture. It uses a smaller kernel size for
the temporal convolution operations but more layers for these temporal convolution
operations (see Layer 2 and Layer 3 in Table 3.3). It also uses two fully-connected
layers before the output layer. In addition, CNN-R uses more feature maps for the
convolution layers and more neurons for the fully-connected layers. For such com-
plex network, CNN-R uses Pooling (see Section 2.3.2) as well as Dropout to reduce
overfitting.

The problem of the aforementioned CNNs is that they learn P300-related tempo-
ral features from abstract signals instead of raw signals, which makes these CNNs not
able to learn P300-related temporal features well. P300-related temporal features are
extracted by the temporal convolution layers of these CNNs. The input to these tem-
poral convolution layers is the feature maps generated by the spatial convolution layer
(the first layer). These featuremaps are abstract temporal signals instead of raw signals
because this spatial convolution layer converts each receptive field (see Section 2.3.2)
of raw signals into an abstract datum in a feature map, as shown in Figure 3.1. These
abstract temporal signals in the feature maps lose raw temporal information. Los-
ing raw temporal information means losing important temporal features because the
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Table 3.1: CCNN architecture.

Layer Operation Kernel Size Feature Maps/Neurons
1 Convolution (1,C) 10
2 Convolution (13,1) 50
3 Fully-Connected — 100

Output Fully-Connected — 2

Table 3.2: BN3 architecture.

Layer Operation Kernel Size Feature Maps/Neurons
1 Batch Norm — —

Convolution (1,C) 16
2 Convolution (20,1) 16

Batch Norm — 16
3 Fully-Connected — 128

Dropout — 128
4 Fully-Connected — 128

Dropout — 128
Output Fully-Connected — 2

nature of P300 signals is the positive voltage potential in raw temporal information
(see Figure 2.9 explained in Section 2.4.1) as well as many important P300-related
features are also embodied in raw temporal information [Pol07]. As a result, these
CNNs cannot learn P300-related temporal features well. Due to this problem, the
aforementioned CNNs have to use a deeper and wider network architecture to learn
temporal features better and achieve competitive accuracy. As a result, these CNNs
exhibit high complexity.

In contrast, our novel CNN architecture performs both spatial convolution and
temporal convolution in the first layer instead of performing only spatial convolu-
tion as in the aforementioned CNNs. Thus, the input to this convolution layer in our
CNN is raw signals. In this way, the data used to extract P300-related temporal fea-
tures is raw signals instead of the abstract signals in the aforementioned CNNs. As a
result, our CNN is able to learn P300-related feature representations from raw tem-
poral information and at the same time, it can also learn P300-related spatial features.
Therefore, our CNN learns P300-related temporal features better. By learning in this
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Table 3.3: CNN-R architecture.

Layer Operation Kernel Size Feature Maps/Neurons
1 Convolution (1,C) 96

Pooling (3,1) 96
2 Convolution (6,1) 96

Pooling (3,1) 96
3 Convolution (6,1) 96
4 Fully-Connected — 2048

Dropout — 2048
5 Fully-Connected — 4096

Dropout — 4096
Output Fully-Connected — 2

way, our CNN can achieve better P300 signal detection and character spelling accu-
racy (see Section 3.3.3 and Section 3.3.4) with only one convolution layer and without
fully-connected layers before the output layer, which reduces the network complexity
significantly (see Section 3.3.2).

3.2 Proposed Convolutional Neural Network
In this section, we introduce our novel CNN. We call it One Convolution Layer Neu-
ral Network (OCLNN). First, in Section 3.2.1, we describe the input to the network.
Then, in Section 3.2.2, we describe our proposed network architecture. Finally, in
Section 3.2.3, we explain how we train the network.

3.2.1 Input to the Network

The input to OCLNN is the input tensor (N × C) shown in Figure 3.2 and Figure 3.3,
where C denotes the number of sensors used for EEG signal recording and obtaining
the samples. N denotes the number of temporal signal samples. Here N= Ts×Fs,
where Ts denotes the time period between 0 and Ts posterior to the beginning of each
row/column intensification (see Section 2.4.2 and Section 2.5), and Fs denotes the
signal sampling frequency.

Figure 3.2 shows that a set of signal samples from the EEG signals, introduced
in Section 2.5, is preprocessed to obtain the input tensor which is used as the input
to our proposed CNN. In such set of signal samples, the temporal signal samples are
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Figure 3.2: Input tensor for our proposed OCLNN.

bandpass filtered between 0.1Hz and 20Hz to remove the high frequency noise. Then,
the filtered samples are normalized using Equation (3.1), (3.2), and (3.3) to have zero
mean and unit variance based on each individual pattern and for each sensor. Each
individual pattern represents N signal samples in the time period between 0 and Ts
posterior to the beginning of each intensification. Such normalization is a common
practice for preprocessing input data to CNNs. The normalization helps the CNN to
perform well for the P300 signal detection and character spelling [CG11].

x′ij =
xij − ε
δ

(3.1)

ε =
1

N

N∑
j=1

xij (3.2)

δ =

√√√√ 1

N

N∑
j=1

(xij − ε)2 (3.3)

3.2.2 Network Architecture

The architecture of OCLNN is described in Table 3.4 and illustrated in Figure 3.3.
The first column in the table describes the sequence of layers. The second column
describes the operation in a layer. The third column describes the kernel size of the
convolution operation in the convolution layer. The last column describes the number
of feature maps/neurons in a layer. We have 2 layers in total, i.e., Layer 1 and Layer
Output.
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Figure 3.3: Illustration of OCLNN for P300 signal detection.

Table 3.4: OCLNN architecture.

Layer Operation Kernel Size Feature Maps/Neurons
1 Convolution (N /15,C) 16

Dropout — —
Output Fully-Connected — 2

In Layer 1, we segment the input tensor over the time domain into 15 parts and
perform convolution operation on each part to learn features. Therefore, the kernel
size of the convolution operation is (N /15, C) and each receptive field (see the orange
rectangle in Figure 3.3) of the input tensor is a tensor (N /15, C) of signal samples. In
the time domain, these signal samples come from a time period of Ts/15. In the space
domain, these signal samples come from all C sensors. The convolution operation
in this layer converts each receptive filed of data into an abstract datum in a feature
map. In this way, this layer learns features from both raw temporal information and
raw spatial information. The stride5 used for the convolution operation in this layer
is (N /15, C). We use the Rectified Linear Unit (ReLU) function6 as an activation
function to model a neuron’s output in this layer because a network with ReLUs is
trained much faster than with other traditional activation functions [KSH12]. In this

5The notion of the stride is introduced in Section 2.3.1.
6The Rectified Linear Unit (ReLU) function is introduced in Section 2.2.1.2.
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layer, we employ Dropout [SH+14] to reduce overfitting. The Dropout rate is set to
be 0.25. This layer generates 16 feature maps.

In Layer Output, OCLNN performs the fully-connected operation. There are two
neurons in this layer. One neuron represents the class “P300” and the other neuron
represents the class “non-P300”. The fully-connected operation makes correlation
between the feature maps from Layer 1 and the two classes. We employ the Softmax
function7 as an activation function for the neurons in this layer. The output of the Soft-
max function for class “P300” and class “non-P300” is denoted by P 1

(i,j) and P
0
(i,j),

respectively. Therefore, P 1
(i,j) represents the probability of having a P300 signal and

P 0
(i,j) represents the probability of not having a P300 signal at epoch i and intensifica-

tion j. Thus, the detection of a P300 signal is defined by Equation (3.4), whereX(i,j)

is the input tensor to be classified and Eocl denotes our OCLNN. By using Equation
(3.4) to detect P300 signals, we can assess the performance of our proposed OCLNN
in terms of the P300 signal detection accuracy (see Section 3.3.1 and Section 3.3.3).

Eocl(X(i,j)) =

{
1 if P 1

(i,j) > P 0
(i,j)

0 otherwise
(3.4)

We use P 1
(i,j), the output of OCLNN for class “P300”, to calculate the position of

the target character in the P300 speller character matrix. For the detailed calculation
process please refer to Section 2.4.2, Equation (2.30), (2.31), and (2.32).

3.2.3 Training

The training of OCLNN is carried out by minimizing the cross-entropy cost func-
tion8. We use a Stochastic Gradient Descent (SGD) based learning algorithm, which
is a modified version of the gradient descent based learning algorithm9. For more
details on the SGD-based learning algorithm, please refer to [Bot10]. We use the
SGD-based learning algorithm with momentum10 and with weight decay11. The mo-
mentum parameter µ is set to 0.9. The weight decay parameter λ is set to 0.0005. The
learning rate12 η is fixed to 0.01. The aforementioned setup of the training parameters
follows the suggestion in [SZ14] because [SZ14] has shown that when using these
parameters to train a CNN on a training dataset, this trained CNN is able to achieve
good performance on a test dataset. For details on the training process of a neural
network please refer to Section 2.2.3.

7The Softmax function is given in Equation (2.8) introduced in Section 2.2.1.2.
8The cross-entropy cost function is given in Equation (2.10) introduced in Section 2.2.3.
9The gradient descent based learning algorithm is introduced in Section 2.2.3.

10The momentum technique is given in Equation (2.23), (2.24), (2.25), and (2.26) introduced in Sec-
tion 2.2.3.

11The weigh decay technique is given in Equation (2.27) introduced in Section 2.2.3.
12The notion of the learning rate is introduced in Equation (2.15) in Section 2.2.3.
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3.3 Experimental Evaluation
First, we introduce our experimental setup in Section 3.3.1. Then, we show the per-
formance comparison between OCLNN and other related research works in terms of
complexity (see Section 3.3.2), P300 signal detection accuracy (see Section 3.3.3) and
character spelling accuracy (see Section 3.3.4). Finally, we compare the ITR of the
P300 speller based on our OCLNN and other methods (see Section 3.3.5).

3.3.1 Experimental Setup

Our OCLNN is implemented using Keras [C+15] with the Tensorflow [AA+16] back-
end. The network is trained on an NVIDIA GeForce GTX 980 Ti GPU.

We train our OCLNN using each training dataset in Dataset II, III-A and III-B,
described in Section 2.5, separately, thereby obtaining three different OCLNNs with
different parameters (i.e., different weights and biases). The number of used sensors
is 64 and the signal sampling frequency is 240 Hz (Section 2.5). Therefore, for the
input to OCLNN (see Section 3.2.1), we have C = 64 and Fs = 240 Hz. Ts = 1000ms
because we take each individual pattern to be the signal samples between 0 and 1000
ms posterior to the beginning of each intensification. Then, the number of temporal
signal samples N = Ts×Fs = 240.

We run each of the three trained OCLNNs on the corresponding test dataset in
Dataset II, III-A and III-B and calculate the P300 signal detection accuracy using
Equation (3.5), the character spelling accuracy using Equation (2.33) (introduced in
Section 2.4.3), and the Information Transfer Rate (ITR) using Equation (2.34) and
(2.35) (introduced in Section 2.4.3) for each test dataset. In Equation (3.5), accP300

denotes the P300 signal detection accuracy,Ntp denotes the number of truly classified
P300s for a test dataset, Ntn denotes the number of truly classified non-P300s for the
test dataset, andSpn denotes the number of all P300s and non-P300s in the test dataset.

accP300 =
Ntp +Ntn

Spn
(3.5)

For a fair comparison with CNN-R [MG15], we apply the bandpass filteringmeth-
ods used for our OCLNN on CNN-R because we obtain low character spelling accu-
racy for CNN-R using the original filtering method in [MG15].

3.3.2 Complexity

In this section, we compare the complexity, in terms of the number of parameters and
layers, of OCLNN with the networks CCNN [CG11], BN3 [LWG+18], and CNN-
R [MG15] briefly described in Section 3.1. The number of parameters is the number
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of weights and biases for all neurons in a network. We show the complexity in Ta-
ble 3.5. The first row in the table lists the CNNs, we compare. The second row
provides the number of parameters for each CNN. The third row shows the number of
layers used in each CNN.

Table 3.5: Complexity comparison of different CNNs.

OCLNN CCNN BN3 CNN-R
Parameters 16882 37502 39489 21950818
Layers 2 4 5 6

In terms of the number of parameters, OCLNN is much smaller than the other
three CNNs. OCLNN has only 16882 parameters whereas CCNN has 37502 param-
eters13, BN3 has 39489 parameters, and CNN-R has 21950818 parameters. Thus, the
number of parameters for OCLNN is only 45%, 42%, and 0.07% of that for CCNN,
BN3, and CNN-R, respectively.

In terms of number of layers used in a CNN, OCLNN has less layers than the
other three CNNs. OCLNN has only 2 layers whereas CCNN has 4 layers, BN3 has 5
layers, and CNN-R has 6 layers. Thus, the number of layers in OCLNN is only 50%,
40%, and 33.33% of that in CCNN, BN3, and CNN-R, respectively.

3.3.3 P300 Signal Detection Accuracy

This section compares the P300 signal detection accuracies achieved by OCLNNwith
the accuracies achieved by CCNN, BN3, and CNN-R on Dataset II, III-A and III-B.

The P300 signal detection accuracy is shown in Table 3.6. The first row in the table
lists the CNNs used for comparison. The second, third, and last row show the P300
signal detection accuracy of the different CNNs on Dataset II, III-A, III-B, respec-
tively. The numbers are given in percentage (%) and calculated using Equation (3.5).
An accuracy number in bold indicates the highest accuracy along a row. “–” in the
table means that the accuracy is not reported in the reference paper describing the
corresponding CNN.

Overall, OCLNN achieves the highest accuracies among all CNNs on Dataset II,
III-A and III-B. It increases the P300 signal detection accuracies achieved by the other
CNNs by up to 14.23%. For Dataset II, OCLNN achieves 92.41% P300 signal detec-
tion accuracy. The accuracy achieved by OCLNN is 7.97% and 6.12% higher than
the accuracy achieved by BN3 and CNN-R, respectively. For Dataset III-A, OCLNN

13Cecotti [CG11] calculated the number of parameters erroneously for L2. It should be
5Ns×(13×Ns+1) instead of 5Ns×(13+1)
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Table 3.6: P300 signal detection accuracy of different CNNs on Dataset II, III-A and
III-B.

OCLNN CCNN BN3 CNN-R
P300 Accuracy on II 92.41 – 84.44 86.29

P300 Accuracy on III-A 84.60 70.37 75.13 73.06
P300 Accuracy on III-B 86.40 78.19 79.02 79.80

achieves 84.60% P300 signal detection accuracy. The accuracy achieved by OCLNN
is 14.23%, 9.47%, and 11.54% higher than the accuracy achieved by CCNN, BN3,
and CNN-R, respectively. For Dataset III-B, OCLNN achieves 86.40% P300 signal
detection accuracy. The accuracy achieved by OCLNN is 8.21%, 7.38%, and 6.60%
higher than the accuracy achieved by CCNN, BN3, and CNN-R, respectively.

3.3.4 Character Spelling Accuracy

This section compares the character spelling accuracies achieved by OCLNN and the
accuracies achieved by CCNN, BN3, CNN-R, and ESVM [RG08] for Dataset III-A
and III-B, as well as the character spelling accuracies achieved by OCLNN and the
accuracies achieved by CCNN, BN3, CNN-R, and Bostanov [Bos04] for Dataset II.
ESVM is the champion spellingmethod of BCI Competition III - Data set II. Bostanov
is the champion spelling method of BCI Competition II - Data set IIb.

Table 3.7, 3.8, and 3.9 show the character spelling accuracies of different methods
onDataset II, III-A and III-B, respectively. The first column in a table lists the different
methods we compare. Each row provides the character spelling accuracy of a method
calculated by Equation (2.33) for different epoch numbers k ∈ [1, 15]. An accuracy
number in bold indicates the highest accuracy along a column. “–” in a table means
that the accuracy is not reported in the reference paper describing the corresponding
method.

The goal of the aforementioned competitions (BCI Competition III and Compe-
tition II) is to compare which method is able to achieve the highest character spelling
accuracy using all epochs (i.e., k = 15). For this goal, OCLNN is able to achieve the
highest character spelling accuracy using all epochs for all three datasets in the two
competitions. For Dataset III-A and III-B, OCLNN achieves 99% and 98% spelling
accuracy for epoch number k = 15. For Dataset II, OCLNN only needs 3 epochs to
achieve 100% spelling accuracy.

We also analyse the character spelling accuracies achieved by different methods
for every epoch number k ∈ [1, 15]. Overall, in most cases, OCLNN achieves better
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Table 3.7: Spelling accuracy achieved by different methods on Dataset II.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 77.42 90.32 100 100 100 100 100 100 100 100 100 100 100 100 100

CCNN 58.06 54.83 77.41 93.54 93.54 93.54 93.54 96.77 96.77 100 100 100 100 100 100

CNN-R 70.97 83.87 93.55 96.77 100 100 100 100 100 100 100 100 100 100 100

BN3 77.42 74.19 80.65 83.87 93.55 96.77 96.77 96.77 100 100 100 100 100 100 100

Bostanov 64.52 83.87 93.55 96.77 96.77 100 100 100 100 100 100 100 100 100 100

Table 3.8: Spelling accuracy achieved by different methods on Dataset III-A.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 23 39 56 63 73 79 82 85 90 91 94 95 95 96 99
CCNN 16 33 47 52 61 65 77 78 85 86 90 91 91 93 97
CNN-R 14 28 38 53 57 62 71 75 77 82 89 87 87 92 95
BN3 22 39 58 67 73 75 79 81 82 86 89 92 94 96 98
ESVM 16 32 52 60 72 – – – – 83 – – 94 – 97

Table 3.9: Spelling accuracy achieved by different methods on Dataset III-B.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 46 62 72 79 84 87 89 93 94 96 97 97 97 98 98
CCNN 35 52 59 68 79 81 82 89 92 91 91 90 91 92 92
CNN-R 36 46 66 70 77 80 86 86 88 91 94 95 95 96 96
BN3 47 59 70 73 76 82 84 91 94 95 95 95 94 94 95
ESVM 35 53 62 68 75 – – – – 91 – – 96 – 96

accuracies than the other methods. OCLNN increases the character spelling accura-
cies achieved by the other methods by up to 35.49%.

For Dataset II, OCLNN achieves the highest character spelling accuracies for ev-
ery epoch number k ∈ [1, 15] among all methods. Compared with the accuracies
achieved by CCNN, CNN-R, BN3, and Bostanov, our OCLNN increases the accura-
cies with up to 35.49%, 6.45%, 19.35%, and 12.90%, respectively.

For Dataset III-A, when compared with methods CCNN, CNN-R, and ESVM, our
OCLNN achieves the highest character spelling accuracies for every epoch number
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k ∈ [1, 15] among all the methods. OCLNN increases the accuracies by up to 14%,
12%, 18%, and 8% compared with the accuracies achieved by CCNN, CNN-R, and
ESVM, respectively.

For Dataset III-B, when compared with methods CCNN, CNN-R, and ESVM, our
OCLNN achieves the highest character spelling accuracies for every epoch number
k ∈ [1, 15] among all the methods. OCLNN increases the accuracies by up to 13%,
15%, 16%, and 11% compared with the accuracies achieved by CCNN, CNN-R, and
ESVM, respectively.

When compared with BN3 on Dataset III-A and III-B, our OCLNN increases the
accuracies by up to 8% considering epoch numbers 1, 2, and 5 to 15 on Dataset III-A
as well as OCLNN increases the accuracies by up to 8% considering epoch num-
bers 2 to 15 on Dataset III-B. However, OCLNN decreases the accuracies for epoch
numbers 3 and 4 on Dataset III-A and for epoch number 1 on Dataset III-B. This
is because BN3 uses the Batch Normalization operation to improve the accuracies
on smaller epoch numbers [LWG+18]. However, the Batch Normalization operation
used in BN3 can only improve the accuracies on Dataset III-A and III-B. On Dataset
II, BN3 achieves much worse results on smaller epoch numbers. In OCLNN, we do
not use the Batch Normalization operation because we aim at a CNN with better po-
tential to achieve higher accuracies across different datasets obtained from different
subjects. The Batch Normalization operation is not very helpful to our OCLNN be-
cause it is more useful in deep CNNs [IS15] but our network has only 2 layers while
BN3 has 5 layers. We have done experiments to obtain the spelling accuracy achieved
by OCLNN when OCLNN uses and does not use the Batch Normalization operation.
These experimental results are shown in Table 3.10, 3.11, and 3.12, where OCLNN-
BN denotes that our OCLNN uses the Batch Normalization operation. Table 3.12
shows that when OCLNN uses the Batch Normalization operation, the spelling ac-
curacy is increased on epoch number k=1, 2, 3, 4, and 6. Unfortunately, Table 3.10
shows that when OCLNN uses the Batch Normalization operation, the spelling accu-
racy is decreased on epoch number k= 3 and 4. Table 3.11 shows that when OCLNN
uses the Batch Normalization operation, the spelling accuracy is decreased on epoch
number k= 8, 9, 11, 12, 13, and 15. These experimental results show that when used
in our OCLNN, the Batch Normalization operation impairs the accuracies on Dataset
II and III-A and only increases the accuracies on Dataset III-B. Therefore, in order to
achieve higher accuracies across all three datasets obtained from different subjects,
we abandon the Batch Normalization operation for our OCLNN.

3.3.5 Information Transfer Rate

This section compares the communication speed, i.e., Information Transfer Rate (ITR),
of the P300 speller based on our OCLNN and other methods. ITR is calculated using
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Table 3.10: Spelling accuracy achieved by OCLNN when using and not using the
Batch Normalization operation on Dataset II.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 77.42 90.32 100 100 100 100 100 100 100 100 100 100 100 100 100
OCLNN-BN 77.42 90.32 96.77 96.77 100 100 100 100 100 100 100 100 100 100 100

Table 3.11: Spelling accuracy achieved by OCLNN when using and not using the
Batch Normalization operation on Dataset III-A.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 23 39 56 63 73 79 82 85 90 91 94 95 95 96 99
OCLNN-BN 23 39 56 63 73 79 82 84 88 91 93 93 93 96 98

Table 3.12: Spelling accuracy achieved by OCLNN when using and not using the
Batch Normalization operation on Dataset III-B.

Method Character Spelling Accuracy (in%) / Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 46 62 72 79 84 87 89 93 94 96 97 97 97 98 98
OCLNN-BN 48 64 73 80 84 88 89 93 94 96 97 97 97 98 98

Equation (2.34) and (2.35) (introduced in Section 2.4.3). The ITR of the P300 speller
based on our OCLNN and other methods for Dataset II, Dataset III-A and Dataset
III-B is shown in Table 3.13, 3.14, and 3.15, respectively. In these tables, the different
methods, we compare, are shown in the first column. The ITR for different epoch
numbers k ∈ [1, 15] is shown in each row of a table. A number in bold denotes that
the number is the highest ITR along a row. “–” in a table denotes that the ITR can-
not be calculated because the corresponding paper, describing the method, does not
provide the spelling accuracy. The ITR is shown in bits/minute.

In the context of ITR, i.e, the communication speed of the P300 speller, we com-
pare the maximum ITR achieved by each method because the maximum ITR repre-
sents the maximum communication speed achieved by a method. We call this maxi-
mum ITR max-ITR. Overall, our OCLNN achieves comparable max-ITR with BN3
and higher max-ITR than the other related methods, i.e., CCNN, CNN-R, Bostanov,
and ESVM. Our OCLNN can increase the max-ITR achieved by CCNN, CNN-R,
Bostanov, and ESVM with up to 15.7 bits/min.

For Dataset II, shown in Table 3.13, when compared with the max-ITR achieved
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Table 3.13: The ITR of the P300 speller based on different methods on Dataset II.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 42.28 37.74 35.25 28.46 23.86 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12

CCNN 26.58 16.65 22.09 24.73 20.74 17.85 15.67 14.92 13.45 13.2 12.12 11.2 10.41 9.72 9.12

CNN-R 36.68 33.18 30.64 26.41 23.86 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12

BN3 42.28 27.06 23.65 20.4 20.74 19.07 16.74 14.92 14.5 13.2 12.12 11.2 10.41 9.72 9.12

Bostanov 31.46 33.18 30.64 26.41 22.15 20.54 18.03 16.07 14.5 13.2 12.12 11.2 10.41 9.72 9.12

Table 3.14: The ITR of the P300 speller based on different methods on Dataset III-A.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 5.77 9.64 13.11 12.78 13.59 13.32 12.44 11.78 11.74 10.91 10.63 10.02 9.32 8.88 8.89

CCNN 2.96 7.33 9.91 9.41 10.18 9.7 11.21 10.2 10.63 9.87 9.82 9.25 8.6 8.36 8.51

CNN-R 2.28 5.56 7.03 9.7 9.13 8.99 9.82 9.56 9.01 9.11 9.62 8.55 7.94 8.2 8.17

BN3 5.33 9.64 13.87 14.1 13.59 12.22 11.69 10.86 10 9.87 9.62 9.44 9.13 8.88 8.69

ESVM 2.96 6.96 11.65 11.82 13.28 – – – – 9.29 – – 9.13 – 8.51

Table 3.15: The ITR of the P300 speller based on different methods on Dataset III-B.

Method Epochs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OCLNN 18.32 20.26 19.62 18.45 17.15 15.68 14.32 13.82 12.71 12.06 11.3 10.44 9.71 9.27 8.69

CCNN 11.76 15.3 14.25 14.44 15.47 13.88 12.44 12.76 12.22 10.91 10.01 9.07 8.6 8.2 7.69

CNN-R 12.32 12.58 17.05 15.14 14.83 13.6 13.49 12.02 11.29 10.91 10.63 10.02 9.32 8.88 8.33

BN3 18.97 18.72 18.75 16.2 14.51 14.17 12.96 13.28 12.71 11.81 10.84 10.02 9.13 8.53 8.17

ESVM 11.76 15.78 15.43 14.44 14.2 – – – – 10.91 – – 9.51 – 8.33

byCCNN,CNN-R, andBostanov, ourOCLNNachieves the highestmax-ITR.OCLNN
increases the max-ITR achieved by CCNN, CNN-R, and Bostanov with 15.7 bits/min,
5.6 bits/min, and 9.1 bits/min, respectively.

ForDataset III-A, shown in Table 3.14, when comparedwith themax-ITR achieved
by CCNN, CNN-R, and ESVM, our OCLNN achieves the highest max-ITR. OCLNN
increases the max-ITR achieved by CCNN, CNN-R, and ESVM with 2.38 bits/min,
3.77 bits/min, and 0.31 bits/min, respectively.

ForDataset III-B, shown in Table 3.15, when comparedwith themax-ITR achieved
by CCNN, CNN-R and ESVM, our OCLNN achieves the highest max-ITR. OCLNN
increases the max-ITR achieved by CCNN, CNN-R, and ESVM with 4.79 bits/min
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and 3.21 bits/min, and 4.48 bits/min, respectively.
When compared with BN3, on Dataset III-B, our OCLNN increases the max-ITR

achieved by BN3 with 1.29 bits/min. On Dataset II, our OCLNN achieves the same
max-ITR with BN3. However, on Dataset III-A, our OCLNN decreases the max-ITR
achieved by BN3 with 0.51 bits/min. The reason is the following. On Dataset III-A,
BN3 achieves the max-ITR 14.1 bits/min on epoch number k = 4 (see Table 3.14). On
epoch number k = 4, our OCLNN achieves lower spelling accuracy than BN3 (see Ta-
ble 3.8). The reason for this has been explained in the last paragraph in Section 3.3.4.
Thus, our OCLNN cannot achieve the same max-ITR as BN3 does on Dataset III-A.
The discussion above shows that overall, our OCLNN achieves comparable max-ITR
with BN3. On the other hand, considering that the complexity of our OCLNN is
much lower compared to the complexity of BN3 (see Table 3.5 in Section 3.3.2), our
OCLNN could be considered better than BN3 for the P300 speller.

In Section 2.4.3, we have shown that when using Dataset II, III-A, and III-B,
the theoretically achievable maximum ITR is 67.43 bits/min. The maximum ITR
(i.e., max-ITR) achieved by our OCLNN is 42.28 bits/min, 13.59 bits/min, and 20.26
bits/min on Dataset II, III-A, and III-B, respectively. The maximum ITR achieved
by our OCLNN still cannot reach the theoretically achievable maximum ITR. Thus,
further research efforts are needed to find approaches to increase the maximum ITR
of a P300 speller in order to bring it closer to the theoretically achievable maximum
ITR.

3.4 Conclusions
In this chapter, we propose a simple CNN, called OCLNN, for P300 signal detec-
tion and character spelling in the P300 speller. Our CNN learns P300-related fea-
tures better by performing both spatial convolution and temporal convolution in the
first layer. Compared with the state-of-the-art CNNs for P300 signal detection, our
CNN has only two layers and much smaller number of parameters, which reduces
the complexity significantly. Experimental results on three datasets show that our
CNN always increases the P300 signal detection accuracy and increases the character
spelling accuracy in most cases, when compared with the state-of-the-art methods for
P300 signal detection and character spelling. In terms of the communication speed,
our OCLNN achieves comparable communication speed with BN3 and higher com-
munication speed than the other state-of-art methods.
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